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Abstract

Standard partial likelihood methodology for the proportional hazards model with
time-dependent covariates requires knowledge of the covariates at the observed fail-
ure times, which is not realistic in practice. A simple and commonly used estimator
imputes the most recently observed covariate prior to each failure time, which is known
to be biased. In this paper, we show that a weighted last observation carried forward
approach may yield valid estimation. We establish the consistency and asymptotic nor-
mality of the weighted partial likelihood estimators and provide a closed form variance
estimator for inference. The estimator may be conveniently implemented using stan-
dard software. Interestingly, the convergence rate of the estimator is slower than the
parametric rate achieved with fully observed covariates but the same as that obtained
with all lagged covariate values. Simulation studies provide numerical support for the
theoretical findings. Data from an Alzheimer’s study illustrate the practical utility of
the methodology.
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1 Introduction

In clinical trials and epidemiological studies, covariates are often collected longitu-
dinally. Incorporation of these covariates into survival analysis is challenging since
these covariates are only observed at a finite number of time points. As an example,
the proportional hazards model (Cox 1972) requires covariate values at each failure
time. Very rarely do the failure times coincide with the covariate observation times
(Liu and Craig 2006).

These issues may be understood more precisely by representing the event history
using counting processes. In the failure time setting, N (¢) indicates whether an event
has occurred by time t and Z(+) is a p-dimensional covariate process. The proportional
hazards model specifies the hazard function for N (¢) conditionally on the history of
Z(r),r <tas

ME1Z0), 7 < 1) = ho(0)ef0 20, )

where Ag(-) is an unspecified function and Sy is a vector of unknown regression
parameters.

A simple and frequently used estimator with time-dependent covariates is to impute
the last observed covariate value prior to each failure time. Such analyses are prob-
lematic (Molenberghs et al. 2002; Molnar et al. 2008). First, it is assumed that the
longitudinal covariate does not change from the time of the last measurement. Sec-
ond, no distinction is made between those subjects who had a valid measurement and
those subjects with imputed values, artificially increasing the amount of information
in the data. These issues can induce substantial biases in parameter estimates and lead
to inaccurate inferences (Andersen and Liestol 2003).

To circumvent these problems, likelihood-based approaches such as joint model-
ing have been proposed as more principled methods for analysis (Tsiatis et al. 1995;
Henderson et al. 2000; Xu and Zeger 2001; Rizopoulos 2012). Commonly, the time-
dependent covariate follows a linear mixed effects model with normal measurement
error and the hazard function depends on the underlying random effects of this covariate
process. Inference may be based on the joint likelihood of the survival and longitudinal
data under parametric assumptions on the random effects. As an alternative, Tsiatis
and Davidian (2001) proposed a semiparametric conditional score estimator for the
covariate effect that requires no assumptions on the distribution of the random effects.
Such methods impose stringent modeling assumptions and the inferences they pro-
duce are highly dependent on untestable and often implicit assumptions regarding the
distribution of the unobserved measurements. Previous numerical work has shown that
such estimators may be quite biased with model misspecification (Cao et al. 2015).

In this paper, we propose an intuitively appealing weighting approach which retains
the simplicity of last observation carried forward imputation. The main idea is that the
further the last observation is from the current failure time, the less it should contribute
to the estimating equation. This is handled formally by weighting the last observation
as a decreasing function of the time between the most recently observed covariates and
the failure event. Models for the underlying covariate process and for the dependence
structure between that process and the event history process are unspecified, unlike
the joint modeling approach. Cao et al. (2015) proposed similar weighting approaches
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PH model with LOCF covariates 117

using all backward lagged covariates. We adapt these techniques to obtain valid esti-
mation employing only the most recently observed covariate, denoted weighted last
observation carried forward. This method may be implemented in standard software
for the proportional hazards model permitting time-dependent weights, which is not
possible when using all lagged covariate measurements.

The paper is organized as follows. In Sect. 2, we discuss the proposed weighted
last observation carried forward estimator and corresponding asymptotic properties
and inferences. Interestingly, the proposed estimators converge more slowly than the
usual parametric rates which are achieved with fully observed covariates but at the
same rate as in Cao et al. (2015). Section 3 reports simulation studies which evidence
little loss of efficiency versus using all previously observed covariates. Application to
an Alzheimer’s dataset illustrates the practical utility of the methodology in Sect. 4.
Concluding remarks are given in Sect. 5. Proofs of results from Sect. 2 are relegated
to the “Appendix.”

2 Estimation and inference
2.1 Notation and last observation carried forward

Let T be the failure time, and let C be the corresponding censoring variable. We
assume that censoring is coarsened at random such that 7 and C are conditionally
independent given Z(-) (Heitjan and Rubin 1991). Let [{T}, Z; (), C;},i = 1, ..., n]
be n independent copies of {T', Z(-), C}. The longitudinal covariates are observed
at M; observation times Ry < X;,k = 1,..., M;, where X; = min(7;, C;), and
M; is assumed finite with probability one. The p-dimensional covariate process may
include both time-independent and time-dependent covariates, under the restriction
that the time-dependent covariates are observed at the same time points within indi-
viduals. The measurement times R;; are assumed independent of the measurements
Zi(Rix),k =1, ..., M;. The observed data consist of the n independent realizations
{Xi, Ai, Zi(Rix), Rix, k=1,...,M;},i = 1,...,n, where A; = 1if X; = T; and
0 otherwise.

To present the estimators, we adopt the counting process notation, where N; (t) =
I(X; <t,A; =1)and Y;(t) = I(X; > t). With fully observed covariates, the partial
likelihood for model (1) is

" 572, AN;(0)
Ln(ﬁ>=1_[]_[{zn < } ,

i=11>0 =1 Yj(l‘)eﬁrzj(’)

1 if N;@)—N;(t—) =1
0 otherwise.

where AN (1) — { D)

The log partial likelihood is:

1,(B) = n"'logL,(B)
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n T n
=n"') fo BT Zi(w) —log { 3~ ¥;wel L 1 AN w)
i=1

Jj=1

n n
— Tz .(X:
=071y A | BTZi(Xp) —log 1 Y Y (XpeP B 3)
i=1 j=I1

where t is a prespecified time point such that pr(X > 7) > 0. Because Z;(u),i =
1, ..., n, are not observed continuously, /,,(8) is not computable from the observed
data.

To use the last observation carried forward, in (3), 8 Tz.(X;)is replaced by g T7:(si)
and log{}"}_, Y; (X;)eP' ZiXD} is replaced by log{>~i_, Yj(X,-)eﬁTZJ'(S")}, where
s; = max{x < X;,x € (Rj1,...,Ripm;)}, i = 1,...,n. This method assumes that
the subject’s covariate does not change from the most recent observation time and
does not account for the variability inherent in this imputation. These assumptions
may not hold in practice, and violations can confound covariates with time, which
in turn can bias estimates of covariate effects and their standard errors. As a result,
the magnitude and even the direction of bias from last observation carried forward is
extremely difficult, if not impossible, to determine a priori.

2.2 Weighted last observation carried forward

We propose to remedy this bias by adopting a weighting strategy, downweighting
imputed values which are far in time from the failure event. To be specific, for a
sample of n independent subjects, the weighted log partial likelihood is

Iy =n"" fT/TJ,
B)=n ;O i (u,r)

BT Zi(r) — log Z / J(u,s)Y,-(u)eﬂTZ.f@dNi*(s) AN} (r)dN; (u),
j=170

“4)

where J(u,r) = Kp(u — r)I{r < u, fr” dNi*(t) = 0}, denoting the weighted last
observation, N*(t) = ]1:/1:, | 1(Ri; < t)isarealization of N*(z), the counting process
for the covariate observation times, K, (1) = K(¢/h)/h, h is the bandwidth, and the
kernel function K (¢) is a symmetric probability density with mean 0, and bounded first
derivative. In simulation studies and real data analysis, we use Epanechnikov kernel
K (x) = 0.75(1 —x?) due to its good empirical performance (Fan and Gijbels 1996).
Ifx > h, Kp(x) = K(x - h)/h = 0. Consequently, if the distance between the last
observed covariate and the failure time is greater than 4 for a subject, this subject’s
failure time does not contribute to the estimating equation. This subject contributes to
the estimating equation via }j_, Jo J (u, s)Yj(u)eﬂTZ-f )dN?(s) at other observed
failure times. When i — oo, the proposed weighted last observation carried forward

@ Springer



PH model with LOCF covariates 119

reduces to the last observation carried forward and bias will incur. As sample size
n — 00, h — 0 to ensure that bias is negligible. & strikes a balance between the bias
and the variability. Smaller & produces smaller bias yet larger variability. On the other
hand, larger & results larger bias and smaller variability. In practice, we choose / to
minimize the mean squared error.

Define ,é to be the maximizer of ;' (). This estimator is a root of the score function
U,(B) =0, where

1 n T T _
ROEEDS /0 /0 T, MZi0) = ZB, N dNF (), ()
i=1

where

n T
SPBuy=n" Z/O T, 9)Y;)Z; ()% ZiOAN(s),
j=1

and Z(B,u) = SV B, u) /S B, u), k = 0,1,2,a® = 1,a%! = a, and a®? =
aa” . Tt can be seen from (5) that different individuals receive different weights inside
the integral in U,(B) depending on the time between the most recently observed
longitudinal covariate and the observed failure event. This is also reflected in V4 (B, u).
Regarding the computation, (4) is concave in 8, and therefore, there exists a unique root
of (5). Once the kernel function K has been chosen and the bandwidth has been fixed,
the estimating equation can be solved using a standard Newton—Raphson method, with
good convergence properties. Standard software for the proportional hazards model
accommodating time-dependent covariates and time-dependent weights may be used
for these computations. If for certain subjects, there are no covariate observations
before their observed failure time, the subject’s failure time does not contribute to the
estimating Eq. (5). Such subjects still contribute to (5) via Z(ﬂ , u) at other observed
failure times.

The weighted last observation carried forward method is not a special case of the
backward lagged covariates approach (Cao et al. 2015). In the weighted log partial
likelihood function (4), I{r < u, fr“ le.* (t) = 0} precludes the contribution of other
covariates except for the last observed covariate into the estimating equation. On the
other hand, all covariates prior to the failure time contribute to the estimating equation
in the backward lagged covariates approach. Even if the bandwidth /4 is extremely
small, the backward lagged covariates approach cannot guarantee to include only last
observed covariate.

If M; = 1, the two partial likelihoods are the same. In the backward lagged covariate
approach, for each failure time, all backward lagged covariates contribute to the partial
likelihood and their effects are aggregated by summation weighted by the difference
between the longitudinal observation time and the failure time. In the general case,
one cannot get weighted last observation approach from backward lagged covariates
approach or vice versa.
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2.3 Statistical inference and asymptotic properties

To state our key results, additional notation and regularity conditions are needed.
Denote E{dN;(t) | Fs,s <t} =Y; (t)eﬁgzi(’)ko(t)dt, where Ao () is assumed twice
continuously differentiable and strictly positive for ¢ € [0, ], and F; is the filtration,
which includes all information in {N; (s), Y; (s), Z;(s), s < min(¢, X;)}, as well as the

measurement times up to time ¢,7 = 1, ..., n. For u > r, the measurement times are
allowed to depend on covariates through

E[dNF (NG @) = NP G0 = 0} | Zir) | = 25w Zioldr.— (6)
This assumption is weaker than that specified in Cao et al. (2015). Denote
sO (.0 = E[Xi0Z:0% e #0311 2,10} ]

The following results provide the limiting distribution of the proposed estimator.

Theorem 1 Under (C1)—(C6) specified in the “Appendix,” we have

() 2ABo) (B — o) > N{0. T(Bo)}. (7)

where

T (eY) ®2
_ ) s (Bo, 1)
Ao = | {s (o 1)~ i }Aoa)dr,

Bo is the true regression coefficient and the asymptotic variance

0 T (D ®2
_ 2 @ s (Bo, 1)
X (Bo) = /0 K (x) dX/O {S (Bo, 1) — W} Ao(t)de.

In practice, inference is conducted based on the estimating Eq. (5). The first moment
of U, (,8) is 0, and we can estimate the variance of U, (,3) by

£—n? ; (/ [ [rwnizo - zeo|avnaniw) ™|

By Taylor expansion, the variance of ,3 can be estimated by

{aUnw) }‘li{awﬁ) }‘1
B Ip=p B Ip=p)

We show the validity of this approach in the following corollary.
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Corollary 1 Under conditions (C1)—(C6) specified in the “Appendix,” the sandwich

formula
{_— 1(B) } 1 > {_— 1(B) } 1

consistently estimates the variance of B.

The validity of the weighted last observation carried forward method in Theorem 1
depends on an appropriate choice of bandwidth. The bias is of order O (k) as shown in
the “Appendix.” Therefore, the allowable range of valid bandwidths is (n=", n=1/3)
as specified in condition (C6) in the “Appendix.” With & = o(n~!/3), we achieve a
rate of convergence o(n'/?). This rate of convergence is the same as the half kernel
approach in Cao et al. (2015) but slower than the joint modeling approaches where
strong modeling assumptions on the joint distribution of the covariate process and
event times facilitate likelihood-based inferences which may achieve parametric rates
of convergence for the regression parameter 3.

Following Cao et al. (2015), we propose a data adaptive bandwidth selection pro-
cedure. The idea is to minimize the mean squared error, where the bias and variance
are estimated separately. From (14), we know bias is of order 4. We first regress
3 (h) on h in a reasonable range of & to estimate the slope C. To estimate the vari-
ance, we split the data randomly into two parts and estimate regression coefficients
Bl(h) and ﬁz(h) based on each half sample The Vanance of B(h) is estimated by
V(h) {,31(11) ,32(h)} /4. Using both C and V(h) we thus estimate the mean
squared error as C2h2 +V (h). Finally, we select the optimal bandwidth 2 minimizing
this mean squared error.

3 Simulation studies

We conducted extensive simulation studies to compare the performance of the pro-
posed estimator and the half kernel estimator in Cao et al. (2015). The simulated
model is exactly the same as that in Cao et al. (2015). Specifically, we generated 1000
datasets, each consisting of 100, 400 or 900 subjects. The total number of covariate
observation times for each subject was Poisson distributed with intensity rate 8. The
covariate observation times were generated from uniform distribution /(0, 1). The
covariate process was generated through a piecewise constant function

20

Z@t) =Y I{i—1)/20 <t <i/20}z;.

i=1

where z = (z1, ..., 220) T follows a unit variance multivariate normal distribution with
mean 0 and correlation e~ 1F=71/20 j =1,...,20. The survival time was simulated
from model (1) with Ag(#) = 2 and By = 1.5. The censoring time was generated
from a uniform distribution with lower bound O and upper bound giving censoring
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percentages of 15% and 50%. The results for other choices of the model parameters
were rather similar and thus omitted.

For both estimators, the kernel function is the Epanechnikov kernel, which is
K (x) = 0.75(1 — x%);. We employ bandwidths in the range (n~!, n~!/3) and the
automatic bandwidth selection described in the “Appendix” and Cao et al. (2015).
Similar results were obtained using other kernel functions.

Table 1 summarizes the main findings over 1000 simulations. We observe that the
weighted last observation carried forward estimator performs satisfactorily in terms
of bias, variance and coverage probability, particularly with larger sample sizes. Com-
pared with the half kernel approach, the proposed estimator has similar biases and
loses little efficiency, generally less than 10%, with the empirical variances of the two
estimators in good agreement at larger sample sizes. This finding can be explained
heuristically: as the sample size increases, the weight assigned to the most recent
covariate observation tends to dominate those from earlier measurements. The advan-
tage of the weighted last observation carried forward estimator is that it is considerably
easier to implement in practice using standard software and is valid under weaker
assumptions.

As per the request of a referee, we have provided additional simulations comparing
our approach and the half kernel approach with two covariates: one time-dependent
covariate and one time-independent covariate, to see the performance of our method
in a multivariate regression case. The simulation setup is exactly the same as that in
Cao et al. (2015). The results are summarized in Table 2. The results of half kernel
and weighted LOCF are fairly comparable.

To see how mean squared error changes with different bandwidth for the weighted
last observation carried forward and the half kernel approach, we plot the mean squared
error as a function of the bandwidth for sample size n = 400 and censoring rate
21.75%. As can be seen from Fig. 1, the optimal bandwidth for half kernel and weighted
last observation carried forward are close by.

4 Alzheimer’s data example

We now illustrate the proposed inferential procedure in Sect. 2 with a comparison
to the last observation carried forward and half kernel approach on data from an
Alzheimer’s study. This is a longitudinal population study of common chronic health
problems of older persons, in a biracial neighborhood in Chicago from 1993 to 2006.
Their demographics are recorded at baseline, and they are longitudinally followed
for clinical evaluation of Alzheimer’s disease. Their ages range from 60 to 100. For
each patient, the time origin is the first visit on study with the event time being the
time since the first visit. We investigate the relationship between mortality and the
longitudinal predictor mean corpuscular volume, the average volume of red cells in a
specimen. Since the majority of subjects are Caucasians (96%), our analysis is based
on Caucasians only. A total of 2209 persons were used for analysis with 59.74%
censoring. Details of the study design, methods and medical implications can be found
in Bienias et al. (2003).
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One realization with n = 400 and censoring rate 21.75%
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Fig. 1 MSE as a function of bandwidth

We use estimating Eq. (5) with bandwidths 2 = 2(Q3 — Q1)n~7, where Q3 is the
0.75 quantile and Q1 is the 0.25 quantile of the longitudinal measurement times, 7 is
the number of persons and y = 0.6 or 0.7. This effectively scales the time alignment
to be consistent with our simulations. The results are summarized in Table 3 with fixed
bandwidths and data adaptive bandwidth. Results based on last observation carried
forward, half kernel approach and baseline mean corpuscular volume are presented
for comparison.

We can see the negative association between time-dependent mean corpuscular
volume and mortality using weighted last observation carried forward and half kernel
approach, which are statistically significant at the 0.05 level. The similarity of the
two analyses, including the agreement of the standard errors, matches the results of
the simulation studies. In contrast, last observation carried forward suggests a weak
positive association, which is similar to results produced by using the baseline mean
corpuscular volume. The positive association between mean corpuscular volume and
mortality has recently been established using baseline only observations (Yoon et al.
2016). It is very interesting that time-dependent mean corpuscular suggests a negative
association. Further studies are needed to validate these findings.
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5 Concluding remarks

In this paper, we proposed a weighted last observation carried forward approach for
the proportional hazards model with time-dependent covariates. The newly proposed
estimator is shown to be valid under weaker assumptions with little efficiency loss
and is much faster to compute compared to the half kernel approach (Cao et al. 2015).
Numerical studies corroborate our theoretical results, and the proposed method can be
conveniently implemented using standard software. While we focus our analysis on
the proportional hazards model, our approach could also be used for other purposes
such as additive hazards model, with additional development.

In practice, it may happen that time-dependent covariates are observed at different
time points within individuals. For such scenarios, our proposed weighting methods
would not be applicable. Alternative weighting methods could potentially be developed
which incorporate that the time-dependent covariates are observed at different time
points. This is beyond the scope of the current paper, but it is an interesting and
important topic for future research.

For time-dependent longitudinal covariates, joint modeling is commonly used. Joint
modeling consists of two sub-models: a longitudinal sub-model (such as a linear mixed
effects model) and a time-to-event sub-model (such as a Cox proportional hazards
model) which are linked using an association structure that quantifies the relationship
between the outcomes of interest. If interest lies on the dynamics of the longitudinal
process, such as accounting for informative dropout or the link between the outcomes,
joint modeling will be used and the proposed method is not applicable. If interest
lies on including the longitudinal variable as a time-dependent covariate in a time-
to-event model, both joint modeling and the proposed method can be used, though
investigators prefer one or another depending on the research question of interest.
If investigators would like to use the slope of the population trajectory alone or in
conjunction with the current value, joint modeling is preferred. On the other hand, if
the longitudinal process is very difficult to model or the working linear mixed model
is a mis-specified model, the weighted last observation carried forward is preferred.
Joint modeling is more efficient when modeling assumptions in the joint modeling
approach are satisfied.

Time-dependent covariates are pervasive in various disciplines. An alternative two
stage modeling approach would be to apply kernel smoothing methods to the observed
part of covariate Z;(¢) for individual i to get an estimated curve {2,- ) 1t < Xi},
and to replace the missing Z; (¢;) with 2,- (¢j) fort; < X;. As the uncertainty inherent
in Z; (¢;) is ignored in the second stage, this approach may induce bias. Comparison
between the two stage approach and the proposed method is beyond the current paper
and warrant additional research.

A Appendix: conditions of Theorem 1
We collect the required conditions of Theorem 1 below.

(C1) {N;(-),Yi(-), Z;(-)}i =1, ..., n) are independent and identically distributed.
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(C2) pr(C = 1) >0and pr(T = 1) > 0.

(C3) For r < u, (6) is satisfied. N(t) and N*(t) are bounded by finite constants,
Ao(2) is twice continuously differentiable and E [Z (s) Y(t)eﬁor Z(1) ) x {s,1; Z (s)}]
is twice continuously differentiable for s, ¢ € [0, 7]%2.

(C4) Fori =1, ..., n, Z; hasbounded total variation, where | Z;; (O)H—for [dZ;;j ()] <
Dforall j =1,..., p, where Z;; is the jth component of Z; and D is a finite
constant. W ,

(C5) ABo) = [y E[(Z(D) — 5w ®2Y (0P ? Wi {1, 15 Z(1)) | ho(0)dr is a posi-
tive definite matrix. ’

(C6) K (z) is a symmetric probability density function with mean 0 and bounded first
derivative. In addition, K (z) satisfies ffooo K (2)%dz < 0o. Moreover, nh — 00
and nh® — 0asn — oo.

Conditions (C1) and (C2) are standard for the proportional hazards model. For
r < u, the condition (C3) requires conditionally independent observation times in
which the expectation of the counting process of measurement times is conditionally
independent of the failure time given the observed covariates. This assumption is
weaker than that in Cao et al. (2015). In (C3), the assumption of bounded N (¢) and
N*(t) is also conventional. Conditions (C4) and (C5) guarantee finiteness and positive
definiteness of the estimator’s variance—covariance matrix. Condition (C6) indicates
the restriction on the kernel and bandwidths. The following theorem, which is proved
in the “Appendix,” states the asymptotic properties of /§ from U, (B) in (5).

B Appendix: proofs of theorems

This appendix includes the Proofs of Theorem 1 and Corollary 1.

B.1 Proof of Theorem 1

Our main tools are empirical processes (van der Vaart and Wellner 1996). First, we
need the following proposition:

Proposition 1 Under (C1)—(C6), for any compact neighborhood I3 of By, we have

lim  sup  |SPOB, 1) —sPB, 0| =0 as.for k=0,1,2. (8)

=00 0<r<t,peB

Proof This follows from Theorem 37 of Pollard (1984) and the observation that
S,gk) (B, t) is Lipschitz continuous in 8 € B. m|

The key idea is to establish the following relationship

(nh)2U,(B) — (nh)'?[U, (o) — E{Un(Bo)}]

sup
|B—Bol<M (nh)=1/2

+ () 2 ABo) B — o)
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= Dn'213% + 0, {1 + (n)'?|B — Bol}. ©)

where A(B) is given in Theorem 1 and D is a constant.
To obtain (9), first, using P, and P to denote the empirical measure and true
probability measure respectively, we obtain

T T S(l)(IB 14)
(nh)”zUnus)=(nh)‘/2<7>nf7>)/ f ) 1 Z(r) = o= 1 AN" (AN ()
o Jo Sp” (B, u)
T T (1)
+(nh)'*E / / J(u,r) Z(r)—S”0 (B. ) dAN*(r)dN (u)
o Jo S (L)
=1+1I, (10)

where J(u,r) = Kp(u — r)I{r < u, fr" dN*(¢t) = 0}, kernel weighting of the last
observed covariate and failure time.

We now calculate the second term on the right-hand side of (10). From Proposition 1,
it follows that

11 = ()2 / f 1k (” — r) E[Z(r)Y(u)eﬂ()TZ(“)A*{r, ", Z(r)}]xo(u)drdu
0o Jo h h
u

172 Y -\ ,-
— (nh) A ZK A {z(B, u) + o(1)}

E[Y(u)eﬂoTZ(M*{r, " Z(r)}]xo(u)drdu,

where

sD B, u)

= SO

After change of variable and incorporating (C3) and (C6), we obtain

1= (nh)‘/Z/T E[Y(r)Z(r)eﬁgz(”x*{r, r: Z(r)}])\o(r)dr
0

— ()2 / "8, 15O (Bo. a0 + 0 PR, (1)
0

Following a Taylor expansion, we have

a_ )
6.0 = 0.+ |50 +008 o
. s@Bo,r) sV (o, )
= Z(fo.r) + {S(O)(ﬂo’ s [ (B = o)+ o(1B — o
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Plug this into (11), we obtain

=)'’ / s B0, o) — (u) 2 / 5O (B0, o) + 01243
0 0

T (1 ®2
— ()2 @ _ S Bo, )™ _
o' [ {s (o 1)~ }Xo(r)dr(ﬂ )

+o{(nh)'?18 — Bol}
— — () 2 ABo) (B — Bo) + Dn' 2132 1 o{(nh) 18 — Bol}, (12)

where D is a constant and

T M ®2
_ ) 52 (Bo, 1)
A(po) = /O {s Bo.0) = 5 })»o(l)dt

[T s (Bo, 1)
_/O E HZ(t) - —s(0>(ﬂ0,t)}

o T
{z(r)—ﬁ} Y ()efo ZOn* (e 1, Z(1)} | Ao(r)dt.

The matrix A(Bp) is non-singular by assumption (C5). For the first term on the right-
hand side of (10), we consider the class of functions

)]
{ 1/2/ / J(u, r){Z( )—%Zf}dN*(r)dN(u):w—ﬂm«

for a given constant €. Note that the functions in this class are Lipschitz continuous in
B and the Lipschitz constant is uniformly bounded by

M, fr /Thl/th(u—r)dN*(r)dN(u),
0 0

s@ B0 {M}@Z
sO@n  sO@Ent -
Therefore, this class is P-Donsker class by the Jain-Marcus theorem (van der Vaart
and Wellner 1996). As the result, we obtain that the first term in the right-hand side

of (10) for |8 — Bo| < M(nh)~'/? is equal to

which has finite second moment and M| is the upper bound of

n Trr S5V (Bo, u)
(nh)"2(P, — P) / / T, Z0) = S == LAN" (N @) + 0, (1)
o Jo Sn (Bo, u)

= )2 Un(Bo) = E{U(Bo)}] + 0p (D). (13)
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Combining (10), (12) and (13), we obtain (9). Consequently,

() 2 ABo) (B — Bo) + 0, (' *h?) + 0,(1 + ()2 |B — Bol}
= (nh)*[U,(Bo) — E{Un(Bo)}- (14)

On the other hand, as the subjects are independent identically distributed, we calculate

Varl () 20, o) = iar| [ [ 3001200 - 2o, onan erav )

—hE //0 ffo T, i) 2, r(Z(r) — Z(Bos u)Z(r2) — Z(Bo. u2))
dN* (r1 )dN*(rz)dN(ul )YAN (u3)

T T _ 2
h(E [ swnize) - 2 win @)
0 Jo
=A—-B.

We next show that B = o(h). By Proposition 1, we have

E / ' / "I Z ) = Z(Bo. w}AN* (AN ()
0 0
_E / f T, P{Z) — 2(Bo )}AN* (AN () + o(1),
0 0

where

s (Bo, u)

Z(Bo, u) = m

and
s® (B, 1) = E[Y(r)Z(r)WeﬂTZ('b\*{t, ‘: Z(t)}].

Taking conditional expectation, we have

E/ f J(u, PZ ) — 2(Bo, u)}dN*(r)dN ()
0 0
— E[r fr Z(r) Y (w)ePo ZW 30 ) A* {r, u, Z(r)}drdu

s (Bo. u) - .
/ /o sO (o, u)Y(u)eﬂ0 2 %) r, u, Z(r))drdu
=1 — D.
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After a change of variable and Taylor expansion, we obtain

T +00
= E/ / K (2)dzZ ()Y (e ZOx o (A*{r, r, Z(r)}dr + o(1)
0 —00

- /r sD(Bo, rro(r)dr + o(1).
0

Similarly,
e sV (Bo. 1) Iz
f / K (@) 555 )Y(r)eﬂo Oro()2*{r, r, Z(r)}dr + o(1)
=/ s (Bo, )ro(r)dr + o(1).
0

Consequently, B = o(h). Now we decompose A into four parts

A=hE /méuz »/rl#rz J(ur, r)J (w2, rZ(r1) = Z(Bo, uDHZ(r2) — Z(Bo, u2)}
dN*(r1)dN*(r2)dN (u1)dN (u2)
e /# [ 20 = 20, 0)20) = 260 )
dN*(r)dN (u1)dN (u2)
+hE/’ /rﬁm T, r) T, 1A Z (1) — Z(Bos )N Z(r2) — Z(Bo, u)}
dN*(r1)dN*(r2)dN (u)
+hE /0 /0 J @, 1Y {Z(r) — Z(Bo, w)}**AN*(r)dN ()

=A;+ A+ A3+ A4

It is easy to see that A} = O(h), Ay = O(h), A3 = O(h). After change of variables
and Taylor expansion, we obtain

> 2 “le s (Bo, 1)®? _q
Ayq =/ K (x) dx/ sPBo, 1) — —22 L ao@)dr + O(h) + O{(nh)~ Y.
0 0 sO(Bo, 1)

Therefore,
Var{(nh)">U, (Bo)} — =(Bo),

where

[ee) T (1) ®2
_ 2 @ s (Bos 1)
2(Bo) = /0 K(x) dX/O {S (Bo,t) — _W} Ao(t)de.
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To prove the asymptotic normality, we verify that the Lyapunov condition holds.
Define

v = ()" 2n! /0 ' /0 TJ(u,r){zi(r)—Z(ﬂo,m}dzv,-*(r)dzvi(u).

Similar to the calculation of X (),

> E(1vi = Evil’) = n0{0h) a3 h72) = o)™,

i=1

Thus,
)" 2[Un(Bo) = EU (B0} | > N0, Z(Bo)).
Combining with (14), we finish the proof of Theorem 1. O

B.2 Proof of Corollary 1

To begin with, we have

U, (ﬁ) - / / T, PAN? SP B SV E 0y
Z (u,r) (){ O  sOG ] i(u).

Using a similar argument as for Eq. (13), we show

T S7Bw S B w
J(u, r)dN* A dN@) : |8 —
{ /O /0 w, r) (r){s,ff”(ﬂ,u) S,(,O)(,B,M)Z] W) : 1B~ bol < e

is a P-Glivenko—Cantelli class. Therefore, SUP|g_gy| <€| aﬂ | e ﬂ—E{aU"(ﬂ )

lp_pll —

0 in probability. Since ,3 is consistent for By, by continuous mapping theorem,

“g;;ﬁ ) | p—j converges in probability to —A(Bp). Similarly, let

R n T T _ ®2
2 =2 Y[ [ [ Kwnizie) - 2.wian; ]
then sup‘ﬂ_ﬁo‘qﬁ)(ﬂ) — E{ﬁ)(,B)H — 0 in probability. On the other hand,

~ T T _ 2
E(E(p) =n""E| /0 /0 K G, NIZi(0) = 28, w)aN; (aNia) |
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After change of variables, and by (C3),

s (Bo, u)®?

R 1 o0 T
EE@) = /0 K(2)dz fo @ (Bo, u) —

sO(Bo, u)
Therefore,
(nh)fl LS > (Bo) as nh — oo.
The consistency of variance estimate follows. |
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