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Abstract
In this paper, we consider the optimal design problem for extrapolation and estimation
of the slope at a given point, say z, in a polynomial regression with no intercept. We
provide explicit solutions of these problems in many cases and characterize those
values of z, where this is not possible.

Keywords Polynomial regression · Extrapolation · Slope estimation · c-optimal
designs

1 Introduction

Consider the common linear regression model

Yi = θ� f (xi ) + εi , i = 1, . . . , N , (1)

where ε1, . . . , εN denote uncorrelated random variables with E[εi ] = 0; Var(εi ) =
σ 2 > 0 (i = 1, . . . , N ), θ ∈ R

d is an vector of unknown parameters, f (x) =
( f1(x), . . . , fd(x))� is the vector of regression functions and x varies in the design
space X ⊂ R. Optimal design problems in the case, where the regression functions
are polynomials, i.e., fi (x) = xki , have been studied intensively in the literature and
numerous elegant solutions are available describing the optimal designs in a closed
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form. A large portion of the literature has its focus on the D-optimality criterion,
and starting with the seminal paper of Hoel (1958), numerous authors have received
explicit solutions of optimal design problems with respect to various determinant
type criteria [see Dette (1990), Dette and Franke (2001) and Zen and Tsai (2004)
among many others]. Another type of criterion for which explicit solutions of the
optimal design problem for polynomial regression are available is the E-optimality
criterion [see Pukelsheim and Studden (1993)]. The E-optimal design problem is
actually feasible, if the minimum eigenvalue of the information matrix of the optimal
design has multiplicity 1. In this case, the problem is equivalent to a c-optimal design
problem for a specific vector c ∈ R

m , which determines the design such that the
variance of the best linear estimate of the linear combination c�θ becomes minimal
[see Dette and Studden (1993)].

A rather complete characterization of the c-optimal design problem for regression
models with basis functions forming a Chebychev system can be found in the seminal
paper of Studden (1968). However, in this reference it is also indicated that in general
the solution of the c-optimal design problem is an extremely difficult one. For this
reason, explicit solutions of the c-optimal design problem are mainly available for
models with a small number of parameters, where they are usually determined by
geometric arguments using Elfving’s theorem [see Elfving (1952)].

The purpose of the present contribution is to provide more explicit solutions for
this challenging optimal design problem in polynomial type regression models, where
we concentrate on optimal designs for extrapolation and for estimating the slope.
The problem of designing experiments for extrapolation in polynomial regression has
been solved a long time ago by Hoel and Levine (1964), and several authors have
discussed optimal extrapolation designs from several perspectives problem [see Dette
andWong (1996); Dette and Huang (2000) or Celant and Broniatowski (2016) among
others]. Similarly, optimal designs for estimating the slope of a regression function
have found considerable attention in the literature [see Mandal and Heiligers (1992),
Pronzato andWalter (1993),Melas et al. (2003) or Dette et al. (2010)]. In this paper, we
add new explicit results to the literature by finding optimal designs for extrapolation
and estimating the slope in polynomial regression models with no intercept. Models
with no intercept are useful in several applications, where it is clear from the scientific
context that there is no effect for a particular value of the explanatory variable. For
example, in agriculture the crop yield is a function of farmland acreage and clearly 0
if no land is cultivated. Similarly, air resistance of an aircraft or car depends on the
speed of the vehicle and vanishes if the speed is 0.

The remaining part of this paper is organized as follows. In Sect. 2, we introduce the
basic optimal design problem and review a geometric characterization of the optimal
designs. Section3 is devoted to the determination of optimal designs for extrapolation
in a polynomial regression with no intercept. Finally, Sect. 4 considers the problem
of optimally designing experiments for the estimation of the slope in this model,
while Sect. 1 contains a technical result, which is used several times in the proofs of
our main statements. Although the results presented in this paper are promising, it is
worthwhile tomention that the developedmethodology is restricted to the construction
of c-optimal designs. In particular, our methods are not applicable to determine D- or
more general �p-optimal designs [see Huang et al. (1995), Chang and Lin (1997) or
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C-optimal designs for polynomial models with no intercept 63

Fang (2002) for some results in this direction].We also note that E-optimal designs for
the polynomial regression model with no intercept have been constructed explicitly
by Chang and Heiligers (1996).

2 Preliminaries

Following Kiefer (1974) we call a discrete probability measure

ξ =
(
x1 . . . xm
ω1 . . . ωm

)

with support points x1, . . . , xm and weights ω1, . . . , ωm an approximate design in
the linear regression model (1). If N observations can be taken, this means that the
quantities Nωi are rounded to integers, say ni , with

∑m
i=1 ni = N and ni observations

are taken at each experimental condition xi (i = 1, . . . ,m).
For an approximate design ξ , we denote by

M(ξ) =
∫
X

f (x) f �(x)ξ(dx)

its informationmatrix inmodel (1). The covariancematrix of the least squares estimate,
say θ̂ , can be approximated (if N → ∞, ni/N → ωi ) byσ 2/NM−1(ξ) and an optimal
design minimizes an appropriate real valued function of the matrix M−1(ξ). In this
paper, we are interested in designs which minimize the asymptotic variance of the best
linear unbiased estimate c�θ̂ of the linear combination c�θ for a given vector c ∈ R

d .
To be precise, we call a design ξ c-optimal in the regression model (1), if it minimizes
the function

�(ξ) =
{
c�M−(ξ)c, if there exists a vectorv ∈ R

dsuch thatc = M(ξ)v;
∞, otherwise,

whereM−(ξ) is a generalized inverse for thematrixM(ξ). In the first case, the design ξ

is called admissible for estimating the linear combination c�θ in the regression model
(1) and the value of the quadratic form does not depend on the choice of the generalized
inverse [see Pukelsheim (2006)]. An important case is obtained by the choice c� =
( f1(z), . . . , fd(z)) for some z, which corresponds to the minimization of the variance
of the best unbiased prediction of the function θ� f (x) at the point z. If z ∈ X the
optimal design is called optimal interpolation design, if z /∈ X optimal extrapolation
design. IfX ⊂ R, the vector f is differentiable and c� = ( f ′

1(z), . . . , f ′
d(z)) for some

z ∈ R the optimal design will be called optimal design for estimating derivative at the
point z.

A useful tool for the determination of c-optimal designs is a geometric charac-
terization of the c-optimal design and called Elfving’s theorem [see Elfving (1952)].
We formulate it here in a slightly different form, which can be directly used to check
optimality of a given design [see Dette et al. (2004) for details].
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Theorem 1 An admissible design ξ∗ for estimating the linear combination c�θ with
support points x1, x2, . . . , xm and weights ω1, ω2, . . . , ωm is c-optimal if and only if
there exists a vector p ∈ R

d and a constant h such that the following conditions are
satisfied:

(1) |p� f (x)| ≤ 1 for all x ∈ X ;
(2) |p� f (xi )| = 1 for all i = 1, 2, . . . ,m;
(3) c = h

∑m
i=1 f (xi )ωi p� f (xi ).

Moreover, in this case we have c�M−(ξ∗)c = h2.

The function p� f (x) will be called extremal polynomial throughout this paper.

3 Optimal extrapolation designs

It is well known that for the common polynomial regression model, i.e., f (x) =
(1, x, . . . , xn)� on the interval [−1, 1] the optimal extrapolation design for a point
z with |z| > 1 is unique and supported at the extremal points s1,n, . . . , sn+1,n of the
Chebyshev polynomial of the first kind

Tn(x) = cos(n arccos(x)) (2)

[see Hoel and Levine (1964)]. In our notation, this polynomial is the unique extremal
polynomial (up to a sign) and the vector p in Theorem 1 is given by coefficients of
the polynomial Tn . The points si,n are explicitly given by

si,n = cos
(

(n+1−i)π
n

)
, i = 1, 2, . . . , n + 1, (3)

and the weights of the optimal extrapolating design are obtained by

ωi = |Li (z)|∑n+1
j=1 |L j (z)|

, i = 1, . . . , n + 1, (4)

where

Li (x) =
∏

j 
=i (x − s j,n)∏
j 
=i (si,n − s j,n)

, i = 1, . . . , n + 1

are the Lagrange basis interpolation polynomials corresponding to the nodes
s1,n, . . . , sn+1,n .

In this section, we investigate the optimal extrapolation designs for a polynomial
regressionmodel on the interval [−1, 1]without intercept.More precisely, we consider
the vector of regression functions

f (x) = (x, x2, . . . , xn)�. (5)
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C-optimal designs for polynomial models with no intercept 65

in model (1). If the degree n in (5) is odd, the Chebyshev polynomial has no intercept
and therefore it remains the unique extremal polynomial in Elfving’s theorem. Conse-
quently, the design with support points and weights given by (3) and (4), respectively,
is again an optimal extrapolation design. However, the optimal design is not unique
anymore. Nevertheless , we can describe all optimal extrapolation designs in this case.
If the degree of the polynomial regression with no intercept is even the situation is
different. The optimal extremal polynomial is again unique and can be found explic-
itly. Interestingly, the corresponding extremal polynomial in Elfving’s theorem is not
a Chebyshev polynomial. We first discuss the case where the degree in the regression
model (1) with vector of regression functions given by (5) is odd, that is n = 2k + 1.

Theorem 2 In the case n = 2k + 1, there exist exactly two optimal extrapolation
designs with 2k + 1 support points for the polynomial regression model of degree
2k + 1 without intercept on the interval [−1, 1]. One of the designs is supported at
the 2k + 1 smallest extremal points t∗i = cos

(
π(2k+2−i)

2k+1

)
(i = 1, . . . , 2k + 1) of the

Chebyshev polynomial T2k+1(x) in the interval [−1, 1) and the other one is supported
at the 2k + 1 largest extremal points t∗i−1 = cos

(
π(2k+2−i)

2k+1

)
(i = 2, . . . , 2k + 2) of

T2k+1(x) in the interval (−1, 1]. The corresponding weights ω∗
1, . . . , ω

∗
2k+1 at these

points are given by

ω∗
i = ω∗

i (z) = |L̄i (z)|∑n
j=1 |L̄ j (z)|

(i = 1, . . . , n), (6)

where

L̄i (x) = x
∏

j 
=i (x − t∗j )
t∗i

∏
j 
=i (t

∗
i − t∗j )

(7)

is the i th Lagrange basis interpolation polynomial without intercept corresponding to
the nodes t∗1 , . . . , t∗2k+1 (i = 1, . . . , 2k + 1).

Proof Recall the definition of the vector f (with n = 2k + 1) in (5) and note that the
extremal polynomial in Theorem1 is given by p� f (x) = ±T2k+1(x). Consequently,
by this characterization the support of the optimal extrapolation design is a subset of
the extremal points

{
cos

(
π(2k+2−i)

2k+1

) : i = 1, . . . , 2k + 2
}

of the polynomial −T2k+1(x) on the interval [−1, 1]. It will be shown below that it
is possible to satisfy all conditions of Theorem1 using all interior support points and
exactly one of the boundary points.We assumewithout loss of generality that t∗1 = −1
and z > 1, all other cases can be proved by similar arguments.

Define the vector β = (β1, . . . , β2k+1)
T by β i = ωi (p� f (t∗i )), i = 1, . . . , 2k + 1,

where p� f (x) = −T2k+1(x) is the extremal polynomial in Theorem1 and
ω1, . . . , ω2k+1 are weights. Note that

p� f (t∗i ) = −T2k+1(t
∗
i ) = (−1)2k+1−i , i = 1, . . . , 2k + 1 (8)
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and that the condition (3) in Theorem1 can be rewritten as

c = (z, . . . , zn)� = hFβ, (9)

where

F = ((t∗j )i )
2k+1
i, j=1 = ( f (t∗1 ), . . . , f (t∗2k+1)) ∈ R

2k+1×2k+1.

We will show that there exists a solution with respect to the nonnegative weights
ω1, . . . , ω2k+1 with

∑2k+1
i=1 ωi = 1 which is given by (6). As the conditions (1) and

(2) in this theorem are obviously satisfied this yields the assertion of Theorem2.
In order to investigate condition (9) note that the identity F−1F = I2k+1 (here

I2k+1 is the identity matrix) implies e�
i F−1 f (t∗j ) = δi j (i, j = 1, . . . , 2k+1),where

δi j is the Kroneker symbol. As these equations characterize the i th Lagrange basis
interpolation polynomial L̄i (z) = aTi f (z) with nodes t∗1 , . . . , t∗2k+1 we have

e�
i F−1 f (z) = L̄i (z), i = 1, . . . , 2k + 1,

or equivalently F−1 f (z) = (L̄1(z), . . . , L̄2k+1(z))�. Therefore we obtain for the
solution of (9)

hβ = (L̄1(z), . . . , L̄2k+1(z))
�

or equivalently (since βi = ωi (p� f (x∗
i )))

hβi = hωi (−1)2k+1−i = L̄i (z), i = 1, . . . , 2k + 1. (10)

Note that it follows immediately from formula (7) that for z > 1 the sign of L̄i (z)
is given by (−1)2k+1−i which implies that the weights are given by ωi = |L̄i (z)|/h
with h = ∑n

j=1 |L̄ j (z)| and proves the result. ��
Our next result specifies the optimal extrapolation designs for a polynomial regres-

sion model of even degree with no intercept. In this case, the structure of the optimal
design changes substantially.

Theorem 3 For i = 1, . . . , k define

x∗
i = −

√√√√cos (i−1)π
k + cos π

2k

1 + cos π
2k

, x∗
2k+1−i =

√√√√cos (i−1)π
k + cos π

2k

1 + cos π
2k

. (11)

Then the design with support points x∗
1 , . . . , x

∗
2k and weights ω1, . . . , ω2k determined

by (6) is the unique optimal extrapolation design in the polynomial regression model
of degree 2k without intercept on the interval [−1, 1].
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Fig. 1 The extremal polynomial
in the proof of Theorem3 in the
case n = 4 (k = 2)

Proof A simple calculation shows that the points x∗
1 , x

∗
2 , . . . , x

∗
2k in (11) are the

extremal points of the polynomial

P(x) = Tk
((

x2
(
1 + cos

π

2k

)
− cos

π

2k

))
. (12)

Consequently, P(x) is an extremal polynomial, which can be used in Theorem 1 to
prove the optimality of the design. Observing that P(x∗

i ) = (−1)i+1, if i = 1, . . . , k
and P(x∗

i ) = (−1)i if i = k+1, . . . , 2kwe see that conditions (1) and (2) ofTheorem1
are satisfied. The verification of the condition (3) follows by the same arguments as
given in the proof of Theorem2 and is omitted for the sake of brevity.

The uniqueness of the optimal design follows from the fact that the polynomial P in
(12) is the unique (up to a sign) polynomial of degree 2k with no intercept that achieves
its sup-norm on the interval [−1, 1] exactly 2k times. The proof of this property can
be obtained by the same arguments as the proof of a similar extremal property of the
Chebyshev polynomial of the first kind. ��
Example 1 In the case n = 4 (that is k = 2) we have cos π

2k = cos π
4 = 1√

2
and the

extremal polynomial in (12) is given by

P(x) = 2[x2(1 + 1√
2
) − 1√

2
]2 − 1 = (3 + 2

√
2)x4 − (2 + 2

√
2)x2.

The extremal polynomial P(x) in (12) is depicted in Fig. 1 and a straightforward
calculation shows that the optimal extrapolation design at the point z = 2 has masses
− 1,− 0.6436, 0.6436, and 1 at the points 0.083, 0.227, 0.442 and 0.248, respectively.

4 Optimal designs for estimating the slope

In this section, we consider optimal designs for estimating the slope of a polynomial
regression with no intercept on the interval [−1, 1] at a given point, say z ∈ R. As
pointed out in the previous sections, this problem corresponds to a c-optimal design
problem in model (1) with f �(x) = (x, . . . , xn) and vector c = (1, 2z, . . . , nzn−1)�.
For the common polynomial model with intercept, this problem has recently been
studied in Dette et al. (2010), who showed that there exists three different types of
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optimal designs, depending on the location of the point z. Only in one of these cases,
the corresponding extremal polynomial is a Chebyshev polynomial.

For the polynomial with no intercept, we begin with a result regarding the general
structure of the optimal design for estimating derivative at a given point. The proof is
similar to the proof of the corresponding result with intercept [see Dette et al. (2010)]
and therefore omitted.

Theorem 4 The optimal design for estimating the slope in the polynomial regression
of degree n with no intercept has either m = n or m = n−1 support points t∗1 , . . . , t∗m.
The weights at these points are given by

ωi = |L̄ ′
i (z)|∑m

j=1 |L̄ ′
j (z)|

, i = 1, . . . ,m, (13)

where L̄1, . . . , L̄m are the Lagrange basis interpolation polynomials without intercept
defined in (7) corresponding to the nodes t∗1 , . . . , t∗m and L̄ ′

i denotes the derivative of
L̄i .

We now discuss the case of even and odd degree separately starting with the odd
degree, that is n = 2k + 1.

4.1 Polynomials of odd degree

For the linear model through the origin (that is k = 0, n = 1), it is easy to see using
Elfving’s theorem that (independently of the point z) there exist an infinite number of
optimal designs of the form ξ∗ = αδ−1 + (1 − α)δ1 where α ∈ [0, 1] and δx denotes
the Dirac measure at the point x . However, in the case k ≥ 1 the situation is more
complicated. In order to describe the optimal design in the case n = 2k + 1, explicitly
we recall the notation

si,2k+1 = cos( (2k+2−i)π
2k+1 ), i = 1, . . . , 2k + 2 (14)

for the extremal points of the Chebyshev polynomial T2k+1(x) = cos((2k +
1) arccos x) of the first kind and denote by

U2k(x) = sin((2k + 1) arccos x)

cos(arccos x)

the 2kth Chebyshev polynomial of the second kind. It can be checked by a direct calcu-
lation that the leading coefficient ofU2k(x) is 22k and that T ′

2k+1(x) = (2k + 1)U2k(x).
Therefore we obtain the representation

U2k(x) = 22k
2k+1∏
l=2

(x − sl,2k+1). (15)
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C-optimal designs for polynomial models with no intercept 69

Based on the polynomialU2k(x), we now consider four basic polynomials of degree
2k + 1

R(x) = x(x + 1)U2k(x)

x − sk+1,2k+1
, R1(x) = x(x − 1)U2k(x)

x − sk+2,2k+1
, (16)

R2(x) = x(x − 1)U2k(x)

x − sk+1,2k+1
, R3(x) = x(x + 1)U2k(x)

x − sk+2,2k+1
, (17)

and denote the roots of their derivatives by

ν1 < ν2 < · · · < ν2k, μ1 < μ2 < · · · < μ2k, (18)

ρ1 < ρ2 < · · · < ρ2k, τ1 < τ2 < · · · < τ2k, (19)

respectively. In order to study the roots of the derivatives of these polynomials, we
will make use of the following two auxiliary results.

Lemma 1 The roots ν1 < ν2 < · · · < ν2k and μ1 < μ2 < · · · < μ2k of the
polynomials R′(x) and R′

1(x) satisfy

ν2k+1−i = −μi , i = 1, . . . , 2k.

The roots ρ1 < ρ2 < · · · < ρ2k and τ1 < τ2 < · · · < τ2k of the polynomials R′
2(x)

and R′
3(x) satisfy

ρ2k+1−i = −τi , i = 1, . . . , 2k.

Lemma1 is a simple consequence of the facts sk+1,2k+1 = −sk+2,2k+1 and
U2k(−x) = U2k(x), which implies R(−x) = R1(x), R2(−x) = R3(x).

Lemma 2 Let P1(x) and P2(x) be polynomials of degree n with n distinct roots t(1,1) <

t(2,1) < · · · < t(n,1) and t(1,2) < t(2,2) < · · · < t(n,2), respectively. Assume that the
roots are interlacing in the following sense:

t(1,1) ≤ t(1,2) < t(2,1) ≤ t(2,2) < · · · < t(n,1) ≤ t(n,2)

where at least one of the inequalities t(�,1) ≤ t(�,2) (� = 1, . . . n) is strict. Then the
roots v(1,1) ≤ v(2,1) ≤ · · · ≤ v(n−1,1) and v(1,2) ≤ v(2,2) ≤ · · · ≤ v(n−1,2) of the
derivatives P ′

1(x) and P ′
2(x) are strictly interlacing, that is

v(1,1) < v(2,1) < · · · < v(1,n−1) < v(2,n−1).

The proof can be found in the Ph.D. thesis of Sahm (1998) and is given in the
“Appendix” for the sake of completeness. The following lemma provides the interlac-
ing property for the roots of the first derivatives of the polynomials R(x), R1(x), R2(x)
and R3(x).
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Lemma 3 The points defined by (18)–(19) satisfy

μi < ρi , μi < τi+1, τi < νi , ρi < νi+1, i = 1, . . . , 2k,

where ν2k+1 = ∞, τ2k+1 = ∞.

Proof The proof is a direct consequence of Lemma2. Exemplarily, consider the roots
of the polynomials R1(x) and R2(x), which are given by

s2,2k+1 < · · · < sk,2k+1 < sk+1,2k+1 < 0 < sk+3,2k+1 < · · · < s2k+1,2k+1,

s2,2k+1 < · · · < sk,2k+1 < 0 < sk+2,2k+1 < sk+3,2k+1 < · · · < s2k+1,2k+1,

respectively. Consequently, Lemma2 with P1(x) = R1(x) and P2(x) = R2(x) is
applicable and implies for the roots μi and ρi of the derivatives R′

1 and R′
2 the inter-

lacing properties

μ1 < ρ1 < μ2 < ρ2 < · · · < μ2k < ρ2k .

As all other cases are treated similarly, the assertion of Lemma3 follows. ��
For the statement of our first main result, we define a sequence of designs

ξ1, . . . , ξ2k+2 supported at 2k + 1 points, where the weights are defined by (13) for
the different support points. Note that these weights are positive by definition. For the
design ξ1, the support points are given by

s2,2k+1, s3,2k+1, . . . , s2k+2,2k+1. (20)

If i ∈ {2, . . . 2k + 1} the support points of the design ξi are given by

s1,2k+1, . . . si−1,2k+1, si+1,2k+1, . . . , s2k+2,2k+1,

and the support points of the design ξ2k+2 are given by

s1,2k+1, s2,2k+1, . . . , s2k+1,2k+1.

Note that the designs are obtainedbyomittingoneof thepoints s1,2k+1, . . . , s2k+2,2k+1.
In the following result, we show that for many values of z one of the designs
ξ1, ξk+1, ξk+2 or ξ2k+2 is optimal for estimating the slope in a polynomial regres-
sion with no intercept.

Theorem 5 The optimal design on the interval [−1, 1] for estimating the slope of a
polynomial regression with no intercept at the point z has at most 2k + 1 points in the
set {s1,2k+1, . . . , s2k+2,2k+1} if and only if z ∈ ∪2k+1

i=1 Ai , where the set Ai is defined
by Ai = (−ν2k+2−i , νi ), i = 1, . . . , 2k + 1. Moreover,
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C-optimal designs for polynomial models with no intercept 71

(1) The design ξ1 is the optimal design if and only if z is in one of the intervals
(μi , ρi ), i = 1, . . . , 2k. If z = ρi , i = 1, . . . , 2k the optimal design is supported
at the 2k points

s2,2k+1, . . . , sk,2k+1, sk+2,2k+1, . . . , s2k+2,2k+1

with weights defined by (13).
(2) The design ξk+1 is the optimal design if and only if z is in one of the intervals

(−∞, ν1), (ρ2k,∞) or (ρi , νi+1), i = 1, . . . , 2k − 1. If z = νi , i = 1, . . . , 2k the
optimal design is supported at the 2k points

s1,2k+1, . . . , sk,2k+1, sk+2,2k+1, . . . , s2k+1,2k+1

with weights defined by (13).
(3) The design ξk+2 is the optimal design if and only if z is in one of the intervals

(−∞, τ1), (μ2k,∞) or (μi , τi+1), i = 1, . . . , 2k − 1. If z = μi , i = 1, . . . , 2k
the optimal design is supported at the 2k points

s2,2k+1, . . . , sk+1,2k+1, sk+3,2k+1, . . . , s2k+2,2k+1

with weights defined by (13).
(4) The design ξ2k+2 is the optimal design if and only if z is in one of the intervals

(τi , νi ), i = 1, . . . , 2k. If z = τi , i = 1, . . . , 2k the optimal design is supported
at the 2k points

s1,2k+1, . . . , sk+1,2k+1, sk+3,2k+1, . . . , s2k+1,2k+1

with weights defined by (13).

Proof Webegin with the proof of the statements (1)–(4), where we restrict ourselves to
the case (1), as the other cases can be shown similarly. The basic idea is the following.
The polynomial T2k+1(x) will serve as extremal polynomial in Theorem1. Conse-
quently, the points si,2k+1 in (14) are potential support points of the optimal design and
conditions (1) and (2) of Theorem1 are satisfied. It now remains to characterize those
values of z such that the system of equations defined by the condition (3) in Theorem1
admits a solution with nonnegative weights ωi satisfying

∑m
i=1 ωi = 1. Observing

the representation (15), it is easy to see that the polynomials R(x), R1(x), R2(x) and
R3(x) are special cases (up to a constant) of the polynomials

L̄i, j (x) = x
∏

� 
=i, j (x − s�,2k+1)

s j,2k+1
∏

� 
=i, j (s j,2k+1 − s�,2k+1)
, j = 1, 2, . . . , i−1, i+1, . . . , 2k+2

(21)
(Note that L̄i, j (x) is a polynomial of degree 2k + 1 as the index � runs over the set
{1, 2, . . . , 2k + 2}\{i, j}.) More precisely, we have

R(x) = cL̄2k+2,k+1(x), R1(x) = c1 L̄1,k+2(x),

R2(x) = c2 L̄1,k+1(x), R3(x) = c3 L̄2k+2,k+2(x),
(22)
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for appropriate constants c, c1, c2 and c3. Note that in the case (1), the Lagrange
interpolation polynomial without intercept defined in (7) corresponding to the points
in (20) is given by

L̄ j (x) = x
∏

� 
=1, j (x − s�,2k+1)

s j,2k+1
∏

� 
=1, j (s j,2k+1 − s�,2k+1)
= L̄1, j (x)

( j = 2, . . . , 2k + 2). If z → −∞ the sign of the derivatives L̄ ′
1, j (z) coincides with

the sign of the polynomials L̄1, j (z) and is equal to the sign of

(−1)s j,2k+1

∏
� 
=1, j

(s j,2k+1 − s�,2k+1),

which is denoted by t j in the following ( j = 2, . . . , 2k + 2). Consequently, we have

t j =
{

(−1) j if j = 2, . . . , k + 1

(−1) j+1 if j = k + 2, . . . , 2k + 2

if z is negative and |z| is sufficiently large.
Let us now consider the signs of the derivatives of the polynomials L̄1, j (x) ( j =

2, . . . , 2k + 1) at a point z ∈ (μi , ρi ) (i = 1, . . . , 2k + 1). For this purpose, we
denote the roots of L̄ ′

1, j (x) by u j,1, . . . , u j,2k, j = 2, . . . , 2k + 2. A straightforward

calculation shows that the roots of the polynomials L̄1, j and L̄1,l for j < l are
interlacing and by Lemma2 we have

u2k+2,1 < · · · < uk+2,1 < uk+1,1 < · · · < u2,1 <

< u2k+2,2 < · · · < uk+2,2 < uk+1,2 < · · · < u2,2 < · · · < u2k+2,2k < · · · < u2,2k .

Observing that μ j and ρ j are the roots of the polynomials R1 and R2, respectively,
and using the representation (22) it follows that

uk+2, j = μ j , uk+1, j = ρ j , j = 1, . . . , 2k.

Next we show that the quantities L̄ ′
1,i (z)(−1)i , i = 1, 2, . . . , 2k +1 have the same

sign if and only if z is in the one of the intervals (μi , ρi ), i = 1, . . . , 2k. Note (see
Fig. 2) that each of the polynomials L̄1, j ( j = 2k + 2, . . . , k + 2) has exactly one
root in the interval (−∞, uk+2,1 − δ) (where δ > 0 and arbitrarily small). Moreover
uk+2,1 = μ1, uk+1,1 = ρ1, and there are no roots between μ1 and ρ1. Consequently,
the quantities L̄ ′

i (z)(−1)i , i = 1, 2, . . . , 2k + 1 have the same sign for z ∈ (μ1, ρ1).
Consider now the intervals (μi , ρi ), i = 2, . . . , 2k.Note that the derivatives L̄ ′

1, j (z)
( j = 1, . . . , 2k+1) change their signs exactly once as z is passing from ρi toμi+1 and
that there are no roots between μi and ρi (see Fig. 3, where we show these functions
for k = 1).
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−∞ u2k+2,1

μ1

uk+2,1

ρ1

uk+1,1

μ2

uk+2,2

ρ2

uk+1,2 ∞

Fig. 2 Roots of the polynomials L̄ ′
1, j (x), j = 1, . . . , 2k. There are no roots between μ1 and ρ1

Fig. 3 The derivatives L̄ ′
1, j (z) as a function z ∈ R for j = 1, . . . , n = 2k+1 = 3 (k = 1). The polynomials

L̄ ′
1,1(z), L̄

′
1,2(z) and L̄ ′

1,3(z) alternate in sign if and only if z ∈ (μ1, ρ1) ∪ (μ2, ρ2)

Thus the signs of the quantities L̄ ′
1, j (z) coincide with the signs of

(−1)i−1T2k+1(s j,2k+1) if z is in the interval (μi , ρi ), and they do not coincide
with the signs of T2k+1(s j,2k+1) or −T2k+1(s j,2k+1) if z is outside these intervals
(i = 2, . . . , 2k+1). Using these observations, we obtain in the same manner as in the
proof of Theorem2 that

c� = (1, 2z, . . . , (2k + 1)z2k)� = F · (L̄ ′
1,1(z), . . . , L̄

′
1,2k+1(z))

� = hFβ,

where

F = (sij+1,2k+1)
2k+1
i, j=1 ∈ R

2k+1×2k+1,

h = ∑2k+1
j=1 |L̄ ′

1, j (z)|, βi = ωi T2k+1(si+1,2k+1) and ωi = |L̄ ′
1,i (z)| ≥ 0 (i =

1, . . . , 2k + 1). As these equations are equivalent to the condition (3) in Theorem1,
the optimality of the design ξ1 in the part (1) of Theorem5 follows. The optimality
of the designs ξk+1, ξk+2 and ξ2k+2 in parts (2), (3) and (4) is shown by the same
arguments.

Next we consider the remaining case z = ρi , i = 1, 2, . . . , 2k in the part (1) of
Theorem5. For this purpose, we use the obvious identities

(μi , ρi ) ∪ (ρi , νi+1) ∪ {ρi } = (μi , νi+1), i = 1, . . . , 2k,

(μi , τi+1) ∪ (τi+1, νi+1) ∪ {τi+1} = (μi , νi+1), i = 1, . . . , 2k,
(23)
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and (−∞, τ1)∪ (τ1, ν1)∪{τ1} = (μ0, ν1), where μ0 = −∞. The assertion about the
case z = ρi , i = 1, 2, . . . , 2k follows considering the limit z → ρi (the designs ξ1
and ξk+1 must converge to the same limit). The remaining statements for z = νi , μi

and τi are treated similarly. Finally, it can be also verified that designs ξi can not be
optimal if i is outside the set {1, k + 1, k + 2, 2k + 1}.

Due to Lemma1, we have ν2k+1−i = −μi , i = 1, . . . , 2k. Thus, from parts (1)–(4)
it follows that the optimal design on the interval [−1, 1] for estimating the slope of a
polynomial regression with no intercept at the point z is supported at exactly 2k + 1
points in the set {s1,2k+1, . . . , s2k+2,2k+1} if and only if z ∈ ∪2k+1

i=1 Ai , which completes
the proof of Theorem5. ��

Remark 1 (a) It also follows from the proof of Theorem5 that ξ j cannot be optimal if
j /∈ {1, k + 1, k + 2, 2k + 2}.

(b) It follows from the proof of Theorem5 that for any z ∈ ∪2k+1
i=1 Ai there exist exactly

two optimal designs for estimating the slope of a polynomial regression with no
intercept which are supported at 2k + 1 points from the set of 2k + 2 points
{s1,2k+1, . . . , s2k+2,2k+1}. Indeed, it follows from the identity (23) that each

z ∈ Ai = (−ν2k+2−i , νi ) = (μi−1, νi ), i = 1, . . . , 2k + 1,

belongs to exactly twoof the intervals determined in the cases (1)–(4) ofTheorem5.
Similarly, the points ρ1, . . . , ρ2k and τ1, . . . , τ2k belong to exactly two of the
intervals determined in the cases (1)–(4) of Theorem5. (In this case there exists
an optimal design with 2k and 2k + 1 support points.)

Example 2 In this example, we illustrate potential applications of Theorem 5 deter-
mining optimal designs for estimating the slope of a cubic regressionwith no intercept.
(Note that this corresponds to the case k = 1 in the previous result.) In this case, the
extremal points in (14) are given by {−1,−1/2, 1/2, 1} and the derivatives of the
polynomials in (16)–(17) are given by

R′(x) = 12x2 + 4x − 2, R′
1(x) = 12x2 − 4x − 2,

R′
2(x) = 12x2 − 12x + 2, R′

3(x) = 12x2 + 12x + 2.

The corresponding roots are obtained as

ν1 = −0.608, ν2 = 0.274, μ1 = −0.274, μ2 = 0.608,

ρ1 = 0.211, ρ2 = 0.789, τ1 = −0.789, τ2 = −0.211,

and consequently the optimal design for estimating the slope of the polynomial
regression without intercept at the point z is supported at 3 points from the set
{−1,−1/2, 1/2, 1} if and only if

z ∈ (−∞,−0.608) ∪ (−0.274, 0.274) ∪ (0.608,∞)
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(1) The optimal design supported at the points {−1/2, 1/2, 1} if

z ∈ (μ1, ρ1) ∪ (μ2, ρ2) ≈ (−0.274, 0.211) ∪ (0.608, 0.789);

(2) The optimal design supported at the points {−1, 1/2, 1} if

z ∈ (−∞, ν1) ∪ (ρ1, ν2) ∪ (ρ2,∞)

≈ (−∞,−0.608) ∪ (0.211, 0.274) ∪ (0.789,∞);

(3) The optimal design supported at the points {−1,−1/2, 1} if

z ∈ (−∞, τ1) ∪ (μ1, τ2) ∪ (μ2,∞)

≈ (−∞,−0.789) ∪ (−0.274,−0.211) ∪ (0.608,∞);

(4) The optimal design supported at the points {−1,−1/2, 1/2} if

z ∈ (τ1, ν1) ∪ (τ2, ν2) ≈ (−0.789,−0.608) ∪ (−0.211, 0.274).

4.2 Polynomials of even degree

In this section, we consider the problem of designing an experiment for the estimation
of the slope of a polynomial regression of even degree with no intercept, that is n = 2k.
We recall the definition of the polynomial P(x) in (12), its corresponding extremal
points x∗

1 , . . . x
∗
2k in (11) and introduce the polynomials

Q1(x) = x(x + 1)
2k−1∏
�=2

(x − x∗
� ) = x(x + 1)P ′(x),

Q2(x) = x(x − 1)
2k−1∏
�=2

(x − x∗
� ) = x(x − 1)P ′(x),

Q3(x) = x(x2 − 1)
2k−1∏

�=2,� 
=k

(x − s�,2k−1),

Q4(x) = x(x2 − 1)
2k−1∏

�=2,� 
=k+1

(x − s�,2k−1),

where s1,2k−1, s2,2k−1, . . . , s2k,2k−1, are the extremal points of the Chebyshev poly-
nomial T2k−1(x). Moreover, we define the sets

B = ∪2k−1
i=0 (−ν2k−i , νi+1), C = ∪2k−1

i=1 (−ρ2k−i , ρi ), (24)

where ν2k = ∞ and ν1 < ν2 < · · · < ν2k−1 are the roots of the first derivative of the
polynomial Q1(x) and ρ1 < ρ2 < · · · < ρ2k−1 are the roots of the first derivative of
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the polynomial Q3(x). Note that the roots of the derivative of the polynomial Q2(x)
are given by −ν2k−1, · · · ,−ν1 because of the equality Q2(−x) = Q1(x).

Theorem 6 (1) There exists an optimal design for estimating the slope at the point z
in a polynomial regression of degree 2k ≥ 2 with no intercept supported at the
points x∗

1 , . . . x
∗
2k in (11) if and only z ∈ B. In this case, the optimal design is

unique and the corresponding weights are given by (13) with m = 2k.
(2) There exists an optimal design for estimating the slope at the point z in a polynomial

regression of degree 2k ≥ 2 with no intercept supported at the extremal points
s1,2k−1, s2,2k−1, . . . , s2k,2k−1, of the Chebyshev polynomial T2k−1(x) if and only
if z ∈ C. In this case, the optimal design is unique and the corresponding weights
are given by (13) with m = 2k.

Proof The proof is similar to that of Theorem5, and therefore, we only indicate a proof
of the part (1). As the polynomial P(x) in (12) obviously satisfies the conditions of
Theorem1, it remains to show the condition (3). It then follows that the weights are
uniquely determined by (13) with m = 2k.

Similar to the proof of Theorem2 the condition (3) of Theorem1 holds if the quan-
tities P(x∗

i ) and L̄ ′
i (z) have the same sign for i = 1, 2, . . . , 2k, where the polynomial

L̄i is given by

L̄i (x) = x
∏

s 
=i (x − x∗
s )

x∗
i

∏
s 
=i (x

∗
i − x∗

s )
, i = 1, 2, . . . , 2k.

Note that the quantities P(x∗
i )(−1)i , i = 1, 2, . . . , k and −P(x∗

i )(−1)i , i =
k+1, k+2, . . . , 2k have the same sign, and consequently, it is sufficient to show that all
the quantities L̄ ′

i (z)(−1)i , i = 1, 2, . . . , k and−L̄ ′
i (z)(−1)i , i = k+1, k+2, . . . , 2k

have the same sign. We will show that this property holds if and only if z ∈ B, where
the set B is defined in (24).

Obviously, the roots of the polynomials L̄i (x) and L̄i+1(x) satisfy the assumptions
of Lemma2. Note also that Q1(x) = c1 L̄2k(x), Q2(x) = c2 L̄1(x) for some constants
c1and c2. Consequently, if v(i,1) < · · · , v(i,2k−1) denote the roots of the derivative of
L̄i (x) (i = 1, 2, · · · , 2k), then an application of Lemma2 shows that

ν1 = v(1,2k) < · · · < v(1,1) = −ν2k−1 <

ν2 = v(2,2k) < · · · < v(2,1) = −ν2k−2 < ν3 < · · · <

ν2k−1 = v(2k−1,2k) < · · · < v(2k−1,1) = −ν1.

First we consider the case z < ν1. If z → −∞ the sign of the derivatives L̄ ′
i (z)

coincides with the sign of the polynomials L̄i (z) and is equal to the sign of

−x∗
i

∏
s 
=i

(x∗
i − x∗

s ), i = 1, 2, . . . , 2k.
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which is denoted by ti in the following i = 1, . . . , 2k. Consequently, we have

ti =
{

(−1)i if i = 1, . . . , k

(−1)i+1 if i = k + 1, . . . , 2k.

if z is negative and |z| is sufficiently large. Note that there are no zeros of the
polynomials L̄ ′

1(z), . . . , L̄
′
2k(z) for z ∈ (−∞, ν1). Therefore, all the quantities

L̄ ′
i (z)(−1)i , i = 1, 2, . . . , k and −L̄ ′

i (z)(−1)i , i = k + 1, k + 2, . . . , 2k have the
same sign for z ∈ (−∞, ν1).

Next consider the case z ∈ (−ν2k−1, ν2). In this case, it follows from the above
inequalities that all polynomials L̄ ′

i (z)(−1)i , i = 1, 2, . . . , k and −L̄ ′
i (z)(−1)i , i =

k + 1, k + 2, . . . , 2k have the same signs since all derivatives have exactly one sign
change on the interval (ν1,−ν2k−1). Proceeding in the same way, we can prove that
the quantities P(x∗

i ) and L̄ ′
i (z) (i = 1, 2, . . . , 2k) have the same sign if and only if

z ∈ B.
The uniqueness of the optimal design follows from the fact that the extremal poly-

nomial P(x) in (12) is unique in the sense that it is the unique polynomial of degree 2k
with no intercept that achieve its extremal absolute value equal in the interval [−1, 1]
exactly 2k times. This completes the proof of the part (1) of the theorem. The part (2)
can be proved in a similar way. ��
Example 3 (a) Consider the case n = 2, which corresponds to a quadratic regression

model with no intercept. In order to apply part (2) of Theorem6, note that in
this case the extremal points of the Chebyshev polynomials T1(x) are given by
s1,1 = −1 and s2,1 = 1 and Q3(x) = x(x − 1). This gives for the root of its
derivative ρ1 = 1/2.
Consequently, the optimal design for estimating the slope in a quadratic regression

model with no intercept is supported at the points −1 and 1 if and only if z ∈ C =
(− 1

2 ,
1
2 ). Moreover, in this case the weights are given by

1

2
− z and

1

2
+ z,

respectively. It can be checked by a direct calculation that this statement remains
correct in the case z = − 1

2 of z = 1
2 .

Next we consider the situation corresponding to the part (1) in Theorem6, noting
that in this case the polynomial P in (12) is given by P(x) = x , which yields x∗

1 = −1
and x∗

2 = 1 as support points of the potential optimal design. Moreover as Q1(x) =
x(x + 1) we have ν1 = −1/2 and ν2 = 1/2 and

B = (−∞,−1/2) ∪ (1/2,∞).

Consequently, if |z| > 1/2, it follows by a straightforward calculation that the
optimal design for estimating the slope in a quadratic regression has weights

1/2 − 1

4z
and 1/2 + 1

4z
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Table 1 The weights and support points of the optimal design for estimating the slope of a polynomial
regression with no intercept at the point z

z t1 t2 t3 t4 ω1 ω2 ω3 ω4

−1 −1.0000 −0.6436 0.6437 1.0000 0.3600 0.4957 0.1076 0.0366

−0.7 −1.0000 −0.4999 0.5000 1.0000 0.5184 0.1919 0.2438 0.0459

0 −1.0000 −0.5000 0.5000 1.0000 0.0556 0.4444 0.4444 0.0556

0.35 −1.0000 −0.6437 0.6436 1.0000 0.0258 0.1051 0.8099 0.0592

−1 −1.0000 −0.6436 0.6436 1.0000 0.3598 0.4960 0.1076 0.0366

−0.7 −1.0000 −0.5000 0.5000 1.0000 0.5190 0.1917 0.2435 0.0458

0 −1.0000 −0.5000 0.5000 1.0000 0.0556 0.4444 0.4444 0.0556

0.35 −1.0000 −0.6436 0.6436 1.0000 0.0258 0.1051 0.8099 0.0592

Upper part: numerically calculated designs by an application of the Nelder–Mead simplex algorithm. Lower
part: designs calculated by an application of Theorem6

at the points −1 and 1, respectively.

(b) For polynomials of larger degree, the situations gets substantially more compli-
cated. Consider exemplarily the case n = 2k = 4. The extremal polynomial in the
part (1) of Theorem6 is given by (12). The optimal design for estimating the slope
in the polynomial of degree n = 4 with no intercept is supported at the extremal
points −1,−0.6436, 0.6436 and 1 of this polynomial if and only if z belongs to
one of the following intervals

(−∞,− 0.8503), (− 0.4027,− 0.3023), (0.3023, 0.4027), (0.8503,∞).

The part (2) of Theorem6 is applicable if and only if z belongs to one of the intervals

(− 0.804,− 0.663), (− 0.235, 0.235), (0.663, 0.804).

In this case, the optimal design for estimating the slope is supported at the extremal
points 1,− 0.5, 0.5 and 1 of the third Chebyshev polynomial T3(x) = 4x3 − 3x .

As pointed out by a referee, it might be of interest to have a numerical confirmation
of the obtained results. For this purpose, we used the Nelder–Mead simplex algorithm
to minimize

c�(z)M−(ξ)c(z)

with respect to the design ξ , where c(z) = (1, 2z, . . . , nzn−1)�. The weights and
support points of the optimal design are displayed in the upper part of Table1 for
various values of z. The lower part of the table contains the corresponding results
obtained by an application of Theorem6. We observe that both methods yield the
same results.
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Appendix: Proof of Lemma2

The proof of this result can be found in the PhD thesis of Sahm (1998). As it is difficult
to get access to this thesis, we repeat his arguments here for the sake of completeness.
We begin with two statements, from which the proof of Lemma2 will easily follow.

Lemma 4 Let Q(x) = ∏n
i=1(x − qi ) and P(x) = ∏m

i=1(x − pi ) denote two poly-
nomials of degree n and m, respectively, where m = n − 1 or m = n. Assume that
P 
= Q and set qn+1 = −∞. If

qi ≥ pi ≥ qi+1, i = 1, . . . ,m, (25)

then we have R(x) := (P(x)/Q(x))′ < 0, whenever the polynomial R(x) is defined.

Proof In the case n = 1, the result is nearly obvious: if m = n − 1 = 0 we have
R(x) = −Q−2(x) < 0 and for m = n = 1

R(x) = p1 − q1
(x − q1)2

< 0 for all x 
= q1.

Now we turn to the case n > 1 and assume that the pair (P, Q) form a counterex-
ample of minimal degree. This implies in particular that P(x) and Q(x) cannot have
a root in common (otherwise their degree would not be minimal). Furthermore, all
roots of P(x) and Q(x)must be simple. As the pair (P, Q) is a counterexample, there
exists some z ∈ R where R(z) ≥ 0.

The idea is following. Move the polynomial P up (or down) without changing the
property R(z) ≥ 0 until one of the zeros of P(x) and Q(x) coincide. Then divide the
polynomials by this factor and produce a counterexample of smaller degree, which
contradicts the assumption of minimality. For this purpose, we have to consider the
two cases Q′(z) ≥ 0 and Q′(z) < 0 separately.

We restrict ourselves to the case Q′(z) ≥ 0 and mention that the case Q′(z) < 0
can be obtained by exactly the same arguments. To be precise, define

ε := sup{δ > 0| the roots of the polynomials P(x) − δ and Q(x) interlace}.

This set is not empty due to the continuity of the roots of the polynomial P(x) − δ

with respect to δ. Now let P̄(x) = P(x) − ε. Then it is clear from the definition of ε

that P̄(x) has m zeros p̄1, . . . , p̄m, which interlace with those of Q(x), and P̄(x) and
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Q(x) have at least one zero in common. Furthermore, since P̄ ′(x) = P ′(x) we have

R̄(z) = (P̄/Q)′(z) = R(z) + εQ′(z)
Q2(z)

≥ 0;

Before we divide P̄(x) and Q(x) by the factors that they have in common, note
that P̄ cannot equal Q because in this case we would have P(x) = Q(x) + ε, which
contradicts the interlacing property for n > 1. Now let P̃(x) and Q̃(x) denote the
polynomials obtained by dividing P̄(x) and Q(x) by their greatest common denomi-
nator. These polynomials still have the interlacing property, are of degree smaller than
n and are not equal. For the corresponding ratio, we find

R̂(z) = (P̃/Q̃)′(z) = (P̄/Q)′(z) = R̄(z) ≥ 0

which contradicts the assumption that the pair (P, Q) forms a counterexample of
minimal degree. ��
Theorem 7 Consider two polynomials Q(x) = ∏n

i=1(x−qi ), and P(x) = ∏m
i=1(x−

pi ), of degree n and m, where m ≤ n ≤ m + 1, the roots q1 > · · · > qn, p1 > · · · >

pm, fulfill condition (25) and P 
= Q. Then the zeros of q ′
1 > · · · > q ′

n−1 and
p′
1 > · · · > p′

m−1, the derivatives Q
′(x) and P ′(x) satisfy

q ′
i > p′

i > q ′
i+1 for i = 1, . . . ,m − 1

(Here q ′
n id defined as q ′

n = −∞.) In other words, if the polynomials P 
= Q have
only simple roots, which interlace, then the roots of their derivatives strictly interlace.

Proof We first consider the case where the polynomial P(x) has degree m = n − 1.
From Lemma4 for i = 1, . . . , n − 1

0 > R(q ′
i ) =

(
P

Q

)′
(q ′

i ) = P ′(q ′
i )Q(q ′

i ) − P(q ′
i )Q

′(q ′
i )

Q(q ′
i )
2 = P ′(q ′

i )

Q(q ′
i )

.

Since the denominator alternates in sign (the roots of Q′ interlace with those of Q)
and the leading coefficient is 1, it follows that sign(Q(q ′

i )) = (−1)i . This implies that
the numerator must also alternate in sign, i.e.,

sign(P ′(q ′
i )) = (−1)sign(P ′(q ′

i+1)) = (−1)i−1 (i = 1, . . . , n − 2).

This means that between any pair of consecutive roots q ′
i , q

′
i+1 of Q

′(x) there is a
root of P ′(x), which proves Theorem7 for n = m + 1.

If both polynomials P(x) and Q(x) have the same degree m, note that

lim
x→−∞ sign(P ′(x)) = (−1)m−1 = (−1)P ′(q ′

m−1).

Consequently, P ′(x) also has a root in the interval (−∞, q ′
m−1), which completes

the proof of Theorem7. ��
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Proof of Lemma 4 Without loss of generality, we assume that the leading coefficients
of the polynomial P1 and P2 are equal to 1. With the notation P(x) = P2(x), Q(x) =
P1(x), pi = t(n−i+1,2), qi = t(n−i+1,1) (i = 1 . . . , n) the proposition of Lemma2
follows from Theorem7. ��
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