Goodness-of-Fit Testing for the Wishart Distributions S.1

Supplementary Material for “Integral Transform Methods in Goodness-of-Fit
Testing, II: The Wishart Distributions”

Elena Hadjicosta - Donald Richards

S.10 Bessel functions and Hankel transforms of matrix argument

Proof of Lemma 1. Since |etr(21V'Q)|< 1 then it follows from (11) and (12) that

/ 1 / V*lm
|4, (VIV)| < 7Trng/Ql_‘Tn(V_’_%)/QIQ<Im(det(Im -Q'Q))"2"dQ
= AV(O)
1

Tt imtD) -

Proof of Lemma 2. By (13) and (22),

ILD(2)] <ete(2) / etr(~Y)(detY)? Cu(Y) [A,(ZY)| dY
Y >0
1

= 1
Con(y+ §(m+1

) etr(Z2) /Y>0 etr(=Y)(detY)” C.(Y)dY.

Applying (9) to evaluate the latter integral, we obtain (23).
To establish (24), we substitute Z = vI,, into (21), obtaining
/ etr(—vY)(det Y)WL,(;’) (Y)dy
Y >0
= 4 4 D) Ty 3m 1) (o= b2 4180 6 (1,

Differentiating both sides of the latter equation with respect to v and simplifying the outcome, we
obtain the stated result. O

Proof of Lemma 4. By (25),

AT, Z) = / A (HTH'Z) dH.
O(m)

It is straightforward to verify that the conditions given by Burkill and Burkill (2002, p. 289, The-
orem 8.72) for interchanging derivatives and integrals are satisfied; therefore,

VzA (T, Z)= / VzA,(HTH'Z)dH. (S.1)
O(m)
Setting M = HTH' and Y = MY2ZM'/?, we have Z = M~'/2Y M~1/2. By Maass (1971, p. 64),
Vz = MY/2Vy M/2; therefore,

VA (MZ) =V 5 A, (M2 ZM/?)
_ Ml/QVYM1/2AU(Y) :M1/2 VYAV(Y) M1/2’ (82)
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since A, (Y") is scalar-valued. Combining (S.1) and (S.2), we obtain (30). O

Proof of Lemma 5. Denote by Vy ®Y /2 the Kronecker product of the gradient Vy acting on the
matrix Y'1/2) and let V;; := (Vy ®Y1/2)ij be the (4,7)th block matrix in that Kronecker product.
Since the trace is a linear operator, we have

Vy (tr QY1/?) = <§(1+5ij)£tr QY1/2)
i)

- <trQ(%(1—|—5ij)aij )) - (tr Q(Vy ®Y1/2)ij]), (S.3)

By the Cauchy-Schwarz inequality, and the fact that QQ’ < I, implies tr (QQ’) < m, we obtain

IVy (tr @ Y1/2 ZZ [tr QVij }
< ZZtr QQ" ) tr( ij)
<mZZtr =m||(Vy @ Y/?)||%. (S.4)

Since all norms on a finite-dimensional space are equivalent, there exists a constant ¢ > 0 such
that |Vy @ Y1/2||p < QC’HVY ®Y1/2H‘. By Del Moral and Niclas (2018, p. 262, Eq. (6)),

H‘VY@YUQ‘H <27 Amin (V) V2.

Hence, ||(Vy @ Y2)|r < ¢(Amin(Y)) /2, so we obtain
[(Vy @ Y1/2)|2 = ZZtr (V2) < Qmi(Y)) "L (S.5)

Combining (S.4) and (S.5), we obtain (31). O
Proof of Lemma 6. By Eq. (30),

VAT, Z) = M2V 7 A, (Y)MY? dH,
O(m)
where = an = . By Minkowski’s inequality for integrals,
here M := HTH' and Y := MY2ZM"/2. By Minkowski’ lity f 1
IV2ALD)e < [ M0y A0 e d

(m)

< /O I ¥y A ) (5.6)

since the Frobenius norm is sub-multiplicative.
By Herz’s generalization, (12), of the Poisson integral,

1
A= Cl/ etr (21Y1/2Q) (det(L, — Q'Q))* "2V g,
Q'Q<Im
where ¢q > 0. Therefore,

1
Vy A, (Y) = 2ic; / otr (2iY/2Q)(det (I, — Q'Q))* 2™ Uy (tr QY/?) dQ.
Q'Q<In

Applying Minkowski’s inequality and then using (31) to bound the integrand, we obtain

1
IVy A (Y)||F < 261 / (det(Inm —Q'Q))* 2™ ) ||Vy (tr QY V/?)||p dQ
Q'Q<Im

< 2e1c(Amin(¥)) /2 /Q » (det(Ln — Q'Q)* 2™ aQ
1Q<Im

= C(Amin(Y))"/2. (S.7)
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Combining (S.6) and (S.7), we obtain

V24T 2)llr <C / IM [ amin(¥)) /2 dH.

O(m)
For He O(m), |M||p=||[HTH'||F =||T||r and

Amin (V) = Amin (M2 ZMY?) = Apin (M Z)
= Amin(HTH'Z) > Amin (HTH ) Amin(Z) = Amin (T) Amin (2).

Hence,

IV 24,(T, 2)[| 5 < C T pCunin(T) ™2 (Aanin(2)) 172 /O L
= CIIT ) Crmin () ™2 anin(2)) 172,
which completes the proof. O

Proof of Proposition 1. By (30),

VZIAV(T,Zl)—VZQA,,(T,Zg):/ HTl/QH’[VylA,,(Yl)—VYQA,,(YQ)}HTl/QH’dH, (S.8)

O(m)

where Y := MI/QZ]‘Ml/Z7 j=1,2,and M := HTH’. Applying (12) and interchanging derivatives
and integrals, we obtain

VYl AV (Yl) - VY2 Al/ (YQ)

—2ic, / [etr(ziyf/ 2Q)Vy, (tr QYY) —etr (21 Y, /2Q) Vy, (tr QY,/ 2)} du(Q),
Q'Q<Im

Lem+1
where du(Q) := (det(In, —Q'Q))*~ 2™ 1) dQ. Therefore,

HVYIAU(YQ — VYQAV(YQ)HF

SQC1/QQ Hetr(Qinl/zQ)Vyl(trQYll/z)fetr(21Y21/2Q)Vy2(trQY;/Q)HFdp(Q).
'Q<Im

Let 0; := 2tr(le/2Q) and Nj := Vy, (tr Qle/2), j =1,2; then we observe that

€1 Ny — €2 N5 || p = || €01 (N1 — No) + (191 — €'92) Ny ||
< [Ny = Na||p + et — e %2 ]| Vo p,

since |e!?1|= 1. Also, using the identity |e'?t — e!92|2= 4sin? (1 (61 — 62)), we find that
HVY1AV(Y1) _VY2AV<Y2)HF
<2 / [ |73t @y %) = vy, (tr @Y, 2)H
Q'Q<Im F
2fsin (i (172 -V Q) [Ty, (ir @4 D) p| du(@). (59)
By applying the same argument as at (S.3), we obtain

Ty (tr Q1/%) = Ty, (1 QY5 %) = (1 [Q(Vy @ 117%),1) - (0 [Q(Vy, ©Y57%),0) 5
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50, by the Cauchy-Schwarz inequality and the fact that Q'Q < I, implies tr (QQ’) < m, we obtain

HVyl (tr QV}/%) = Vy, (tr QY5 /%) H ZZ(tr VYl®Y11/2)ij_(VY2®Y21/2)Z'J']))2
< ZZtr(QQ')tr (le ®Y11/2)ij —(Vy, ®Y21/2)ij)2
i
<m YN (9 90 - (7073, )

= mH Vy, ©Y,/%)  (Vy, ®Y1/2)HF. (S.10)
Since the norms ||| and |||-|| are equivalent, there exists ¢ > 0 such that
H(VY1 ®Y11/2) —(Vy, ®Y21/2)HF < C‘H(Vyl ®y11/ )= (Vy, ®Y1/2 H’

EcuzfﬁlleH((V“@Yll/) AR R CER

By a result of Del Moral and Niclas (2018, Theorem 1.1, Eq. (4)),
((Fv, 2V = (I 27, 7%)) - K
= /OOO [exp(—tYll/Q)Kexp(—tY11/2) —exp(—tY;/Q)KeXp(—tY;/Q)} dt,
where exp(M) = 3272, M 7 /4! is the matrix exponential function. Therefore,

H ((VY1 ®Y11/2) —(Vy, ®Y21/2)> KHF
< /OO H exp(—tYll/Q)Kexp(—tYll/z) - eXP(—tYQI/Q)KeXp(_tY21/2)HF dt.
0

For any m x m matrices My and My, and for any K such that |K|p =1,

|My KMy — MoK M| = || M1 K (My — Mz) + (M1 — Ma) K Ma|| -
<M pl| My — Ma||p + (| My — Ma|| g | M2l 7
= (M1l p + M2 ) [[M1 — M| .

Now setting M; = exp(— tYl/g) j=1,2, we obtain

H exp(—tY11/2)Kexp(—tYll/z) exp(—tY, /Q)Kexp( tY1/2)HF

1/2 1/2 1/2 1/2
< (o] + o], [t oo,

Therefore,

[nent - ],

g/ (Hexp(—tYll/Q)H + Hexp(—tY21/2)H )Hexp(—tY11/2) —exp(—tY21/2)H dt. (S.12)
0 F F F
For any m x m positive-definite matrix Y and for ¢ > 0,

tr (exp(—2tY")) Zexp =2t (Y)) < mexp(—2tAmin(Y));

hence, for ¢t >0, and j =1,2,

1/2
] < m'/2 exp(—tAmin (Y/?)). (S.13)

|exp(=e7%)]| = [t (exp(—26]%)) j
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Therefore, for |[K||F = 1, the right-hand side of (S.12) is bounded above by

m1/2/ooo[exp(—t>\min( Y}/?)) +exp(—t /\min(Y21/2))}HexP(_tyll/Z)_eXp<_tY21/2)Hth'

Define X (£) := exp(—tY;/?), Y (t) := exp(—tY;/?), and (t) := X (t) — Y (£), t > 0. Notice that
X'(t) = =V P exp(—tY]?) =~} X (1)
Y'(t) = Y5 P exp(—tY, /%) = —Y; 2V (#),
with X (0) =Y (0) = Ip,. Then #(¢) satisfies the inhomogeneous differential equation
(1) =N X0+ Y () =Y, P00 - (107 - )X (),

with boundary condition ¥ (0) = 0. By following the approach of Kéagstrom (1977, Section 4), we
find that the solution of this differential equation is

001 = - [ exp(-(e- 0 -3 explov ) ds
By Minkowski’s inequality and the sub-multiplicative property of the Frobenius norm,
()| F < /Ot Hexp(—(t—s)Y21/2)HF.HY11/2_Y21/2H Hexp sy, /2)HFds.
Using (S.13) to bound both exponential terms in this integrand, we find that
1/2

t
Ol <m 172372 [ exp(=tt= ) (157%)) exp(—shuin(372) .

Assuming that )\min(Yll/ 2) #+ )\min(Y21/ 2), we calculate the latter integral, obtaining

exp Amin —exp(—tAmin Y1/2
bty =m HY11/2_Y21/2H _exXp(—tAmin (V) 1/2)) ( i (¥2°7) (S.14)
)‘mln(Yz ) )‘min(Yl )

Combining (S.10)-(S.14), we obtain

HVyl (tr QY{/?) — Vy, (tr QY1/2)H
i

< e F / exp(—2EAmin (V2)) — exp(—26Amin (Vi/2))] dt
)\min(Y21/2) - )\min(Yl/z) 0 |: ! j|
Y11/2_Y21/2

F

= C2 .
Amin (Y11/2 ) Amin (Y21/2)

By continuity, this result remains valid for )\min(Yll/ 2) Amin (Y- 21/ 2).
Next, it follows from (S.9) that

s

HVY1AV(Y1)_VY2AV(Y2)HFSCS)\ P A (V)
min {41 min{{9

*“/ jsin (e (Y% = Y5 Q)| Vv, (tr QY5 )| du(Q)-
Q'Q<Im
By the Cauchy-Schwarz inequality,

sin (b (v =1, )Q)] < or (12 =1, %)@0
<[V -y a2 mt? |-
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and by (31), [|Vy, (tr Q¥5"%)| 7 < ¢(Amin(¥2)) /2. Hence, with ¢5 = m'/2csc [0, du(Q) <

00, we have derived the inequality

C5

HVYlAV(Yl)_VYQAu(YQ)HF = Hyll/Z_Y21/2HF L in(Yf/Zjimm(Ygl/Q) + Amin(Y;/Q)] . (S.15)

By (S.8), Minkowski’s inequality, and the sub-multiplicative property of the Frobenius norm,

"VzlA,,(T,Zl)—VZ2AZ,(T,Z2)HFg/( )HHTl/zH/[vylAy(Yl)_vaAy(yg)}HT1/2H/ L
O(m
:/ |HTH [y, 4,01) - Vi 4, (%) || am
O(m) F
<[ e [V A0 - D, ()
O(m) F
Applying the bound (S.15), we find that
|V 4u(T.20) -V 2,407, 2) |
g/ I |12 - v, [ gty | A (8.16)
O(m) F )\min(Yl ))\min(YQ ) Amin(YQ )
By a result of Wihler (2009, Eq. (3.2)),
1/2 1/2 1/2
HY1/ -1,/ HF <m'/* v =Yl (8.17)
Since M = HTH', Y1 = MY22Z,M"/2 and Yo = MY/2Z,M"/2, then we have
1/2 1/2 1 172 g0 ||M?
1¥: — Yol 42 = HHT H'(2y— Z)HT' 1|
= | HTH'(Z1 - Z)[|*
1/2 1/2
<|TIE2 12—zl (S.18)

Also, for j =1,2,

/\min(le/z) = ()‘min(yj))l/2 = (/\min(I'[TI{/ZJ'))1/2

> min(HTH")Y i (Z) Y2 = Aain(TY2) Amin (Z)77). (S.19)

Combining (S.16)-(S.19), and using the fact that dH is normalized, we obtain

12— Zo || 2 T3 c
VAT, 20) -V AT, 25)| | < | L 40,
F )\min(Tl/2)/\min(Z2 ) )\min(Tl/2)/\min(Z1 )

which is the same as (33). O

Proof of Lemma 7. We will establish this result by the method of Laplace transforms. For R > 0,
the Laplace transform of the function (detT)" tr g(T) is

(R) = /T et (-TR) (detT) 1w g(T) dT. (S.20)

We substitute (34) into this integral, interchange the trace and expectation, apply Fubini’s theorem
to interchange the expectation and the integral, and verify the validity of interchanging derivatives
and integrals; then we obtain

G(R)=a 't E[XVZ/

etr(—TR) (detT)” A,(T,Z) dT‘
T>0

Z:a_lX]
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Applying (25) to write A, (T, Z) as an average over O(m), and reversing the order of integration,
we obtain

G(R)=a 'tr E sz / etr(—TR) (detT)” A, (HTH'Z) AT dH‘ } (S.21)
O(m)JT>0 Z=a~1X

The inner integral with respect to T is precisely the Laplace transform (14); substituting the
outcome of that calculation into (S.21), we obtain

etr(—H'ZHR™) dH‘

G(R)=a"t(detR) ™ “tr E [X VZ/
O(m)

Z—och‘| '
Interchanging the gradient and the integral, and then the integral and the trace, noting that
Vzetr(—H’ZHR_l)‘Z = (CHRTH')etr(~a" H'XHR™),
=

we find that
J(R) = (detR)_o‘E/ tr(—a 'H'XHR Yetr(—a 'H'XHR™')dH (S.22)
O(m)
since the trace and the integral commute. Next, we have
/ tr(—a 'H'XHR Y)etr(—a 'H'XHR™)dH
O(m)
d
exp(—t tr(a 'H'XHR Y dH| , (S.23)

- a O(m) t=1

by interchanging integral and derivative. By Muirhead (1982, p. 279, Eq. (41)),

exp|—t tr 0471 / —1 _ - (_tail)k CH(X)CK(Ril),
/O(m) pl-ttr(a”'H'XHR )]dH—kZ:% i g::k o)

differentiating this series term-by-term and evaluating the outcome at ¢ = 1, we find that (S.23)
> G
o k-

By (9), EC.(X) = [a]xCk(I,); therefore, by combining (S.22)-(S.24), we obtain

equals

Z Ol 71). (5.24)

|k|=k m)

k 1
G(R) = L(detR)~ Z k 1 > [o]xCr(RTH). (S.25)

k=1 |k|=k

It is also known from Muirhead (1982, p. 248) that

o Nk
(@et( + 127 =30 C S om0,

k=0 " |k|=k

for [[tR~1|| < 1, where ||-|| denotes the maximum of the absolute values of the eigenvalues of tR~!.
Differentiating this series term-by-term with respect to ¢, we obtain

——(det([ +tR1 :Z _1 Z[a]HOH(R_l);
k=1 |k|=k

now setting t = a~! and comparing the outcome with (S.25), we find that

§g(R)=a"t %(det(R+tIm))_°‘

‘t:oc*l.
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Therefore, by (10),

al d
iR =< —“T(R+tI,, Ty dT
i) = | et (T (R ) (det Ty aT]
Oé_l

= etr(— etT) (—tr T) etr(—a ™t
_Fm(a)/T>o tr(—TR) (detT)” (—tr T') etr( T)dT,

evidently a Laplace transform. Comparing this expression with (S.20) then the conclusion follows
from the uniqueness theorem for Laplace transforms. O

Proof of Lemma 8. By (13),
To(v+3(m+1))|A,(TX)| <1

for all T',X > 0. Therefore, by the triangle inequality, |Hx ,(T)|< Ex (1) = 1.

Since A, (T X) is bounded and continuous in 7' > 0 for every fixed X > 0, then the integrand in
(39) is bounded by the Lebesgue integrable function f(X) for all 7', X > 0. Therefore, the continuity
of Hx . (T) follows by Dominated Convergence. O

Proof of Theorem 3. Suppose that X, 4 x then, by the Continuous Mapping Theorem for random
vectors (Severini 2005, p. 336), A, (TX,) 4, A (TX) as n— oo, for all T'> 0. By (13), A, (T'X,,)
is uniformly bounded for all n € N and T > 0; thus, by the Dominated Convergence Theorem,
FEA,(TX,)— FEA,(TX) as n — oo, for all T' > 0, and therefore (44) holds.

Conversely, suppose that Z ~ W,, (v + %(m+ 1),I,,) where Z is independent of the sequence
{Xn,n € N}. Also, let Ux, be the Laplace transform of X,,. By Example 2, we have

U, (T) = Bz [Ha(TV/2 2T,

for all T > 0. Further, by Lemma 8, |H,,(T"/2ZT"/?)| <1 for all T > 0. Thus, by the Dominated
Convergence Theorem, as n — oo,

Uy, (T) = Ez[H(TY2ZTY?)) = w(T),

for all T'> 0. Since H is continuous at 0 and H(0) =1 then ¥(T) also is continuous at 0 and
U(0) = 1. By the continuity of multivariate Laplace transforms (Farrell 1985, p. 15), there is a

m X m positive semi-definite random matrix X whose Laplace transform is ¥, and X, 4 x.0

Proof of Theorem 4. The Hankel transform, Hx ,(T'), of X is holomorphic (analytic) in 7. Also,
the hypergeometric function 1 F1(a;v + %(m—f— 1);—T) is holomorphic in T. Since these two func-
tions agree on the open neighborhood {T:0 < T < €l,,,} then, by analytic continuation, they agree
wherever they both are well-defined. Since they both are well-defined everywhere then we con-
clude that Hx . (T) = 1 F1(a;v+ 3(m+1);—T) for all T > 0. By Example 1 and Theorem 1, the
uniqueness theorem for Hankel transforms, it follows that X ~ Wy, (o, I;y,). O

Proof of Theorem 5. By Eq. (25) and the definition of the orthogonally invariant Hankel transform
(45), we have

Hx(T) = ExEg Do (v+ 3 (m+1)) A, (HTH'X).
Since the distribution of X is orthogonally invariant, X L HXH for all H € O(m); therefore,
Fix o (T) = Bx Ton v+ 1(m+ 1) A(TX) = Hx o(T),

T > 0, and similarly for Y. By applying Theorem 1, the Uniqueness Theorem for Hankel transforms,
we deduce the stated result. O
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S.11 The test statistic and its limiting null distribution

Proof of Lemma 10. By the definition (52) of the test statistic we have

<.
I
—

S.12 Eigenvalues and eigenfunctions of the covariance operator

Proof of Theorem 7. Recall from Muirhead (1982, p. 290) the Poisson kernel: For r € (0,1) and
X,Y >0,

Ay<*ﬁX,Y):(1—r)maetr(1ir(X+ ) Zzﬁ(”) X)L () k. (8.26)

k=0 |r|=k

In this expansion, set
r=bi=(1+1a(1-5))> (S.27)

so that r € (0,1). Note that /2 =14 %a(l — f3) satisfies the quadratic equation
r— (a+2)r1/2—|—1 =0

and also that this equation is equivalent to the identity

1—r

4, 2 1/2

On the right-hand side of this identity, substitute for 71/2 in terms of a and /3 to obtain
1—7r 2

A L A+ la(l—8) =
arl/2 1+ a [1-(+3a(1-p)]=5 (S.28)
n (S.26), also set
1- r
X = Y " 5= BS and Y = 71/2T = AT.

Then,
r(X+Y)  (rY2-1)(S+7T) N (S+T)
1—r « a
Applying (85), (86) and (S.27)-(S.29) to (S.26), and substituting the result in (81), we obtain for
S,T > 0, the pointwise convergent series expansion,

1)=3" 3 p 2SN (T) (.30)

k=0 |k|=k

(S.29)

By (20), the generalized Laguerre polynomials {E,(J’)} form an orthonormal system; then it is simple
to verify that the system {3[,({” )} also is orthonormal in L2, for  ranging over all partitions, i.e.,

W) (S)28)(S) dPy(S) = {1’ e (S.31)

5>0 0, K#0o
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Now we verify that the series (S.30) converges in the separable tensor product Hilbert space
L?® L? := L?(Py x Py). By the Cauchy criterion, it suffices to prove that for each e > 0, there
exists IV € N such that

lo
/ (3 3 @) m)] ke P (S.1) <o
PUXMxpEXT™

k=l |k|=k

for all 11,l2 € N such that l; > [y > N. By squaring the integrand, it suffices by Fubini’s theorem
to consider

Z /S>0 /T>O [ 0 ($)20 ()] aro(T) Py ()

k=l | |—k;
lo—1 2

w2 2 [ ][ aa@a @[ X s )am)] an) ars)

k1=l1 ka=l1+1 |k|=k1 |k|=k2o

Since the system {Z{*)} is orthonormal, the latter sum reduces to

lo

l l
ZQ Z pi — a2mocbimo¢ 22 bgk Z 1 :a2mo¢bimoc Z bikpm(k‘),

k=11 |k|=k k=li  |k|=k k=l

where p, (k) represents the number of partitions of k into at most m parts. It is well-known that

Y bemk) = [T=687"
k=0 k=1

Therefore, > oo b8 py, (k) is a convergent series. Since every convergent series in any metric space
is Cauchy, it follows that for each € > 0, there exists N € N such that Zf:ll b3 pm (k) < e, for all
l1,l2 € N such that lo >3 > N. Therefore, the series (S.30) is Cauchy in L? ® L? and hence,

2
lim [KO (S,T)— Z 3 0 A (S)TV(T )} d(Py® Py)(S,T) = 0.
152 Jp e cpn o S

By Fubini’s theorem, the latter expression equals

im )92 (1)|” _
1 /S>O/T>O Ko(S,T) - Z 3 peZ(S)EL (T)} dPy(T) dPy(S) = 0. (S.32)

l— o0
k=0 |k|=k

By the orthonormality, (S.31), of the system {1(;)} we obtain for [ € N and partitions o with
lo|<1,

/ S T rE (ST ) AR(T) = pr ) (S). (5.33)
T>0k=0 |r|=k
By (83) and (S.33),

| [s012(5) = pa(5)| apu(s)
S>0

/S>O‘ /T>0 Ko(S,T) = Z > AW (SZY(T)| G (T) dP(T)| dPy (S).

k=0 |x|=k

By the Cauchy-Schwarz inequality, this latter expression is bounded by

(o o5 S5 5 pa s anie anis)

k=0 |r|=k
X ( /S g /T >O‘3£E,”)(T)’2dPO(T) dPo(S))l/ C(s.34)
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By the orthonormality property (S.31) and the fact that Py is a probability distribution, the second
term in (S.34) equals 1; therefore,

/ ‘3013”) (S) = po L) (S)‘ dPy(S)
S>0
l
<( /5>0 /T>O‘K0<57T)—Z S 0x( (@) aryr) ars)) . $.39)

k=0 |k|=k

Since [ is arbitrary, we let [ — oo; by (S.32), the right-hand side of (S.35) converges to 0, hence
[ [s02(5) = po(5)| apa(3) 0.
S>0

which proves that SoZ()(S) = po L) (), for Py-almost every S. Therefore, py, is an cigenvalue of
So with corresponding eigenfunction 3[,(;’).

Since the kernel Ky (S,T) is symmetric in (S,T), it follows that Sy is symmetric. To show that
So is positive, we observe that for f € L2,

(Sof, [z = S>030f(5)f(5) dPy(S)

- / ([ Ko(s.7) £(1) dPo(1)| F(5) dPo(5).
S>0 T>0

Substituting for Ko(S,T) from (82), we obtain

Sorne= [ [ ([ EaPasen)
x Ay (T, a~1X) dPO(X)> £(T) dPO(T)}mdPO(S).

Applying Fubini’s theorem to reverse the order of the integration, we find that the inner integrals
with respect to S and T are complex conjugates of each other; therefore,

Soffee = [

| / (@) 44 (5.0~ X)1(S) dPo(S)| dPy(X), (5.36)
X>0 S>0

which is positive. Thus, Sy is positive.
Next, we prove that Sy is of trace-class. For f € L2, S > 0, it again follows by (82) and Fubini’s
theorem that

Sof(9) = o Ko(5,T) f(T) dPo(T)

= / / [T ()2 AL (T, 1 X) f(T) APy (T) A, (S, 01 X) dPy(X). (S.37)
X>0JT>0
Denote by 7o : L? — L? the integral operator,
ToH(@) = [ Tnla) AT.a” X)F(X) dP(X),
X>0
T > 0. By (26), |T')yn(a) A, (T,a~1X)| <1 and therefore

_ 2
|Fm(a) Ay (T, o 1X)|L2®L2 < 00,

for T, X > 0. By Young (1998, p. 93), it follows that 7p is a Hilbert-Schmidt operator. Now, we
can write (S.37) as

Sof(S) = Tof(X) [[im(a) Au(S,a™' X)] dRy(X) = To(To f)(S),

X>0

S > 0, which proves that Sy is of trace-class.
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To complete the proof, we now show that the set {12”)} is complete. It suffices to show that if
feL?and (f,Z*)) 2 =0 for all x then f =0 Py-almost everywhere. First, we note that

/ ‘(S‘)f Z > ol EY) e (”)(S)W\ dPy(S)
S>0 =
= () (g) Z¥) o
/M‘ /T>0 Ko(S,T) ~ l;)l;kﬂ WAL () 2(T)| F(T)T(S) ARy (T)| Py (S)
l 2 1/2
_ (v) (v)
< (/S>O/T>()}KO(S’T) kz_(ﬂzljkpnl,{ (S) L (T)’ dPo(T)dPO(S)>
/S>0 /T P )|2dPo(T)dP0(S))1/ L (838)

by the Cauchy-Schwarz inequality. Since f € L?, the second term on the right-hand side of (S.38)
is finite. Taking the limit on both sides of (S.38) as | — oo and applying (S.32), we obtain

lim ’
=00 /50

(Sof)(S Z > pelf L) 12 2(S)T(S)] dPo(S) = 0. (8.39)

k=0|k|=k

Since (f,Z));2 =0 for all partitions « then (S.39) reduces to

(Sof,f)r2 =/ (Sof)(S)f(S)dPy(S) =0.

S>0

Therefore, by (S.36), we obtain for Py-almost every X,

/ To(@) A (S,0 LX) £(S) APy (S) = 0. (S.40)
S>0

Since the function Ty, (a)A,(S,a~1X) is continuous for all X >0 and fixed S >0 and by (26),
T ()AL (S, X)| < 1, for X, S >0, then by the Dominated Convergence Theorem, the integral
on the left-hand side of (S.40) is a continuous function of X. If two continuous functions are equal
Py-almost everywhere then they are equal everywhere; hence (S.40) holds for all X > 0.
Henceforth, without loss of generality, we assume that f is real-valued. Denote by f* and f—
the positive and negative parts of f, respectively. Then, f = f* — f~, fT and f~ are nonnegative;
and since f € L? then by the Cauchy-Schwarz inequality, f* and f~ are Pp-integrable. By (S.40),

/ Fm(a)Au(S,Ole)ﬁ(S)dPo(S)=/ i (a) Ay (8,07 X) £ (S) dPo(S),
S>0 S>0

X > 0. By Theorem 5, the Uniqueness Theorem for orthogonally invariant Hankel transforms, we
notice that there are only two possible cases. Either

FH(S)dPy(S) = f7(8)dPy(8) =0,
S>0 S>0
or
FH(S) dPy(S) = [T (8)dPy(S)=C > 0.
S>0 S>0
For the first case, we have fT = f~ =0 and so f =0 Py-almost everywhere. As for the second case,
we have
Ay (S,a™ 1 X)CTHFH(S) dPy(S) = Ay (S,a 1 X)CTHF(S) dPy(S),
S>0 S>0

X > 0. By the Uniqueness Theorem for orthogonally invariant Hankel transforms, we obtain f+ =
f~ and hence f =0 Py-almost everywhere. This proves that the orthonormal set {3155 )} is complete,
and therefore it forms a basis in the separable Hilbert space L2. O
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Proof of Theorem 9. Since the set {1,@}, for k ranging over all partitions, is an orthonormal basis
for L?, the eigenfunction ¢ € L? corresponding to an eigenvalue § can be written as

b= ZZ AWy, ),

k=0|x|=k

We restrict ourselves temporarily to eigenfunctions for which this series is pointwise convergent.
Substituting this series into the equation S¢ = d¢, we obtain

K(S,T) Z > (6, ZW) 2 ZN(T) dPy(T) =6 Z > (0, W) 2 Z(S). (S.41)

>0 k=0 |r|=k k=0 |r|=k

Substituting the covariance function K (S,T) in the left-hand side of (S.41), writing K in terms of
Ky, and assuming that we can interchange the order of integration and summation, we obtain

DD DREE P /T 9 [KO(S,T)—etr(—a—l(s+T))(a—3m—1(tr S)(tr T) + 1) | Z¥)(T) dPy(T)

k=0|x|=k
=5 > (¢ I AY(S). (S42)
k=0|k|=k
By Theorem 7,

Ko(S,T)ZY)(T) dPy(T) = p Z(S).
T>0

On writing 3[,(_6”) in terms of L,(f), the generalized Laguerre polynomial, applying (21) for the Laplace
transform of L,(f), and using (S.27) and (S.28), we obtain

(etr(—a'T), W)Y 5 = / etr(—a ' TEZY)(T) dPy(T)
T>0

_ (M)W gme/z, (8.43)

]!
Again writing Z%) in terms of L,({V), applying (24), and using (S.27) and (S.28), we obtain

(etr(—a™ ') (tr T), L)) 2 = /T >Oetr(fa_1T)(tr TZY)(T) dPy(T)

_ <M )” ® a28m0 2 (mi2 — |kl ). (8.44)

||
Therefore, (S.42) reduces to
>3 oo 2 [10(5)
k=0 |k|=k
—etr(—a=1g) (S mL 1) 1 o201 4. 5)me2 — 15 +1)]
|K!
=5 > > (6, 2W) 221(S).
k=0 |k|=k

By applying (S.43), we obtain the Fourier-Laguerre expansion of etr(—a~1S) with respect to
the orthonormal basis {Z(*)}; indeed,

etr(— Z > (etr(—a18), ZM) 2 ZI(S)

k=0|r|=k

=gy 3 (S s

k=0 |k|=k
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Similarly, by applying (S.44), we have

etr(—a="S)(tr S) = Z Z (etr(—a~19)(tr §), LMY, » ) (9)
k=0|x|=k
2 ama/2 [a] .\ /2 2 )
—azgrany 3 (Gl [ol W, <) p(mb — ||8) 2L (S).
k=0 |k|=k
Let

4 ::/ etr(—a'T)¢(T) dPy(T)
T>0

Bmoc/QZ S (0.a0), (M)W o (S.45)

!
k=0 |k|=k

and

Cs ::/ etr(—a 1T (tr T)(T) APy (T)
>0

_a25ma/2zz (6.2, (w)w (b2 —|k|). (S.46)

!
k=0|x|=k

Combining (S.42)-(S.46), we find that (S.41) reduces to

5 fj D (0, 2))22(S)

k=0|k|=k
= w(Im / _ _

=3 3 o[t a0 - et (e e ) R s pa 0 - )] 2(9)
k=0|r|=k '

and by comparing the coefficients of I(” ) (S), we obtain

5(6.200) 12 = pu (6,20 12 — proer2 (Sl 1V 0, L a6z 1w y),

]!

for all partitions . Since we have assumed that § # p, for any x then we can solve the equation
for (¢, L)), to obtain

(CelIm) 1) 0, 4 =202 = m~t i) (5.47)

]!

(v) ma/2 Pk
(6.2) 2 = pro/2Le

Substituting (S.47) into (8.45), and applying Lemma 6, we get

C1=C18™ Z 3o o W Im) [0 2 | -1 gme Z y O W Cfs] P (Vo —m™'||B)

k=0 |k|=k k=0|k|=k
=C1(1-m~tA(6 ))+Cga_3m_1D(5);

therefore,
a3C1A(8) = CoD(6). (S.48)

Similarly, by substituting (S.47) into (S.46) and applying Lemma 6, we get

Q _
= oyt 3 Gl B g2 oty
k=0 || =k
mao In,) o _
vy apmem" 3 Sl B 2 g2
k=0 |k|=k

=C1D(8) +C2(1— B(4));
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hence
C2B(0) = C1D(9). (S.49)

Suppose C7 = Co = 0; then it follows from (S.47) that <¢,3[,(€”)>L2 =0 for all partitions x, which
implies that ¢ = 0, which is a contradiction since ¢ is a non-trivial eigenfunction. Hence, C7 and
C cannot be both equal to 0. Combining (S.48) and (S.49), and using the fact that Cy and C5 are
not both 0, it is straightforward to deduce that a®A(§)B(d) = D?(5). Therefore, if § is a positive
eigenvalue of S then it is a positive root of the function G(8) = a®A(8)B(8) — D?(9).

Conversely, suppose that § is a positive root of G(§) with § # p, for any partition x. Define

(CH(Im) [a]n)l/2

]!

S— e (01 + Cha (02 — m‘llnlﬁ)), (S.50)

-4

where C7 and Cy are real constants that are not both equal to 0 and which satisfy (S.48) and
(S.49). That such constants exist can be shown by following a case-by-case argument similar to
Taherizadeh (2009, p. 48).

Now define, for .S > 0, the function

5(S) = i > e ZV(S). (S.51)
k=0 |x|=k

By applying the ratio test, we obtain Y -, Z\n\:k 72 < 00; therefore ¢ € L2.
We also verify that the series (S.51) converges pointwise. By (19) and (86),

) ()= B2 etr((1—B)S/2) (|| Cu(Im) [0],) /% |LL(BS)],
S > 0. By inequality (23),
LY (8S)] < etr(BS) Cullm) lal],.
S > 0. Therefore,

Cr(Im) [a]n)l/? (8.52)

|r[!

Thus, to establish the pointwise convergence of the series (S.51), we need to show that

Z > ( |H|, ) v [Yis| <00 (S.53)

k=0|r|=k

Z(S) < B/ etr(14+8)5/2) (

The convergence of the above series follows from the ratio test.
Next, we justify the interchange of summation and integration in our calculations. By a corollary
to Theorem 16.7 in Billingsley (1979, p. 224), we need to verify that

S el / K(S.T) [1)(D)] dPy(T) < (8.54)
k=0 |r|=k
First, we find a bound for Ko(S,T). By (26), |Tm(e)A,(—a~2S,T)| <1, S,T > 0. Thus, by (81),
0< Ko(S,T) <etr(—a"Y(S+1T)) (S.55)
By the triangle inequality and by (S.55), we have

0< K(S,T) < Ko(S,T) +etr(—a(S+T))(a>m ™ (tr S)(tr T) +1)
<etr(—a " (S+T)) 2+a 3m ™ (tr S)(tr T)).

Thus, to prove (S.54), we need to establish that

Zm/ etr(—a~1T) (24 a~3m=(tr §)(tr T)) 1LY (T)| dBy(T) < 0.
k=0 |k|=k
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By applying the bound (S.52), we see that it suffices to prove that
Sy (Selh) [l M, ” bl / etr(—a~1T) etr((1+ F)T/2) dPy(T) < o0,
k=0|k|=k
and
[ .\ 1/2 .
Z 3 ( W ) el [ (tr T)etr(—a'T) etr((1+ B)T/2) dPy(T) < oo.
k=0 |r|=k >0

As these integrals are finite, the convergence of both series follows from (S.53).
To calculate S¢(S) from (S.51), we follow the same steps as before to obtain

SH(S) = K(S,T) Z > 4 ZN(T) dPy(T)
5>0 k=0 |x|=k
1/2
= Z Z pH'YKl( —-C ﬂma/QZ Z ( |I€|' ) plﬁlf-iu)(s)
k=0|x|=k k= om k
— mao ] 1/2 — v
~Cha™'B ”;)gjk( M, <) o8 —m kI B)EL(S).

By the definition (S.50) of 7, and noting that

Pk o
1=
Pr—0 pr—10’

we have

=iy S [l ()

k=0 |k|=k

x (01 +Cha (02 — m*lmm))lg”)(S)

=gy S0 (G LY (6 a0 )2 s)

!
k=0 |r|=k

= 5i Z P)’KIE@V) (S)

k=0|x|=k
=0¢(S).

Therefore, § is an eigenvalue of S with corresponding eigenfunction ¢. O

S.13 The efficiency of the test

Proof of Theorem 1. For T > 0 and 6 € O, consider the orthogonally invariant Hankel transform,
Hx,.0(T) = Ep[T'm(a)A,(T,a™1X1)]. We have

nl2T, = [/T>O( Zr )—etr(—oflT))QdPo(T)}

Adding and subtracting Hx, ¢(7) inside the squared term, and applying Minkowski’s inequality,

1/2

we obtain

1/2

+[/ (Hx,.0(T) —etr(—a~'T))? dPy(T)| . (S.56)
T>0
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Now set
b(g) == [/DO (Hx, 0(T) - etr(—a~'T))” dPO(T)} V2

By adding and subtracting the term %22‘;1 I ()AL (T,Z;) inside the squared term, and then
again applying Minkowski’s inequality, we obtain

b(0) < n= /2T, + {/

T>0

(- ZF 1.2) <%, 00) ar(m)] . (sa7)
Combining (S.56) and (S.57), we find that
In= 12T, — b(6)|< U} 0( Zr Z]-)—HXI,(,(T))2 dPO(T)T/Q. (S.58)
>

Further, by subtracting and adding the term % Z;L:1 L (@) Ay (T,a~ 1 X;) inside the squared term
in (S.58), and then applying the Cauchy-Schwarz inequality, we obtain

(igrm(am Z;)—Hx, o ) [ ZF ( (T.Z;) - jzxy(T,cfl)(j))]2

2
[ Zr (T, a7 X;) - ’HXL@(T)}. (.59)
Next, by (27) in Lemma 3,
1« _ 1 _
=Y Tul@)|Au(T,2)) = (T, X;)| < 2m/* | T nZuz —alX 5 (S.60)
j=1 j=1
Since

Zi—a ' X; =X PX X ol x P
J J
—a—1X1/2X V2 Ly~ X)) X0 VP X 2,

and since the trace is invariant under cyclic permutations and ||-|| ¢ is sub-multiplicative,

1 _ 1/2 P 1/2 5—1/2 = L 5-1/21/2,1/2
SN2 X = o SRR el — X)X X

j—l
1
ol Z”X 1/2XX 1/2( )Hl/z
] 1
LSV /2,1 /
1 5—1/2 ¢ ©—1/21/2 1/2
<o EZHXn Xan |F ”O‘I X H .
j=1
By the Cauchy-Schwarz inequality,
_ __ L - —_ 1/2
72“)( 1/2XX 1/2”1/2 <Z| 1/2XX 1/2|| )
j=1 j=1
(Zn: Sy go1/2y2 ]1/2)1/2
j=1
Since X;l/QXngl/Z is positive definite then tr(XEl/QXngl/Q) < (tr X, 1/2X X, 1/2) S0,

e, - _ nooo_ o 1/2
ﬁZ”Xﬂl/QXjXﬂ 1/2||;/2§n,1/2 (ZtrX” 1/2Xan 1/2)
= =1

—p1/2 (trX V2, %, X 1/2)1/2

n~ Y2 (ntr Iy)/? = m'/2.
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Therefore,
1 n
SN2 - 0T X < 0t aln — X,
and by (S.60), we obtain
1 n
= Tl(@)|Au(T,Z)) = A(T,a™ Xj)| < 207w/ T2 [la — Xul . (8.61)
j=1
By (S.58), Markov’s inequality, and Fubini’s theorem,
P(In~ 2T, — b(0)|< eb(6))
! Ly T 2dP T S
> 15— = )— s
> 1= | B o @A 2) = D) AT (552

y (S.59) and (S.61), we see that (S.62) is greater than or equal to
- [80727715/2(/ 1Tl dPy(T)) Egllalm ~ Xnll s
e2b2(0) T>0
oo 1 n 2
+2/0 EG(EZrm(a)AV(Tlej) —Hxl,g(T)) dPO(T)]
j=1

In the proof of Theorem 10, we showed that C := Jr20IT|lF dPy(T) < co. Further, by (26),

2
( Zr A (T.a1X;) — Hlee(T)> =1~ Varg (D (@) Ay (T, a0~ X1)) < n~ Y
therefore
1 . _ 2
—1/2m < St + [g,~2.5/2 B 4
P(n 2T —b(0)|< eb(6)) 2 1= s [Sa m5/% ¢ Eyllalnm Xn||p+n] (S.63)

Next, we write

T~ Xl p = (tr(aT — X)) 2 = (i (i“j ‘afm)>2>1/2’

Jj=1

and expand the sum. By the Cauchy-Schwarz inequality and the i.i.d. property of Xy,..., X,

Eolladm — Xn|F < %[Eo(tr (i(Xj *aIm)>2)] 1/2

=1
1 n 2 T 1/2
== [Eo(tr (Z(Xj falm)) : H(Hahg(xj))ﬂ .
Jj=1 Jj=1
Squaring the above sum and using the fact that Xi,..., X, are i.i.d., we obtain

EollaLm — n||F<n 1/2{Eo(tr[X1 al,, ﬁ (146ho(X )}1/2

+(L_1>1/2[E0(tr[(X1—aI )(X2—aly) ﬁ1+9h9 )}1/2- (5.64)

n
Since Ephg(X) =0 and, by (107), EgXhg(X) =0 for § € ©1, then Eo(1+0hy(X1)) =1 and

Bo((tx [(X1 = aln)]- (14 0hg(X1)) ) = tr Bo (X1 = aln)(140ho(X1)) ) =0.
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Thus, the first term in the right-hand side of (S.64) equals

O [Eo (tr (X1 —aln)?]-(1+ ah‘)(Xl)))} -

and the second term equals 0. Further, by applying the Cauchy-Schwarz inequality, we obtain
Bo(tr (X1 —aln)?]- (14 0ho(X1))) = Eo(tr (X1~ alm)?]) +0Bo(tr (X1 — alm)?)- ho(X1))
< [Bo(tr (%1 —an)?)?] [+ 161 r3x0) 2],
To show that Eg(tr [(X] — al,,)?])? is finite, we write
tr (X1 — adp)?] = tr (X7 — 2aX1 +o?1,,) = tr X7 — 2atr X1 +a’m,

and since (a+b+c)? < 3(a?+b% +c?), for a,b,c € R, it suffices to show that Ep(tr X7)? < oo and
Eo(tr X1)? < oo. However, by (9),

EO(tI‘Xl) <E0 tI‘Xl Z EO
|k|=4

and similarly, Eo(tr X1)? < co. By assumption (106), we find that there exists §* € (0,7) such that

52:= sup Eo(tr[(Xl—afm)Q}-(1+9h9(X1)))<oo.
0e(—0*,0%)

Therefore, (S.63) can be written as

1 2
—1/2 o _ —2,.5/2
P(ln™ =Ty, —b(0)|< eb(0)) > 1 IVERTEI {Sa m®'? Co + 71/2}
—2,.5/2 A=
-1 8a™*m OO’+2’
- nt/2e2p2(0)

for all § € (—0*,0%). Setting C = (8a~2m>/2C +2)/e?y then we obtain

—1/2q ¢
P(In~Y2T,, —b(8)|< eb(9)) > 1 e

for all @ € (—0*,0*) and n'/2 > C/b%(#). The proof now is complete. O
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