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1 Proof of Lemma 1

If X ∼ pL1, any f ∈ Fp satisfies

E
[
f ′(X) +

p′(X)

p(X)
f(X)

]
=

∫
S(p,f)

(
f · p

)′
(x) dx

=

∫ yf1

L

(
f · p

)′
(x) dx+

m∑
`=1

∫ yf`+1

yf`

(
f · p

)′
(x) dx

+

∫ R

yfm+1

(
f · p

)′
(x) dx

= lim
x↗R

f(x) p(x)− lim
x↘L

f(x) p(x)

+

m+1∑
`=1

(
lim
x↗ yf`

f(x) p(x)− lim
x↘ yf`

f(x) p(x)

)
= 0.
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For the converse, fix t ∈ S(p) \ disc(X) and define fpt : (L,R)→ R through

fpt (x) =
1

p(x)

∫ x

L

(
1(L,t](s)− P (t)

)
p(s) ds.

The function fpt is continuous, and

lim
x↗R

fpt (x) p(x) =

∫ R

L

(
1(L,t](s)− P (t)

)
p(s) ds = P (t)− P (t) = 0.

Noting that fpt (x) = 1
p(x) P (x)

(
1−P (t)

)
for x < t, we also have limx↘L f

p
t (x) p(x) = 0. With

this representation of fpt (x) for x < t, as well as with fpt (x) = 1
p(x)

(
1 − P (x)

)
P (t), for x > t,

we see that fpt is differentiable on S(p) \ {t} = S(p, fpt ) with

fp ′t (x) = −p
′(x)

p(x)
fpt (x) + 1(L,t](x)− P (t), x ∈ S(p) \ {t}. (1.1)

We get with condition (C2)

sup
x∈S(p) \ {t}

∣∣∣∣p′(x)

p(x)
fpt (x)

∣∣∣∣ ≤ 2 sup
x∈S(p)

∣∣∣∣p′(x) min{P (x), 1− P (x)}
p2(x)

∣∣∣∣ = 2 sup
x∈S(p)

κp(x) <∞,

and, by (1.1),

sup
x∈S(p) \ {t}

∣∣fp ′t (x)
∣∣ ≤ sup

x∈S(p) \ {t}

∣∣∣∣p′(x)

p(x)
fpt (x)

∣∣∣∣+ 2 ≤ 2 sup
x∈S(p)

κp(x) + 2 <∞.

Thus fpt ∈ Fp. The assumption in the converse implication and (1.1) yield

0 = E
[
fp ′t (X) +

p′(X)

p(X)
fpt (X)

]
= P(X ≤ t)− P (t).

Hence P(X ≤ t) = P (t) for all t ∈ S(p) \ disc(X). As S(p) \ disc(X) is dense in (L,R) and

t 7→ P(X ≤ t), t 7→ P (t) are right-continuous, the claim follows.

2 Proof of Theorem 1

Let X ∼ pL1. By (C1) and (C3) we may use the fundamental theorem of calculus to obtain

FX(t) = P (t) =

∫ t

−∞

(
p(y1) +

k−1∑
`=1

(
p(y`+1)− p(y`)

)
+ p(s)− p(yk)

)
ds

=

∫ t

−∞

(∫ y1

−∞
p′(x) dx+

k−1∑
`=1

∫ y`+1

y`

p′(x) dx+

∫ s

yk

p′(x) dx

)
ds,

where k = k(s) is the largest index in {1, . . . ,m} for which still yk < s [for all s ≤ y1 the y`

need not be taken into account as p is continuously differentiable on (−∞, s) in these cases].

Now, since X has density function p, we easily see [still using (C1)] that∫ y`+1

y`

p′(x) dx = E
[
p′(X)

p(X)
1{y` < X ≤ y`+1}

]
,
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for ` ∈ {1, . . . , k − 1}, and similar representations for the other integrals give

FX(t) =

∫ t

−∞
E
[
p′(X)

p(X)
1{X ≤ s}

]
ds = E

[
p′(X)

p(X)
(t−X)1{X ≤ t}

]
, t ∈ R,

where, in the second equality, we used Fubini’s theorem. That is admissible since Tonelli’s

theorem and (C3) imply for each t ∈ R∫ t

−∞
E
[∣∣∣∣p′(X)

p(X)

∣∣∣∣ 1{X ≤ s}]ds = E
[
|p′(X)|
p(X)

(t−X)1{X ≤ t}
]

≤
∫
S(p)

∣∣p′(x)
∣∣ (|t|+ |x|) dx

<∞.

For the converse, assume that the distribution function of X is given through the explicit

formula in terms of X as in the theorem. Putting

dXp (t) = E
[
p′(X)

p(X)
1{X ≤ t}

]
, t ∈ R,

condition (6) entails

E
[∫ t

−∞

|p′(X)|
p(X)

1{X ≤ s} ds

]
= E

[
|p′(X)|
p(X)

(
t−X

)
1{X ≤ t}

]
<∞

for every t ∈ R. Thus, Fubini’s theorem implies∫ t

−∞
dXp (s) ds =

∫ t

−∞
E
[
p′(X)

p(X)
1{X ≤ s}

]
ds = E

[
p′(X)

p(X)

∫ t

−∞
1{X ≤ s} ds

]
= FX(t)

for t ∈ R. Since FX is increasing and dXp is right-continuous, we conclude dXp ≥ 0. Moreover,

we infer ∫
R
dXp (s) ds = lim

t→∞

∫ t

−∞
dXp (s) ds = lim

t→∞
FX(t) = 1,

for FX is a distribution function. Hence, dXp is the density function of X. Using the first part

of (6), dominated convergence gives

E
[
p′(X)

p(X)

]
= lim

t→∞
E
[
p′(X)

p(X)
1{X ≤ t}

]
= lim

t→∞
dXp (t) = 0.
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Therefore, we conclude that for each f ∈ Fp

E
[
f ′(X)

]
=

∫
S(p,f)

f ′(s) dXp (s) ds

=

∫ yf1

−∞
f ′(s)E

[
p′(X)

p(X)
1{X ≤ s}

]
ds+

m∑
`=1

∫ yf`+1

yf`

f ′(s)E
[
p′(X)

p(X)
1{X ≤ s}

]
ds

+

∫ ∞
yfm+1

f ′(s)E
[
−p
′(X)

p(X)
1{X > s}

]
ds

= E
[
p′(X)

p(X)

(
f(yf1 )− f(X)

)
1{X ≤ yf1}

]
+

m∑
`=1

E
[
p′(X)

p(X)

(
f(yf`+1)− f(X)

)
1{yf` < X ≤ yf`+1}

]

+
m∑
`=1

E
[
p′(X)

p(X)

(
f(yf`+1)− f(yf` )

)
1{X ≤ yf` }

]
+ E

[
−p
′(X)

p(X)

(
f(X)− f(yfm+1)

)
1{X > yfm+1}

]
= E

[
−p
′(X)

p(X)
f(X)

]
.

In the third equality, Fubini’s theorem is applicable since f ′ is bounded on S(p, f) and we have

assumption (6). Lemma 1 yields the claim.

3 Proof of Theorem 3

Let X ∼ pL1. By Theorem 2, we have

FX(t) = P (t) =

∫ t

L
E
[
−p
′(X)

p(X)
1{X > s}

]
ds = E

[
−p
′(X)

p(X)

(
min{X, t} − L

)]
, t > L,

where Fubini’s theorem is applicable since Tonelli’s theorem and (C3) imply∫ ∞
L

E
[∣∣∣∣p′(X)

p(X)

∣∣∣∣ 1{X > s}
]

ds = E
[
|p′(X)|
p(X)

(
X − L

)]
≤
∫
S(p)
|x|
∣∣p′(x)

∣∣ dx+ |L|
∫
S(p)

∣∣p′(x)
∣∣dx

<∞.

For the converse implication, we put

dXp (s) = E
[
−p
′(X)

p(X)
1{X > s}

]
, s > L,

and notice that the integrability conditions on X imply

E
[∫ ∞

L

|p′(X)|
p(X)

1{X > s} ds

]
≤ E

∣∣∣∣p′(X)

p(X)
X

∣∣∣∣+ |L| · E
∣∣∣∣p′(X)

p(X)

∣∣∣∣ <∞. (3.1)
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Thus, Fubini’s theorem gives∫ t

L
dXp (s) ds = E

[
−p
′(X)

p(X)

∫ t

L
1{X > s} ds

]
= FX(t), t > L.

Since dXp is integrable by (3.1), dominated convergence implies that FX is continuous. More-

over, Lebesgue’s differentiation theorem [see Theorem 3.21 from Folland (1999), with nicely

shrinking sets Eh = (t, t+ h), h > 0] implies

dXp (t) = lim
h↘ 0

1

h

∫ t+h

t
dXp (s) ds = lim

h↘ 0

FX(t+ h)− FX(t)

h
≥ 0

for L1-a.e. t > L, where we used that FX is increasing. Finally,∫ ∞
L

dXp (s) ds = lim
t→∞

∫ t

L
dXp (s) ds = lim

t→∞
FX(t) = 1.

We conclude that dXp is the density function of X. The claim follows immediately from

Theorem 2.

Remark. Note that we could have proven the theorem with the same argument we used in

Theorem 1, since the first integrability condition on X ensures that dXp is left-continuous.

However, in Remark 6 we extended the argument of Remark 5 dropping that first integrability

condition in the case L = 0. Then we can no longer conclude the left-continuity, so we had to

use the different argument via Lebesgue’s differentiation theorem.

4 Proof of Lemma 2

The necessity part follows with a simple rewriting of the density function, as before. For the

converse implication, assume that X is as in the statement of the lemma, and that

dXp (t) = E
[
−p
′(X)

p(X)
1{X > t}

]
+ lim
x↗R

p(x), L < t < R,

is the density function of X. Since we assume both (C4) and (C5), we have by Remark 3 for

any f ∈ Fp [note that f is continuous on (L,R)]∫
S(p,f)

f ′(x) dx =

∫ yf1

L
f ′(x) dx+

m∑
`=1

∫ yf`+1

yf`

f ′(x) dx+

∫ R

yfm+1

f ′(x) dx

= lim
x↗ yf1

f(x)− lim
x↘L

f(x) +
m∑
`=1

(
lim

x↗ yf`+1

f(x)− lim
x↘ yf`

f(x)

)
+ lim
x↗R

f(x)− lim
x↘ yfm+1

f(x)

= 0,
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where the integral exists by the boundedness of f ′ and the fact that S(p, f) ⊂ S(p) ⊂ (L,R)

which is a bounded interval. Using this fact, the proof is concluded via Lemma 1 with a similar

calculation as in previous proofs.

5 Goodness-of-fit tests for the Gamma distribution

In Betsch and Ebner (2019a), the authors establish the result of Corollary 3 for the special case

of the Gamma distribution and examine the corresponding goodness-of-fit statistic. Denote

by pϑ(x) = λ−k

Γ(k) x
k−1 e−x/λ, x > 0, where ϑ = (k, λ) ∈ (0,∞)2 = Θ, the density function

of the Gamma distribution with shape parameter k and scale parameter λ. Let X be a

positive random variable with EX <∞. To reflect the scale invariance of the class of Gamma

distributions, choose the scaling function s(x;ϑ) = x/λ. Apparently, X ∼ pϑL1 if, and only

if, s(X;ϑ) ∼ pϑ∗L1, where ϑ∗ = (k, 1) ∈ (0,∞)× {1} = Θ∗, and

E

∣∣∣∣∣p′ϑ∗
(
s(X;ϑ)

)
pϑ∗
(
s(X;ϑ)

) s(X;ϑ)

∣∣∣∣∣ ≤ |k − 1|+ λ−1EX <∞.

By Example 3, X follows a Gamma law with parameter vector ϑ = (k, λ) if, and only if,

FX/λ(t) = Fs(X;ϑ)(t) = E
[(
− k − 1

s(X;ϑ)
+ 1

)
min

{
s(X;ϑ), t

}]
, t > 0.

To construct the goodness-of-fit test, let X1, . . . , Xn be iid. copies of X and consider a con-

sistent, scale equivariant estimator λ̂n = λ̂n(X1, . . . , Xn) of λ as well as a consistent, scale

invariant estimator k̂n = k̂n(X1, . . . , Xn) of k. We set Yn,j = s(Xj ; k̂n, λ̂n) = Xj/λ̂n, for

each j = 1, . . . , n. Naturally, λ̂∗n = λ̂n(Yn,1, . . . , Yn,n) = 1 and k̂∗n = k̂n(Yn,1, . . . , Yn,n) =

k̂n(X1, . . . , Xn) = k̂n are consistent estimators of λ∗ = 1 and k∗ = k. In accordance with our

general consideration in Section 7, we take

T̂n(t) =
1

n

n∑
j=1

(
− k̂n − 1

Yn,j
+ 1

)
min{Yn,j , t}, t > 0.

Betsch and Ebner (2019a) considered the function T̂n and the empirical distribution function

of Yn,1, . . . , Yn,n, F̂n, as random elements of the Hilbert space L2
(
(0,∞), B1

>0, w(t) dt
)
, where

w is an appropriate weight function. They obtained the statistic

Gn = n

∫ ∞
0

∣∣∣T̂n(t)− F̂n(t)
∣∣∣2w(t) dt,

derived the limit distribution under the hypothesis using the Hilbert space central limit theo-

rem, and gave a proof of the consistency of this test procedure against fixed alternatives with
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existing expectation. Moreover, they explained how to implement the test using a parametric

bootstrap and showed in a Monte Carlo simulation study that the test excels classical proce-

dures and keeps up with the best Gamma tests proposed so far. Contributions like Henze et al

(2012), Plubin and Siripanich (2017), and Villaseñor and González-Estrada (2015) indicate

that testing fit to the Gamma distribution is also a topic of ongoing research.

The characterization of the exponential distribution via the mean residual life function is a

special case of Corollary 3 (cf. Example 4), and thus the corresponding test for exponentiality

is to be seen as a special case of the test for the Gamma distribution at hand. Baringhaus

and Henze (2000) used the characterization, which was known in a different disguise already,

to construct the associated test for exponentiality in the sense described above. They showed

that the limit distribution under the hypothesis coincides with the limiting null distribution

of the classical Cramér-von Mises statistic when testing for uniformity over the unit interval.

Furthermore, they proved the consistency of the test procedure against any fixed alternative

distribution. The test has already been included in the extensive comparative simulation study

conducted by Allison et al (2017). Adding a tuning parameter to the weight function leads to

the test statistic proposed by Baringhaus and Henze (2008). The recent papers by Cuparić

et al (2019), Jovanović et al (2015), Nikitin (2017), Noughabi (2015), Torabi et al (2018),

Volkova and Nikitin (2015), and Zardasht et al (2015) show that tests for exponentiality are

still of importance to the research community.

6 Goodness-of-fit tests for normality

The goodness-of-fit tests for normality proposed by Betsch and Ebner (2019b) are also included

in our framework (cf. Example 1). To fix notation, we write pϑ(x) for the normal distribution

density with mean-variance-parameter vector ϑ = (µ, σ2) ∈ R× (0,∞) = Θ. Consider a real-

valued random variable X with EX2 < ∞. Taking into account the invariance under linear

transformations of the class of normal distributions, Betsch and Ebner (2019b) used the scaling

function s(x;ϑ) = (x − µ)/σ. With this choice, X ∼ pϑL1 if, and only if, s(X;ϑ) ∼ pϑ∗L1,

where ϑ∗ = (0, 1), i.e. if s(X;ϑ) follows the standard Gaussian law. Furthermore, we have

E

∣∣∣∣∣p′ϑ∗
(
s(X;ϑ)

)
pϑ∗
(
s(X;ϑ)

)∣∣∣∣∣ = E
∣∣s(X;ϑ)

∣∣ ≤ 1

σ

(
E|X|+ |µ|

)
<∞

and

E

∣∣∣∣∣p′ϑ∗
(
s(X;ϑ)

)
pϑ∗
(
s(X;ϑ)

) s(X;ϑ)

∣∣∣∣∣ = E
(
s(X;ϑ)

)2 ≤ 1

σ2

(
EX2 + 2|µ|E|X|+ µ2

)
<∞.
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As a consequence, Example 1 states that X follows a normal distribution with parameter

vector ϑ = (µ, σ2) if, and only if,

Fs(X;ϑ)(t) = E
[
s(X;ϑ)

(
s(X;ϑ)− t

)
1{s(X;ϑ) ≤ t}

]
, t ∈ R.

For iid. copies X1, . . . , Xn of X, we consider the sample mean Xn and sample variance

S2
n = n−1

∑n
j=1(Xj −Xn)2 as consistent estimators of µ and σ2. We put

Yn,j = s(Xj ;Xn, S
2
n) = (Xj −Xn)/Sn, j = 1, . . . , n,

and notice that ϑ̂∗n =
(
X
∗
n, S

2
n
∗)

= (0, 1). Thus, we take

T̂n(t) =
1

n

n∑
j=1

Yn,j (Yn,j − t)1{Yn,j ≤ t}, t ∈ R.

It remains to compare T̂n with the empirical distribution function F̂n of Yn,1, . . . , Yn,n by an

appropriate measure of deviation. In particular, Betsch and Ebner (2019b) considered T̂n and

F̂n as random elements in the Hilbert space L2
(
R, B1, w(t) dt

)
, where w is a suitable weight

function, and chose as a metric the one induced by the Hilbert space norm. In accordance

with our general considerations at the beginning of Section 7, their statistic has the form

Gn = n

∫
R

∣∣∣T̂n(t)− F̂n(t)
∣∣∣2w(t) dt.

Besides specifying weight functions for which the statistic has an explicit formula, Betsch and

Ebner (2019b) used the central limit theorem for random elements in separable Hilbert spaces

to derive the limit distributions under the hypothesis H0 in (8). Furthermore, they established

the consistency of the test procedures against fixed alternatives with existing second moment,

and showed in a Monte Carlo simulation study that these tests are serious competitors to

established procedures. The problem of testing for normality is still of interest in research, as

evidenced by Henze and Jiménez-Gamero (2019), Henze et al (2019), Henze and Koch (2017),

and numerous preprints.

7 Classical goodness-of-fit procedures

We consider the uniform distribution on the unit interval, p(t) = 1(0,1)(t), t ∈ R. According

to Example 12, our characterization results for the uniform distribution reduce to the fact the

law is determined uniquely by its distribution function F (t) = t, 0 < t < 1. Thus, in line with

the general construction in Section 7, we obtain the statistics

Kn =
√
n sup

0<t< 1

∣∣∣F̂n(t)− F (t)
∣∣∣ and ω2

n = n

∫ 1

0

∣∣∣F̂n(t)− F (t)
∣∣∣2 dF (t)
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for testing the uniformity hypothesis. Here, F̂n is the empirical distribution function of

X1, . . . , Xn, which are iid. copies of a random variable X with values in (0, 1). Thus we

have recovered in this special case the classical Kolmogorov-Smirnov and Cramér-von Mises

statistics. Using a weight function in the integral statistic, we may also obtain the one from

Anderson and Darling. For an account of the historical development of these classical proce-

dures, a synoptic derivation of their limit distribution and an explanation on how to extend

these tests to situations where the null hypothesis includes a whole (parametric) family of

continuous distributions, as well as for further references, we recommend del Barrio et al

(2000).
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Torabi H, Montazeri NH, Grané A (2018) A wide review on exponentiality tests and two

competitive proposals with application on reliability. Journal of Statistical Computation

and Simulation 88(1):108–139
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