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Abstract
Check functions of least absolute deviation make sure quantile regression methods
are robust, while squared check functions make expectiles more sensitive to the tails
of distributions and more effective for the normal case than quantiles. In order to
balance robustness and effectiveness, we adopt a loss function, which falls in between
the above two loss functions, to introduce a new kind of expectiles and develop an
asymmetric least kth power estimation method that we call the kth power expectile
regression, k larger than 1 and not larger than 2. The asymptotic properties of the
corresponding estimators are provided. Simulation results show that the asymptotic
efficiency of the kth power expectile regression is higher than those of the common
quantile regression and expectile regression in some data cases. A primary procedure
of choosing satisfactory k is presented. We finally apply our method to the real data.
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1 Introduction

Consider the following linear model

yi = x ′
iβ + εi , i = 1, 2, . . . , n,

where β is an unknown p × 1 parameter vector and εi is the error term. In order to
estimate β, we use the asymmetric kth power loss functions

Qτ (r) =
{

(1 − τ)|r |k r < 0

τ |r |k r ≥ 0
(1)

where τ ∈ (0, 1). For k = 1 and k = 2, these loss functions are ones used by the
quantile regression and by the expectile regression proposed in Koenker and Bassett
(1978) and Newey and Powell (1987), respectively. According to the extreme function
estimation theory, minimizing the total asymmetric power error loss

Sτ (b) =
n∑

i=1

(Qτ (yi − x ′
iβ) − Qτ (yi ))

obtains an estimator β̂(τ, k), which provides an estimation of the scalar parameter that
minimizes the function E(Qτ (Y − X ′β) − Qτ (Y )) over β. For convenience, we hide
k and write β̂(τ, k) as β̂(τ ) or β̂ without confusion. Hereafter, in other notation that
relates to k, we often suppress the symbol k.

Returning to k = 1 and k = 2, the consistency and asymptotic normality of β̂

were proved by Koenker and Bassett (1978) and Newey and Powell (1987). Since
then, due to their great advantages, the quantile regression, the expectile regression,
and their derivatives have been using by researchers all over the fields of science.
For a detailed and systematic introduction to quantile regression and some interesting
extensions of basic quantile-based models, we refer to Koenker (2005), Engle and
Manganelli (2004), Kim (2007), Cai and Xu (2008), Cai and Xiao (2012), Andriyana
et al. (2016) and Koenker (2017), among others. More expectile-based models can
be found in Efron (1991), Yao and Tong (1996), Granger and Sin (1997), Taylor
(2008), Kuan et al. (2009), Gu and Zou (2016), Farooq and Steinwart (2017), among
others. Ehm et al. (2016) considered the problems involving prediction for expectiles.
Holzmann and Klar (2016) dealt with the asymptotic distribution of sample expectiles
in detail. Chen (1996) considered Lk quantiles and mainly investigated its application
in testing symmetry. Arcones (1996) investigated Lp-regression, which is only related
to a symmetric check function.

Efron (1991) pointed out that the power loss function with k = 1.5 is appealing as
a compromise between the robustness of k = 1 and the high-normal-theory efficiency
of k = 2. In contrast to quantile regression, the common expectile regression imposes
a condition that the mean of the true distribution underlying data exists. The condi-
tion is sometimes strong, especially for some financial data; the kth power expectile
regression relaxes the requirement to existence of the (k−1)th ordermoment. Quantile
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The kth power expectile regression 85

regression requires no moment condition, but the computation involved, for instance
calculating the variance, is not so easy as that of the kth power expectile regression. As
a trade-off between these aspects, the kth (1 < k < 2) power expectile regression may
be a better choice. Moreover, the relevant asymptotic variance of kth power expectile
regression is smaller than those of quantile and expectile regression under some data
cases. But about the basic properties of the kth power expectile regression, there are
yet no consideration. Obviously, it is important to fill the theory gap.

This paper focuses on the loss function in (1) with 1 < k ≤ 2. Our results partially
contain those in Newey and Powell (1987) as special cases. We give an explicit def-
inition of the kth power expectile and prove its existence and uniqueness under the
assumption that the distribution has the (k−1)th order moment. The proof is strongly
technical and easy to extend to cases k > 2. Some basic properties of kth power expec-
tiles are also studied. Furthermore, we turn our attention to the issues concerned with
the kth power expectile regression, such as the asymptotic properties of the kth power
expectile regression estimator β̂(τ ). The proofs are different from those for quantile
regression. Koenker and Bassett (1978) considered the properties related to regression
quantiles. The linear programming formulation and the property of polyhedra were
used to prove the uniqueness of the minimum point of E(Qτ (Y −m) − Qτ (Y )), and
the algorithm of the estimates also came from the linear programming. The asymptotic
properties of the estimators were proved by the basic event probability and Scheffé’s
theorem (Scheffé 1947). However, for 1 < k ≤ 2, the object function Sτ (b) is not
of the linear and polyhedra, and we mainly use the result of Hjort and Pollard (1993)
and the spirit of the methods in Newey and Powell (1987) to prove our theorems.
Newey and Powell (1987) used the theory of Huber (1967) to prove their asymptotic
normality result, while we use argument in Hjort and Pollard (1993). Because the
expressions related to the kth power expectiles are more complex, we have to confront
two challenges: How to conceive the proof of the existence and uniqueness of kth
power expectiles and how to estimate E(|y − x ′b|k−1|x). We use more mathematical
techniques in the proof of the first issue and obtain some easy-checking conditions
for the second issue. Some comparisons with the quantile regression and the expectile
regression have been made in detail, which illustrate the advantage of the general kth
power expectile regression. A way of determining the proper value of k is provided.
An application, analyzing the data of incomes of migrant workers, is implemented and
exemplifies the merits of our proposed method although the method is applicable in
much more fields. It is worth mentioning that the empirical results show the kth (espe-
cially k �= 2) power expectile regression outweighs the common expectile regression
and quantile regression in terms of variances in many cases.

The remainder of the paper is organized as follows: In Sect. 2, basic properties of kth
power expectiles and kth power expectile regression have been provided. Main results
for the kth power expectile regression estimators and some remarks are presented in
Sect. 3. A basic algorithm is provided in Sect. 4. Some comparisons with the quantile
regression and the expectile regression are given in Sect. 5. Section 6 contains the
method of choosing the value of k, and Sect. 7 involves an application example.
Section 8 concludes the paper. All proofs are postponed to Sect. 9. The ci , c and C
are positive and finite constants which may vary from line to line.
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2 Basic properties of kth power expectiles

Suppose the observable data {(yi , x ′
i )

′, i = 1, 2, . . . , n} come from the linear model

yi = x ′
iβ0 + εi , (2)

where {xi } is a sequence of regression vectors of dimension p with the first component
xi1 = 1, β0(∈ Rp) is a vector of unknown parameters, and {εi } is a sequence of scalar
error terms. Define the kth power loss function as follows:

Qτ (r) =
{

(1 − τ)|r |k r < 0

τ |r |k r ≥ 0

where τ ∈ (0, 1) and 1 < k ≤ 2. We can get an estimator β̂(τ ) via minimizing the
total asymmetric power error loss function

Sτ (b) =
n∑

i=1

(Qτ (yi − x ′
i b) − Qτ (yi )). (3)

By the extreme function estimation theory, the estimator can be used to estimate the
scalar parameter yielded by minimizing the function E(Qτ (Y − X ′β)− Qτ (Y )) over
β if {(yi , x ′

i )
′, i = 1, 2, . . . , n} are independently identically distributed (i.i.d. for

short) variables from a population (Y , X ′). For the quantile regression or the expectile
regression, under homoscedasticity, the probability limits of β̂(τ ) deviate from β0
only in their intercept terms. Under homoscedasticity and for different choices of τ ,
we have

plimn→∞β̂(τ ) = β0 + η(τ)e1,

where e j denotes the j th unit vector and η(τ) ≡ F−1(τ ), the quantile or expectile
function for the error term εi . Under heteroscedasticity, the probability limits for the
slope coefficients will generally vary with τ and rely on the joint distribution of εi and
xi . The regression quantile estimators are thus a class of empirical “location” mea-
sures for the dependent variable whose sampling behavior involves the true regression
coefficients and the randomness of the error terms. The general regression of the case
1 < k < 2 shares the properties above. Below, we give the definition of “expectiles”
in the present paper.

We consider the simple scalar parameter μ(τ) which minimizes the function
E(Qτ (Y − m) − Qτ (Y )) over m, where the expectation is taken with respect to
F , the cumulative distribution function of the random variable Y . It is easy to show
that the parameter μ(τ) is the solution to the equation

k(1 − τ)

∫ μ(τ)

−∞
(μ(τ) − x)k−1dF(x) = kτ

∫ ∞

μ(τ)

(x − μ(τ))k−1dF(x). (4)
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Fig. 1 The cumulative distribution functions, the inverses of expectile functions and the inverses of 1.5
power expectile functions for the normal distribution and the scaled t(2) distribution, which are denoted
by NF, NG and 1.5th power expectile, respectively. In order to exhibit the curves well, we set the ordinate
scale as log(τ )

FollowingNewey andPowell (1987),we refer toμ(τ) as the τ kth power expectile. The
μ(·) is also called the kth power expectile function, whose properties are summarized
in Theorem 1. The first graph in Fig. 1 depicts the cumulative distribution function, the
inverse of the expectile function and the inverse of the 1.5 power expectile function for
the normal distribution. The values of the inverse of the 1.5 power expectile function
are exactly between those of the cumulative distribution function and the inverse of
the expectile function. An appropriate scaled t(2) (a t distribution with 2 degrees of
freedom), with f (x) = (1 + y2/4)−3/2/4 as its density distribution, has expectiles
equal to its quantiles. So someone will double whether kth power expectiles in this
case are still sandwiched between quantiles and expectiles, like the normal case. The
second graph in Fig. 1, which contains the same result as the first graph but for the
scaled t(2), gives a negative answer. Graphically, the cumulative distribution function
is exactly the same as the inverse of the expectile function, as expected, but they
are widely different from the inverse of the 1.5 power expectile function. (When k
taking other values in the interval (1, 2), the results are similar, so we omitted them.)
When considering k = 1, the common quantiles, we use α instead of τ to stand for
the corresponding probability. Table 1 collects some couples of τ and α such that τ

1.5 power expectiles equal α quantiles for some common distributions. As mentioned
above, it can be concluded that kth power expectiles are totally different from quantiles
and expectiles.

The kth power expectile μ(τ) can be adopted to define a distribution in much
the same way as the quantile function or the expectile function does. One-to-one
correspondence between these three functions, described in Fig. 1, is the intrinsic
property of a distribution. In other words, we can describe a distribution by either its
cumulative distribution function or its kth power expectile function. Let IF denote the
set {y|0 < F(y) < 1}. The following are the basic properties of kth power expectiles
and their regression estimators.
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Table 1 Implied α values under different distributions

τ U (−1, 1) N (0, 1) t(30) t(10) t(5) t(3) Exp(2)

0.01 0.044 0.024 0.023 0.021 0.019 0.016 0.053

0.03 0.089 0.061 0.059 0.055 0.050 0.044 0.107

0.05 0.123 0.090 0.088 0.083 0.078 0.069 0.147

0.10 0.187 0.154 0.152 0.147 0.140 0.128 0.223

0.25 0.324 0.302 0.298 0.295 0.289 0.280 0.379

U (−1, 1), N (0, 1), t(i), and Exp(2) stand for the uniform distribution, the standard normal distribution, the
t distribution with i degrees of freedom, and the exponential distribution with parameter 2, respectively

Theorem 1 Suppose that E |Y |k−1 < ∞. Then for each τ , 0 < τ < 1, a unique
solution μ(τ) to (4) exists and has the following properties:

(i) As a function μ(τ) : (0, 1) → R, μ(τ) is strictly monotonic increasing.
(ii) The range of μ(τ) is IF , and μ(τ) maps (0, 1) onto IF .
(iii) For X = sY + t , where s > 0, μ(τ) is the τ kth power expectile of Y , and the τ

kth power expectile μ̃(τ ) of X satisfies μ̃(τ ) = sμ(τ) + t .

In the regression case, the vector β̃0(τ ) that minimizes R(β, τ ) ≡ E(Qτ (yi −
x ′
iβ) − Qτ (yi )) will be determined by the condition distribution of yi given xi . Here,
the signs Y and X denote (y1, y2, . . . , yn)′ and (x1, x2, . . . , xn). Return to (3) and
define

β̂(τ,Y,X ) ≡ argminb∈Rp Sτ (b)

as an estimator of β̃0(τ ). Sometimes, suppress Y and X for notational convenience,
i.e., write β̂(τ,Y,X ) as β̂(τ ). The following result about the estimator can be proved.

Theorem 2 For the solution β̂(τ,Y,X ), we have

(i) β̂(τ, λY,X ) = λβ̂(τ,Y,X ), λ ∈ [0,∞);
(ii) β̂(1 − τ, λY,X ) = λβ̂(τ,Y,X ), λ ∈ (−∞, 0);
(iii) β̂(τ,Y + X ′γ,X ) = β̂(τ,Y,X ) + γ, γ ∈ Rp;
(iv) β̂(τ,Y,X ′A) = A−1β̂(τ,Y,X ), Ap×p is nonsingular.

3 Large sample properties of estimators

The asymptotic theory for the estimators will be considered under the below assump-
tions. Let l denote the Lebesgue measure on the real line and let Z ≡ (Y , X ′), where
X is a p × 1 vector. For a matrix A = [ai j ], let |A| ≡ maxi, j |ai j |.
Assumption 1 For each sample size n, zi = (yi , x ′

i )
′ (i = 1, . . . , n) are i.i.d. copies

of Z and Z has a probability density function f (y|x)g(x) with respect to a measure
μz = l × μx with μx being the measure related to g(x).

Assumption 2 E |Z |2+k < c0.
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Assumption 3 For 1 < k ≤ 2,

0 < c1 = inf
x∈Rp

inf
b∈Rp

∫ +∞
−∞

|y − x ′b|k−2 f (y|x)dy ≤
∫ +∞
−∞

|y − x ′b|k−2 f (y|x)dy < ∞
(5)

and, for any b,

∫ +∞

−∞
|y − x ′b|k−2 f (y|x)dy/|x |k < c2, as |x | → +∞. (6)

Assumption 4 1.5 < k ≤ 2.

Assumption 5 E(xi x ′
i ) is nonsingular.

Remark 1 Assumption 3 in fact implies, when 1.5 < k ≤ 2,

∫ +∞

−∞
|y − x ′b|2(k−2) f (y|x)dy < ∞, (7)

and, for any b,

∫ +∞

−∞
|y − x ′b|2(k−2) f (y|x)dy/|x |k < c3, as |x | → +∞. (8)

Remark 2 Assumption 1 is similar to Assumption 1 in Newey and Powell (1987), and
we do not consider γ varying in a small neighborhood of γ0. Assumption 2 is weaker
than Assumption 3 in Newey and Powell (1987). Assumptions 3 and 4 are not very
restrict, for it must be satisfied when k = 2. Assumption 5 is a common restriction in
dealing with regression issues.

Remark 3 We suppose that the f (y|x) is bounded. In fact, the first inequality in (5)
holds, provided Y is not equal to ∞ almost surely. The last inequality in (5) and the
inequality in (7) can be established if the support of Y is finite or f (y|x) = o(ys),
s < 1 − k, as y → ∞. The tail properties of (6) and (8) hold for some common
distributions. Take the normal distribution for example.We consider the case of p = 2,
b = (0, 1)′, suppose Y ∼ N (β0x, 1), and thus write

∫ +∞
−∞

|y − x ′b|k−2 f (y|x)dy = 1√
2π

∫ +∞
−∞

|y − x |k−2 exp(−(y − β0x)
2/2)dy

= 1√
2π

∫ +∞
−∞

|v|k−2 exp(−(v + (1 − β0)x)
2/2)dv

= 1√
2π(k − 1)

∫ +∞
−∞

|v|k exp(−(v + (1 − β0)x)
2/2)dv

+ 1 − β0√
2π(k − 1)

(
x

∫ +∞
0

vk−1 exp(−(v + (1 − β0)x)
2/2)dv
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−x
∫ 0

−∞
(−v)k−1 exp(−(v + (1 − β0)x)

2/2)dv

)
.

Hence,

∫ +∞

−∞
|y − x ′b|k−2 f (y|x)dy ≤ 1

k − 1
(1 + (1 − β0)

2x2)k/2

+|(1 − β0)x |
k − 1

(√
2

π
+

√
2

π
|e−(1−β0)

2x2/2 − 1| + |(1 − β0)x |
)k−1

,

thus (6) holding. Using the same argument can check the validity of (8).

Theorem 3 Assume that the data come from (2). Write

β̂(τ ) = argminb∈Rp Sτ (b),

β̃0(τ ) = argminβ∈Rp E(Qτ (Y − X ′β) − Qτ (Y )).

We have, with ε being homoscedastic,

β̃0(τ ) = β0 + η(τ)e1,

where e j denotes the j th unit vector and η(τ) is the kth power expectile of ε, i.e.,
η(τ) = argminm∈RE(Qτ (ε − m) − Qτ (ε)). If Assumptions 1, 2, 3 and 5 hold, then,

for each τ in (0, 1), a unique solution β̃0(τ ) exists and β̂(τ )
P−→ β̃0(τ ) as n → ∞.

Remark 4 In (2) and Theorem 3, the homoscedasticity means that εi is independent
of xi and only the location of yi depends on xi . The property (iii) in Theorem 1
implies that η(τ, xi ) = x ′

iβ0 + η(τ), where η(τ, xi ) is the τ kth power expectile of
yi . The linearity of kth power expectile yields η(τ, xi ) = x ′

i β̃0(τ ), where β̃0(τ ) =
β0 + η(τ)e1. Only the intercept coefficient in the expression of η(τ, xi ) varies with τ .
We set a simple heteroscedasticity case, εi = x ′

iζi with ζi independent from x ′
i . We

have η(τ, xi ) = x ′
iβ0 + x ′

iη1(τ ) = x ′
i (β0 + η1(τ )), where η1(τ ) is the τ kth power

expectile of ζi . Hence, the slope coefficients in the expression are also related to τ .
This property implies that we can develop a test for heteroscedasticity using kth power
expectile estimators.

Theorem 4 If Assumptions 1–5 hold, then
√
n(β̂(τ )− β̃0(τ )) (hereafter β̃0 stands for

β̃0(τ )) is asymptotically normal with mean 0 and covariance matrix J−1K (J ′)−1,
where K stands for the covariance matrix of ϒ(X ,Y , β̃0) = (−1)1−I (Y<X ′β̃0)X |τ −
I (Y − X ′β̃0 < 0)||Y − X ′β̃0|k−1, J is the derivative of E((−1)1−I (Y<X ′β)X |τ −
I (Y − X ′β < 0)||Y − X ′β|k−1) with respect to β at β̃0, and J ′ is the transpose of J .

Writing ui (τ ) := yi − x ′
i β̃0 and wi (τ ) := |τ − I (ui (τ ) < 0)|, we have J = (k −

1)E(wi (τ )|ui (τ )|k−2xi x ′
i ) and K = E(xi x ′

i (wi (τ ))2(ui (τ ))2(k−1)). Writing ûi (τ ) =
yi − x ′

i β̂(τ ) and ŵi (τ ) = |τ − I (̂ui (τ ) < 0)|, we can construct estimators Ĵ =
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(k − 1)
∑n

i=1 ŵi (τ )|̂ui (τ )|k−2xi x ′
i/n and K̂ = ∑n

i=1 xi x
′
i (ŵi (τ ))2(̂ui (τ ))2(k−1)/n.

Using the notation, we have the following result, which makes Theorem 4 feasible.

Theorem 5 If Assumptions 1–3 and Assumption 5 hold, then

Ĵ−1 K̂ ( Ĵ ′)−1 P−→ J−1K (J ′)−1.

Remark 5 Obviously, the results in the two theorems will deduce the corresponding
ones of Newey and Powell (1987) when k = 2. In fact, Theorem 4 holds for 1.5 <

k ≤ 2, and Theorem 5 and the consistency of β̂(τ ) hold for 1 < k ≤ 2.

Remark 6 Chen (1996) used a stronger condition, i.e., k > 1.5, in proving his Theorem
3, a result similar to Theorem 5. But he focused on the kernel estimation of the kth
power expectile.

4 Algorithm

Consider the objective function (3) with 1 < k ≤ 2. Write ri (b) = yi − x ′
i b. Under

the assumption that none of the residuals is such that ri (b) = 0, we can calculate the
first and second derivatives of Sτ (b) as follows.

Ṡτ (b) ≡ k
n∑

i=1

(−1)1−I (yi<x ′
i b)x ′

i |τ − I (yi < x ′
i b)||yi − x ′

i b|k−1,

S̈τ (b) ≡
(

∂2Sτ (b)

∂b j∂bh

)
j,h=1,2,...,p

= k(k − 1)
n∑

i=1

xi x
′
i |τ − I (yi < x ′

i b)||yi − x ′
i b|k−2.

So we reach to a Newton–Raphson updating formula

β̂ j (τ ) = β̂ j−1(τ ) − (S̈τ (β̂ j−1(τ )))−1 Ṡτ (β̂ j−1(τ )). (9)

For any τ (0 < τ < 1), we choose the estimate of the corresponding least square
regression or least absolute regression as the iterative initial value, β̂0(τ ).

Consider that β̂(τ ) is a function of τ and let τ vary, and another method can be
given. When β̂(τ ) has been found, we can get an asymptotic solution for a nearby
value τ + τ by

β̂(τ + τ) ≈ β̂(τ ) + dβ̂(τ )

dτ
τ, (10)

where

dβ̂(τ )

dτ
≡ (S̈τ (β̂(τ )))−1k

n∑
i=1

(−1)x ′
i |τ − I (yi < x ′

i β̂(τ ))||yi − x ′
i β̂(τ )|k−1.
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92 Y. Jiang et al.

In fact, we often utilize an algorithm that combines steps (9) and (10). Because we
use the condition that none of the residuals is such that ri (b) = 0, there may be some
problems in the algorithm in practice, but this happens at almost zero probability if
the real data arise from a continuous distribution. The simulation results indicate the
algorithm works very well for k ≥ 1.5, but some calculation difficulty may emerge
when k (1 < k < 1.5) is very small. Some similar remark can be found in Efron
(1991). The “optimize” package in R can be used when 1 < k < 1.5. A more stable
algorithm, such as the MM [the majorize–minimize algorithm proposed by Hunter
and Lange (2000)], can also be further developed.

5 Comparisons with the quantile and the expectile regression

In this section, some efficiency comparisons of the kth power expectile regression with
the quantile regression and the expectile regression are carried out using simulation
data.

5.1 Scale-locationmodels

The expectile regression method is, as we all know, a reasonably efficient way of
estimating true regression percentiles in a normal-theory model. In this subsection,
we investigate the change of asymptotic efficiencies of estimates in the kth power
expectile regression relative to the maximum likelihood estimates (MLE for short), as
k takes various values.

We consider a simple model where there are no covariates. The data of n observa-
tions are generated by a scale-location family

zi = μ + σYi , i = 1, 2, . . . , n, (11)

where Y1,Y2, . . . ,Yn are i.i.d. variables with E(Yi ) = 0 and Var(Yi ) = 1 and are
drawn from a known probability density function f (y) on the real line. Let β0

k (τ )

stand for true kth power expectiles, i.e., the minimizer of E(Qτ (Yi − b) − Qτ (Yi ))
over the b. The kth power expectile βk(τ ) of z = μ + σY , the minimizer over b of
E(Qτ (z − b) − Qτ (z)), can be calculated as

βk(τ ) = μ + σβ0
k (τ ).

The estimator of βk(τ ) is denoted by β̂k(τ ). We compare the asymptotic variance of
β̂k(τ )with that of the MLE estimator of βk(τ ). It is useful to give some notation about
the MLE estimator. The Fisher information matrix for estimating μ, σ in (11) is
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I(μ, σ ) = 1

σ 2

⎛
⎝ i11 i12

i12 i22

⎞
⎠,

where i11 = Eh(Y )2, i12 = Eh(Y )(h(Y )Y ), i22 = E(h(Y )Y )2, and h(y) =
∂ log f (y)/∂ y. Let μ̃ and σ̃ be theMLEs ofμ andσ , respectively. Then, the asymptotic
variance AVAR(β̃k(τk)) ≡ limn→∞ n ·var(β̃k(τk)) of theMLE β̃k(τk) = μ̃+ σ̃ β0

k (τk)

is

AVAR(β̃k(τk))

σ 2 = i22 − 2i12β0
k (τk) + i11(β0

k (τk))
2

i11i22 − i212
. (12)

According to Newey and Powell (1987), the asymptotic variance of the expectile
regression estimator β̂2(τ2) is

AVAR(β̂2(τ2))

σ 2 = E(W (Y − β0
2 (τ2))(Y − β0

2 (τ2)))
2

(1 − τ2 + (2τ2 − 1)P(Y > β0
2 (τ2)))

2
.

ByTheorem4,wededuce the asymptotic variance of the kth power expectile regression
estimator β̂k(τk) as follows.

AVAR(β̂k(τk))

σ 2 = E(W (Y − β0
k (τk))|Y − β0

k (τk)|k−1)2

(E(ϒ ′(Y , β0
k (τk))))

2

where

ϒ ′(y, c) =
⎧⎨
⎩ (k − 1)(1 − τk)(c − y)k−2 y − c < 0

(k − 1)τk(y − c)k−2 y − c ≥ 0.

W
(
Y − β0

k (τk)
)

= |τk − I
(
Y − β0

k (τk) < 0
)

|.

The signs β0
k (τk) and β0

2 (τ2) denote the kth power expectile and the 2 power expec-
tile (the common expectile) of Yi , respectively. Due to Koenker and Bassett (1982),
the asymptotic relative efficiency of β̂1(α), i.e., the 100αth sample percentile of
z1, z2, . . . , zn , is

AVAR(β̂1(α))

σ 2 = α(1 − α)

f (y(α))2
,

where y(α) is the α quantile of Yi . We suppose that Yi in (11) comes from one of
three types of distributions: the standard normal distribution with the density function
f (y) = φ(y), the student distribution with 3 degrees of freedom (t(3) for short)
with f (y) = 6

√
3/(π(3 + y2)2) and the Chi-square distribution with 6 degrees of

freedom (χ2(6) for short) with f (y) = y2 exp(−y/2)/24. Motivation for choosing
these distributions is that the normal distribution is one of the most frequently used
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distributions, the t distribution is a typical heavy-tail distribution wildly used in many
fields, such as in finance, and the Chi-square distribution is taken as a representative
of skew distributions. For each case, we will give the efficiency change of our method
in pace with k. There is a relation among β0

k (τk), β
0
2 (τ2) and y(α) in the term: for every

α, we set suitable τk and τ2 such that β0
k (τk) = y(α) and β0

2 (τ2) = y(α) using (4).
For the normal distribution, the t distribution and the χ2(6) distribution, (12) can be
further written as

AVAR(β̃k(τk))

σ 2 = 1 + (y(α))2/3,

AVAR(β̃k(τk))

σ 2 = (3 + (y(α))2)/2

and

AVAR(β̃k(τk))

σ 2 = ((y(α))2 − 4y(α) + 16)/3,

respectively. Divide the asymptotic variances of MLE by the asymptotic variances of
expectiles, kth power expectiles and quantiles, respectively, and write

ARESL(β̂2(τ2)) := AVAR(β̃2(τ2))

AVAR(β̂2(τ2))

ARESL(β̂k(τk)) := AVAR(β̃2(τ2))

AVAR(β̂k(τk))

ARESL(β̂1(α)) := AVAR(β̃2(τ2))

AVAR(β̂1(α))
.

Tables 2, 3, 4 include values of ARESL(β̂2(τ2)), ARESL(β̂k(τk)) and ARESL(β̂1(α))

for three distributions under various values of α. For the normal distribution, the
efficiency of β̂k(τk) is higher than β̂1(α) and increases as k varies from 1 to 2. And
β̂1.9(τ1.9) almost shares the same efficiency with β̂2(τ2), i.e., the common expectile
regression estimator. The efficiency change goes much faster when α approaches 0.5
more closely. There is a completely different picture for the t(3) distribution. The
efficiency of β̂1.3(τ1.3) is highest for α = 0.5 and α = 0.67/0.33; the efficiency
of β̂1.2(τ1.2) is highest for α = 0.75/0.25, α = 0.84/0.16, α = 0.90/0.10 and
α = 0.95/0.05. Significantly, the efficiency of β̂2(τ2) is lowest and keeps pace with
almost half of that of β̂1.3(τ1.3). In the Chi-square distribution case, for α = 0.5, the
efficiency decreases with k varying from 2 to 1; for other value of α, the efficiency
first increases and then decreases when k takes its value from 2 to 1. Figure 2 further
depicts these results.

Generally, for scale-location models, the kth power expectile regression (1 < k <

2)may producemore efficient estimators for non-normal distributions in some quantile
cases.
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Table 2 Asymptotic relative efficiency of β̂2(τ2), β̂k (τk ) and β̂1(α) for the normal case

α .50 .67 or .33 .75 or .25 .84 or .16 .90 or .10 0.95 or 0.05

ARESL(β̂2(τ2)) 1.000 0.980 0.947 0.865 0.752 0.568

ARESL(β̂1.9(τ1.9)) 0.997 0.954 0.896 0.779 0.646 0.463

ARESL(β̂1.8(τ1.8)) 0.989 0.950 0.897 0.786 0.657 0.476

ARESL(β̂1.7(τ1.7)) 0.975 0.941 0.891 0.788 0.664 0.486

ARESL(β̂1.6(τ1.6)) 0.955 0.924 0.880 0.784 0.667 0.494

ARESL(β̂1.5(τ1.5)) 0.927 0.900 0.861 0.774 0.664 0.498

ARESL(β̂1.4(τ1.4)) 0.890 0.868 0.834 0.757 0.655 0.497

ARESL(β̂1.3(τ1.3)) 0.843 0.826 0.798 0.731 0.639 0.491

ARESL(β̂1.2(τ1.2)) 0.786 0.773 0.751 0.694 0.614 0.478

ARESL(β̂1.1(τ1.1)) 0.718 0.709 0.692 0.647 0.578 0.457

ARESL(β̂1(α)) 0.636 0.631 0.620 0.585 0.529 0.425

Table 3 Asymptotic relative efficiency of β̂2(τ2), β̂k (τk ) and β̂1(α) for the t(3) distribution

α .50 .67 or .33 .75 or .25 .84 or .16 .90 or .10 0.95 or 0.05

ARESL(β̂2(τ2)) 0.500 0.416 0.329 0.212 0.129 0.062

ARESL(β̂1.9(τ1.9)) 0.597 0.503 0.404 0.265 0.164 0.080

ARESL(β̂1.8(τ1.8)) 0.686 0.585 0.475 0.318 0.200 0.099

ARESL(β̂1.7(τ1.7)) 0.766 0.659 0.541 0.368 0.235 0.118

ARESL(β̂1.6(τ1.6)) 0.832 0.722 0.598 0.413 0.267 0.136

ARESL(β̂1.5(τ1.5)) 0.883 0.772 0.645 0.452 0.296 0.153

ARESL(β̂1.4(τ1.4)) 0.915 0.805 0.679 0.482 0.320 0.167

ARESL(β̂1.3(τ1.3)) 0.927 0.820 0.696 0.501 0.337 0.179

ARESL(β̂1.2(τ1.2)) 0.915 0.814 0.696 0.507 0.346 0.187

ARESL(β̂1.1(τ1.1)) 0.876 0.785 0.676 0.499 0.344 0.189

ARESL(β̂1(α)) 0.810 0.729 0.633 0.473 0.331 0.185
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Table 4 Asymptotic relative efficiency of β̂2(τ2), β̂k (τk ) and β̂1(α) for the χ2(6) distribution

α .50 .67 or .33 .75 or .25 .84 or .16 .90 or .10 0.95 or 0.05

ARESL(β̂2(τ2)) 0.795 0.733 0.666 0.548 0.429 0.285

ARESL(β̂1.9(τ1.9)) 0.789 0.736 0.675 0.561 0.443 0.297

ARESL(β̂1.8(τ1.8)) 0.778 0.734 0.678 0.570 0.454 0.308

ARESL(β̂1.7(τ1.7)) 0.762 0.728 0.678 0.575 0.463 0.318

ARESL(β̂1.6(τ1.6)) 0.740 0.716 0.671 0.577 0.469 0.325

ARESL(β̂1.5(τ1.5)) 0.713 0.697 0.659 0.572 0.470 0.330

ARESL(β̂1.4(τ1.4)) 0.679 0.671 0.639 0.562 0.467 0.332

ARESL(β̂1.3(τ1.3)) 0.639 0.638 0.612 0.545 0.458 0.331

ARESL(β̂1.2(τ1.2)) 0.591 0.596 0.577 0.519 0.441 0.324

ARESL(β̂1.1(τ1.1)) 0.535 0.545 0.531 0.485 0.417 0.311

ARESL(β̂1(α)) 0.470 0.484 0.476 0.440 0.383 0.290

5.2 Location shift models

In the subsection, we study a simple stochastic linear model

yi = a + bxi + εi ,

where xi , εi are i.i.d. copies of variables X and ε, and a, b are constants. The explained
variable and explanatory variables are yi and xi . The model is designed to investigate
the impact of k on the asymptotic variances of â and b̂, the estimators of a and b.
Let X obey the uniform distribution, U [−1, 1], and ε be either the normal or the
t(3) random variable. We assume that a = 20 and b = 100. The assumption just
suits the convenience of the simulation, for the values of a, b have no influence on
the asymptotic variances if ε is distributed symmetrically. For a given value of α

(∈ (0, 1)), the following steps are used to calculate the asymptotic variances. For the
quantile regression, we adopt the formula α0(1−α0)( fε(qε(α0)))

−2E((1, X)′(1, X))

with fε being the density function of ε. For the kth power expectile regression, we
firstly obtain the kth power expectile of ε, denoted by Xε(k, α0), and secondly use the
expression of the asymptotic variance in Theorem 4 to complete the calculation.

The asymptotic variances are summarized in Tables 5 and 6, Table 5 for the t
distribution and Table 6 for the normal. In the first columns of two tables, a j , b j ,

j = 1.1, . . . , 2 indicate that the elements following them are obtained using the
j th power expectile regression and a1, b1 show the elements after they come from
the quantile regression. As well known in the literature, Table 6 shows the expectile
regression, i.e., k = 2, has the least variances no matter which value α takes. But for
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Fig. 2 Asymptotic relative efficiency of β̂2(τ2), β̂k (τk ) and β̂1(α) for three distributions, the top left graph
for the normal, the top right one for the t distribution and the bottom one for the χ2

the t distribution, there is a new and thought-provoking phenomenon. The variances
of the kth power expectile regression are smaller than those of quantile and expectile
regressions when k = 1.4, 1.5, 1.6 and α takes any values. Taking k = 1.4, α = 0.90,
we find the variance of the kth power expectile regression estimator of b is 12.54,
less than half of the corresponding variance of the quantile regression estimator. So,
this implies that the wildly used quantile regression does not always outweigh the kth
power expectile regression in terms of asymptotic variance.

6 Themethod of choosing suitable k

We investigate theway of choosing suitable k to gainmore efficient regressionmethods
for real data. When coming to the problem, too many issues need to be dealt with
rigorously, such as the specification test of the relation between the kth power expectile
and some covariates (parametric or nonparametric and linear or nonlinear) and variable
selection. But for easy accessibility, we suppose that
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Table 5 Asymptotic variances of estimators in linear model when the error term obeys the t distribution
with freedom degree 3

α 0.05 0.10 0.16 0.25 0.33 0.5 0.67 0.75 0.84 0.90 0.95

a2 22.84 9.68 5.63 3.71 3.02 2.88 3.45 4.39 6.88 11.88 31.66

b2 59.04 26.57 15.76 10.51 8.71 8.75 10.26 12.90 20.14 34.76 95.04

a1.9 24.17 9.88 5.72 3.64 2.90 2.45 2.92 3.72 5.74 9.82 26.07

b1.9 77.25 31.28 18.31 11.45 9.00 7.42 8.68 10.93 16.85 28.62 78.36

a1.8 21.13 8.54 4.97 3.17 2.52 2.14 2.54 3.26 4.98 8.28 21.94

b1.8 67.15 26.82 15.91 9.89 7.77 6.46 7.54 9.56 14.64 24.21 64.80

a1.7 19.30 7.57 4.46 2.84 2.24 1.92 2.25 2.94 4.42 7.24 18.77

b1.7 59.66 23.62 14.03 8.79 6.83 5.77 6.74 8.62 12.99 20.76 59.09

a1.6 17.06 6.87 4.12 2.65 2.09 1.75 2.08 2.74 4.10 6.89 17.29

b1.6 51.70 20.82 12.89 8.13 6.33 5.26 6.30 7.99 12.06 19.54 49.21

a1.5 15.75 6.61 3.82 2.55 2.01 1.63 1.95 2.49 3.89 6.25 17.41

b1.5 54.14 20.02 11.61 7.95 6.09 4.88 5.81 7.29 11.74 17.89 50.10

a1.4 18.71 3.43 3.77 2.35 1.90 1.55 1.73 2.54 4.36 3.88 17.18

b1.4 64.20 14.92 12.35 6.43 5.15 4.58 5.89 7.81 12.08 12.54 49.94

a1.3 14.80 8.08 4.21 2.02 2.23 1.52 1.95 2.89 4.73 5.78 21.95

b1.3 44.52 20.57 14.96 4.55 6.81 4.37 5.60 9.03 11.40 14.42 60.12

a1.2 31.94 8.58 4.95 3.54 2.99 1.64 2.72 1.40 6.82 10.23 23.69

b1.2 79.59 42.34 11.65 9.78 7.92 4.50 9.12 9.03 19.45 34.31 80.11

a1.1 64.57 9.19 9.99 5.51 5.60 2.66 4.20 6.85 3.94 30.75 46.63

b1.1 316.79 42.67 50.53 18.73 14.16 6.81 14.86 15.83 43.20 88.76 274.46

a1 23.07 8.57 4.66 2.83 2.21 1.85 2.21 2.83 4.66 8.57 23.07

b1 69.40 25.79 14.01 8.51 6.66 5.56 6.66 8.51 14.01 25.79 69.40

y = β0 + β1x1 + . . . + βpxp + ε,

where the covariates (1, x1, . . . , xp)′ have been recognized. And we only consider the
value choosing of k in the kth power expectile regression under this setting. At present,
we can calculate Ĵ−1 K̂ ( Ĵ ′)−1 in Theorem 5 for each value of the couple of k and α

(the value range of k being in {1+ i/n, i = 1, 2, . . . , n − 1}, for n large enough) and
find a favorable k value, for example k0, such that the sum of diagonal elements of
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Table 6 Asymptotic variances of estimators in linear model when the error term obeys the normal distri-
bution

α 0.05 0.10 0.16 0.25 0.33 0.5 0.67 0.75 0.84 0.90 0.95

a2 2.15 1.61 1.34 1.16 1.08 1.01 1.05 1.11 1.26 1.48 1.99

b2 5.97 4.67 3.87 3.39 3.16 3.00 3.13 3.31 3.81 4.52 6.51

a1.9 2.19 1.63 1.34 1.17 1.08 1.01 1.05 1.12 1.27 1.50 2.05

b1.9 6.12 4.75 3.91 3.44 3.18 2.99 3.13 3.34 3.87 4.54 6.63

a1.8 2.23 1.68 1.37 1.19 1.09 1.01 1.06 1.13 1.29 1.55 2.16

b1.8 6.23 4.91 3.99 3.49 3.23 3.00 3.13 3.35 3.88 4.63 6.91

a1.7 2.31 1.73 1.41 1.21 1.10 1.02 1.07 1.14 1.32 1.57 2.14

b1.7 6.29 5.01 4.11 3.56 3.28 3.02 3.19 3.39 3.93 4.61 7.10

a1.6 2.26 1.85 1.43 1.24 1.12 1.03 1.10 1.18 1.39 1.64 2.28

b1.6 6.28 5.36 4.18 3.59 3.37 3.07 3.24 3.39 4.21 5.06 7.34

a1.5 2.91 1.96 1.44 1.29 1.02 1.04 1.12 1.17 1.51 1.81 2.68

b1.5 7.78 5.72 4.12 3.76 3.58 3.16 3.33 3.46 4.37 5.74 8.23

a1.4 3.36 2.24 1.72 1.44 1.26 1.09 1.26 1.24 1.57 2.13 3.16

b1.4 9.07 6.74 4.69 4.29 3.91 3.34 3.76 3.61 4.57 6.51 10.64

a1.3 3.96 2.43 1.93 1.35 1.42 1.20 1.47 1.56 2.02 1.83 4.17

b1.3 12.87 9.05 5.58 3.32 4.16 3.74 4.47 4.50 5.59 5.19 14.33

a1.2 6.47 2.20 1.74 1.93 2.11 1.53 1.79 1.72 1.81 3.41 6.72

b1.2 17.78 8.53 8.56 6.34 6.63 4.89 4.70 5.30 1.97 13.38 19.82

a1.1 11.60 5.48 3.31 4.54 1.25 3.19 2.20 4.42 7.33 10.72 8.82

b1.1 17.54 8.53 20.06 17.42 5.57 10.37 3.40 13.44 21.39 34.36 13.81

a1 4.60 3.82 3.10 2.44 2.10 1.85 2.10 2.44 3.10 3.82 4.60

b1 13.83 11.49 9.35 7.34 6.32 5.56 6.32 7.34 9.35 11.49 13.83

Ĵ−1 K̂ ( Ĵ ′)−1 of the corresponding k0th power expectile regression is smallest. Hence,
the k0th power expectile regression is our desirablemethod. The skeleton of procedures
is given as follows.

(i) For a given α, run a quantile regression to get estimators β̂0, β̂1, . . . , β̂p, which
estimate β0 + qε(α), β1, . . . , βp consistently. We use the R package “quantreg”
to carry out the regressions and obtain the standard deviations of estimators. For
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the comparison, we multiply these standard deviations by
√
n, then square them,

finally calculate the sum of diagonal elements of the matrices.
(ii) For a given k, using the equation in (4) and the data y, we can obtain θα such

that the θα kth power expectile of y is equal to the α quantile of y.
(iii) We use the R function “optim” to complete the θα kth power expectile regression

and then utilize the expression in Theorem 5 to calculate variances and then the
sums of diagonal elements of them.

(iv) Compare the sums in (i) and those in (iii) for the different values of k and
determine the proper value of k.

We take advantage of the simulated data in Sect. 5.2 to demonstrate the method.
The sample size is 10,000, partition intervals (0, 1), (1, 2) by sequences j/20, j =
1, 2, . . . , 19 and 1 + i/10, i = 1, 2, . . . , 9, respectively. Using every split points
as the values of α and k, we repeat the first three steps and acquire the sums of
corresponding variances. For the (iii) step, we adopt the OLS estimates as initial
values to run “optim”. Results are contained in Tables 7 and 8, where the values in
parenthesis are the asymptotic variances. The estimators of b with smaller variances
are highlighted by underlines. The smallest variances do not always appear in the
quantile regression. We find the suitable values of k: k = 1.3 for α = 0.4, k = 1.5 for
α = 0.45, k = 1.4 for α = 0.5, k = 1.3 for α = 0.55, 0.6, and k = 1.2 for α = 0.75.

7 Real data example

For the empirical study, we utilize the method in Sect. 6 and analysis the data of
incomes of migrant workers. The data come from a survey of incomes of migrant
workers in China conducted by State Statistical Bureau of China at 2011. Ultimately,
we get 3372 effective observations. There are three variables: annual incomes y, years
of education x1 and working years x2. According to Mincer (1958), in our setting, the
explained variable is log(y) and three explanatory variables are x1, x2 and x22 . The
model we used is

log(y) = a0 + a1x1 + a2x2 + a3x
2
2 + ε,

where ε is the error term.We suppose α takes values in the range: {α = 0.05+ i ∗0.05,
i = 0, 1, . . . , 18}. Consider the following values of k: 1 + i/10, i = 1, 2, . . . , 10 in
(1, 2]. By detailed comparisons, the suitable k is obtained for each α value using the
method in Sect. 6, and relevant results are gathered in Table 9. Letting k take its values
in [1, 2] densely enough, we can obtained an optimal value of k for each α.

The table contains estimates, variances and the significant test results as well. Esti-
mates and standard deviations are put in columns, but the first column from left and
values enclosed in parentheses are the standard deviations of the estimates over them.
The real values are ones in columnsmultiplied by the corresponding powers in the first
column. From the results, we find the working years and their squares have significant
impact on the incomes at the level 0.01 when α takes the value: 0.15, 0.25, 0.30, 0.35,
0.40, 0.45 or 0.50, but education has little influence on the incomes except α = 0.4.
When α gets large value: 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80,0.85, 0.90 or 0.95, the
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â
b̂

â
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Table 9 Suitable k for various α, estimates and variances

α 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

k 1.2 1.9 1.5 1.0 1.1 1.4 1.4 1.1 1.2 1.0

Variables est. est. est. est. est. est. est. est. est. est.

cons 4.08∗∗∗4.08∗∗∗4.17∗∗∗ 4.25∗∗∗4.20∗∗∗ 4.19∗∗∗ 4.21∗∗∗ 4.27∗∗∗ 4.26∗∗∗ 4.28∗∗∗

(×10−2) (1.33) (5.45) (3.07) (2.84) (.224) (2.97) (2.28) (1.84) (2.45) (2.26)

x1(×10−3)−5.51 −1.41 −1.17 0.00 −1.03 .799 .966 1.60∗∗ 1.59 2.49

(×10−3) (6.23) (2.90) (1.51) (2.01) (1.23) (1.42) (1.37) (.726) (1.50) (1.89)

x2(×10−3)−.01965.03∗ 5.22∗∗∗ 0.00 5.28∗∗∗ 8.37∗∗∗ 8.68∗∗∗ 6.13∗∗∗ 6.69∗∗∗ 6.22∗∗∗

(×10−3) (.624) (2.94) (1.83) (1.41) (.811) (1.57) (1.21) (.750) (1.31) (1.13)

x22 (×10−5).0191 −7.65∗ −7.67∗∗∗0.00 −7.29∗∗∗−11.3∗∗∗−11.8∗∗∗−8.48∗∗∗−9.19∗∗∗−8.00∗∗∗

(×10−5) (.780) (4.06) (2.70) (2.00) (1.30) (2.08) (1.69) (.762) (1.82) (1.00)

α 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

k 2 1.5 1.1 1.2 1.2 1.1 1.0 1.7 1.3

Variables est. est. est. est. est. est. est. est. est.

cons 4.26∗∗∗ 4.26∗∗∗ 4.28∗∗∗ 4.31∗∗∗ 4.31∗∗∗ 4.32∗∗∗ 4.37∗∗∗ 4.35∗∗∗ 4.38∗∗∗

(×10−2) (2.55) (2.36) (1.66) (2.05) (2.12) (1.80) (2.62) (2.79) (2.42)

x1(×10−3) 1.24 2.26 2.03 2.75∗∗∗ 2.73∗∗∗ 1.58∗∗∗ .450 2.91∗ 1.61

(×10−3) (1.69) (1.56) (1.43) (.764) (.826) (.406) (1.51) (1.72) (1.69)

x2(×10−3) 8.83∗∗∗ 9.45∗∗∗ 9.93∗∗∗ 8.98∗∗∗ 8.98∗∗∗ 11.8∗∗∗ 9.91∗∗∗ 11.4∗∗∗ 14.0∗∗∗

(×10−3) (1.27) (1.17) (.715) (.863) (.882) (.717) (1.31) (1.40) (1.22)

x22 (×10−4) −1.18 −1.23 −1.30 −1.14 −1.14 −1.52∗∗ −1.30 −1.48 -1.85

(×10−5) (1.66) (1.55) (.829) (.809) (.822) (.684) (2.00) (1.75) (1.30)

∗,∗∗ and ∗∗∗ label significance at 0.1, 0.05 and 0.01 levels, respectively

incomes strongly depend on working years, but do not their squares except α = 0.80.
Education has no significant contribution to incomes until α = 0.70, 0.75 or 0.80.

The result illustrates the contribution rate of education is higher formigrant workers
with upper income, which is in agreement with the stylized fact in labor economics.
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8 Conclusion

In this paper, we consider the kth power expectiles and the kth power expectile regres-
sion method as well, mainly for 1 < k ≤ 2; the latter can be seen as an important
special type ofM estimationmethod.1 This work is a partial extension of that of Newey
and Powell (1987). We attempt to construct a bridge between quantiles and expec-
tiles. The existence and uniqueness of the kth power expectiles have been proved under
mild conditions. Furthermore, we discuss the consistency and asymptotic normality of
the estimators of the kth power expectile regression. Some comparisons of kth power
expectile estimators with estimators of the common quantile and expectile indicate the
advantage of the kth power expectile regression. Another tentative conclusion is that
the property of the kth power expectile regression is not close to that of the quantile
regression as k approaches 1, while the property gets close to that of the expectile
regression as k tends to 2. Researchers can choose the suitable k to run a satisfying kth
power expectile regression by the method in Sect. 6 according to the specific problem
and their preference. In the real data analysis, we fit the Mincerian earnings function
model to the data of incomes of migrant workers in China at 2011. Results show that
the kth power expectile regression delivers smaller variances for the majority of the
values of α.

In the present paper, we only focus on the case of i.i.d. data, and it is interest-
ing to extend our results to some more general cases, such as the dependent data.
Another important issue is to apply the kth power expectile regression to testing het-
eroscedasticity, and we believe there will be some promising merits. In consideration
of the space, these problems, specification test and variable selection for the kth power
expectile regression mentioned above will be involved in the future study.

9 Proofs

The proof of Theorem 1 Write (4) as

1

1 − τ

∫ ∞

μ

(x − μ)k−1dF(x) = E |X − μ|k−1. (13)

We will first prove, for any 0 < τ < 1, there exists a μ such that (13) holds. Let
S(μ) = ∫ ∞

μ
(x−μ)k−1dF(x), S̃(μ) = ∫ μ

−∞(μ−x)k−1dF(x) and thus S(μ)+ S̃(μ) =
E |X − μ|k−1. The improper integral theorem taken into consideration; it follows that
S(μ) and −S̃(μ) are strictly decreasing. The following results are easy to deduce.

S(μ) < E |X − μ|k−1, lim
μ→∞ S(μ) = 0, lim

μ→−∞(S(μ) − E |X − μ|k−1) = 0.

1 For M estimation methods, see Portnoy (1985), Breckling and Chambers (1988), Welsh (1989), Welsh
(1990), Bai and Wu (1994), He and Shao (1996), He and Shao (2000), and Arcones (2001).
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For τ(0 < τ < 1) fixed, we have

1

1 − τ
S(μ) > E |X − μ|k−1 for μ small enough, (14)

1

1 − τ
S(μ) < E |X − μ|k−1 for μ large enough.

The intermediate value theorem therefore makes sure that the solution of (13) exists.
For fixed τ , let μs(τ ) be the smallest solution to equation (13); it must exist according
to (14), i.e., we have 1

1−τ
S(μs(τ )) = E |X − μs(τ )|k−1. Noting the derivation of

1
1−τ

S(μ) is strictly smaller than that of E |X − μ|k−1; thus, there is no value of μ

any more such that τ
1−τ

S(μ) equals E |X − μ|k−1 when μ > μs(τ ). As a result, (13)
has a unique solution. The strictly monotonic property of μ(τ) can be proved by the
equation

1

1 − τ
= 1 + S̃(μ)

S(μ)

and the monotonic property of S(μ), S̃(μ) and 1/1−τ . We show thatμ(τ)must lie in
IF . Whenμ is greater than any element of IF , we have S(μ) = 0. When μ is less than
any element of IF , we have S(μ) = E |X −μ|k−1 and thus 1

1−τ
S(μ) > E |X −μ|k−1.

Hence, no solution to (13) lies outside of IF . To prove thatμ(τ) is onto IF , we suppose
μ is an element of IF . Then, we have 0 < S(μ) < E |X −μ|k−1, and there is a τ such
that μ satisfies (13). According to the definition of the τ kth power expectile μ̃(τ ) of
X , we have

1

1 − τ

∫ ∞

μ̃

(x − μ̃)k−1dFX (x) = E |X − μ̃|k−1.

Noting X = sY + t , the above equation can be written as

1

1 − τ

∫ ∞
μ̃−t
s

(
x − μ̃ − t

s

)k−1
dFY (x) = E

∣∣∣Y − μ̃ − t

s

∣∣∣k−1
,

so we get μ̃(τ ) = sμ(τ) + t . ��
The proof of Theorem 2 Let

ϒ(b; τ,Y,X ) :=
∑

{t :yt≥x ′
t b}

τ(yt − x ′
t b)

k +
∑

{t :yt<x ′
t b}

(1 − τ)(x ′
t b − yt )

k .

We have

ϒ(λb; τ, λY,X ) = λkϒ(b; τ,Y,X ).
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So, β̂(τ, λY,X ) = λβ̂(τ,Y,X ). For λ < 0,

ϒ(λb; 1 − τ, λY,X )

=
∑

{t :λyt≥x ′
tλb}

(1 − τ)(λyt − x ′
tλb)

k +
∑

{t :λyt<x ′
tλb}

(1 − (1 − τ))(x ′
tλb − λyt )

k

= (−λ)k
∑

{t :yt<x ′
t b}

(1 − τ)(x ′
t b − yt )

k + (−λ)k
∑

{t :yt≥x ′
t b}

τ(yt − x ′
t b)

k

= (−λ)kϒ(λb; τ, λY,X ).

So (ii) follows. Further,

ϒ(b + γ ; τ,Y + X ′γ,X )

=
∑

{t :yt+x ′
tγ≥x ′

t (b+γ )}
τ(yt + x ′

tγ − x ′
t (b + γ ))k

+
∑

{t :yt+x ′
tγ<x ′

t (b+γ )}
(1 − τ)(x ′

t (b + γ ) − yt − x ′
tγ )k

= ϒ(b; τ,Y,X ).

So,

β̂(τ,Y + X ′γ,X ) = β̂(τ,Y,X ) + γ.

Finally,

ϒ(A−1b; τ,Y,X ′A)

=
∑

{t :yt≥x ′
t AA−1b}

τ(yt − x ′
t AA

−1b)k +
∑

{t :yt<x ′
t AA−1b}

(1 − τ)(x ′
t AA

−1b − yt )
k

= ϒ(b; τ,Y,X ).

So (iv) follows. ��
The proof of Theorem 3 The proofs of main results are based on the following lemma
that comes from Newey and Powell (1987).

Lemma 1 Let θ0 be a point in Rq and � an open set containing θ0. If

(A) Qn(θ) converges to Q(θ) in probability uniformly on �,
(B) Q(θ) has a unique minimum on � at θ0
(C) Qn(θ) is convex in θ ; then for θ = argminRq Qn(θ),
(i) θ̂ exists with probability approaching one,
(ii) θ̂ converges in probability to θ0.

We mainly verify (A), (B) and (C) under Assumptions 1–3. Write R(β, τ ) ≡
E(Qτ (Y − X ′β)−Qτ (Y )) and g(β) ≡ ∂Qτ (Y − X ′β)/∂β. There exist some positive
constants c1 and c2 such that g(β) ≤ |Z |k(c1 + c2|β|). On a neighborhood of any β,
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the g(β) is uniformly dominated by an integrable function using Assumption 2. We
have

∂R(β, τ )/∂β = kE

(
X

(
− τ

∫ ∞

X ′β
(y − X ′β)k−1 f (y|X)dy

+(1 − τ)

∫ X ′β

−∞
(X ′β − y)k−1 f (y|X)dy

))
=: G(k, β, τ ).

According to Assumptions 2 and 3, using an argument similar to that in the proof of
(17), we can prove

∂G(k, β, τ )/∂β = k(k − 1)E

(
XX ′

(
τ

∫ ∞

X ′β
(y − X ′β)k−2 f (y|X)dy

+(1 − τ)

∫ X ′β

−∞
(X ′β − y)k−2 f (y|X)dy

))
, (15)

and the expectation in (15) is even bounded locally uniformly with respect to β. Using
the improper integral theorem andAssumption 3, there exists positive constant c1 such
that

∂G(k, β, τ )/∂β − c1k(k − 1)E(XX ′)

is positive semi-definite. Let δ = c1k(k−1)min{τ, 1−τ }. We have ∂G(k, β, τ )/∂β−
δE(XX ′) is positive semi-definite. Here, the equation, G(k, β, τ ) = 0, is analogous
to that of (2.9) in Newey and Powell (1987). We can obtain an expansion like (A.12)
in Newey and Powell (1987). Under Assumption 5, using the same argument in the
proof of Theorem 3 in Newey and Powell (1987), the existence and uniqueness of β̃0
can be proved. Thus, (B) holds for R(β, τ ). Note

Sτ (b) =
n∑

i=1

(|τ − I (yi − x ′
i b < 0)||yi − x ′

i b|k − |τ − I (yi < 0)||yi |k).

Without loss of generality, let � be any bounded open set containing β̃0, and we can
get a compact set �1 such that �1 ⊃ �. Using Assumption 2 and the compactness
of �1, we have max{1, supb∈�1

|b|}E |Z |k < ∞ and E |Y |k < c0. So

E
(
sup
b∈�1

(|τ − I (Y − X ′b < 0)||Y − X ′b|k − |τ − I (Y < 0)||Y |k)
)

≤ max{τ, (1 − τ)}
(
max

{
1, sup

b∈�1

|b|}E |Z |k + E |Y |k
)

< ∞.
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The same argument in the proof of Lemma 5.2.2 in van de Geer (2006) can make sure
that

sup
b∈�1

|Sτ (b)/n − R(b, τ )| P−→ 0.

Noting �1 ⊃ �, we have supb∈� |Sτ (b)/n − R(b, τ )| P−→ 0, and (A) is satisfied for
Sτ (b)/n. The convexity of Sτ (b) is palpable. So using lemma 9.1 can complete the
proof. ��
Remark 7 A reviewer suggested proving (A) using Lemma 1 in Hjort and Pollard
(1993). In our paper, the convexity of Sτ (b) is obvious and the convergence Sτ (b)/n
to R(b, τ ) in probability can be obtained according to the i.i.d. setting of zi and
Assumption 2. So a straight application of Lemma 1 in Hjort and Pollard (1993) can
complete the proof.

The proof of Theorem 4 We utilize Theorem 2.1 in Hjort and Pollard (1993) to
complete the proof. To this end, we need to verify that the conditions in that theorem
are satisfiedwhen the relevant objects are replacedwith ours.Using theTaylor formula,
we have

Qτ (yi − x ′
i (β̃0(τ ) + t)) − Qτ (yi − x ′

i β̃0(τ ))

= −x ′
iϕτ (yi − x ′

i β̃0(τ ))t + 1

2
t ′xi x ′

iψτ (yi − x ′
iξ(τ ))t

=: D(xi , yi )
′t + R(xi , yi , t), (16)

with ξ(τ ) being some vector between β̃0(τ ) + t and β̃0(τ ),

ϕτ (r) = (−1)I {r<0}k|τ − I {r < 0}||r |k−1

and

ψτ (r) = k(k − 1)|τ − I {r < 0}||r |k−2.

The proof of Theorem 3 ensures that the matrix E(xi x ′
iψτ (yi − x ′

i β̃0(τ ))) − c1k(k −
1)E(xi x ′

i ) is positive semi-definite. The matrix E(xi x ′
i ) is positive definite matrix, and

so do J := E(xi x ′
iψτ (yi − x ′

i β̃0(τ ))). The expectation of the second term in (16) can
be written as

E(R(xi , yi , t)) = 1

2
t ′ J t + 1

2
t ′E

(
xi x

′
i

(∫ +∞
−∞

ψτ (y − x ′
i ξ(τ )) − ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy
))

t

= 1

2
t ′ J t + o(|t |2).

In fact, in order to prove the second equality, it is enough to show each element of
the matrix E(xi x ′

i (
∫ +∞
−∞ ψτ (y − x ′

iξ(τ )) − ψτ (y − x ′
i β̃0(τ )) f (y|xi )dy)) converges
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to zero as |t | → 0. It is further sufficient to prove the element E(|xi |2(
∫ +∞
−∞ ψτ (y −

x ′
iξ(τ )) − ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy)) tends to zero as |t | → 0. According to (5),
for any ε1 > 0, there exists a positive constant M1 enough large such that

|
∫ +∞

−∞
ψτ (y − x ′

iξ(τ )) − ψτ (y − x ′
i β̃0(τ )) f (y|xi )dy|

≤ |
∫ M1

−M1

ψτ (y − x ′
iξ(τ )) − ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy| + 2ε1. (17)

The limit of the first term in (17) is zero by the dominated convergence theorem as
|t | → 0. Combining this and the arbitrariness of ε1 implies

∫ +∞
−∞ ψτ (y − x ′

iξ(τ )) −
ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy → 0 as |t | → 0. On the basis of (6), for any ε2 > 0, we
can find a positive M2 that makes sure that, for |xi | > M2

∫ +∞

−∞
ψτ (y − x ′

iξ(τ )) f (y|xi )dy ≤ (1 + ε2)c2|xi |k

and

∫ +∞

−∞
ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy ≤ (1 + ε2)c2|xi |k .

In light of Assumption 2, for any ε3 > 0, there is M3 > 0 such that

E(|xi |2+k) ≤ E(|xi |2+k I {|xi | ≤ M3}) + 2ε3.

Let M4 = max{M2, M3} and we have, as |t | → 0,

E

(
xi x

′
i

(∫ +∞
−∞

ψτ (y − x ′
i ξ(τ )) − ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy
))

≤ E

(
xi x

′
i I {|xi | ≤ M4}

(∣∣∣∣
∫ +∞
−∞

ψτ (y − x ′
i ξ(τ )) − ψτ (y − x ′

i β̃0(τ )) f (y|xi )dy
∣∣∣∣
))

+ 4c2ε3(1 + ε2)

−→ 0.

The last limit is due to the dominated convergence theorem and the arbitrariness of ε2
and ε3. Using the argument similar to the above, Assumptions 2, 4 and Remark 1 can
deduce Var(R(xi , yi , t)) = o(|t |2). The definition of β̃0(τ ) implies E(D(x, y)) = 0.
Using Assumption 2, it easy to examine that

E(Qτ (yi − x ′
i (β̃0(τ ) + t)) − Qτ (yi − x ′

i β̃0(τ ))) = 1

2
t ′ J t + o(|t |2), as t → 0.
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Here, D(xi , yi ) has a finite covariance matrix K = E(D(xi , yi )D(xi , yi )′) based
on Assumption 2. So the conditions of Theorem 2.1 in Hjort and Pollard (1993) are
satisfied, and the proof is completed. ��
The proof of Theorem 5 Write

| Ĵ − J | ≤
∣∣∣∣

n∑
i=1

(ŵi (τ )|̂ui (τ )|k−2xi x
′
i/n − wi (τ )|ui (τ )|k−2)xi x

′
i/n

∣∣∣∣
+

∣∣∣∣
n∑

i=1

wi (τ )|ui (τ )|k−2xi x
′
i/n − J

∣∣∣∣ =: I1 + I2.

Firstly, it follows that E(wi (τ )|ui (τ )|k−2xi x ′
i ) < ∞ due to Assumptions 2 and

3; thus, we have I2
P−→ 0. Secondly, let Mi stand for ŵi (τ )|̂ui (τ )|k−2xi x ′

i −
wi (τ )|ui (τ )|k−2xi x ′

i and it canbeyielded thatMi
P−→ 0uniformly for i = 1, 2, . . . , n.

For any positive constant ε/2, there exists a n0 such that when n > n0 P(|Mi | >

ε/2) < ε/2. So

E

( |Mi |
1 + |Mi |/n

)
= E

(
I {|Mi | > ε/2} |Mi |

1 + |Mi |/n
)

+ E

(
I {|Mi | ≤ ε/2} |Mi |

1 + |Mi |/n
)

≤ ε.

Furthermore, E(I1/(1 + I1)) ≤ (1/n)
∑n

i=1 E(|Mi |/(1 + |Mi |/n)) ≤ ε, which

deduces E(I1/(1 + I1)) −→ 0. The latter implies I1
P−→ 0 thanks to Theorem

4.1.5 in Chung (1974). We therefore complete the proof of Ĵ
P−→ J . Similarly to the

proof of Theorem 4 in Newey and Powell (1987), there exist constants d and d ′ such
that

|xi x ′
i (wi (τ ))2(ui (τ ))2(k−1)| ≤ |zi |2k(d + d ′|β̃0|2).

Then using the same argument as in the proof of Theorem 2.2 of Newey (1985) can
produce

K̂
P−→ K .

The proof is completed by Slutsky’s theorem. ��
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