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Abstract
We initiate the study of goodness-of-fit testing for data consisting of positive defi-
nite matrices. Motivated by the appearance of positive definite matrices in numerous
applications, including factor analysis, diffusion tensor imaging, volatility models for
financial time series,wireless communication systems, andpolarimetric radar imaging,
we apply the method of Hankel transforms of matrix argument to develop goodness-
of-fit tests for Wishart distributions with given shape parameter and unknown scale
matrix. We obtain the limiting null distribution of the test statistic and a corresponding
covariance operator, show that the eigenvalues of the operator satisfy an interlacing
property, and apply our test to some financial data. We establish the consistency of the
test against a large class of alternative distributions and derive the asymptotic distri-
bution of the test statistic under a sequence of contiguous alternatives. We obtain the
Bahadur and Pitman efficiency properties of the test statistic and establish a modified
version of Wieand’s condition.

Keywords Bahadur slope · Bessel function of matrix argument · Contiguous
alternative · Diffusion tensor imaging · Factor analysis · Gaussian random field ·
Pitman efficiency · Zonal polynomial

1 Introduction

The problem of testing that a random sample of positive definite matrices follows a
Wishart distribution arose in factor analysis over fifty years ago; Browne (1968, p. 278)
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noted the difficulty of performing such a test, but no such results have appeared since
then. More recently, random positive definite matrix data have appeared in numerous
applications, e.g., diffusion tensor imaging, financial time series, wireless communi-
cation, and polarimetric radar images.

Positive definite random matrix data are especially important in medical research,
specifically in diffusion tensor imaging (DTI) (Dryden et al. 2009; Jian et al. 2007; Jian
and Vemuri 2007; Kim et al. 2011; Lee and Schwartzman 2017; Schwartzman 2006;
Schwartzman et al. 2005, 2008). DTI is amagnetic resonance imagingmethod that has
attracted much interest in the study of brain diseases. DTI is based on the observation
that water molecules in vivo are always in motion; by modeling the diffusion of the
watermolecules at any location by a three-dimensional Brownianmotion, the resulting
diffusion tensor image is represented by the 3× 3 positive definite matrix of the local
diffusion process at the given location.

DTI, although noninvasive, enables the study of deep brain white-matter fibers.
Thus, DTI has been used to study epileptic seizures, Alzheimer’s disease, traumatic
brain injuries, white-matter abnormalities, developmental disorders, and psychiatric
conditions (Neumann-Haefelin et al. 2000; Rosenbloom et al. 2003; Pomara et al.
2001;Matthews and Arnold 2001), and also to study the pathology of organs or tissues
such as the breast, cardiac, kidney, lingual, skeletal muscles, and spinal cord (Damon
et al. 2002). The Wishart distribution with known degrees of freedom and unknown
scale matrix has appeared in several articles on DTI data (Dryden et al. 2009; Jian
et al. 2007; Jian and Vemuri 2007).

The Wishart distributions with known degrees of freedom also arise in stochastic
volatility models (Asai et al. 2006; Gourieroux and Sufana 2010; Ku and Bloomfield
2010). Here, the problem is to estimate the covariance matrix of the joint capital
returns on several financial assets,with the goal of predicting returns, devising portfolio
allocations, and estimating risk.

The complex Wishart distributions with known degrees of freedom arise in the
spectral analysis of multivariate Gaussian time series (Goodman 1963), wireless com-
munications (Siriteanu et al. 2016, 2015; Tulino and Verdú 2004), and the analysis of
polarimetric synthetic aperture radar (Anfinsen and Eltoft 2011; Anfinsen et al. 2011).
The results to follow can be extended, with obvious changes, to the complex Wishart
distributions (James 1964, p. 488) and even to Wishart distributions on symmetric
cones (Faraut and Korányi 1994).

Motivated by these applications, we develop goodness-of-fit tests for the Wishart
distributions, extending results for the exponential distributions (Baringhaus and
Taherizadeh 2010; Taherizadeh 2009) and the gamma distributions (Hadjicosta 2019;
Hadjicosta and Richards 2019). The technical material needed to develop such tests
includes mathematical analysis on the cone of positive definite matrices (Herz 1955;
Maass 1971), the Bessel and Laguerre polynomials of matrix argument and their
zonal polynomial expansions (Gross and Richards 1987; Herz 1955; James 1964;
Muirhead 1982), and the Hankel transforms of matrix argument (Herz 1955). To
simplify the exposition, we present numerous proofs as supplementary material in
Sects. S.10–S.13.

The non-commutative nature of matrix multiplication leads us to impose on the
distribution of the sample data an orthogonal invariance condition. The Frobenius,
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Goodness-of-fit testing for the Wishart distributions 1319

spectral, and operator norms appear in thematrix case, and several inequalities between
them will be needed. There is also the surprising appearance of Schur’s lemma in
Sect. 2.3, a result well known in linear algebra and representation theory (Shilov
1977) but which we have not seen before now in statistical inference.

In Sect. 2,we provide properties of theWishart distribution, Bessel function,Hankel
transform, confluent hypergeometric function, and generalized Laguerre polynomial,
all of matrix argument. We also provide a uniqueness theorem and an inversion for-
mula for the Hankel transform and some limit theorems. We present a generalized
hypergeometric function of two matrix arguments, define the orthogonally invariant
Hankel transform, and provide some of their properties.

In Sect. 3, we define the statistic T2
n for goodness-of-fit testing for the Wishart

distributions. We obtain the asymptotic distribution of T2
n under the null hypothesis as

an integral of the square of a centered Gaussian random field Z . In Sect. 4, we derive
the covariance operator corresponding toZ and show that the eigenvalues of S satisfy
an interlacing property. It remains an open problem to determine the multiplicity of
the eigenvalues of the operator.

In Sect. 5, we apply the test to financial data, and we establish in Sect. 6 the
consistency of the test against numerous alternatives. In Sect. 7, we derive the asymp-
totic distribution of T2

n under certain sequences of contiguous alternatives to the null
hypothesis, such as Wishart alternatives with varying shape or scale parameters and
some contaminated Wishart models.

Finally, in Sect. 8, we establish the Bahadur and Pitman efficiency properties of
the statistic T2

n . We investigate the approximate Bahadur slope of T2
n under local

alternatives, and we show the validity of a modified Wieand’s condition. A complete
extension of Wieand’s condition, under which the Bahadur and Pitman efficiencies
coincide, remains an open problem.

2 Wishart distributions and Hankel transforms of matrix argument

2.1 Preliminary results for theWishart distributions

Throughout the paper, all needed results on the zonal polynomials and on the spe-
cial functions of matrix argument are provided by Herz (1955), Muirhead (1982), or
Richards (2010), and we will generally conform to their notation. We denote any zero
matrix by 0, the order being determined by the context; also, Im denotes the m × m
identity matrix. We denote by R

m×m the space of m × m (real) matrices, by Sm×m

the space of m × m symmetric matrices, by Pm×m+ the cone of m × m positive defi-
nite matrices, and by O(m) the group of m × m orthogonal matrices. To specify that
Y ∈ Pm×m+ , we usually write Y > 0; more generally, we write Y1 > Y2 whenever
Y1 − Y2 > 0. We also denote the trace of Y by tr (Y ), the determinant of Y by det(Y ),
and exp(tr Y ) by etr(Y ).
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1320 E. Hadjicosta, D. Richards

The multivariate gamma function is defined by

�m(a) =
∫
R>0

(det R)a− 1
2 (m+1) etr(−R)dR,

for a ∈ C, Re(a) > 1
2 (m−1); this integral is well known to have the explicit formula,

�m(a) = πm(m−1)/4
m∏
j=1

�
(
a − 1

2 ( j − 1)
)
.

An m ×m positive definite random matrix X is said to have aWishart distribution
if its probability density function (p.d.f.) is of the form

f (X) = 1

�m(α)
(det�)α(det X)α− 1

2 (m+1) etr(−�X), (1)

X > 0, where α > 1
2 (m − 1) and � > 0. We write X ∼ Wm(α,�) whenever

(1) holds. The parameter α is called the shape parameter and � is called the scale
matrix of X . If α is a half-integer, then 2α is called the degrees of freedom of X . In
general, E(X) = α�−1; also, if M is a q × m matrix of rank q, where q ≤ m, then
MXM ′ ∼ Wq(α, (M�−1M ′)−1) (Muirhead 1982, p. 92).

A partition κ = (k1, . . . , km) is a vector of nonnegative integers, listed in non-
increasing order. The weight of κ is |κ| = k1 + · · · + km , and the length, �(κ), of
κ is the number of nonzero k j , j = 1, . . . ,m. For a ∈ C and k = 0, 1, 2, . . ., the
shifted factorial is defined as (a)k = a(a+1)(a+2) · · · (a+ k−1). For any partition
κ = (k1, . . . , km), the partitional shifted factorial is defined as

[a]κ =
m∏
j=1

(
a − 1

2 ( j − 1)
)
k j

.

For Y ∈ Sm×m , we denote by det j (Y ) the j th principal minor of Y , j = 1, . . . ,m.
For any partition κ , the zonal polynomial Cκ(Y ) is defined as

Cκ(Y ) = Cκ(Im) (det Y )km
∫
O(m)

m−1∏
j=1

(det j (HY H−1))k j−k j+1 dH , (2)

where dH is the normalized Haar measure on O(m) (Richards 2010, (35.4.2)). By
(2), Cκ(Y ) is homogeneous of degree |κ|.

It follows from the invariance of the Haar measure thatCκ(HY H ′) = Cκ(Y ) for all
H ∈ O(m) and Y ∈ Sm×m ; hence, Cκ(Y ) depends only on the eigenvalues of Y and
it is a symmetric function of the eigenvalues. Suppose that Z ∈ Sm×m and that Y 1/2

denotes the unique positive definite square root of Y ∈ Pm×m+ . Since the matrices
Y 1/2ZY 1/2, Y Z , and ZY all have the same eigenvalues, we will follow standard
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Goodness-of-fit testing for the Wishart distributions 1321

convention, writing Cκ(Y Z) or Cκ(ZY ) for Cκ(Y 1/2ZY 1/2); throughout the paper,
we retain this convention for all orthogonally invariant functions of matrix argument.

With the normalization

Cκ(Im) = 22|κ|| κ|! [m/2]κ
∏�(κ)

i< j (2ki − 2k j − i + j)∏�(κ)
i=1 (2ki + �(κ) − i)!

, (3)

the zonal polynomials satisfy the identity,

(tr Y )k =
∑
|κ|=k

Cκ(Y ), (4)

k = 0, 1, 2, . . . (see Muirhead 1982, p. 228, Eq. (iii) or Richards 2010, Eq. (35.4.6)).
For Y > 0 and Z ∈ Sm×m , the zonal polynomials satisfy the mean-value property
(Muirhead 1982, p. 243),

∫
O(m)

Cκ(HY H ′Z)dH = Cκ(Y )Cκ(Z)

Cκ(Im)
. (5)

We will also need the identity,

∑
|κ|=k

Cκ(Im)[a]κ = (m a)k, (6)

a ∈ C, k = 0, 1, 2, . . . . This result is established by applying a power series identity,

∞∑
k=0

tk

k!
∑
|κ|=k

Cκ(Im)[a]k = (det(Im − t Im))−a, (7)

|t | < 1; see James (1964, p. 495, Eq. (143)), Muirhead (1982, p. 259, Eq. (4)). Writing

(det(Im − t Im))−a ≡ (1 − t)−m a =
∞∑
k=0

tk

k! (m a)k, (8)

then (6) is obtained by comparing the coefficients of tk in (7) and (8).
The zonal polynomials also satisfy a Laplace transform identity (Muirhead 1982,

p. 248): For Re(a) > 1
2 (m − 1), Z > 0, and M ∈ Sm×m ,

∫
R>0

Cκ(MR)(det R)
a− 1

2 (m+1) etr(−RZ)dR = [a]κ�m(a)(det Z)−aCκ(MZ−1).

(9)
For κ = 0, this result reduces to

∫
R>0

(det R)
a− 1

2 (m+1) etr(−RZ)dR = �m(a)(det Z)−a, (10)
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1322 E. Hadjicosta, D. Richards

from which we confirm that (1) is a probability density function (Muirhead 1982,
p. 61).

2.2 Bessel functions and Laguerre polynomials of matrix argument

The Bessel function of matrix argument, first treated in detail by Herz (1955), can
be defined in several ways. Let ν ∈ C be such that −ν + 1

2 ( j − m) /∈ N for all
j = 1, . . . ,m; these restrictions ensure that [ν + 1

2 (m + 1)]κ �= 0 for all partitions κ .
Following Muirhead (1982, Chapter 7), the Bessel function (of the first kind) of order
ν is defined for Y ∈ Sm×m as

Aν(Y ) = 1

�m(ν + 1
2 (m + 1))

∞∑
k=0

(−1)k

k!
∑
|κ|=k

1

[ν + 1
2 (m + 1)]κ

Cκ(Y ). (11)

We also refer to Faraut and Korányi (1994), Gross and Richards (1987), James (1964),
Richards (2010) for further details of these Bessel functions. In particular, the series
(11) converges absolutely for all Y ∈ Sm×m (Gross and Richards 1987, Theorem 6.3).

For Re(ν) > 1
2 (m − 2), the Bessel function Aν also satisfies Herz’s generalization

of the classical Poisson integral (Herz 1955, Eq. (3.6′)): For any m × m matrix V ,

Aν(V
′V ) = 1

πm2/2�m(ν + 1
2 )

∫
Q′Q<Im

etr(2 iV ′Q) (det(Im − Q′Q))
ν− 1

2m dQ,

(12)
where i = √−1 and the integral is with respect to Lebesgue measure on the set
{Q ∈ R

m×m : QQ′ < Im}. This result leads to an inequality that will arise repeatedly
in the sequel.

Lemma 1 For Re(ν) > 1
2 (m − 2) and V ∈ R

m×m,

∣∣Aν(V
′V )

∣∣ ≤ 1

�m(ν + 1
2 (m + 1))

. (13)

For Re(ν) > −1,M symmetric, and Z > 0, the Bessel function of matrix argument
satisfies the Laplace transform identity,

∫
R>0

etr(−RZ)Aν(MR)(det R)ν dR = etr(−MZ−1) (det Z)
−ν− 1

2 (m+1)
. (14)

Indeed, this identity is Herz’s original definition of Aν(R) (Herz 1955, Eq. (2.5)).
Herz (1955, Eq. (5.8)) proved a remarkable generalization of a classical formula

called Weber’s second exponential integral: For Re(ν) > −1, m × m symmetric
matrices 	 and M , and Z > 0,
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Goodness-of-fit testing for the Wishart distributions 1323

∫
R>0

etr(−RZ)Aν(	R)Aν(MR)(det R)ν dR

= (det Z)
−ν− 1

2 (m+1) etr(−(	 + M)Z−1) Aν(−	Z−1MZ−1). (15)

Let a, b ∈ C where −b + 1
2 ( j + 1) /∈ N, j = 1, . . . ,m. The confluent hypergeo-

metric function of matrix argument is defined, for Y ∈ Sm×m , as

1F1(a; b; Y ) =
∞∑
k=0

1

k!
∑
|κ|=k

[a]κ
[b]κ Cκ(Y ).

We will make repeated use of Kummer’s formula (see Herz 1955, Eq. (2.8); Muirhead
1982, p. 265; Richards 2010, Section 35.8):

1F1(a; b; Y ) = etr(Y ) 1F1(b − a; b;−Y ). (16)

The Laplace transform relationship between the functions Aν and 1F1 is that for
Re(a) > 1

2 (m − 1), symmetric M , and Z > 0,

�m(ν + 1
2 (m + 1))

∫
R>0

Aν(MR)(det R)a− 1
2 (m+1) etr(−RZ) dR

= �m(a) (det Z)−a
1F1

(
a; ν + 1

2 (m + 1);−MZ−1); (17)

see Herz (1955, p. 489). This result can also be proved by expressing Aν(MR) as a
series of zonal polynomials and then applying (9) to integrate term by term.

For partitions κ and σ , we denote by
(
κ
σ

)
the generalized binomial coefficient (see

Muirhead 1982, pp. 267–269; Richards 2010, Eq. (35.6.3)). For γ > −1 and Y ∈
Sm×m , the (generalized) Laguerre polynomial L(γ )

κ (Y ), corresponding to κ , is defined
as

L(γ )
κ (Y ) = [

γ + 1
2 (m + 1)

]
κ
Cκ(Im)

|κ|∑
s=0

∑
|σ |=s

(
κ

σ

)
Cσ (−Y )

[γ + 1
2 (m + 1)]σCσ (Im)

. (18)

Setting Y = 0 in (18), we obtain

L(γ )
κ (0) = [γ + 1

2 (m + 1)]κ Cκ(Im).

The normalized (generalized) Laguerre polynomial corresponding to κ is defined by

L(γ )
κ (Y ) :=

(
|κ|! L(γ )

κ (0)
)−1/2

L(γ )
κ (Y ), (19)
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1324 E. Hadjicosta, D. Richards

Y ∈ Sm×m . By Muirhead (1982, p. 281), the polynomials L(γ )
κ are orthonormal with

respect to the Wishart distribution W (γ + 1
2 (m + 1), Im):

1

�m
(
γ + 1

2 (m + 1)
)
∫
Y>0

L(γ )
κ (Y )L(γ )

σ (Y ) (det Y )γ etr(−Y )dY =
{
1, κ = σ

0, κ �= σ
.

(20)
By Muirhead (1982, p. 282), for γ > −1 and Z > 0, there holds the Laplace

transform,

∫
Y>0

etr(−Y Z)(det Y )γ L(γ )
κ (Y ) dY

= [γ + 1
2 (m + 1)]κ �m(γ + 1

2 (m + 1))(det Z)
−γ− 1

2 (m+1) Cκ(Im − Z−1).

(21)

Further, by Muirhead (1982, p. 284), for γ > −1 and Z ∈ Sm×m ,

etr(−Z)L(γ )
κ (Z) =

∫
Y>0

etr(−Y )(det Y )γ Cκ(Y ) Aγ (ZY ) dY . (22)

Lemma 2 Let Z > 0 and γ > −1, then

|L(γ )
κ (Z)| ≤ etr(Z) [γ + 1

2 (m + 1)]κ Cκ(Im). (23)

Also, for v ∈ R, v > 0,

∫
Y>0

etr(−vY )(tr Y )(det Y )γ L(γ )
κ (Y ) dY

= [γ + 1
2 (m + 1)]κ �m(γ + 1

2 (m + 1)) Cκ(Im)

× (v − 1)|κ|−1v−[m(γ+(m+1)/2)+|κ|+1] (m(γ + 1
2 (m + 1))(v − 1) − |κ|) .

(24)

For ν ∈ C such that −ν + 1
2 ( j −m) /∈ N, for all j = 1, . . . ,m, and X ,Y ∈ Sm×m ,

the Bessel function (of the first kind) of order ν with two matrix arguments is defined
as the infinite series

Aν(X ,Y ) = 1

�m(ν + 1
2 (m + 1))

∞∑
k=0

(−1)k

k!
∑
|κ|=k

Cκ(X)Cκ(Y )

[ν + 1
2 (m + 1)]κCκ(Im)

.

It is straightforward from (5) and (11) to see that

Aν(X ,Y ) =
∫
O(m)

Aν(HXH ′Y )dH , (25)
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Goodness-of-fit testing for the Wishart distributions 1325

X > 0, Y ∈ Sm×m (Muirhead 1982, p. 260). Also, by applying (13), for X ,Y > 0,
we obtain

|Aν(X ,Y )| ≤ 1

�m(ν + 1
2 (m + 1))

. (26)

2.3 Lipschitz properties of the Bessel functions of matrix argument and a related
expectation

For X ,Y ∈ Sm×m , the inner product between X andY is defined by 〈X ,Y 〉 = tr (XY ),

and the Frobenius norm of X is defined by ‖X‖2F = 〈X , X〉 = tr (X2). The Frobenius
norm satisfies the triangle inequality, ‖X + Y‖F ≤ ‖X‖F + ‖Y‖F , and it is also
sub-multiplicative, ‖XY‖F ≤ ‖X‖F · ‖Y‖F (Horn and Johnson 1990, p. 291).

The following result, which provides a Lipschitz property of the Bessel function
Aν , will be needed in Sect. 6 to establish the consistency of the test statistic T2

n .

Lemma 3 For T > 0, Y1 > 0, and Y2 > 0,

∥∥∥∥Aν(T ,Y1) − Aν(T ,Y2)

∥∥∥∥
F

≤ 2m3/4 ‖T ‖1/2F ‖Y1 − Y2‖1/2F

/
�m(α). (27)

Proof From the integral representation (12) for Aν and the triangle inequality, we
obtain

|Aν(Y1) − Aν(Y2)|
≤ 1

πm2/2�m(α − 1
2m)

∫
Q′Q<Im

| etr(2 iY 1/2
1 Q) − etr(2 iY 1/2

2 Q)| dμ(Q),

where dμ(Q) := (det(Im − Q′Q))
α− 1

2 (2m+1)dQ. Setting θ j := 2 tr (Y 1/2
1 Q), j =

1, 2, and using the identity

|ei θ1 − ei θ2 |2 = 4 sin2
( 1
2 (θ1 − θ2)

)
,

we obtain

|Aν(Y1)−Aν(Y2)|≤ 2

πm2/2�m(α − 1
2m)

∫
Q′Q<Im

| sin (
tr (Y 1/2

1 − Y 1/2
2 )Q

)| dμ(Q).

By the well-known inequality, | sin t | ≤ |t |, t ∈ R; the sub-multiplicative property of
the Frobenius norm; and the Cauchy–Schwarz inequality, we have

| sin (
tr (Y 1/2

1 − Y 1/2
2 )Q

)| ≤ | tr (Y 1/2
1 − Y 1/2

2 )Q|
≤

∥∥∥∥Y 1/2
1 − Y 1/2

2

∥∥∥∥
F

· (tr (QQ′))1/2 ≤ m1/2
∥∥∥∥Y 1/2

1 − Y 1/2
2

∥∥∥∥
F
,
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1326 E. Hadjicosta, D. Richards

due to the fact that Q′Q < Im . Further, by Wihler (2009, Eq. (3.2)),

∥∥∥∥Y 1/2
1 − Y 1/2

2

∥∥∥∥
F

≤ m1/4 ‖Y1 − Y2‖1/2F .

Combining the above inequalities, we obtain

∣∣∣∣Aν(Y1) − Aν(Y2)

∣∣∣∣ ≤ 2m3/4

πm2/2�m(α − 1
2m)

‖Y1 − Y2‖1/2F

∫
Q′Q<Im

dμ(Q)

= 2m3/4

�m(α)
‖Y1 − Y2‖1/2F , (28)

since

∫
Q′Q<Im

dμ(Q) = πm2/2�m(α − 1
2m)

�m(α)
.

By (25), (28), and the sub-multiplicative property of the Frobenius norm, we obtain

∣∣∣∣Aν(T ,Y1) − Aν(T ,Y2)

∣∣∣∣ ≤
∫
O(m)

|Aν(HT H ′Y1) − Aν(HT H ′Y2)| dH

≤ 2m3/4

�m(α)

∫
O(m)

‖HT H ′Y1 − HT H ′Y2‖1/2F dH

≤ 2m3/4

�m(α)

∫
O(m)

‖HT H ′‖1/2F ‖Y1 − Y2‖1/2F dH .

Since ‖HT H ′‖F = ‖T ‖F for H ∈ O(m), and
∫
O(m)

dH = 1, we obtain the desired
result. 
�

We will also need some Lipschitz properties of the gradient of the Bessel functions
Aν . We use the usual notation for Kronecker’s delta, viz. δi j = 1 or 0 for i = j or
i �= j , respectively. For Z = (zi j ) ∈ Sm×m , the gradient operator is them×m matrix

∇Z =
(

1
2 (1 + δi j )

∂

∂zi j

)
i, j=1,...,m

.

Let F : Sm×m → C be a C1 function; that is, F is differentiable of order one
and its partial derivatives are continuous. The Taylor expansion of order one of F , at
Z0 ∈ Sm×m , is

F(Z) = F(Z0) + 〈Z − Z0,∇U F(U )〉, (29)

where U = t Z + (1 − t)Z0, for some t ∈ [0, 1].
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Goodness-of-fit testing for the Wishart distributions 1327

Lemma 4 For T , Z > 0,

∇Z Aν(T , Z) =
∫
O(m)

M1/2
[
∇Y Aν(Y )

]
M1/2 dH , (30)

where M := HT H ′ and Y := M1/2ZM1/2.

All of our interchanges of derivatives and integrals are justifiable via Burkill and
Burkill (2002, p. 289, Theorem 8.72), so we will perform such interchanges without
further citation.Also, various positive constants arise in the calculations, andwedenote
them generically by c, c j ,C j , j ≥ 1.

Recall from Bishop et al. (2017, p. 28) the multilinear operator norm |||·||| which,
in our context, is defined as follows: Let Ki j be the (i, j)th element of am×m matrix
K and (Vi j )kl be the (k, l)th element of Vi j := (∇Y ⊗ Y 1/2

)
i j , the (i, j)th block in

the tensor product ∇Y ⊗ Y 1/2, then

((∇Y ⊗ Y 1/2) · K )kl =
∑
i

∑
j

Ki j (Vi j )kl ,

and we define
∣∣∣
∣∣∣
∣∣∣∇Y ⊗ Y 1/2

∣∣∣
∣∣∣
∣∣∣ := sup

‖K‖F=1
‖(∇Y ⊗ Y 1/2) · K‖F .

Lemma 5 Let Q be an m × m matrix such that 0 < QQ′ < Im. Also, let Y be an
m × m positive definite matrix. Then, there exists a constant c > 0 such that

‖∇Y (tr QY 1/2)‖F ≤ c (λmin(Y ))−1/2. (31)

Lemma 6 For T , Z > 0, there exists a constant C > 0 such that

‖∇Z Aν(T , Z)‖F ≤ C ‖T ‖F (λmin(T ))−1/2(λmin(Z))−1/2. (32)

In the following result, we present a Lipschitz property of the Bessel functions of
matrix argument. As the proof uses techniques (from Billingsley 1979; Del Moral and
Niclas 2018; Kågström 1977) that are significantly different from those appearing gen-
erally in classical multivariate statistical analysis, we present the details in Sect. S.10.

Proposition 1 For T , Z1, Z2 > 0, there exist constants C1,C2 > 0 such that

∥∥∥∥∇Z1 Aν(T , Z1) − ∇Z2 Aν(T , Z2)

∥∥∥∥
F

≤ ‖Z1 − Z2‖1/2F ‖T ‖3/2F

λmin(Z
1/2
2 )

[
C1

λmin(T )λmin(Z
1/2
1 )

+ C2

λmin(T 1/2)

]
. (33)
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1328 E. Hadjicosta, D. Richards

Throughout the paper, if X is a random entity, we denote expectation with respect
to the distribution of X by EX or simply by E whenever the context is clear.

Let X be a Wishart-distributed random matrix, X ∼ Wm(α, Im), and define for
m × m positive definite matrices T the matrix-valued function

g(T ) = E

[
α−1X1/2 ∇Z Aν(T , Z) X1/2

∣∣∣∣
Z=α−1X

]
. (34)

Lemma 7 For T > 0,

tr g(T ) = − α−1

�m(α)
(tr T ) etr(−α−1T ). (35)

Proposition 2 For T > 0,

g(T ) = − α−1

m �m(α)
(tr T ) etr(−α−1T ) Im . (36)

Proof For Y > 0, define the function

φ(Y ) := ∇Z Aν(T , Z)

∣∣∣∣
Z=α−1Y

. (37)

By (34), g(T ) = E
[
α−1X1/2 φ(X) X1/2

]
, where X ∼ Wm(α, Im). Since the distri-

bution of X is orthogonally invariant, i.e., X
d= H ′XH for all H ∈ O(m), then

Hg(T )H ′ = HE
[
α−1(H ′XH)1/2 φ(H ′XH) (H ′XH)1/2

]
H ′

= E
[
α−1X1/2H φ(H ′XH) H ′X1/2

]
. (38)

By (37),

φ(H ′XH) = ∇Z Aν(T , Z)

∣∣∣∣
Z=α−1H ′XH

= ∇H ′ZH Aν(T , H ′ZH)

∣∣∣∣
H ′ZH=α−1H ′XH

.

By Maass (1971, p. 64), ∇H ′ZH = H ′∇Z H , and it follows that

φ(H ′XH) = H ′∇Z H Aν(T , H ′ZH)

∣∣∣∣
Z=α−1X

= H ′ ∇Z Aν(T , H ′ZH)

∣∣∣∣
Z=α−1X

H .
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Goodness-of-fit testing for the Wishart distributions 1329

However, Aν(T , H ′ZH) = Aν(T , Z) for all H ∈ O(m); therefore,

φ(H ′XH) = H ′ ∇Z Aν(T , Z)

∣∣∣∣
Z=α−1X

H = H ′φ(X)H .

Substituting this result into (38) we obtain, for all H ∈ O(m),

Hg(T )H ′ = E
[
α−1X1/2φ(X)X1/2

]
= g(T ).

Since Hg(T )H ′ = g(T ) for all H ∈ O(m) then, by Schur’s Lemma (Shilov 1977,
p. 315), g(T ) is a scalar matrix: g(T ) = γ1 Im for some scalar γ1. By taking traces
and applying (35), we obtain

mγ1 = tr γ1 Im = tr g(T ) = − α−1

�m(α)
(tr T ) etr(−α−1T );

therefore,

γ1 = − α−1

m �m(α)
(tr T ) etr(−α−1T ).

The proof is now complete. 
�

2.4 Hankel transforms of matrix argument

Let X > 0 be a random matrix with probability density function f (X). For Re(ν) >
1
2 (m − 2), we define the Hankel transform of order ν of X as the function

HX ,ν(T ) = EX
[
�m(ν + 1

2 (m + 1)) Aν(T X)
]
, (39)

T > 0. The Hankel transform satisfies the following properties:

Lemma 8 For Re(ν) > 1
2 (m − 2), |HX ,ν(T )| ≤ 1 for all T > 0, and HX ,ν(T ) is a

continuous function of T .

Example 1 Let X ∼ Wm(α,�), α > 1
2 (m − 1), � > 0. For T > 0, it follows from

definition (39) of the Hankel transform that

HX ,ν(T )= �m(ν+ 1
2 (m+1))

�m(α)
(det�)α

∫
X>0

Aν(T X)(det X)α− 1
2 (m+1) etr(−�X) dX .

Applying (17) to calculate this integral, we obtain

HX ,ν(T ) = 1F1
(
α; ν + 1

2 (m + 1);−T�−1). (40)
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1330 E. Hadjicosta, D. Richards

For the case in which ν = α − 1
2 (m + 1), (40) reduces to

H
X ,α− 1

2 (m+1)
(T ) = 1F1

(
α;α;−T�−1) = etr(−T�−1).

Example 2 Let Z ∼ Wm(α, Im) and X > 0 be an m × m random matrix that is
independent of Z . For T > 0,

EZ HX ,ν(T
1/2ZT 1/2) = EX HZ ,ν(T

1/2XT 1/2)

= EX 1F1
(
α; ν + 1

2 (m + 1);−T X
)
. (41)

To prove this result, we again apply (39) and the independence of X and Z , obtaining

EZ HX ,ν(T
1/2ZT 1/2) = EZ ,X�m(ν + 1

2 (m + 1))Aν(T
1/2ZT 1/2X)

= EX EZ �m(ν + 1
2 (m + 1)) Aν(T

1/2ZT 1/2X).

Since Aν(T 1/2ZT 1/2X) = Aν(T 1/2XT 1/2Z), we have

EZ HX ,ν(T
1/2ZT 1/2) = EX HZ ,ν(T

1/2XT 1/2). (42)

Applying Example 1, we obtain

EXHZ ,ν(T
1/2XT 1/2) = EX 1F1

(
α; ν + 1

2 (m + 1);−T X
)
. (43)

Combining (42) and (43), we obtain (41).
In particular, if ν = α − 1

2 (m + 1) then, by Kummer’s formula (16), we obtain

EZHX ,α− 1
2 (m+1)

(T 1/2ZT 1/2) = EXHZ ,α− 1
2 (m+1)

(T 1/2XT 1/2)

= EX etr(−T X),

the Laplace transform of X .

Throughout the remainder of the paper, if X and Y are random entities we write

X
d= Y whenever X and Y have the same distribution. If {Xn, n ≥ 1} is a sequence of

random entities, we write Xn
d→X whenever Xn converges in distribution to X .

Theorem 1 (Uniqueness of the Hankel transform). Let X and Y be m × m positive
definite random matrices with Hankel transforms HX ,ν and HY ,ν , respectively. If

HX ,ν = HY ,ν , then X
d= Y .

Proof Suppose thatHX ,ν=HY ,ν . Let �X and �Y be the Laplace transforms of X and
Y , respectively, and let Z ∼ Wm(ν + 1

2 (m + 1), Im), independently of X and Y .
Applying Example 2 twice, we obtain for all T > 0,
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Goodness-of-fit testing for the Wishart distributions 1331

�X (T ) = EX etr(−T X) = EZ HX ,ν(T
1/2ZT 1/2)

= EZ HY ,ν(T
1/2ZT 1/2) = EY etr(−TY ) = �Y (T ).

By the uniqueness of multivariate Laplace transforms (Farrell 1985, p. 16), we obtain

X
d= Y . 
�
We denote by L2

ν the space of functions φ : Pm×m+ → C such that

∫
Pm×m+

|φ(X)|2 (det X)−ν dX < ∞.

The following inversion theorem is obtained by applying the Hankel inversion
theory of Herz (1955, Section 3). We refer to Hadjicosta (2019) for full details.

Theorem 2 (Inversion of the Hankel transform). Let X > 0 be a random matrix with
Hankel transformHX ,ν , and with a probability density function f ∈ L2

ν . Then,

f (X) = 1

�m(ν + 1
2 (m + 1))

∫
Pm×m+

Aν(T X) (det T X)ν HX ,ν(T ) dT .

Theorem 3 (Hankel Continuity). Let {Xn, n ∈ N} be a sequence of m × m positive
definite random matrices with corresponding Hankel transforms {HXn , n ∈ N}. If
there exists an m ×m positive semi-definite random matrix X with Hankel transform

HX such that Xn
d→X, then for each T > 0,

lim
n→∞HXn (T ) = HX (T ). (44)

Conversely, suppose there exists a function H : Pm×m+ → R such that H(T ) → 1
as T → 0, H is continuous at 0, and (44) holds. Then H is the Hankel transform of

an m × m positive semi-definite random matrix X, and Xn
d→X.

The next result constitutes a characterization of the Wishart distributions using the
Hankel transformHX ,ν , where Re(ν) > 1

2 (m−2). The result enables the extension, to
theWishart case, of some results ofBaringhaus andTaherizadeh (2013) on a supremum
norm test statistic.

Theorem 4 Let X be an m ×m positive definite random matrix with an orthogonally
invariant distribution and Hankel transform HX ,ν . If there exist ε > 0 and α >
1
2 (m − 1) such that for all T satisfying 0 < T ≤ ε Im,

HX ,ν(T ) = 1F1(α; ν + 1
2 (m + 1);−T ),

then X ∼ Wm(α, Im).

We refer to Hadjicosta (2019), who gave three proofs of this result. We provide in
the supplementary Sect. S.10 the briefest of those proofs, which uses the principle of
analytic continuation.
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1332 E. Hadjicosta, D. Richards

2.5 Orthogonally invariant Hankel transforms of matrix argument

Definition 1 Let X be anm×m positive definite randommatrix with p.d.f. f (X). For
Re(ν) > 1

2 (m−2) and T > 0, we define the orthogonally invariant Hankel transform
of order ν of X as

H̃X ,ν(T ) = EX
[
�m(ν + 1

2 (m + 1))Aν(T , X)
]
. (45)

Remark 1 By (25) and definition (39) of HX ,ν , we have

H̃X ,ν(T ) =
∫
O(m)

HX ,ν(HT H ′) dH . (46)

Further, since
∫
O(m)

dH = 1, then H̃X ,ν also satisfies the properties in Lemma 8.

Let a, b ∈ C, where −b + 1
2 ( j − 1) /∈ N, for all j = 1, . . . ,m. The confluent

hypergeometric function of two matrix arguments is defined, for X ,Y ∈ Sm×m , as the
infinite series,

1F1(a; b; X ,Y ) =
∞∑
k=0

1

k!
∑
|κ|=k

[a]κ
[b]κ

Cκ(X)Cκ(Y )

Cκ(Im)
.

It is clear from the definition that 1F1(a; b; X , Im) = 1F1(a; b; X). Similar to (25), it
follows from (5) that for X ,Y ∈ Sm×m ,

1F1(a; b; X ,Y ) =
∫
O(m)

1F1(a; b; HXH ′Y )dH . (47)

Example 3 Let X ∼ Wm(α,�)where α > 1
2 (m−1) and� > 0. For T > 0, it follows

from Example 1, (46), and (47) that

H̃X ,ν(T ) =
∫
O(m)

1F1(α; ν + 1
2 (m + 1);−HT H ′�−1) dH

= 1F1
(
α; ν + 1

2 (m + 1);−T , �−1).
Theorem 5 (Uniqueness of orthogonally invariant Hankel transforms). Let X and Y
be m ×m positive definite random matrices with orthogonally invariant distributions
and orthogonally invariant Hankel transforms H̃X ,ν and H̃Y ,ν , respectively. Then

H̃X ,ν = H̃Y ,ν if and only if X
d= Y .

3 The test statistic and its limiting null distribution

Let X1, . . . , Xn be independent, identically distributed (i.i.d.),m×m positive definite
random matrices, each with probability density function f (X) and positive definite
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mean μ = E(X1). We assume also that the density function of X1 is of the form

f (X1) = f0(μ
−1/2X1μ

−1/2), (48)

where f0 is orthogonally invariant.

Lemma 9 Under the assumption (48), the distribution of μ−1/2X1μ
−1/2 is orthogo-

nally invariant.

Proof Let Ỹ = μ−1/2X1μ
−1/2; then, X1 = μ1/2Ỹμ1/2 and the Jacobian of the

transformation from X1 to Ỹ is (detμ)(m+1)/2 (Muirhead 1982, p. 58). Therefore,
the p.d.f. of Ỹ is

g(Ỹ ) = (detμ)(m+1)/2 f (μ1/2Ỹμ1/2) = (detμ)(m+1)/2 f0(Ỹ ).

Since f0 is orthogonally invariant, then it follows that g is orthogonally invariant. 
�
We denote by P the distribution of X1. On the basis of the random sample

X1, . . . , Xn , we wish to test the null hypothesis, H0 : P ∈ {Wm(α,�),� > 0},
against the alternative, H1 : P /∈ {Wm(α,�),� > 0}, where α is known.

Since � is unspecified by H0, the data X1, . . . , Xn cannot be used to con-
struct a test statistic. Let X̄n = n−1 ∑n

j=1 X j be the sample mean, and define

Y j = X̄−1/2
n X j X̄

−1/2
n , j = 1, . . . , n. Under H0, the distribution of Y1, . . . ,Yn does

not depend on�, so a test statistic can be based on them. Let P0 denote the probability
measure corresponding to the Wm(α, Im) distribution. For Re(ν) > 1

2 (m − 2), define
the empirical orthogonally invariant Hankel transform of order ν of Y1, . . . ,Yn as

H̃n,ν(T ) = �m(ν + 1
2 (m + 1))

1

n

n∑
j=1

Aν(T ,Y j ), (49)

T > 0. Further, define the test statistic

T2
n,ν = n

∫
T>0

[H̃n,ν(T ) − 1F1(α; ν + 1
2 (m + 1);−T /α)

]2 dP0(T ). (50)

Suppose that H0 is valid; then, E(X1) = α�−1 and, for large n, we can expect
that Y j = X̄−1/2

n X j X̄
−1/2
n � α−1�1/2X j�

1/2, almost surely. By the continuous
mapping theorem, the sequence Aν(T ,Y j ) should approximate the i.i.d. sequence
Aν(T , α−1�1/2X j�

1/2), j = 1, . . . , n, for each T > 0 and for sufficiently large n.
Applying to (49), the strong law of large numbers, we can expect that, for large n,
H̃n,ν(T ) � H̃α−1�1/2X1�1/2,ν(T ), almost surely.

By Example 3, we deduce that

H̃α−1�1/2X1�1/2,ν(T ) = 1F1(α; ν + 1
2 (m + 1);−α−1T , Im)

= 1F1(α; ν + 1
2 (m + 1);−α−1T ),
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1334 E. Hadjicosta, D. Richards

for T > 0. Therefore, by Lemma 9 and Theorem 5, small values of T2
n,ν provide

strong evidence in support of H0, so we will reject H0 for large values of T2
n,ν .

For the remainder of the paper, we set

ν = α − 1

2
(m + 1). (51)

Since ν > 1
2 (m − 2) then α > 1

2 (2m − 1). We also denote T2
n,ν and H̃n,ν by T2

n and
H̃n , respectively. By Kummer’s formula (16), statistic (50) becomes

T2
n = n

∫
T>0

[
H̃n(T ) − etr(−T /α)

]2
dP0(T ). (52)

This integral represents T2
n as a weighted integral of the squared difference between

the empirical orthogonally invariant Hankel transform H̃n and its almost sure limit
under the null hypothesis.

We now evaluate the statistic T2
n for a given random sample.

Proposition 3 The test statistic (52) is a V -statistic of order 2. Specifically,

T2
n = 1

n

n∑
i=1

n∑
j=1

h(Yi ,Y j )

where, for X ,Y > 0,

h(X , Y ) = �m(α) etr(−X − Y ) Aν(−X , Y )

−
(

α

α + 1

)mα[
etr

(
− α

α + 1
X

)
+ etr

(
− α

α + 1
Y

)]
+

(
2

α
+ 1

)−mα

.

Proof By expanding the integrand in (52), we find three integrals to be computed.
First,

∫
T>0

H̃2
n(T ) dP0(T ) = 1

n2

∫
T>0

( n∑
i=1

�m(α)Aν(T , Yi )

)2
dP0(T )

= �m(α)

n2

n∑
i=1

n∑
j=1

∫
T>0

Aν(T , Yi ) Aν(T , Y j ) (det T )ν etr(−T )dT .

By (25) and Fubini’s theorem,

∫
T>0

Aν(T ,Yi )Aν(T ,Y j )(det T )ν etr(−T ) dT

=
∫
O(m)

∫
O(m)

∫
T>0

Aν(HT H ′Yi )Aν(KT K ′Y j )(det T )ν etr(−T ) dT dH dK .

(53)
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Writing Aν(HT H ′Y j ) = Aν(H ′Y j HT ), j = 1, . . . , n, and applying Herz’s general-
ization (15) of Weber’s second exponential integral, we find that (53) equals

∫
O(m)

∫
O(m)

etr(−H ′Yi H − K ′Y j K )Aν(−H ′Yi HK ′Y j K )dH dK

= etr(−Yi − Y j )

∫
O(m)

∫
O(m)

Aν(−H ′Yi HK ′Y j K )dH dK . (54)

On the right-hand side of (54), we replace H by HK and apply the group invariance
of the Haar measure and its normalization; then, we find that (54) reduces to

∫
O(m)

Aν(−H ′Yi HY j )dH ≡ Aν(−Yi ,Y j ).

Therefore,

∫
T>0

H̃2
n(T ) dP0(T ) = �m(α)

n2

n∑
i=1

n∑
j=1

etr(−Yi − Y j )Aν(−Yi ,Y j ).

The second integral to be calculated is∫
T>0

H̃n(T ) etr(−T /α) dP0(T )

= �m(α)

n

n∑
i=1

∫
T>0

Aν(T ,Yi ) (det T )ν etr(−(Im + α−1 Im)T )dT . (55)

Similar to the previous calculation, we use (25) to express Aν(T ,Yi ) as an average over
O(m) and apply Fubini’s theorem to reverse the order of integration. The resulting
integral is a special case of (14), and we find that (55) equals

�m(α)

n

(
α

α + 1

)mα n∑
i=1

etr

(
− α

α + 1
Yi

)

≡ �m(α)

2n2

(
α

α + 1

)mα n∑
i=1

n∑
j=1

[
etr

(
− α

α + 1
Yi

)
+ etr

(
− α

α + 1
Y j

)]
.

The third and last integral, whichwe evaluate using themultivariate gamma integral
(10), is∫

T>0
etr(−2T /α) dP0(T ) = (det(2α−1 Im + Im))−α

= (2α−1 + 1)−mα ≡ 1

n2

n∑
i=1

n∑
j=1

(
2

α
+ 1

)−mα

.

Collecting together the three terms, we obtain the stated result. 
�
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We denote by L2 = L2(P0) the space of (equivalence classes of) orthogonally
invariant Borel measurable functions f : Pm×m+ → C that are square-integrable with
respect to the probability measure P0, i.e., for which

∫
X>0 | f (X)|2 dP0(X) < ∞.

The space L2 is a separable Hilbert space when equipped with the inner product

〈 f , g〉L2 =
∫
X>0

f (X) g(X) dP0(X),

and the norm || f ||L2 = √〈 f , f 〉L2 , for f , g ∈ L2. Moreover, the set of normalized

Laguerre polynomials {L(ν)
κ }, with κ ranging over all partitions, defined in (19), forms

an orthonormal basis for the space L2; see Herz (1955, p. 502) and Constantine (1966,
Section 3).

We now define the stochastic process

Zn(T ) = 1√
n

n∑
j=1

[
�m(α)Aν(T ,Y j ) − etr(−T /α)

]
, (56)

T > 0. We view the random field Zn := {Zn(T ), T > 0} as a random element
in L2 since, as we now show, its sample paths are in L2. The following result is a
consequence of (49), (52), and (56).

Lemma 10 The test statistic (52) can be written as

T2
n =

∫
T>0

(Zn(T )
)2 dP0(T ) = ||Zn||2L2 .

In particular, ||Zn||2L2 < ∞.

Remark 2 By Gupta and Richards (1987, Example 1.4) (Y1, . . . ,Yn) has a matrix
Liouville distribution, of the second kind, that does not depend on �. Therefore,
without loss of generality, we will set� = Im in deriving the limiting null distribution
of T2

n .

For j = 1, . . . , n, Y j = X̄−1/2
n X j X̄

−1/2
n and Z j = X1/2

j X̄−1
n X1/2

j have the same
spectrum; this is proved by showing that Y j and Z j have the same characteristic
polynomial. Consequently,

Aν(T ,Y j ) = Aν(T , Z j ), (57)

j = 1, . . . , n, so we can replace Y j by Z j in definition (49) of the test statistic.

We now state the main result of this section.

Theorem 6 Let m ≥ 2, α > max{ 12 (2m − 1), 1
2 (m + 3)}, and X1, . . . , Xn be i.i.d.

P0-distributed random matrices. Also, let Zn := (Zn(T ), T > 0) be the random field

123



Goodness-of-fit testing for the Wishart distributions 1337

defined in (56). Then, there exists a centered Gaussian random fieldZ := (Z(T ), T >

0), with sample paths in L2 and with covariance function,

K (S, T ) = etr(−α−1(S+T ))

[
�m(α)Aν(−α−2S, T )− 1

α3m
(tr S)(tr T )−1

]
, (58)

S, T > 0, such that Zn
d→Z in L2 as n → ∞. Moreover,

T2
n

d→
∫
T>0

Z2(T ) dP0(T ).

The remainder of this section is devoted to proving Theorem 6, so readers who wish
to postpone reading the detailed derivation may continue directly to Sect. 4.

In the sequel, we will use for various symmetric matrices V the shorthand notation

∇Aν(T , V ) ≡ ∇Z Aν(T , Z)

∣∣∣∣
Z=V

.

Proof of Theorem 6 By (29), the Taylor expansion of the Bessel function Aν(T , Z) at
(T , Z0) is

Aν(T , Z) = Aν(T , Z0) + 〈Z − Z0,∇Aν(T ,U )〉, (59)

whereU = t Z+(1−t)Z0, t ∈ [0, 1]. Setting Z = Z j and Z0 = α−1X j , j = 1, . . . , n,
in (59), we obtain the Taylor expansion of order one of Aν(T , Z j ) at (T , α−1X j ):

Aν(T , Z j ) = Aν(T , α−1X j ) + 〈Z j − α−1X j ,∇Aν(T ,Uj )〉, (60)

whereUj = t Z j + (1− t)α−1X j , t ∈ [0, 1]. Define Mn = X̄−1/2
n (α Im − X̄n)X̄

−1/2
n ;

then (60) becomes

Aν(T , Z j ) = Aν(T , α−1X j ) + 〈α−1X1/2
j Mn X

1/2
j ,∇Aν(T ,Uj )〉.

Adding and subtracting 〈α−1X1/2
j Mn X

1/2
j ,∇Aν(T , α−1X j )〉 on the right-hand side,

we obtain

Aν(T , Z j ) = Aν(T , α−1X j ) + 〈α−1X1/2
j Mn X

1/2
j ,∇Aν(T ,Uj )〉

+ 〈
α−1X1/2

j Mn X
1/2
j ,∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )

〉
= Aν(T , α−1X j ) + 〈Mn, α

−1X1/2
j ∇Aν(T , α−1X j ) X

1/2
j 〉

+ 〈
Mn, α

−1X1/2
j

[∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )
]
X1/2

j

〉
, (61)

where the second equality is obtained by permuting terms cyclically in the inner
product. For T > 0 and X j > 0, j = 1, . . . , n, define the function

g(T , X j ) := α−1 X1/2
j ∇Aν(T , α−1X j )X

1/2
j .
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We remark that as X1, . . . , Xn are i.i.d. then EX j g(T , X j ) does not depend on j ;
hence,

g(T ) := EX j g(T , X j ) = E(α−1 X1/2
j ∇Aν(T , α−1X j )X

1/2
j )

is a function evaluated earlier; by (36),

g(T ) = − α−1

m �m(α)
(tr T ) etr(−α−1T ) Im .

Define the random fields Zn,1(T ), Zn,2(T ) and Zn,3(T ), T > 0, by

Zn,1(T ) = �m(α)√
n

n∑
j=1

[
Aν(T , α−1X j ) + 〈Mn, g(T , X j )〉 − etr(−α−1T )

�m(α)

]
,

Zn,2(T ) = �m(α)√
n

n∑
j=1

[
Aν(T , α−1X j ) + 〈Mn, g(T )〉 − etr(−α−1T )

�m(α)

]
,

Zn,3(T ) = �m(α)√
n

n∑
j=1

[
Aν(T , α−1X j ) + 〈α−1(α Im − X j ), g(T )〉− etr(−α−1T )

�m(α)

]
,

The random fields Zn,k , k = 1, 2, 3 arise as follows. To define Zn,1(T ), we use the
first two terms in (61). To define Zn,2(T ), we use the same expression from Zn,1(T )

except that the term g(T , X j ) is replaced by its expected value g(T ), which is given
by (36). To define Zn,3(T ), we replace the term Mn inZn,2(T ) by a constant multiple
of α Im − X j , the constant being obtained by applying the law of large numbers to

X̄n
−1/2

. We will show that

Zn,3
d→Z in L2, (62)

‖Zn − Zn,1‖L2
p→0, (63)

‖Zn,1 − Zn,2‖L2
p→0, (64)

‖Zn,2 − Zn,3‖L2
p→0. (65)

By writing Zn as

Zn = Zn − Zn,1 + Zn,1 − Zn,2 + Zn,2 − Zn,3 + Zn,3,

it will follow that Zn
d→Z in L2 (Billingsley 1968, p. 25).

To establish (62), define for T > 0,

Zn,3, j (T ) := �m(α)Aν(T , α−1X j )+�m(α)〈α−1(α Im − X j ), g(T )〉−etr(−α−1T ),

(66)
j = 1, . . . , n. Since X j ∼ Wm(α, Im) then E(X j − α Im) = 0, and therefore, since
the trace and the expectation are linear operators, we deduce that
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E
[
〈α−1(α Im − X j ), g(T )〉

]
= tr

[
α−1E(α Im − X j ) · g(T )

]
= 0.

Also, by Example 3 and (16), we have E
[
�m(α)Aν(T , α−1X j )

]
= etr(−α−1T );

so E(Zn,3, j (T )) = 0 for all T > 0 and j = 1, . . . , n, and it is also clear that
Zn,3,1, . . . ,Zn,3,n are independent and identically distributed random elements in L2.

We now show that E(‖Zn,3, j‖2L2) < ∞ for j = 1, . . . , n. We have

E(‖Zn,3, j‖2L2) = E
∫
T>0

Z2
n,3, j (T )dP0(T )

= E
∫
T>0

[
�m(α)Aν(T , α−1X j )

+ �m(α)〈α−1(α Im−X j ), g(T )〉−etr(−α−1T )
]2

dP0(T ).

By the Cauchy–Schwarz inequality, (a + b + c)2 ≤ 3(a2 + b2 + c2) for a, b, c ∈ R;
so to prove that E(‖Zn,3, j‖2L2) < ∞, it suffices to prove that

E
∫
T>0

[
�m(α)Aν(T , α−1X j )

]2 dP0(T ) < ∞, (67)

E
∫
T>0

[
�m(α)〈α−1(α Im − X j ), g(T )〉]2 dP0(T ) < ∞, (68)

and

E
∫
T>0

etr(−2α−1T )dP0(T ) < ∞. (69)

To establish (67), we apply (26) to obtain

E
∫
T>0

[
�m(α)Aν(T , α−1X j )

]2
dP0(T ) ≤ E

∫
T>0

1 · dP0(T ) = 1.

To prove (68), write

〈(α Im − X j ), g(T )〉2 = (tr [(α Im − X j ) · g(T )])2

=
(

α−1

m�m(α)

)2

(tr (α Im − X j ))
2 (tr T )2 etr(−2α−1T );

therefore, the integral in (68) is a constant multiple of

E(tr (α Im − X j ))
2 ·

∫
T>0

(tr T )2 etr(−2α−1T ) dP0(T ).
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1340 E. Hadjicosta, D. Richards

Since (tr (α Im − X j ))
2 is a polynomial in X j , its expectation is finite because the

moment-generating function of X exists. As for

∫
T>0

(tr T )2 etr(−2α−1T ) dP0(T ),

again this integral is finite because (tr T )2 is a polynomial and etr(−2α−1T ) dP0(T ),
after normalization, is a Wishart measure. For the same reason, (69) is valid.

In summary, for T > 0 and j = 1, . . . , n, Zn,3,1, . . . ,Zn,3,n are i.i.d. random
elements in L2 with E(Zn,3, j (T )) = 0 and E(‖Zn,3, j‖2L2) < ∞. Therefore, by the

central limit theorem in L2,

1√
n

n∑
j=1

Zn,3, j
d→Z,

where Z := (Z(T ), T > 0) is a centered Gaussian random element in L2. Moreover,
Z has the same covariance operator asZn,3,1. It is well known that the covariance oper-
ator of the random element Zn,3,1 is uniquely determined by the covariance function
of the random field Zn,3,1 (Gı̄khman and Skorokhod 1980, pp. 218–219).

We now show that the function K (S, T ) in (58) is the covariance function ofZn,3,1.
Noting that E[Zn,3,1(T )] = 0 for all T > 0, we obtain

K (S, T ) = Cov[Zn,3,1(S),Zn,3,1(T )]
= Cov[Zn,3,1(S) + etr(−α−1S),Zn,3,1(T ) + etr(−α−1T )]
= E[(Zn,3,1(S) + etr(−α−1S)) · (Zn,3,1(T ) + etr(−α−1T ))]

− etr(−α−1(S + T )).

By (66),

E[(Zn,3,1(S) + etr(−α−1S)) · (Zn,3,1(T ) + etr(−α−1T ))]
= E

[
�m(α)Aν(S, α−1X1) + �m(α)〈α−1(α Im − X1), g(S)〉

]

× E

[
�m(α)Aν(T , α−1X1) + �m(α)〈α−1(α Im − X1), g(T )〉

]
,

(70)

so the calculation of K (S, T ) reduces to evaluating the four terms obtained by expand-
ing the product on the right-hand side of (70).

The first term in the product in (70) is

E[�m(α)]2Aν(S, α−1X1) Aν(T , α−1X1)

= �m(α)

∫
X>0

Aν(S, α−1X) Aν(T , α−1X)(det X)ν etr(−X) dX . (71)
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By (15), (25), and Fubini’s theorem, we find that this term equals

�m(α)

∫
O(m)

∫
O(m)

∫
X>0

Aν(α
−1HSH ′X)Aν(α

−1KT K ′X)

×(det X)ν etr(−X) dX dH dK

= �m(α)

∫
O(m)

∫
O(m)

Aν(−α−2HSH ′KT K ′) etr(−α−1(HSH ′+KT K ′)) dH dK .

Since etr(−α−1(HSH ′ + KT K ′)) = etr(−α−1(S + T )), and

∫
O(m)

Aν(−α−2HSH ′KT K ′) dH = Aν(−α−2S, KT K ′) = Aν(−α−2S, T ),

we conclude that the first term equals

�m(α) etr(−α−1(S + T ))Aν(−α−2S, T ). (72)

The second term in the product in (70) is

α−1[�m(α)]2E
[
Aν(S, α−1X1) · 〈(α Im − X1), g(T )〉

]

= �m(α)

α2m
E

[
Aν(S, α−1X1) · 〈(X1 − α Im), (tr T ) etr(−α−1T )Im〉

]

= 1

α2m
�m(α)(tr T ) etr(−α−1T )E

[(
(tr X1) − 1

)
· Aν(S, α−1X1)

]
. (73)

We have seen earlier that

�m(α) E Aν(S, α−1X1) = etr(−α−1S). (74)

Also, by (25),

E(tr X1) Aν(S, α−1X1) =
∫
O(m)

tr E

(
X1 · Aν(α

−1HSH ′X1)

)
dH . (75)

ByMuirhead (1982, p. 442), E
(
X1 · Aν(α

−1HSH ′X1)
)
is a multiple of the expected

value of a non-central Wishart-distributed random matrix, with distribution denoted
by Wm(α, Im,�), where, in our setting, the matrix of non-centrality parameters is
� = −α−1HSH ′. Hence,

E
(
(tr X1) Aν(α

−1HSH ′X1)
)

= tr E
(
X1 Aν(α

−1HSH ′X1)
)

= 1

�m(α)
tr (α Im − α−1�) etr(−α−1�)

= 1

�m(α)
(αm − α−1 tr S) etr(−α−1S).
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Substituting this result into (75), we obtain

E
(
(tr X1) Aν(S, α−1X1)

)
= 1

�m(α)
etr(−α−1S) [αm − α−1 tr S]. (76)

Substituting (74) and (76) into (73), we find that the second term equals

−(α3m)−1(tr S)(tr T ) etr(−α−1(S + T )).

The third term in the product in (70) is α−1[�m(α)]2 E[
Aν(T , α−1X1) · 〈(α Im −

X1), g(S)〉], which is the same as the second term but with S and T interchanged.
The fourth term in the product in (70) is

[α−1�m(α)]2 E
[
〈(α Im − X1), g(S)〉 · 〈(α Im − X1), g(T )〉

]

= [α−1�m(α)]2 E

[
tr ((α Im − X1) · g(S)) · tr ((α Im − X1) · g(T ))

]
. (77)

Using the explicit formula for g(T ) from (36), we find that the expectation on the
right-hand side of (77) equals

1

[�m(α)]2
[

(tr S) etr(−α−1S)(tr T ) etr(−α−1T )

− 2(mα)−1 (tr S) etr(−α−1S)(tr T ) etr(−α−1T ) E(tr X1)

+ (mα)−2 (tr S) etr(−α−1S)(tr T ) etr(−α−1T ) E(tr X1)
2
]
. (78)

Applying (3), (4), and (9), we obtain E(tr X1) = αm and E[(tr X1)
2] =

αm(αm + 1). Substituting these results into (78), we find that the fourth term equals
(α3m)−1(tr S)(tr T ) etr(−α−1(S + T )). Combining all four terms, we obtain (58).

To establish (63),we showfirst that tr [(√n Mn)
2] ≡ ‖X̄−1/2

n
√
n(α Im−X̄n)X̄

−1/2
n ‖2F

converges in distribution to a random variable with finite variance. By the multivari-
ate central limit theorem,

√
n vech(α Im − X̄n) converges in distribution to a normal

random vector. Also, by the law of large numbers, X̄−1
n

p→α−1 Im . Therefore, by Slut-
sky’s theorem,

√
n vech(Mn) converges in distribution to a normal random vector,

so it follows from the continuous mapping theorem that tr
[
(
√
n Mn)

2
]
converges in

distribution to a random variable with finite variance.
By the Taylor expansion (61),

Zn − Zn,1 = �m(α)√
n

n∑
j=1

〈
Mn, α

−1X1/2
j

(
∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )

)
X1/2
j

〉

= α−1�m(α)

n

n∑
j=1

〈√
nMn, X

1/2
j

(
∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )

)
X1/2
j

〉
.
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Define

Vn := 1

n2

∫
T>0

tr

[ n∑
j=1

X1/2
j

(
∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )

)
X1/2

j

]2
dP0(T ).

By the Cauchy–Schwarz inequality,

‖Zn − Zn,1‖2L2 ≤ [α−1�m(α)]2 tr
[
(
√
n Mn)

2
]

· Vn; (79)

so we will establish (63) by proving that Vn
p→0.

By the triangle inequality and the sub-multiplicative property of the Frobenius
norm, we have

tr

[ n∑
j=1

X1/2
j

(
∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )

)
X1/2

j

]2

=
∥∥∥∥

n∑
j=1

X1/2
j

(
∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )

)
X1/2

j

∥∥∥∥
2

F

≤
( n∑

j=1

‖X j‖F‖∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )‖F
)2

.

Applying (33), we obtain

‖∇Aν(T ,Uj ) − ∇Aν(T , α−1X j )‖F
≤ ‖T ‖3/2F ‖Uj − α−1X j‖1/2F

λmin(X
1/2
j )

[
C1

λmin(T ) λmin(U
1/2
j )

+ C2

λmin(T 1/2)

]
.

Also, since Uj = X1/2
j [α−1 Im + t(X̄−1

n − α−1 Im)]X1/2
j , t ∈ [0, 1], then

‖Uj − α−1X j‖1/2F = ‖X1/2
j [t(X̄−1

n − α−1 Im)]X1/2
j ‖1/2F

= ‖t X j (X̄
−1
n − α−1 Im)‖1/2F ≤ ‖X j‖1/2F ‖X̄−1

n − α−1 Im‖1/2F .

Define

Vn,1 := C2
1‖X̄−1

n − α−1 Im‖F
(
1

n

n∑
j=1

‖X j‖3/2F

λmin(X
1/2
j )λmin(U

1/2
j )

)2

·
∫
T>0

‖T ‖3F
[λmin(T )]2 dP0(T ),
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and

Vn,2 := C2
2‖X̄−1

n − α−1 Im‖F
(
1

n

n∑
j=1

‖X j‖3/2F

λmin(X
1/2
j )

)2

·
∫
T>0

‖T ‖3F
λmin(T )

dP0(T ).

By the Cauchy–Schwarz inequality, Vn ≤ Vn,1 + Vn,2, so it suffices to show that

Vn,1, Vn,2
p→0.

We first establish that Vn,1
p→0. By the Cauchy–Schwarz inequality,

(
1

n

n∑
j=1

‖X j‖3/2F

λmin(X
1/2
j )λmin(U

1/2
j )

)2

≤ 1

n

n∑
j=1

‖X j‖3F
λmin(X j )λmin(Uj )

= 1

n

n∑
j=1

(tr (X2
j ))

3/2

λmin(X j )λmin(Uj )
.

ByWeyl’s inequality for the smallest eigenvalue of the sumof two symmetricmatrices,

λmin(Uj ) ≥ tλmin(X j X̄
−1
n ) + (1 − t)α−1λmin(X j )

≥ tλmin(X j ) λmin(X̄
−1
n ) + (1 − t)α−1λmin(X j )

≥ λmin(X j ) min{λmin(X̄
−1
n ), α−1};

therefore,

1

n

n∑
j=1

(tr (X2
j ))

3/2

λmin(X j )λmin(Uj )
≤ 1

min{λmin(X̄
−1
n ), α−1}

1

n

n∑
j=1

(tr (X2
j ))

3/2

[λmin(X j )]2 .

By the law of large numbers and the continuous mapping theorem, we have

‖X̄−1
n − α−1 Im‖F

min{λmin(X̄
−1
n ), α−1}

p→0.

Again by the law of large numbers,

1

n

n∑
j=1

(tr (X2
j ))

3/2

[λmin(X j )]2
p→EP0

(
(tr (X2))3/2

[λmin(X)]2
)

.

Therefore, to complete the proof that Vn,1
p→0, we need to establish that

∫
T>0

‖T ‖3F
[λmin(T )]2 dP0(T ) < ∞ and EP0

(
(tr (X2))3/2

[λmin(X)]2
)

< ∞.
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Since ‖T ‖3F = (tr T 2)3/2, then these criteria are the same, so we show that the first
one holds.

For T > 0, we have tr T 2 ≤ (tr T )2 and hence (tr T 2)3/2 ≤ (tr T )3. By a result of
Khatri (1966, Lemma 7, Eq. (20)),

∫
T>0

(tr T )3

[λmin(T )]2 dP0(T ) < ∞,

for α > 1
2 (m + 3), so it follows that Vn,1

p→0.

As for Vn,2
p→0, the proof is similar. By the Cauchy–Schwarz inequality,

(
1

n

n∑
j=1

‖X j‖3/2F

λmin(X
1/2
j )

)2

≤ 1

n

n∑
j=1

‖X j‖3F
λmin(X j )

= 1

n

n∑
j=1

(tr X2
j )
3/2

λmin(X j )
.

Applying the law of large numbers, we obtain ‖X̄−1
n − α−1 Im‖F p→0 and

1

n

n∑
j=1

(tr X2
j )
3/2

λmin(X j )

p→EP0

(
(tr X2)3/2

λmin(X)

)
.

Thus, to complete the proof of Vn,2
p→0, we need to establish that

∫
T>0

‖T ‖3F
λmin(T )

dP0(T ) < ∞ and EP0

(
(tr X2)3/2

λmin(X)

)
< ∞,

which are identical criteria. Since ‖T ‖3F = (tr T 2)3/2, it suffices to show that

∫
T>0

(tr T 2)3/2

λmin(T )
dP0(T ) < ∞.

However, tr T 2 ≤ (tr T )2 so (tr T 2)3/2 ≤ (tr T )3 so, by Khatri (1966, Lemma 7, Eq.
(20)),

∫
T>0

(tr T )3

λmin(T )
dP0(T ) < ∞

for all α > 1
2 (m + 1). Therefore, Vn,2

p→0 for all α > 1
2 (2m − 1).

Since 0 ≤ Vn ≤ Vn,1 + Vn,2 then we obtain Vn
p→0 for all α > max{ 12 (2m −

1), 1
2 (m+3)}. By Slutsky’s theorem, [α−1�m(α)]2 tr [(√n Mn)

2
] ·Vn d→0, and there-

fore [α−1�m(α)]2 tr [(√n Mn)
2
] · Vn p→0. Hence, by (79), ‖Zn − Zn,1‖L2

p→0, for
α > max{ 12 (2m − 1), 1

2 (m + 3)}.
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To establish (64), define Vj := g(T , X j ) − g(T ) for T > 0 and j = 1, . . . , n.
Then,

Zn,1 − Zn,2 = �m(α)

〈
Mn,

1√
n

n∑
j=1

Vj

〉

and therefore

‖Zn,1 − Zn,2‖2L2 ≤ [�m(α)]2 tr (M2
n ) ·

∫
T>0

[
tr

(
1√
n

n∑
j=1

Vj

)2 ]
dP0(T ). (80)

By the law of large numbers and the continuous mapping theorem, tr (M2
n )

p→0. Since
g(T ) = E[g(T , X j )] then E(Vj ) = 0, j = 1, . . . , n; also, V1, . . . , Vn are i.i.d.

We now show that EX j ET ‖Vj‖2F< ∞. First,

EX j ET (‖Vj‖2F ) = EX j

(∫
T>0

‖g(T , X j ) − g(T )‖2F dP0(T )

)
.

By the triangle inequality,

‖g(T , X j ) − g(T )‖2F ≤
(

‖g(T , X j )‖F + ‖g(T )‖F
)2

≤ 2

(
‖g(T , X j )‖2F + ‖g(T )‖2F

)
.

Therefore, it suffices to show that EX j ET ‖g(T , X j )‖2F and ET ‖g(T )‖2F are finite.
Applying the sub-multiplicative property of the Frobenius norm and (32), we have

‖g(T , X j )‖2F = ‖X1/2
j ∇Aν(T , α−1X j )X

1/2
j ‖2F

≤ ‖X j‖2F ‖∇Aν(T , α−1X j )‖2F
= c (tr X2

j )(λmin(X j ))
−1(tr T 2)(λmin(T ))−1,

c > 0; therefore,

EX j ET ‖g(T , X j )‖2F ≤ c EX j

[
(tr X2

j ) (λmin(X j ))
−1

]
ET

[
(tr T 2)(λmin(T ))−1

]
.

By Khatri (1966, Lemma 7, Eq. (20)), ET
[
(tr T 2)(λmin(T ))−1

]
< ∞ for α > 1

2 (m+
1). Since X j ∼ Wm(α, Im) then also EX j

[
(tr X2

j ) (λmin(X j ))
−1

]
< ∞,α > 1

2 (m+1).

Thus, EX j ET ‖g(T , X j )‖2F < ∞ for all α > 1
2 (2m − 1). Also, since ‖g(T )‖2F =

tr [(g(T ))2] is a polynomial in T then ET ‖g(T )‖2F < ∞ for T ∼ Wm(α, Im) since
the moment-generating function of T exists.
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Goodness-of-fit testing for the Wishart distributions 1347

We now vectorize the matrices V1, . . . , Vn , denoting by vech(V1), . . . , vech(Vn)
the corresponding vectors. Then, vech(V1), . . . , vech(Vn) are i.i.d. zero-mean random
vectors with finite covariance matrices. By the central limit theorem, n−1/2 ∑n

j=1
vech(Vj ) converges in distribution to a normal random vector. Define

V(T ) :=
∥∥∥∥ 1√

n

n∑
j=1

Vj

∥∥∥∥
F
,

for T > 0;we regardV as a randomelement in L2. Since ‖·‖F is a continuous function,
it follows from the continuous mapping theorem that V converges to a random element
in L2 and also that

‖V‖2L2 :=
∫
T>0

∥∥∥∥ 1√
n

n∑
j=1

Vj

∥∥∥∥
2

F
dP0(T ) =

∫
T>0

tr

(
1√
n

n∑
j=1

Vj

)2

dP0(T )

converges in distribution to a random variable that has finite variance. Since

tr (M2
n )

p→0, by (80) and Slutsky’s theorem, we obtain ‖Zn,1 − Zn,2‖2L2

d→0; there-

fore ‖Zn,1 − Zn,2‖L2
p→0.

To establish (65), we observe that

Zn,2 − Zn,3 = �m(α)√
n

n∑
j=1

(〈Mn, g(T )〉 − 〈α−1(α Im − X j ), g(T )〉)

= �m(α)√
n

(〈nMn, g(T )〉 − 〈α−1
n∑
j=1

(α Im − X j ), g(T )〉)

= �m(α) tr [(X̄−1/2
n

√
n(α Im − X̄n)X̄

−1/2
n − α−1√n(α Im − X̄n))g(T )].

Substituting the now-familiar explicit formula for g(T ) from (36), we obtain

‖Zn,2 − Zn,3‖2L2 = 1

α2m2 [tr (X̄−1/2
n

√
n(α Im − X̄n)X̄

−1/2
n − α−1√n(α Im − X̄n))]2

×
∫
T>0

(tr T )2 etr(−2α−1T ) dP0(T ),

and as we have seen before, the latter integral is finite. Now, we observe that

X̄−1/2
n

√
n(α Im − X̄n)X̄

−1/2
n − α−1√n(α Im − X̄n)

≡ √
n(α Im − X̄n)(X̄

−1
n − α−1 Im).

By the central limit theorem,
√
n vech(α Im − X̄n) converges in distribution to a mul-

tivariate normal random vector; by the law of large numbers for random vectors,
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1348 E. Hadjicosta, D. Richards

X̄−1
n

p→α−1 Im . By Slutsky’s theorem,
√
n(α Im − X̄n)(X̄−1

n − α−1 Im)
d→0, and so√

n(α Im − X̄n)(X̄−1
n − α−1 Im)

p→0. Hence, by the continuous mapping theorem,

[
tr

(
X̄−1/2
n

√
n(α Im − X̄n)X̄

−1/2
n − α−1√n(α Im − X̄n)

)]2
p→0;

and so ‖Zn,2 − Zn,3‖L2
p→0.

Finally, by the continuous mapping theorem in L2 (Billingsley 1968, p. 31), we

deduce that ‖Zn‖2L2

d→‖Z‖2
L2 , i.e.,

T2
n =

∫
T>0

Z2
n (T ) dP0(T )

d→
∫
T>0

Z2(T ) dP0(T ).

The proof now is complete. 
�

4 Eigenvalues and eigenfunctions of the covariance operator

The covariance operator S : L2 → L2 of the random element Z is defined for S > 0
and f ∈ L2 by

S f (S) =
∫
S>0

K (S, T ) f (T ) dP0(T ),

where K (S, T ) is the covariance function defined in equation (58). Let {δk : k ≥ 1}
be the positive eigenvalues, listed in non-increasing order according to their multiplic-
ities, of S; also, let {χ2

1k : k ≥ 1} be i.i.d. χ2
1 -distributed random variables. It is well

known that the integrated squared process,
∫
T>0 Z2(T ) dP0(T ), has the same distri-

bution as
∑∞

k=1 δkχ
2
1k . This result follows from the Karhunen–Loève expansion of the

Gaussian random field Z(T ); see Le Maître and Knio (2010, Chapter 2). Therefore,
the limiting null distribution of T2

n is the same as
∑∞

k=1 δkχ
2
1k . Let us also denote by

δ̃k , k ≥ 1, an enumeration, listed in non-increasing order, of the distinct values of the
eigenvalues δk . Further, we denote by N (δ̃k) the corresponding multiplicities of the

distinct eigenvalues δ̃k . Then, T2
n

d→∑
k≥1 δ̃kχ

2
N (δ̃k )

, where {χ2
N (δ̃k)

} are independent
χ2-distributed random variables and χ2

N (δ̃k )
has N (δ̃k) degrees of freedom.

For S, T > 0, define

K0(S, T ) = �m(α) etr(−α−1(S + T )) Aν(−α−2S, T ), (81)

the first term in the covariance function defined in equation (58); by (71) and (72),

K0(S, T ) = [�m(α)]2
∫
X>0

Aν(S, α−1X) Aν(T , α−1X) dP0(X). (82)

123



Goodness-of-fit testing for the Wishart distributions 1349

We will first find the eigenvalues and eigenfunctions of the integral operator S0 :
L2 → L2, defined for S > 0 and f in L2 by

S0 f (S) =
∫
T>0

K0(S, T ) f (T ) dP0(T ). (83)

Recall thatm ≥ 2 and α > max{ 12 (2m −1), 1
2 (m +3)}. Throughout the remainder

of this work, we use the notation

β =
(

α + 4

α

)1/2

and bα = (
1 + 1

2α(1 − β)
)1/2

. (84)

We also set
ρκ = αmαb4|κ|+2mα

α (85)

for κ ranging over all partitions, and

L(ν)
κ (S) := βmα/2 etr

(
(1 − β)S/2

) L(ν)
κ

(
βS

)
. (86)

Theorem 7 The collection {(ρκ,L
(ν)
κ )}, where κ ranges over the set of all partitions,

is a complete enumeration of the eigenvalues and eigenfunctions, respectively, of the
operator S0. Further, the eigenfunctions {L(ν)

κ }, for κ ranging over all partitions, form
an orthonormal basis in L2, and S0 is positive and of trace class.

The proof of the following theorem is similar to the proof of Theorem 7, and the
complete details are provided by Hadjicosta (2019).

Theorem 8 Let S : L2 → L2, the covariance operator of the random element Z , be
defined as

S f (S) =
∫
T>0

K (S, T ) f (T ) dP0(T )

for all S > 0 and for all functions f in L2, where K (S, T ) is the covariance function
defined in equation (58). Then, S is positive and of trace class.

Recall that a non-trivial function φ ∈ L2 is an eigenfunction of S if there exists an
eigenvalue δ ∈ C such that Sφ = δφ. As S is self-adjoint and positive, its eigenvalues
are real and nonnegative. In the next result, we find the positive eigenvalues (that are
not eigenvalues of S0) and corresponding eigenfunctions of S, and we will show later
that 0 is not an eigenvalue of S.
Theorem 9 Let δ ∈ R with δ �= ρκ for any partition κ . Also, denote by ρ̃k , k ≥ 1, an
enumeration, listed in non-increasing order, of the distinct values of the eigenvalues
ρκ and define the functions

A(δ) = 1 − βmαm
∞∑
k=0

(mα)k

k!(ρ̃k − δ)
ρ̃2
k ,
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1350 E. Hadjicosta, D. Richards

B(δ) = 1 − αβmαm
∞∑
k=0

(mα)k

k!(ρ̃k − δ)
ρ̃2
k (b2α − m−1kβ)2,

and

D(δ) = α2βmαm
∞∑
k=0

(mα)k

k!(ρ̃k − δ)
ρ̃2
k (b2α − m−1kβ).

Then, the positive eigenvalues of S are the positive roots of G(δ) = α3A(δ)B(δ) −
D2(δ). The eigenfunction corresponding to an eigenvalue δ has Fourier–Laguerre
expansion

βmα/2
∞∑
k=0

ρ̃k√
k!(ρ̃k − δ)

(
C1 + C2α

−1(b2α − m−1kβ)
) ∑

|κ|=k

(
Cκ(Im)

[
α
]
κ

)1/2
L(ν)

κ ,

where C1C2 �= 0, α3C1A(δ) = C2D(δ) and C2B(δ) = C1D(δ).

Remark 3 In an earlier paper (Hadjicosta andRichards 2019), we studied goodness-of-
fit testing for the gamma distributions and conjectured that, for all α, the eigenvalues
of S are not eigenvalues of S0. As shown in the next subsection, this is not valid in
the case of the Wishart distributions.

A problem with the eigenvalues δk is that they have no closed-form expression;
hence, there is no simple formula for N , the number of terms in the truncated series∑N

k=1 δkχ
2
1k that should be used in practice to approximate the asymptotic distribution,∑∞

k=1 δkχ
2
1k , of the test statistic T

2
n .

SinceS0 is of trace class, then byBrislawn (1991, p. 237, Corollary 3.2), Tr(S0) can
be calculated by integrating the kernel K0 or by evaluating the sum of all eigenvalues
ρκ :

∫
S>0

K0(S, S) dP0(S) = Tr(S0) =
∞∑
k=0

∑
|κ|=k

ρκ = αmαb2mα
α

m∏
k=1

(1 − b4kα )−1. (87)

Since S also is of trace class, then

∞∑
k=1

δk = Tr(S)

=
∫
S>0

K (S, S) dP0(S)

=
∫
S>0

[
K0(S, S) − (α−3m−1(tr S)2 + 1) etr(−2α−1S)

]
dP0(S)
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Goodness-of-fit testing for the Wishart distributions 1351

= αmαb2mα
α

m∏
k=1

(1 − b4kα )−1 − α−3m−1
∑
|κ|=2

∫
S>0

etr(−2α−1S)Cκ(S) dP0(S)

−
∫
S>0

etr(−2α−1S) dP0(S).

All of these integrals can be evaluated using (9) and (10), and the resulting sum can
be simplified using Lemma 6. Consequently, we obtain

∞∑
k=1

δk = αmαb2mα
α

m∏
k=1

(1 − b4kα )−1 −
(

α

α + 2

)mα(
1 + mα + 1

(α + 2)2

)
. (88)

To determine the number of terms in the truncated series
∑N

k=1 δkχ
2
1k that should be

used in practice to approximate the asymptotic distribution of T2
n , we derive bounds

for the eigenvalues δk in terms of the ρκ and then obtain a general formula for N as a
function of α. We refer to the ratio (

∑N
k=1 δk)/Tr(S) as the N th scree ratio for T2

n .
Since S is compact and positive, then its spectrum is countable and contains only

nonnegative values (Young 1998, Theorem 8.12, p. 98). The next result shows that the
eigenvalues are positive.

Proposition 4 The operators S and S0 are injective; that is, S f = Sg if and only if
f = g, and the same holds for S0. In particular, 0 is not an eigenvalue of S or S0.

Proof By linearity, it suffices to assume that g = 0. So, suppose that S f = 0, i.e.,

∫
S>0

K (S, T ) f (T ) dP0(T ) = 0

for all S > 0. Then for U > Im , by Fubini’s theorem,

0 =
∫
S>0

etr(−(U − Im)S/α)(det S)
α− 1

2 (m+1)
∫
T>0

K (S, T ) f (T ) dP0(T ) dS

=
∫
T>0

f (T )

[ ∫
S>0

etr(−(U − Im)S/α)(det S)
α− 1

2 (m+1)K (S, T )dS

]
dP0(T ).

(89)

By the definition of the covariance function K in (58),

∫
S>0

etr(−(U − Im)S/α)(det S)
α− 1

2 (m+1)K (S, T )dS

= etr(−T /α)

∫
S>0

etr(−US/α)(det S)
α− 1

2 (m+1)

×
[
�m(α)Aν(−α−2S, T ) − α−3m−1(tr S)(tr T ) − 1

]
dS.

123



1352 E. Hadjicosta, D. Richards

By (25), (14), and Fubini’s theorem, we have

∫
S>0

etr(−US/α)(det S)
α− 1

2 (m+1)Aν(−α−2S, T ) dS

=
∫
O(m)

∫
S>0

etr(−US/α)(det S)
α− 1

2 (m+1)Aν(−α−2HSH ′T ) dS dH

= αmα(detU )−α

∫
O(m)

etr(α−1H ′T HU−1) dH .

Also, by (4) and (9), we have

∫
S>0

etr(−US/α)(det S)
α− 1

2 (m+1)
(tr S) dS = αmα+2�m(α)(detU )−α tr (U−1),

and, by (10),

∫
S>0

etr(−US/α)(det S)
α− 1

2 (m+1) dS = αmα�m(α)(detU )−α.

Substituting these results into (89) and discarding extraneous factors, we obtain

∫
T>0

[ ∫
O(m)

etr(α−1H ′T HU−1) dH − α−1m−1 tr (U−1)(tr T ) − 1

]

× etr(−T /α) f (T ) dP0(T ) = 0.

(90)

Replacing U by U−1, we find that (90) is equivalent to

∫
T>0

[ ∫
O(m)

etr(α−1H ′T HU ) dH − 1

]
etr(−T /α) f (T ) dP0(T )

= α−1m−1(tr U )

∫
T>0

(tr T ) etr(−T /α) f (T ) dP0(T ).

(91)

Differentiating both sides of (91) with respect to U , we obtain

∫
O(m)

∫
T>0

etr(α−1H ′T HU )(α−1H ′T H) f (T ) dP0(T ) dH

= α−1m−1 Im

∫
T>0

(tr T ) etr(−T /α) f (T ) dP0(T ).

Since T
d= HT H ′ for all H ∈ O(m), and f (HT H ′) = f (T ), then

∫
T>0

etr(α−1H ′T HU )(α−1H ′T H) f (T ) dP0(T )
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=
∫
T>0

etr(α−1UT )(α−1T ) f (T ) dP0(T ).

Therefore,

∫
T>0

etr(α−1UT )(α−1T ) f (T ) dP0(T )

= α−1m−1 Im

∫
T>0

(tr T ) etr(−T /α) f (T ) dP0(T ). (92)

Differentiating both sides of (92) with respect to U , we find that

α−2
∫
T>0

etr(α−1UT ) (T ⊗ T ) f (T ) dP0(T ) = 0.

As this latter integral is a Laplace transform, we obtain f = 0, P0-almost everywhere.
Also, the same argument may be used in the case of S0. Consequently, 0 is not an
eigenvalue of S. 
�

We now provide an interlacing property of the eigenvalues δk and ρκ . To state this
property, denote by ξk , k = 1, 2, 3 . . . the partitions of all nonnegative integers, listed
in increasing lexicographic order, e.g., ξ1 = (0), ξ2 = (1), ξ3 = (2), ξ4 = (12),
ξ5 = (3), ξ6 = (21), ξ7 = (13), . . .

Proposition 5 For all k ≥ 1, ρξk ≥ δk ≥ ρξk+2 . Further, for k ≥ 3, every eigenvalue
of S0 is an eigenvalue of S with multiplicity pm(k) − 2, pm(k) − 1, or pm(k).

Proof Define the kernels k0(S, T ) = − etr(−(S + T )/α) and

k1(S, T ) = −α−3m−1 etr(−(S + T )/α)(tr S)(tr T ),

where S, T > 0. Also, define on L2 the corresponding integral operators,

U j f (S) =
∫
T>0

k j (S, T ) f (T )dP0(T ),

j = 0, 1, S > 0. Then it follows from (58) that S = S0 + U0 + U1.
It is clear that each U j is self-adjoint, and also of rank one, i.e., the range of U j is a

one-dimensional subspace of L2. Also, S0 + U0 is self-adjoint, and by following the
same steps as in Theorem 8, we see that it is positive and compact.

By the same argument as in the proof of Proposition 4, we find that the operator
S0 + U0 is injective; hence, the eigenvalues of S0 + U0 are positive.

Denote by ωk , k ≥ 1, the eigenvalues of S0 + U0, where ω1 ≥ ω2 ≥ · · · , listed
repeatedly according to multiplicity. Since S0 is compact, self-adjoint, and injective,
and U0 is self-adjoint and of rank one, it follows from Hochstadt (1973) or Dancis
and Davis (1987) that the eigenvalues of S0 interlace the eigenvalues of S0 + U0, i.e.,
ρξ1 ≥ ω1 ≥ ρξ2 ≥ ω2 ≥ ρξ3 ≥ ω3 ≥ ρξ4 ≥ . . . . Further, by Hochstadt (1973), every
eigenvalue of multiplicity pm(k), k ≥ 2, of S0, where pm(k) denotes the number of
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1354 E. Hadjicosta, D. Richards

Table 1 Values of the lower
bounds on r and N for m = 2 α 2.5 3 5 10 20 50 100

r 8 7 6 4 3 3 2

N 23 18 14 7 4 4 2

Table 2 Values of the lower
bounds on r and N for m = 3 α 3 4 5 10 20 50 100

r 8 7 6 4 3 3 2

N 39 29 21 9 5 5 2

partitions of k in at most m parts, is an eigenvalue of S0 +U0 with multiplicity pm(k)
or pm(k) − 1.

Since U1 is self-adjoint and of rank one then, repeating the above argument, we
find that the eigenvalues of S0 + U0 interlace the eigenvalues of S0 + U0 + U1 ≡ S,
i.e., ωk ≥ δk ≥ ωk+1, k ≥ 1.

Combining the conclusions of the preceding paragraphs, we deduce that ρξk ≥
δk ≥ ρξk+2 , k ≥ 1. Further, by Hochstadt (1973), for k ≥ 3, every eigenvalue of S0 is
an eigenvalue of S with multiplicity pm(k) − 2, pm(k) − 1, or pm(k). 
�

For ε ∈ (0, 1), we can now determine a value for N such that the N th scree
ratio of T2

n exceeds 1 − ε. Applying the interlacing inequalities for δk , we obtain∑N
k=1 δk ≥ ∑

2≤|κ|≤r ρκ , where N = ∑r
k=2 pm(k). Since Tr(S0) > Tr(S), we

advise that N be chosen so that

∑
0≤|κ|≤r

ρκ ≥ (1 − ε)Tr(S0).

This criterion leads to a value for N that is readily applicable in the analysis of data.
Substituting ρκ = αmαb4|κ|+2mα

α and the value of Tr(S0) from (87), we obtain

αmαb2mα
α

r∑
k=0

b4kα pm(k) ≥ (1 − ε)Tr(S0) = (1 − ε)αmαb2mα
α

m∏
k=1

(1 − b4kα )−1.

(93)

For m = 2, 3 and ε = 10−10, which represents accuracy to ten decimal places,
we present in Tables 1 and 2 the values of the lower bounds on r and N for various
values of α. As indicated by Tables 1 and 2, fewer eigenvalues appear to be needed
to approximate the asymptotic distribution of T2

n as α increases. As we show in the
following result, which is partly a consequence of the interlacing property of the
eigenvalues, all but one of the δk and ρκ converge to 0 as α → ∞, a result that is
consistent with the decreasing values of r and N in the tables.

Corollary 1 As α → ∞, ρκ → 0 for all κ �= (0), δk → 0 for all k ≥ 2, and
δ1 → e−m(1 − e−m).
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Proof By (84),β = (1+4α−1)1/2. Expanding this expression as a power series inα−1,
we obtain αb2α = α(1+ 1

2α(1−β)) = 1−α−1 +O(α−2). Therefore, (αb2α)α → e−1

and bα → 0 as α → ∞. By (85), ρκ = (αb2α)mαb4|κ|
α , so it follows that if κ �= (0)

then ρκ → 0.
By Proposition 5, δ2 ≤ ρ(1), so it follows that δ2 → 0 as α → ∞. Since the δk are

positive and listed in non-increasing order, then it follows that, as α → ∞, δk → 0
for all k ≥ 2.

Finally, the limiting value of δ1 is obtained by taking limits in (88). 
�

5 An application to financial data

In applying our test to financial data, we partially follow Haff et al. (2011, Example
5.3). Denote by S j,k , k = 1, 2, 3 the daily closing stock prices of Johnson & Johnson
(JNJ), Berkshire Hathaway Inc., Class B (BRK-B), and JPMorganChase&Co. (JPM),
respectively, from November 26, 2017, to November 23, 2018. Were a day a trading
holiday, we repeated the observation of the previous day; thus, we had 260 obser-
vations in total. Next, we computed the daily logarithmic returns, log(S j+1,k/S j,k),
j = 1, . . . , 260, k = 1, 2, 3; graphs of these logarithmic returns are given in Figure
1. Finally, we partitioned the daily logarithmic returns into biweekly periods and cal-
culated the 3× 3 unnormalized covariance matrix for each biweekly period, resulting
in matrices X1, . . . , X26.

A common assumption in research on stochastic volatility models is that the vectors
of logarithmic returns, (log(S j+1,1/S j,1), log(S j+1,2/S j,2), log(S j+1,3/S j,3)), j =
1, . . . , 260, are i.i.d. trivariate normally distributed. If this assumption were valid, then
the corresponding biweekly covariance matrices would be i.i.d. Wishart-distributed.
We remark that the spikiness of the graphs of the daily logarithmic returns indicates
that those logarithmic returns may contain substantial numbers of potential outliers;
this leads us to surmise that the data are not normally distributed. Nevertheless, we
will test the hypothesis that the biweekly covariance matrices are Wishart-distributed
with 9 degrees of freedom, i.e., α = 4.5, and unspecified scale matrix �. To apply the
statistic T2

n to test this hypothesis, we use an algorithm of Koev and Edelman (2006)
to evaluate the Bessel functions of two matrix arguments, and then, we find that the
observed value of the test statistic T2

n is 0.127.
We conducted a simulation study to approximate T2

n ; 0.05 , the 95th-percentile of

the null distribution of T2
n . We generated 10,000 random samples of size n = 26 from

theWishart distribution with α = 4.5 and scale matrix� = I3, calculated the value of
T2
n for each sample, and recorded the 95th-percentile of all 10,000 simulated values

of T2
n . We repeated this process ten times, finally approximating T2

n ; 0.05 as the mean

of all 10 simulated 95th-percentiles, viz. T2
n ; 0.05 = 0.002. Since the observed value

of T2
n exceeds the critical value, then we reject the null hypothesis at the 5% level

of significance. We also derived from the simulation study an approximate P value
of 0.000 for the test, so we have strong evidence that the three-dimensional vectors
of logarithmic returns do not have a trivariate normal distribution or are not mutually
independent.
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Fig. 1 Graphs of the daily logarithmic returns from the stock prices of JNJ, BRK-B, and JPM over the
period November 26, 2017, to November 23, 2018 (color figure online)

For another approach to approximating T2
n ; 0.05, we can use the limiting distribution

of T2
n . For α = 4.5, from (93), we obtain the approximation T2

n ≈ ∑21
k=1 δkχ

2
1k . This

requires that we first calculate the δk (using Theorem 9), and their multiplicities, and
then apply the results of Imhof (1961) or Kotz et al. (1967) to derive the distribution
of

∑21
k=1 δkχ

2
1k and carry out the test.

As an alternative to calculating δ1, . . . , δM , we can apply the interlacing inequalities
in Proposition 5 to obtain a stochastic upper bound,

∑M
k=1 δkχ

2
1k ≤ ∑

0≤|κ|≤r ρκχ2
1κ .

Using the upper bound,
∑

0≤|κ|≤r ρκχ2
1κ and applying results of Kotz et al. (1967,

loc. cit.) or Imhof (1961) to approximate the critical values, we will obtain a conser-
vative test, i.e., with a level of significance at most 5%.

6 Consistency of the test

Theorem 10 Let X1, X2, . . . be a sequence of m × m positive definite, i.i.d. random
matrices with mean μ. Assume also that the p.d.f. of X1 is of the form:

f (X1) = f0(μ
−1/2X1μ

−1/2), (94)

where f0 is orthogonally invariant. Denote by γ the level of significance of the test
and by cn,γ the (1 − γ )-quantile of the statistic T2

n under H0. If X1, X2, . . . are not
Wishart-distributed, then limn→∞ P(T2

n > cn,γ ) = 1.

123



Goodness-of-fit testing for the Wishart distributions 1357

Proof By definition (52) of the test statistic and (57), we have

n−1T2
n =

∫
T>0

[
1

n

n∑
j=1

�m(α)Aν(T , Z j ) − etr(−α−1T )

]2
dP0(T ),

where Z j = X1/2
j X̄−1

n X1/2
j . By subtracting and adding the quantity

1

n

n∑
j=1

�m(α)Aν(T , X1/2
j μ−1X1/2

j )

inside the squared term and then expanding the integrand, we obtain

n−1T2
n =

∫
T>0

[
�m(α)

n

n∑
j=1

Aν(T , X1/2
j μ−1X1/2

j ) − etr(−α−1T )

]2
dP0(T ) (95)

+
∫
T>0

[
�m(α)

n

n∑
j=1

(
Aν(T , Z j ) − Aν(T , X1/2

j μ−1X1/2
j )

)]2
dP0(T ) (96)

+2
∫
T>0

[
�m(α)

n

n∑
j=1

(
Aν(T , Z j ) − Aν(T , X1/2

j μ−1X1/2
j )

)]

×
[

�m(α)

n

n∑
j=1

Aν(T , X1/2
j μ−1X1/2

j ) − etr(−α−1T )

]
dP0(T ). (97)

We begin by proving that the integral (96) converges almost surely to 0. By (27),
there exists a constant C > 0 such that

�m(α)

n

n∑
j=1

∣∣∣∣Aν(T , Z j ) − Aν(T , X1/2
j μ−1X1/2

j )

∣∣∣∣

≤ C ‖T ‖1/2F
1

n

n∑
j=1

‖Z j − X1/2
j μ−1X1/2

j ‖1/2F

≤ C ‖T ‖1/2F ‖X̄−1
n − μ−1‖1/2F

1

n

n∑
j=1

‖X j‖1/2F ,

since the Frobenius norm is sub-multiplicative. By the triangle inequality, we conclude
that the integral (96) is bounded above by

C2 ‖X̄−1
n − μ−1‖F

(
1

n

n∑
j=1

‖X j‖1/2F

)2 ∫
T>0

‖T ‖F dP0(T ).
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1358 E. Hadjicosta, D. Richards

By the Cauchy–Schwarz inequality,
(
n−1 ∑n

j=1‖X j‖1/2F

)2 ≤ n−1 ∑n
j=1‖X j‖F .

Since T > 0, then (tr T 2) ≤ (tr T )2, so by (4) and (9), we have

∫
T>0

‖T ‖F dP0(T ) =
∫
T>0

(tr T 2)1/2 dP0(T ) ≤
∫
T>0

(tr T ) dP0(T ) < ∞.

By the strong law of large numbers and the continuous mapping theorem,
‖X̄−1

n − μ−1‖F → 0, almost surely. Again by the strong law of large num-
bers, n−1 ∑n

j=1‖X j‖F → E‖X1‖F , almost surely. It is elementary to verify that
E‖X1‖F < ∞; so (96) converges to 0, almost surely.

Second, we show that (97) tends to 0, almost surely. By (26), the fact that
etr(−α−1T ) ≤ 1 for T > 0, and the triangle inequality, we have

∣∣∣∣�m(α)

n

n∑
j=1

Aν(T , X1/2
j μ−1X1/2

j ) − etr(−α−1T )

∣∣∣∣ ≤ 2.

Further, by the triangle inequality, the absolute value of (97) is less than or equal to

2
∫
T>0

∣∣∣∣�m(α)

n

n∑
j=1

(
Aν(T , Z j ) − Aν(T , X1/2

j μ−1X1/2
j )

)∣∣∣∣ dP0(T ). (98)

By the Cauchy–Schwarz inequality and the fact that
∫
T>0 dP0(T ) = 1, (98) is no

larger than

2

(∫
T>0

[
�m(α)

n

n∑
j=1

(
Aν(T , Z j ) − Aν(T , X1/2

j μ−1X1/2
j )

)]2
dP0(T )

)1/2

.

Following the same argument as for (96), we conclude that (97) converges to 0, almost
surely.

Since Aν(T , X1/2
j μ−1X1/2

j ) = Aν(T , μ−1/2X jμ
−1/2), we see that the integral

(95) equals

∫
T>0

[
�m(α)

n

n∑
j=1

Aν(T , μ−1/2X jμ
−1/2) − etr(−α−1T )

]2
dP0(T ).

We subtract and add inside the squared term the quantity E[�m(α)Aν(T , μ−1/2

X1μ
−1/2)] and expand the integrand. Then we find that (95) equals

∫
T>0

[
�m(α)

n

n∑
j=1

Aν(T , μ−1/2X jμ
−1/2)−E[�m(α)Aν(T , μ−1/2X1μ

−1/2)]
]2

dP0(T )

(99)
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+
∫
T>0

[
E[�m(α)Aν(T , μ−1/2X1μ

−1/2)] − etr(−α−1T )

]2
dP0(T )

+ 2
∫
T>0

[
�m(α)

n

n∑
j=1

Aν(T , μ−1/2X jμ
−1/2) − E[�m(α)Aν(T , μ−1/2X1μ

−1/2)]
]

×
[
E[�m(α)Aν(T , μ−1/2X1μ

−1/2)] − etr(−α−1T )

]
dP0(T ). (100)

By the strong law of large numbers in L2 (Ledoux and Talagrand 1991, p. 189), we
conclude that the term (99) converges to 0, almost surely.

Next, we show that (100) converges to 0, almost surely. By (26) and the bound,
etr(−α−1T ) ≤ 1 for T > 0, we have

∣∣∣∣E[�m(α)Aν(T , μ−1/2X1μ
−1/2)] − etr(−α−1T )

∣∣∣∣ ≤ 2.

Therefore, the absolute value of the integral (100) is less than or equal to

2
∫
T>0

∣∣∣∣�m(α)

n

n∑
j=1

Aν(T , μ−1/2X jμ
−1/2)−E[�m(α)Aν(T , μ−1/2X1μ

−1/2)]
∣∣∣∣ dP0(T )

≤ 2

(∫
T>0

[
�m (α)

n

n∑
j=1

Aν(T , μ−1/2X jμ
−1/2)−E[�m (α)Aν(T , μ−1/2X1μ

−1/2)]
]2

dP0(T )

)1/2
,

where the latter bound follows from the Cauchy–Schwarz inequality. Again, by the
strong law of large numbers in L2, we conclude that the integral (100) converges to
0, almost surely.

We have now shown that

1

n
T2
n
a.s.→

∫
T>0

[
E[�m(α)Aν(T , μ−1/2X1μ

−1/2)] − etr(−α−1T )

]2
dP0(T ). (101)

Denote by � the right-hand side of (101); then, � ≥ 0. Suppose that � = 0, then

E[�m(α)Aν(T , μ−1/2X1μ
−1/2)] − etr(−α−1T ) = 0,

equivalently, H̃μ−1/2X1μ−1/2(T )−etr(−α−1T ) = 0, P0-almost everywhere. By conti-
nuity,weobtain H̃μ−1/2X1μ−1/2(T )−etr(−α−1T ) = 0 for all T > 0.By the uniqueness
theorem for orthogonally invariant Hankel transforms, it follows that μ−1/2X1μ

−1/2

has a Wishart distribution. By Muirhead (1982, p. 92), X1 has also a Wishart distribu-
tion, which contradicts the assumption that X1 does not have a Wishart distribution.
Therefore, � > 0.

Under H0, n−1T2
n
a.s.→0, and therefore n−1T2

n
p→0, i.e., for any ε > 0,

lim
n→∞ PH0

(
n−1T2

n ≥ ε
) = 0.
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1360 E. Hadjicosta, D. Richards

Thus, for any ε > 0 and γ > 0, there exists n0(ε, γ ) ∈ N such that PH0

(
n−1T2

n ≥
ε
) ≤ γ for all n ≥ n0(ε, γ ). Let cn,γ be the (1 − γ )-quantile of T2

n under H0. Then
0 ≤ cn,γ ≤ nε for all n ≥ n0(ε) since, by definition, cn,γ := inf{x ≥ 0 : PH0(T

2
n >

x) ≤ γ }. Therefore, 0 ≤ n−1cn,γ ≤ ε for all n ≥ n0(ε). In summary, for any ε > 0,
there exists n0(ε) ∈ N such that n−1cn,γ ≤ ε for all n ≥ n0(ε), i.e.,

lim
n→∞ n−1cn,γ = 0. (102)

By (101) and (102), we have n−1T2
n − n−1cn,γ

a.s.→�, and therefore n−1T2
n −

n−1cn,γ

p→�. Thus, by Severini (2005, p. 340, Corollary 11.3 (i)), we have that

n−1T2
n − n−1cn,γ

d→�. Further,

lim
n→∞ P(T2

n > cn,γ ) = lim
n→∞ P

(
n−1T2

n − n−1cn,γ > 0
)

= 1 − lim
n→∞ P

(
n−1T2

n − n−1cn,γ ≤ 0
) = 1

since � > 0. Therefore, limn→∞ P(T2
n > cn,γ ) = 1. 
�

Remark 4 By applying Theorem 1 of Baringhaus et al. (2017), we also find that under

fixed alternatives satisfying (94), n1/2(n−1T2
n −�)

d→N (0, σ 2) as n → ∞, where σ 2

is a constant that is determined from the alternative distribution.

Remark 5 We show that assumption (94) holds for two alternative distributions.
The matrix F-distribution (cf. Khatri 1966, Section 4, part (c) or James 1964, Eqs.

(65), (72)): Let X be a random matrix with p.d.f.

f (X) = �m(a + b)

�m(a)�m(b)
(det X)a−(m+1)/2 (det(Im + X))−(a+b),

X > 0, where a > 1
2 (m−1) and b > 1

2 (m+1). Since f (X) is orthogonally invariant
then, by Schur’s Lemma, there exists a constant c such that μ = E(X) = cIm .

A linear combination of Wishart matrices: Let X be a random matrix with p.d.f.

f (X) = δmb(δ − 1)ma

�m(a + b)
(det X)a+b−(m+1)/2 etr(−δX) 1F1(a; a + b; X),

X > 0, where a > 1
2 (m − 1), b > 1

2 (m − 1), and δ > 1. By Gupta and Richards

(1995, Section 4.4), we have X
d= X1 + δ−1X2, where X1 and X2 are independent,

X1 ∼ Wm(a, Im) and X2 ∼ Wm(b, Im). Again, the distribution of X is orthogonally
invariant; thus, it satisfies (94).
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7 Contiguous alternatives to the null hypothesis

For n ∈ N, let Xn1, . . . , Xnn be a triangular array of row-wise independent m × m
positive definite random matrices. As usual, let P0 = Wm(α, Im), α > max{ 12 (2m −
1), 1

2 (m +3)}, and let Qn1 be a probability measure dominated by P0. We wish to test
the null hypothesis

H0: The marginal distribution of each Xni , i = 1, . . . , n, is P0
against the alternative

H1: The marginal distribution of each Xni , i = 1, . . . , n, is Qn1.
We write the Radon–Nikodym derivative of Qn1 with respect to P0 in the form

dQn1/dP0 = 1 + n−1/2hn . Then we will need two assumptions on the sequence hn :

Assumptions 1 We assume that:

(A1) The functions {hn : n ∈ N} form a sequence of P0-integrable functions con-
verging pointwise, P0-almost everywhere, to a function h, and

(A2) supn∈N EP0 |hn|4 < ∞.

Since
∫
(dQn1/dP0) dP0 = 1, then we also have

∫
hn dP0 = 0, for all n ∈ N.

Denote the indicator function of an event A by I (A); applying (A2), we deduce the
uniform integrability of |hn|2:

lim
k→∞ sup

n∈N
EP0

(|hn|2 I (|hn|2 > k)
) = lim

k→∞ sup
n∈N

∫
|hn|2 I (|hn|2 > k) dP0

≤ lim
k→∞ k−1 sup

n∈N
EP0 |hn|4 = 0.

By Bauer (1981, p. 95), the P0-almost everywhere convergence of hn to h implies
the P0-stochastic convergence of hn to h. Again by Bauer (1981, p. 104), the uniform
integrability of |hn|2 along with the P0-stochastic convergence of hn to h implies the
convergence of hn in mean square, i.e.,

lim
n→∞

∫
|hn − h|2 dP0 = 0,

and therefore

lim
n→∞

∫
|hn|2 dP0 =

∫
|h|2 dP0.

By the triangle and the Cauchy–Schwarz inequalities,

0 ≤ lim
n→∞

∣∣∣
∫

(hn − h)dP0
∣∣∣

≤ lim
n→∞

∫
|hn − h|dP0 ≤ lim

n→∞
( ∫

|hn − h|2 dP0
)1/2 = 0,
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1362 E. Hadjicosta, D. Richards

therefore

lim
n→∞

∫
hn dP0 =

∫
h dP0 = 0.

We now verify that Assumptions 1 are valid for numerous sequences of contiguous
alternatives.

7.1 Wishart alternatives with contiguous scale matrices

Let Qn1 := Wm(α,�n) with α > max{ 12 (2m − 1), 1
2 (m + 3)} and �n = (1+ 1√

n
)Im .

Then,

dQn1

dP0
= (1 + n−1/2)mα etr(−n−1/2X) ≡ 1 + n−1/2hn(X),

where

hn(X) = n1/2
[
(1 + n−1/2)mα etr(−n−1/2X) − 1

]
,

for X > 0. By applying L’Hôpital’s rule, we obtain

h(X) := lim
n→∞ hn(X) = mα − tr X ,

for X > 0. Next, we find EP0 |h4n|. Define

Rn(X) = etr(−n−1/2X) − (1 − n−1/2(tr X)) (103)

=
∞∑
k=2

1

k!
( − n−1/2(tr X)

)k
,

the remainder term of the Taylor series expansion of etr(−n−1/2X), X > 0. Then, by
elementary algebraic manipulations, we obtain

hn(X) = n1/2(1 + n−1/2)mα etr(−n−1/2X) − n1/2

= (1 + n−1/2)mα−1[1 + (1 + n1/2)Rn(X) − (1 + n−1/2)(tr X)
]

+ n1/2[(1 + n−1/2)mα−1 − 1].

By (103), the triangle inequality, and the Lipschitz continuity of the exponential func-
tion, we have

|Rn(X)| ≤ n1/2|Rn(X)| ≤ n1/2
[
| etr(−n−1/2X) − 1| + n−1/2(tr X)

]

≤ n1/2
[
n−1/2(tr X) + n−1/2(tr X)

]
= 2 tr X ,
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X > 0. Therefore,

|hn(X)| ≤ (1 + n−1/2)mα−1
[
1 + (1 + n1/2)|Rn(X)| + (1 + n−1/2)(tr X)

]

+ n1/2
∣∣(1 + n−1/2)mα−1 − 1

∣∣
≤ (1 + n−1/2)mα−1(1 + 4 tr X + 2 tr X) + n1/2

∣∣(1 + n−1/2)mα−1 − 1
∣∣

= (1 + n−1/2)mα−1(1 + 6 tr X) + n1/2
∣∣(1 + n−1/2)mα−1 − 1

∣∣.

There exists a constant C > 0 such that (1 + n−1/2)mα−1 ≤ C and
∣∣n1/2((1 +

n−1/2)mα−1 − 1
)∣∣ ≤ C for all n. Therefore, |hn(X)| ≤ C(1 + 6 tr X) + C = C(2 +

6 tr X), X > 0, so we obtain

EP0 |hn|4 ≤ C4
∫
X>0

(2 + 6 tr X)4 dP0(X),

a bound independent of n. By (4) and (9), the latter integral is finite; thus,
supn∈N EP0 |hn|4 < ∞.

7.2 Wishart alternatives with contiguous shape parameters

Let Qn1 := Wm(αn, Im) with αn = α + 1√
n
, α > max{ 12 (2m − 1), 1

2 (m + 3)}. Then,

dQn1

dP0
= �m(α)

�m(αn)
(det X)1/

√
n ≡ 1 + n−1/2hn(X),

where

hn(X) = n1/2
(

�m(α)

�m(αn)
(det X)1/

√
n − 1

)
,

X > 0. Recall the multivariate digamma function

ψm(z) := d

dz
log�m(z) = �′

m(z)

�m(z)
,

z > 0. Applying L’Hôpital’s rule, we obtain

h(X) := lim
n→∞ hn(X)

= lim
n→∞ n1/2

(
�m(α)

�m(α + n−1/2)
(det X)1/

√
n − 1

)

= log(det X) − ψm(α),
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X > 0. To calculate EP0 |hn|4, we apply the binomial expansion, obtaining
∣∣∣∣n1/2

(
�m(α)

�m(α + n−1/2)
(det X)1/

√
n − 1

)∣∣∣∣
4

= n2
4∑
j=0

(−1) j
(
4

j

)(
�m(α)

�m(α + n−1/2)

) j

(det X) j/
√
n,

thus,

EP0 |hn|4 = n2
4∑
j=0

(−1) j
(
4

j

)(
�m(α)

�m(α + n−1/2)

) j
�m(α + jn−1/2)

�m(α)
. (104)

Next, the Taylor expansion of �m(α)/�m(α + n−1/2) for sufficiently large values of
n is

�m(α)

�m(α + n−1/2)
=

4∑
j=0

a jn
− j/2 + o(n−2). (105)

After lengthy but straightforward calculations, we obtain

a0 = 1, a1 = −ψm(α), a2 = 1

2
ψ2
m(α) − 1

2
ψ ′
m(α),

a3 = −1

6
ψ3
m(α) − 1

6
ψ ′′
m(α) + 1

2
ψm(α)ψ ′

m(α),

a4 = −ψ ′′′
m (α)

24
+ 1

8
(ψ ′

m(α))2 + 1

6
ψm(α)ψ ′′

m(α) − 1

4
ψ2
m(α)ψ ′

m(α) + 1

24
ψ4
m(α).

Next, we substitute the Taylor expansion (105) in (104) and then let n → ∞. Applying
L’Hôpital’s rule four times then, after some lengthy but straightforward calculations,
we obtain

lim
n→∞ EP0 |hn|4 = 9a41 + 24a22 + 24a1a3 − 36a21a2 − 24a4.

Thus, EP0 |h4n| is a bounded sequence, and therefore, supn∈N EP0 |hn|4 < ∞.

7.3 ContaminatedWishart models

Consider the contaminationmodel, Qn1 := (1−n−1/2)P0+n−1/2Wm(2α, Im), where,
as usual, α > max{ 12 (2m−1), 1

2 (m+3)}. These contaminatedWishart models appear
in the analysis of diffusion tensor images (Jian and Vemuri 2007). We have

dQn1

dP0
= n−1/2

(
�m(α)

�m(2α)
(det X)α − 1

)
+ 1 ≡ 1 + n−1/2hn(X),

where

hn(X) = �m(α)

�m(2α)
(det X)α − 1,
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Goodness-of-fit testing for the Wishart distributions 1365

for X > 0. As hn does not depend on n, then h(X) ≡ hn(X). Since

EP0 |h4n| =
∫
X>0

(
�m(α)

�m(2α)
(det X)α − 1

)4

dP0(X)

clearly is finite and does not depend on n then supn∈N EP0 |hn|4 < ∞.
Note that Qn1 is a special case of a contamination model Qn2 = (1− n−1/2)P0 +

n−1/2P1, with P1 � P0 and
∫

(dP1/dP0)4 dP0 < ∞. The earlier calculations can
be done for many such P1. For example, let P1 be the probability measure for the
matrix generalized inverse Gaussian distribution (Butler 1998) with density function

f1(X) = c1 (det X)
b− 1

2 (m+1) etr(−�X−1−�X), X > 0, where c1 is the normalizing
constant, � and � are positive definite matrices, and b ∈ R. Then

∫
(dP1/dP0)

4 dP0

= c
∫
X>0

(det X)
4b−3α− 1

2 (m+1) etr(−4�X−1 − (4� − 3Im)X)dX ,

where c0 = 1/�m(α) is the normalizing constant of Wm(α, Im) and c = c41/c
3
0. By

Herz (1955, p. 506) and Butler (1998, Eq. (2)), we deduce that
∫

(dP1/dP0)4 dP0 <

∞ in the following cases: (i) � ≥ 0, � − 3
4 Im > 0, b ≥ 1

4 (3α + 1
2m); (ii) � > 0,

� − 3
4 Im > 0, b ∈ R; and (iii) � > 0, � − 3

4 Im ≥ 0, b < 1
4 (3α − 1

2 (m − 1)).
Therefore, Assumptions 1 also hold for broad classes of the model Qn2.

7.4 The distribution of the test statistic under contiguous alternatives

Let P0 = Wm(α, Im), α > max{ 12 (2m − 1), 1
2 (m + 3)}. Also, denote by Pn =

P0 ⊗ · · · ⊗ P0 and Qn = Qn1 ⊗ · · · ⊗ Qn1 the n-fold product probability measures
of P0 and Qn1, respectively.

Theorem 11 Let m ≥ 2 and Xn1, . . . , Xnn, n ∈ N, be a triangular array of m × m
positive definite row-wise i.i.d. random matrices, where Xnj = X j , j = 1, . . . , n.
We assume that the distribution of Xnj is Qn1, for every j = 1, . . . , n. Further, let
Zn = (Zn(T ), T > 0) be a random field with

Zn(T ) = 1√
n

n∑
j=1

[
�m(α)Aν(T , X1/2

nj X̄−1
n X1/2

nj ) − etr(−T /α)

]
,

T > 0. Under Assumptions 1, there exists a centeredGaussian fieldZ := (Z(T ), T >

0)with sample paths in L2 and the covariance function K (S, T ) in (58), and a function

c(T ) =
∫
X>0

[
�m(α)Aν(T , α−1X) + α−2(tr T ) etr(−α−1T )(tr X)

]
h(X) dP0(X),

123



1366 E. Hadjicosta, D. Richards

T > 0, such that Zn
d→Z + c in L2. Moreover, as n → ∞,

T2
n

d→
∫
T>0

(Z(T ) + c(T )
)2 dP0(T ).

The proof of this theorem can be obtained by following the approach of Taherizadeh
(2009, pp. 79–91) and Hadjicosta and Richards (2019, Theorem 4.2). We omit the
details, which can also be found in Hadjicosta (2019).

8 The efficiency of the test

We now investigate the approximate Bahadur slope of the statistic T2
n under local

alternatives. We will prove the validity of a modified version of Wieand’s condition.
The proof of Wieand’s condition, under which the Bahadur and Pitman efficiencies
agree, remains an open problem. By applying these results, we will be able to calculate
the approximate asymptotic relative efficiency (ARE) of the proposed test relative to
potential alternative tests.

For m ≥ 2, let X1, X2, . . . be i.i.d., m × m positive definite random matrices with
unknown distribution P . We assume that P is indexed by a parameter θ ∈ � :=
(−η, η) or � := [0, η), for some η > 0. We let θ ∈ �0 = {θ0} = {0} to represent
the null hypothesis and θ ∈ �1 = �\{0} to represent the alternative hypothesis. In
Sect. 3, we showed that T2

n is scale invariant, i.e., it does not depend on the unknown
scale matrix �. Thus, under H0, we assume that X1, X2, . . . are i.i.d.,m ×m positive
definite P0-distributed random matrices and under the local alternatives, represented
by θ ∈ �1, X1, X2, . . . are i.i.d., m × m positive definite Pθ -distributed random
matrices.

The Radon–Nikodym derivative of Pθ with respect to P0 is dPθ /dP0 = 1 + θhθ .
We assume that as θ → 0, the function hθ converges to some function h in mean
square, i.e.,

lim
θ→0

∫
X>0

|hθ (X) − h(X)|2 dP0(X) = 0. (106)

Since
∫

(dPθ /dP0) dP0 = 1 then
∫
X>0 hθ (X) dP0(X) = 0, θ ∈ �1. We also assume

that for θ ∈ �1, ∫
X>0

Xhθ (X) dP0(X) = 0. (107)

Denote by �0 and �1 the null and alternative parameter spaces, respectively. For
θ ∈ �0, let Fn(t) = Pθ (Tn < t), t ∈ R, be the null distribution of Tn ; then, the
level attained by Tn is Ln := 1 − Fn(Tn). For θ ∈ �1, the exact Bahadur slope of
{Tn : n ∈ N} is c(θ) = −2 limn→∞ n−1 log Ln, whenever the limit exists (almost
surely); for θ ∈ �0, this limit exists with c(θ) = 0.

For a sequence {Uj,n : n ∈ N} of test statistics with exact Bahadur slope c j (θ), j =
1, 2, the exact Bahadur asymptotic relative efficiency of {U1,n : n ∈ N}with respect to
{U2,n : n ∈ N} is c1(θ)/c2(θ), θ ∈ �1. If c1(θ)/c2(θ) > 1, then the sequence {U1,n :
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n ∈ N} is preferred for the test of hypothesis. We study the approximate (Bahadur)
slope of Tn as it is difficult to calculate exact slopes (Bahadur 1971, Theorem 7.2)
and since, for �0 = {θ0}, the approximate slope is close to the exact slope for θ in a
neighborhood of θ0, i.e., under local alternatives (Bahadur 1960, 1967).

Theorem 12 The sequence of test statistics {Tn : n ∈ N} is a standard sequence. The
approximate Bahadur slope of the test is δ̃−1

1 b2(θ), where δ̃1 is the largest eigenvalue
of the operator S, and

b2(θ) = θ2
∫
T>0

[ ∫
X>0

�m(α)Aν(T , α−1X)hθ (X) dP0(X)

]2
dP0(T ).

Moreover,

lim
θ→0

δ̃−1
1 b2(θ)

θ2
= δ̃−1

1

∫
T>0

[ ∫
X>0

�m(α)Aν(T , α−1X)h(X) dP0(X)

]2
dP0(T ).

The proof of this theorem is similar to the proof of Hadjicosta and Richards (2019,
Theorem 5.1). We will omit the details as they can be found in Hadjicosta (2019).

Wieand (1976) showed that if two standard sequences of test statistics satisfy an
additional condition, now called theWieand’s condition, then the limiting approximate
Bahadur efficiency is in accord with the limiting Pitman efficiency, as the level of
significance decreases to 0. For a description of Pitman’s asymptotic relative efficiency,
see Taherizadeh (2009, Chapter 5) or Hadjicosta and Richards (2019, Section 5).
Although a proof of Wieand’s condition for the statistics {Tn : n ∈ N} remains an
open problem, we will show that a modified form of the condition holds.

Theorem 13 There exists a constant θ∗ > 0 such that for any ε > 0 and γ ∈ (0, 1),
there exists a constant C > 0 such that

P(|n−1/2Tn − b(θ)| ≤ εb(θ)) > 1 − γ

for any θ ∈ �1 ∩ (−θ∗, θ∗) and n1/2 > C/b2(θ).

9 Concluding remarks

The results in this paper give rise to a plethora of open problems. The statistic T2
n

is the only statistic available for carrying out goodness-of-fit tests for the Wishart
distributions, so it will be useful to develop alternative tests so that relative efficiency
calculations can be done. Henze et al. (2012) have provided a goodness-of-fit test, for
the gamma distributions, based on the Laplace transform; we believe that their results
are worthy of study for extension to the Wishart distributions.

The results of Henze et al. (2012) also pertain to the case in which α is unknown,
which raises the problem of extending our results to Wishart distributions with
unknown shape parameter. One approach to this problem is to insert for each α in
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(3) an estimator α̂; this is related to the method of inserting a parameter estimator into
a V -statistic; cf. Matsui and Takemura (2008).

In constructing the statistic T2
n , we fixed ν = α − 1

2 (m + 1); see (51). For general
ν, the corresponding V -statistic representation will be more complex, involving new
integrals for the generalized hypergeometric functions of matrix argument. Also, the
limiting distribution of the statistic will be of the usual form, an infinite linear combi-
nation of i.i.d. χ2

1 random variables, but it will be a challenging problem to develop
the spectral analysis of the corresponding covariance operator.

As for choosing a weight measure P0, it will be useful to study weight measures w

of the form dw(T ) = etr(−BT )dP0(T ), where the “tuning parameter” B is a positive
definite matrix that enables detection of departures from H0 due to specific entries in
the random data.
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