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Abstract
By extrapolating the explicit formula of the zero-bias distribution occurring in the
context of Stein’s method, we construct characterization identities for a large class of
absolutely continuous univariate distributions. Instead of trying to derive characteriz-
ing distributional transformations that inherit certain structures for the use in further
theoretic endeavors, we focus on explicit representations given through a formula for
the density- or distribution function. The results we establishwith this ambition feature
immediate applications in the area of goodness-of-fit testing. We draw up a blueprint
for the construction of tests of fit that include procedures for many distributions for
which little (if any) practicable tests are known. To illustrate this last point, we con-
struct a test for the Burr Type XII distribution for which, to our knowledge, not a single
test is known aside from the classical universal procedures.

Keywords Burr Type XII distribution · Density approach · Distributional
characterizations · Goodness-of-fit tests · Non-normalized statistical models ·
Probability distributions · Stein’s method

1 Introduction

Over the last decades, Stein’s method for distributional approximation has become a
viable tool for proving limit theorems and establishing convergence rates. At its heart
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32 S. Betsch, B. Ebner

lies the well-known Stein characterization which states that a real-valued random
variable Z has a standard normal distribution if, and only if,

E
[
f ′(Z) − Z f (Z)

] = 0 (1)

holds for all functions f of a sufficiently large class of test functions. To exploit this
characterization for testing the hypothesis

H0 : P
X ∈ {N(μ, σ 2) | (μ, σ 2) ∈ R × (0,∞)

}
(2)

of normality, where P
X is the distribution of a real-valued random variable X , against

general alternatives, Betsch and Ebner (2019b) used that (1) can be untied from the
class of test functionswith the help of the so-called zero-bias transformation introduced
by Goldstein and Reinert (1997). To be specific, a real-valued random variable X∗ is
said to have the X -zero-bias distribution if

E
[
f ′(X∗)

] = E
[
X f (X)

]

holds for any of the respective test functions f . If EX = 0 and Var(X) = 1, the
X -zero-bias distribution exists and is unique, and it has distribution function

T X (t) = E
[
X(X − t)1{X ≤ t}], t ∈ R. (3)

By (1), the standard Gaussian distribution is the unique fixed point of the transforma-
tion P

X �→ P
X∗
. Thus, the distribution of X is standard normal if, and only if,

T X = FX , (4)

where FX is the distribution function of X . In the spirit of characterization-based
goodness-of-fit tests, an idea introduced by Linnik (1962), this fixed point property
directly admits a new class of testing procedures as follows. Letting T̂ X

n be an empirical
version of T X and F̂n the empirical distribution function, both based on the standard-
ized sample, Betsch and Ebner (2019b) proposed a test for (2) based on the statistic

Gn = n
∫

R

∣∣∣T̂ X
n (t) − F̂n(t)

∣∣∣
2
w(t) dt,

wherew is an appropriate weight function, which, in view of (4), rejects the normality
hypothesis for large values of Gn . As these tests have several desirable properties
such as consistency against general alternatives, and since they show a very promising
performance in simulations, we devote this work to the question to what extent the
fixed point property and the class of goodness-of-fit procedures may be generalized
to other distributions.

Naturally, interest in applying Stein’s method to other distributions has already
grown and delivered some corresponding results. Characterizations like (1) have been
established en mass. [For an overview on characterizing Stein operators and further
references, we recommend the work by Ley et al. (2017).] Charles Stein himself pre-
sented some ideas fundamental to the so-called density approach (see Stein 1986,
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Chapter VI; Stein et al. 2004, Section 5) which we shall use as the basis of our consid-
erations. Related results for the special case of exponential families were already given
by Hudson (1978) and Prakasa Rao (1979). Another approach pioneered by Barbour
(1990) (see also Götze 1991) includes working with the generator of the semigroup
of operators corresponding to a Markov process whose stationary distribution is the
one in consideration. A third advance is based on fixed point properties of probability
transformations like the zero-bias transformation. Very general distributional trans-
formations were introduced by Goldstein and Reinert (2005) and refined by Döbler
(2017). In the latter contribution, the transformations, and with them the explicit for-
mulae, rely heavily on sign changes of the so-called biasing functions. These sign
changes, in turn, depend on the parameters of the distribution in consideration which
renders the explicit representations impractical for the use in goodness-of-fit testing.

The starting point of the present paper is the density approach identity. Here, a
result more general than (1) is provided by showing that, for suitable density functions
p, a given real-valued random variable X has density p if, and only if,

E

[
f ′(X) + p′(X)

p(X)
f (X)

]
= 0 (5)

holds for a sufficiently large class of test functions. We provide fixed point character-
izations like (4) by using the analogy between (5) and (1) to extrapolate the explicit
formula (3) of the zero-bias transformation to other distributions. Using this approach,
these transformations will no longer be probability transformations, but we maintain
the characterizing identity which suffices for the use in goodness-of-fit testing. Our
confidence in the approach is manifested by the fact that it has already been imple-
mented by Betsch and Ebner (2019a) for the special case of the gamma distribution.

With our results, we contribute to the growing amount of applications of Stein’s
(or the Stein–Chen) method and his characterization in the realm of statistics. Much
has been done in the area of stochastic modeling, which often includes statistical
methods. For instance, Fang (2014) and Reinert and Röllin (2010) (see also Barbour
1982; Barbour et al. 1989) tackle counting problems in the context of random graphs
with Stein’s method. The technique also led to further insights in time series- and
mean field analysis, cf. Kim (2000) and Ying (2017). Braverman and Dai (2017)
and Braverman et al. (2016) developed Stein’s method for diffusion approximation
which is used as a tool for performance analysis in the theory of queues. As for
statistical research that is more relatable to our pursuits, quite a bit is known when
it comes to normal approximation for maximum likelihood estimators, investigated,
for instance, by Anastasiou (2018), Anastasiou and Gaunt (2019), Anastasiou and
Reinert (2017) and Pinelis (2017), to name but a few contributions. Moreover, Gaunt
et al. (2017) considered Chi-square approximation to study Pearson’s statistic which is
used for goodness-of-fit testing in classification problems. Also note that Anastasiou
and Reinert (2018) apply the results of Gaunt et al. (2017) to obtain bounds to the
Chi-square distribution for twice the log-likelihood ratio, the statistic used for the
classical likelihood ratio test. Finally, the contributions by Chwialkowski et al. (2016)
and Liu et al. (2016) aim at the goal we also pursue in Sect. 7, namely to apply Steinian
characterizations to construct goodness-of-fit tests for probability distributions.
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34 S. Betsch, B. Ebner

The paper at hand is organized as follows. We first introduce an appropriate setting
for our considerations by stating the conditions for a density function to fit into our
framework and prove identity (5) in this specific setting. We then give our characteri-
zation results, distinguishing between distributions supported by the whole real line,
thosewith semi-bounded support and distributionswith bounded support. Throughout,
we give examples of density functions of different nature to show that our conditions
are not restrictive, aswell as to provide connections to characterizations that are already
known and included in our statements. Next, we consider applications in goodness-of-
fit testing and show that the proposed tests include the classical Kolmogorov–Smirnov
and Cramér-von Mises procedures, as well as three modern tests considered in the
literature. To illustrate themethods in the last part, we construct the first ever goodness-
of-fit test specifically for the two-parameter Burr Type XII distribution and show in a
simulation study that the test is sound and powerful compared to classical procedures.

2 Notation and regularity conditions

Throughout, let (�,A, P) be a probability space and p a nonnegative density function
supported by an interval spt(p) = [L, R], where −∞ ≤ L < R ≤ ∞, and with∫ R
L p(x) dx = 1. Denoting by P the distribution function associated with p, we state

the following regularity conditions:

(C1) The function p is continuous and positive on (L, R), and there exists a partition
L < y1 < . . . < ym < R such that p is continuously differentiable on (L, y1),
(y�, y�+1), � ∈ {1, . . . ,m − 1} and (ym, R).

Whenever (C1) holds, we write S(p) = (L, R) \ {y1, . . . , ym}.
(C2) For the map S(p) 	 x �→ κp(x) =

∣∣
∣ p

′(x)min{P(x), 1−P(x)}
p2(x)

∣∣
∣, we have that

supx ∈ S(p) κp(x) < ∞,
(C3)

∫
S(p)

(
1 + |x |)∣∣p′(x)

∣∣dx < ∞,

(C4) limx ↘ L
P(x)
p(x) = 0, and

(C5) limx ↗ R
1−P(x)
p(x) = 0.

The integral
∫
S(p) is understood as the sum of the integrals over the interval compo-

nents in (C1). For a probability density function p that satisfies (C1), and a function
f : (L, R) → R which is differentiable on S(p) except in one point, we denote the
point of non-differentiability in S(p) by t f and set

S(p, f ) = S(p) \ {t f
} = (L, R) \ {y1, . . . , ym, t f

}
.

We index the elements of (L, R) \ S(p, f ) with y f
1 < . . . < y f

m+1.

Definition 1 (Test functions) For a probability density function pwith spt(p) = [L, R]
that satisfies (C1), we denote by Fp the set of all functions f : (L, R) → R that are
continuous on (L, R) and differentiable on S(p) except in (precisely) one point, that
satisfy

limx ↘ L f (x) p(x) = limx ↗ R f (x) p(x) = 0,
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Distributional characterizations 35

and for which x �→ p′(x)
p(x) f (x) and x �→ f ′(x) are bounded on S(p, f ).

We write L1 for the Borel–Lebesgue measure on the real line, and X ∼ pL1

whenever a random variable X has Lebesgue density p, and we define

disc(X) = {
t ∈ (L, R)

∣∣P(X = t) > 0
}
,

the set of all atoms of a random variable X , containing at most countably many points.

3 The density approach identity

In this section, we restate the density approach identity. Since we use a very particular
class of test functions, which bears some technicalities, we give an outline of the proof
in the supplementary material, Section 1, roughly following Ley and Swan (2013b).
We refer to Section II of Ley and Swan (2013a) for a discrete version of the density
approach identity and mention Ley and Swan (2016) for related statements in the
context of parametric distributions.

Lemma 1 If p is a probability density function with spt(p) = [L, R] that satisfies
(C1) and (C2), and if X : � → (L, R) is a random variable with P

(
X ∈ S(p)

) = 1,
then X ∼ pL1 if, and only if,

E

[
f ′(X) + p′(X)

p(X)
f (X)

]
= 0

for each f ∈ Fp with t f /∈ disc(X).

Remark 1 Note that some contributions to the scientific literature (like Ley and Swan
2011, 2013b; Betsch and Ebner 2019a) claim that the function

(L, R) 	 x �→
∫ x

L

(
1(L,t](s) − P(t)

)
p(s) ds

is differentiable when, in fact, it fails to be so in exactly one point, namely in t . This
leads to the unfortunate consequence that we cannot assume functions in Fp to be
differentiable, and if the random variable X is discrete with an atom at the point of
non-differentiability of a test function, the expectation in Lemma 1makes no sense. As
such, the error has no consequence for Ley and Swan (2013b), since they only consider
absolutely continuous random variables for which disc(X) = ∅. For the general case,
the restriction to test functions with t f /∈ disc(X) becomes necessary.

Remark 2 Since f p ′
t (x) + p′(x)

p(x) f pt (x) is uniformly bounded over x ∈ S(p, f pt ) by
Equation (1.1) in the supplementary material, we can assume that, for each f ∈ Fp,

the function f ′ + p′
p f is integrable with respect to any probability measure P

X such
that X ∈ S(p, f ) P-almost surely. Note that conditions comparable to our assumptions
(C1)–(C5) are commonly stated in the context of Stein’s method [see, e.g., Section 13
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36 S. Betsch, B. Ebner

by Chen et al. (2011), Section 4 by Chatterjee and Shao (2011), or Döbler (2015)]. See
also Remark 7 for further comments on the regularity conditions. It is easy to adapt
the proof of Lemma 1 so that we can also allow for finitely many points in which the
density function is zero [by changing condition (C1) accordingly]. However, for our
characterization results later on we need the continuity of the functions in Fp on the
whole interval (L, R), and this we cannot get from f pt when we allow for zeros in the
function p.

Remark 3 For later use, we note that if (C4) holds, any function f ∈ Fp is subject to
limx ↘ L f (x) = 0, since f pt from the proof of Lemma 1 satisfies

lim
x ↘ L

f pt (x) = lim
x ↘ L

P(x)

p(x)

(
1 − P(t)

)
= 0.

By analogy, if (C5) holds, each function f ∈ Fp can be taken to satisfy
limx ↗ R f (x) = 0.

In a different form, the characterization given in Lemma 1 has successfully been
applied for distributional approximations in the Curie–Weiss model (see Chatterjee
and Shao 2011) or the hitting times ofMarkov chains (see Peköz and Röllin 2011). For
an overview,we refer to Section 13 byChen et al. (2011). In this paper, however, we use
the characterization to derive another, more explicit identity that typifies distributions
with density functions as above. We thereby generalize the fixed point properties of
the well-known zero-bias and equilibrium transformations but also classical identities,
such as the characterization of the exponential distribution through the mean residual
life function.

4 Univariate distributions supported by the real line

Assume for now that p : R → [0,∞) is a probability density function supported by
the whole real line.

Theorem 1 Suppose that p is a probability density function with spt(p) = R that
satisfies (C1)–(C3). Let X : � → R be a randomvariable such thatP

(
X ∈ S(p)

) = 1,
and

E

∣∣∣∣
p′(X)

p(X)

∣∣∣∣ < ∞, E

∣∣∣∣
p′(X)

p(X)
X

∣∣∣∣ < ∞. (6)

Then, X ∼ pL1 if, and only if, the distribution function of X has the form

FX (t) = E

[
p′(X)

p(X)
(t − X)1{X ≤ t}

]
, t ∈ R.

The proof is given in the supplementary material, Section 2.
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Remark 4 For a density function p supported by the whole real line which satisfies
(C1)–(C3), take the set of all distributions considered in Theorem 1, that is,

P =
{

P
X
∣∣∣ P
(
X ∈ S(p)

) = 1, E

∣∣∣∣
p′(X)

p(X)

∣∣∣∣ < ∞, and E

∣∣∣∣
p′(X)

p(X)
X

∣∣∣∣ < ∞
}

.

The previous theorem concerns properties of the mapping

T : P → D(R), FX �→ T(FX ) =
(
t �→ E

[
p′(X)

p(X)
(t − X)1{X ≤ t}

])
,

where D(R) is the càdlàg space over R, and where we identified elements from P
with their distribution function. In particular, Theorem 1 states that this mapping has a
unique fixed point, namely P

X = pL1. Putting further restrictions on the distribution
of X such that dX

p from the proof of Theorem 1 (see supplementarymaterial, Section 2)
is a probability density functionwithout assuming that FX is given through our explicit
formula, we have actually shown in the last calculation of that proof the existence of
a distribution for some random variable X p with

E
[
f ′(X p)

] = E

[
− p′(X)

p(X)
f (X)

]

for each f ∈ Fp, and we could think of T as a distributional transformation. These
additional restrictions [for the normal distribution, they areEX = 0 andVar(X) = σ 2,
see Example 1] scale down the class of distributions in which the characterization
holds. Therefore, our point is not to cling on to distributional transformations, which
makes explicit formulae more complicated [as witnessed by Döbler (2017), Remark
1(d) and Remark 2], but extract whichever information we can get from the explicit
formula itself.

In the proof of Theorem 1, we have actually also shown another characterization
result, but via the density function.

Corollary 1 Let p be a probability density functionwith spt(p) = R that satisfies (C1)–

(C3).When X : � → R is a random variable with density function fX ,E
∣∣∣ p

′(X)
p(X)

∣∣∣ < ∞,

and E

∣∣
∣ p

′(X)
p(X)

X
∣∣
∣ < ∞, then X ∼ pL1 if, and only if, the density function of X has the

form

fX (t) = E

[
p′(X)

p(X)
1{X ≤ t}

]
, t ∈ R.

It is clear from the proof that it suffices to have the above representation for the
density function of X only forL1 -almost every (a.e.) t ∈ R to conclude that X ∼ pL1.
This is much in line with the intuition about density functions, since they uniquely
determine a probability law, but are themselves only unique L1-almost everywhere
(a.e.).
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38 S. Betsch, B. Ebner

To get a feeling for the results, we consider two examples. For brevity, we only give
the characterization via Theorem 1, the result via Corollary 1 being clear from that.

Example 1 (Mean-zero Gaussian distribution) For x ∈ R, let

p(x) = 1√
2πσ

exp
(

− x2

2σ 2

)
,

where 0 < σ < ∞. The function p is positive and continuously differentiable on the
whole real line, so (C1) is satisfied [withm = 0 and S(p) = R].We have p′(x)

p(x) = − x
σ 2 ,

x ∈ R. Condition (C3) follows from the existence of mean and variance of the normal
distribution, and (C2) is proven using the (easily verified) identities

1 − P(x)

p(x)
≤ σ 2

x
, x > 0, and

P(x)

p(x)
= 1 − P(−x)

p(−x)
≤ −σ 2

x
, x < 0.

By Theorem 1, a real-valued random variable X with EX2 < ∞ follows the mean-
zero Gaussian law with variance σ 2 if, and only if, the distribution function of X has
the form

FX (t) = E

[
X

σ 2 (X − t)1{X ≤ t}
]

, t ∈ R.

In this particular example, themapT introduced inRemark4 is, up to a change of the
domain, the zero-bias transformation discussed in the introduction. The transformation
P
X �→ P

X∗
(using notation from our introduction), which coincides with our mapping

T in terms of the law of the maps, has the normal distribution N(0, σ 2) as its unique
fixed point and thus typifies this distribution within all distributions with mean zero
and variance σ 2. The message of the example at hand is that our characterization
result (Theorem 1) has the characterization via the zero-bias distribution as a special
case. It is notable that we generalize this well-known characterization in the sense that
the explicit formula given above identifies the normal distribution N(0, σ 2) not only
within the class of all distributions with mean zero and variance σ 2, but within the
class of all distributions with EX2 < ∞. However, if EX �= 0 or Var(X) �= σ 2, the
formula for FX∗ may no longer be a distribution function, and T is to be understood
as an extension of the operator that maps P

X �→ P
X∗

onto the larger domain

P =
{
P
X
∣∣∣ EX2 < ∞

}
�

{
P
X
∣∣∣ EX = 0 and Var(X) = σ 2

}
.

The conditions (C1)–(C3) also hold for the normal distributionwith location param-
eter included. We simply chose the setting above to illustrate the connection to the
zero-bias distribution.

Example 2 (Laplace distribution) For a locationparameterμ ∈ R and a scale parameter
σ > 0, consider the density of the corresponding Laplace distribution,

p(x) = 1

2σ
exp

(
− |x − μ|

σ

)
, x ∈ R.
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Distributional characterizations 39

Condition (C1) is satisfied with m = 1, y1 = μ, and S(p) = (−∞, μ) ∪ (μ,∞). We
have

p′(x)
p(x)

= sign(μ − x)

σ
, x �= μ.

To verify (C2), use that the distribution function of the Laplace distribution can be
given explicitly to obtain supx ∈ S(p) κp(x) ≤ 1 < ∞. Condition (C3) follows from a
simple calculation. Consequently, Theorem 1 holds, and the characterization for the
Laplace distribution reads as follows. A real-valued random variable X with distribu-
tion function FX and E|X | < ∞, which satisfies P

(
X �= μ

) = 1, has the Laplace
distribution with parameters μ and σ if, and only if,

FX (t) = E

[
sign(μ − X)

σ
(t − X)1{X ≤ t}

]
, t ∈ R.

In the context of probability distributions on the real line, we have also checked
the conditions (C1)–(C3) for the Cauchy- and Gumbel distribution, showing that we
do not need any moment assumptions to prove (C3), and that the characterizations
include more complicated distributions which are important in applications. We will
give more examples later on.

5 Univariate distributions with semi-bounded support

In this section, we seek to provide characterization results similar to those in the
previous section, but for probability distributions with semi-bounded support. We
have chosen in Sect. 4 to first prove the characterization via the distribution function
since this is the ‘conventional’ way, or at least, say, the way the special case of the
zero-bias transformation is known. From a logical perspective, it is more convenient
to first establish the result via the density function as in Corollary 1 and then to derive
the corresponding distribution function. We first discuss the case when p is a density
function whose support is bounded from below. Namely, we let p : R → [0,∞) be
a probability density function with spt(p) = [L,∞), L > −∞. The most important
case is L = 0, that is, density functions supported by the positive half line.

Theorem 2 Let p be a probability density function with spt(p) = [L,∞) that satisfies
the conditions (C1)–(C4). If X : � → (L,∞) is a random variable with density

function fX , E

∣∣∣ p
′(X)
p(X)

∣∣∣ < ∞, and E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞, then X ∼ pL1 if, and only if,

fX (t) = E

[
− p′(X)

p(X)
1{X > t}

]
, t > L.

The proof of this theorem consists of arguments and calculations that are very
similar to those in the proof of Theorem 1, and we refrain from giving the details.
Instead, we give some insight on the special case of density functions on the positive
axis.
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40 S. Betsch, B. Ebner

Remark 5 The integrability condition on X can beweakened in caseswhere the density
function p is positive and continuously differentiable, as well as supported by the
positive axis, i.e., m = 0 and S(p) = (0,∞). In this case, the calculation in the
sufficiency part of the proof of Theorem 2 reduces to

E
[
f ′(X)

] = E

[
− p′(X)

p(X)

∫ X

0
f ′(s) ds 1{X ≤ t f }

]

+ E

[
− p′(X)

p(X)

∫ t f

0
f ′(s) ds 1{X > t f }

]

+ E

[

− p′(X)

p(X)

∫ X

t f
f ′(s) ds 1{X > t f }

]

= E

[
− p′(X)

p(X)
f (X)

]
,

and it suffices for the use of Fubini’s theorem to know thatE
∣∣∣ p

′(X)
p(X)

X
∣∣∣ < ∞. Note that

this condition on X is also enough to guarantee that the expectation which defines dX
p

exists L1-a.e., see the supplementary material, Section 3. Consequently, it suffices to
require

∫∞
0 x |p′(x)| dx < ∞ instead of (C3). What is more, this last condition yields

∫ ∞

0

∫ ∞

t

∣∣p′(x)
∣∣ dx dt =

∫ ∞

0

∣∣p′(x)
∣∣
∫ x

0
dt dx =

∫ ∞

0
x
∣∣p′(x)

∣∣ dx < ∞,

and thus
∫∞
t

∣∣p′(x)
∣∣ dx < ∞ for L1-a.e. t > 0. This suffices to derive the necessity

part of Theorem 2 with equality for L1-a.e. t > 0. Putting together these thoughts, we
obtain the following special case.

Corollary 2 (Densities supported by the positive axis) Assume that p is a probability
density function with spt(p) = [0,∞) that is positive and continuously differentiable
on (0,∞) and satisfies (C2) and (C4). Moreover, assume that

∫∞
0 x

∣∣p′(x)
∣∣ dx < ∞.

Let X be a positive random variable with density function fX , and E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞.

Then, X ∼ pL1 if, and only if, we have for L1-a.e. t > 0 that

fX (t) = E

[
− p′(X)

p(X)
1{X > t}

]
.

Up next, we use Theorem 2 to derive a characterization result for the distribution
function.

Theorem 3 Assume that p is a probability density function supported by [L,∞) and
satisfying the conditions (C1)–(C4). Let X : � → (L,∞) be a random variable with

P
(
X ∈ S(p)

) = 1, E

∣∣∣ p
′(X)
p(X)

∣∣∣ < ∞, and E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞. Then, X ∼ pL1 if, and

only if,
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Distributional characterizations 41

FX (t) = E

[
− p′(X)

p(X)

(
min{X , t} − L

)]
, t > L.

The proof is given in the supplementary material, Section 3. Note that the results
on the distribution function are somewhat richer than the characterizations via the
density function, for the latter only identify the underlying distribution within a sub-
set of absolutely continuous probability distributions for which a density function
exists. The characterization via the distribution function does not need this restric-
tion to absolutely continuous distributions, but only that X has no atoms in the set
(L,∞) \ S(p) = {y1, . . . , ym}.
Remark 6 In the casewhere L = 0, and p is continuously differentiable and positive on
(0,∞), Theorem 3 remains true if we replace (C3) with

∫∞
0 x |p′(x)| dx < ∞, and if

we further drop thefirst integrability conditionon X andonly requireE

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞.

We obtain the following special case of the characterization.

Corollary 3 (Densities supported by the positive axis) Assume that p is a probability
density function with spt(p) = [0,∞) that is positive and continuously differentiable
on (0,∞) and satisfies (C2) and (C4). Moreover, assume that

∫∞
0 x

∣∣p′(x)
∣∣ dx < ∞.

Let X be a positive random variable with E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞. Then, X ∼ pL1 if, and

only if,

FX (t) = E

[
− p′(X)

p(X)
min{X , t}

]
, t > 0.

Now follows themajor source of exampleswe give in thiswork.Weomit the explicit
proofs of the regularity conditions for they consist of (sometimes) tedious calculations
which provide no insight on the characterizations. Instead, we give the following
remark on how the conditions are to be verified, and on their necessity in general.

Remark 7 The regularity condition (C1) is easily understood and checked for a given
density function. Note that the weaker assumption of absolute continuity of p, which
is mostly used in the context of Stein’s method, entails similar problems as described
in Remark 1: If p is merely assumed to be absolutely continuous, then in order to
handle random variables X with discrete parts (e.g., in Lemma 1), we would still have
to identify the points of non-differentiability of p in order to make sense of the term
p′(X). This would return us to considering a set like S(p) which, technically, brings
us to the setting we consider already.

Condition (C3) involves a direct calculationwhich can often be simplified if one has
knowledge of the existence of moments of the distribution at hand. From the proofs
of our characterizations, it is apparent that (C1) and (C3) [as well as the integrability
conditions on X which are in line with (C3)] are necessary to use Fubini’s theorem and
the fundamental theorem of calculus. As such, we do not see any truly instrumental
weaker alternative conditions (apart from the special case discussed in Remarks 5 and
6) which still rigorously allow for all calculations.
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Both conditions (C4) and (C5) are trivially satisfied when the respective limit of
the density function is positive, and if that is not the case, L’Hospital’s rule gives a
reliable handle for it. With regard to these two conditions, we refer to Proposition
3.7 of Döbler (2015) who discusses them in much detail and provides easy-to-check
criteria. Moreover, this specific result from Döbler (2015) indicates strongly that the
two conditions are not restrictive in practice.

To prove condition (C2), it is helpful to realize, in the case when p is con-
tinuously differentiable, that κp is continuous. Thus, it suffices to check that
lim supx ↘ L κp(x) < ∞ and lim supx ↗ R κp(x) < ∞ for (C2) to hold. Regular-
ity conditions (C2) and (C4)/(C5) guarantee certain beneficial properties of the test
functions from Fp. For one, they guarantee that, for f ∈ Fp, limx ↘ L f (x) = 0 (or
limx ↗ R f (x) = 0), see Remark 3, which we need to truly get rid of the test functions
in our calculations (as in the supplementary material, Section 4). Condition (C2) is
stated so that functions f ∈ Fp have uniformly bounded derivative. We use this fact
in our proofs (e.g., the last calculation in the supplementary material, Section 2) to
apply the fundamental theorem of calculus on f ′ and to justify the use of Fubini’s
theorem. For both arguments, the boundedness of f ′ is not a necessary condition, but
we have not found any alternative assumption for (C2) which allows for a sound and
rigorous derivation of all results.

Later on, we give an example for a distribution which fails the respective version
of condition (C3) that ought to hold in order for that distribution to be included in our
characterization results. For a (rather artificial) density functions which violates (C4),
see Example 3.6 of Döbler (2015).

With these tools at hand, the regularity conditions for all examples below can
be proven. We use Corollary 3 in each case, except for the Lévy distribution. The
characterizations via the density functions are not stated explicitly to save space.

Example 3 (Gamma distribution) Assume that

p(x) = λ−k

�(k)
xk−1 exp

(− λ−1x
)
, x > 0,

is the density function of the gamma distribution with shape parameter k > 0 and scale
parameter λ > 0. If X is a positive random variable with EX < ∞, then X follows
the gamma law with parameters k and λ if, and only if, the distribution function of X
has the form

FX (t) = E

[(
−k − 1

X
+ 1

λ

)
min{X , t}

]
, t > 0.

Note that this result has been proven explicitly, and with a similar line of proof as our
general results above, by Betsch and Ebner (2019a).

Example 4 (Exponential distribution) Denote the density of the exponential distribu-
tion with rate parameter λ > 0 by p(x) = λe−λx , x > 0. This is an easy special case
of the previous example, namely the gamma distribution with shape parameter k = 1
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and scale parameter 1/λ. Let X be a positive random variable with EX < ∞. Then,
X has the exponential distribution with parameter λ if, and only if,

FX (t) = λ E

[
min{X , t}

]
, t > 0.

This identity is (see Baringhaus and Henze 2000) equivalent to the well-known char-
acterization of the exponential distribution via the mean residual life function, which
states that a positive random variable X with EX < ∞ follows an exponential law if,
and only if, E[X − t | X > t] = E[X ], t > 0. For yet another observation, assume
that X is a positive random variable with EX = λ−1. With

dX
p (t) = E

[
− p′(X)

p(X)
1{X > t}

]
= λ P

(
X > t

)
, t > 0,

as in the proofs of our results, we have dX
p ≥ 0 and

∫ ∞

0
dX
p (t) dt = λ

∫ ∞

0
P
(
X > t

)
dt = λ EX = 1.

If Xe is a random variable with density function dX
p , the proof of Theorem 2 (see

Remark 6) shows that E[ f ′(Xe)] = λ E[ f (X)] for each f ∈ Fp. Up to a change in
the class of test functions, this is the defining equation of the equilibrium distribution
with respect to X . Lemma1 implies thatwhen restricting toEX = λ−1, the exponential
distributionwith parameterλ is the uniquefixedpoint of the equilibrium transformation
P
X �→ P

Xe
. This fact is used for approximation arguments with Stein’s method [see

Peköz and Röllin (2011), who introduced the equilibrium distribution, as well as
Chapter 13.4 by Chen et al. (2011) and Section 5 by Ross (2011)]. As in the case of
the zero-bias transformation,we have generalized this characterization in the sense that
the explicit formula of the equilibrium distribution uniquely identifies the exponential
distribution with parameter λ within the class of all distributions P

X with EX < ∞.

Example 5 (Inverse Gaussian distribution) Denote the inverse Gaussian density by

p(x) =
√

λ

2π
x−3/2 exp

(
−λ(x − μ)2

2μ2x

)
, x > 0,

where μ, λ > 0. If X is a positive random variable with E
[
X + X−1

]
< ∞, then X

follows the inverse Gaussian law with parameters μ and λ if, and only if,

FX (t) = E

[(
− λ

2X2 + 3

2X
+ λ

2μ2

)
min{X , t}

]
, t > 0.

Now, we handle distributions that are of interest for applications. The Weibull
distribution is applied in hydrology and wind speed analysis, see Singh (1987) and
Carrillo et al. (2014), the Burr distribution is commonly taken as amodel for household
income, see Singh and Maddala (1976), and the Rice distribution appears in signal
processing to describe how cancelation phenomena affect radio signals [cf. Chapter
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13 of Proakis and Salehi (2008)]. The last example we give is the Lévy distribution
which is used to model the length of paths that are followed by photons after reflection
from a turbid media, see Section 3 of Rogers (2008). There, we provide insight on
the handling of an additional location parameter which is often added to probability
distributions.

Example 6 (Weibull distribution) For k, λ > 0, let

p(x) = k

λk
xk−1 exp

(
−
( x

λ

)k)
, x > 0,

be the density function of the Weibull distribution in its usual parametrization. Let X
be any positive random variable with EXk < ∞. Then, X has theWeibull distribution
with parameters k and λ if, and only if,

FX (t) = E

[(
k Xk−1

λk
− k − 1

X

)
min{X , t}

]
, t > 0.

Example 7 (Burr distribution) TheBurr TypeXII distributionwith parameters c, k > 0
and scale parameter σ > 0 has density function

p(x) = c k

σ

( x
σ

)c−1 (
1 +

( x
σ

)c)−k−1
, x > 0.

A positive random variable X has the Burr distribution with parameters c, k, σ > 0
if, and only if, the distribution function of X has the form

FX (t) = E

[(
c (k + 1)

Xc−1

σ c + Xc
− c − 1

X

)
min{X , t}

]
, t > 0.

Particularly interesting about this example is that, even though the Burr distribution is
substantiallymore complicated thanmanyof our other examples, nomoment condition
is needed for the characterization to hold, since

E

∣∣
∣∣
p′(X)

p(X)
X

∣∣
∣∣ ≤ |c − 1| + c (k + 1) E

[
Xc

σ c + Xc

]
≤ |c − 1| + c (k + 1) < ∞.

This implies that the characterization is universal in the sense that it identifies the Burr
distribution within the set of all probability laws on the positive axis.

Example 8 (Rice distribution) For parameters k, 	 > 0, the density function of the
Rice distribution is given by

p(x) = 2 (k + 1) x

	
exp

(
−k − (k + 1) x2

	

)
I0

(

2

√
k (k + 1)

	
x

)

, x > 0,
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where Iα denotes the modified Bessel function of first kind of order α ∈ Z. We
chose the parametrization for p that is mostly used in signal processing and is easily
found under the keyword of Rician fading. Let X be a positive random variable with
EX2 < ∞. Then, X has the Rice distribution with parameters k and 	 if, and only if

FX (t) = E

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝− 1

X + 2 (k+1) X
	

− 2
√

k (k+1)
	

·
I1

(

2

√
k (k+1)

	
X

)

I0

(

2

√
k (k+1)

	
X

)

⎞

⎟⎟
⎠min{X , t}

⎤

⎥⎥
⎦ ,

for t > 0. Note that despite the complexity of the term p′(x)
p(x) , the integrability condition

is EX2 < ∞, since the quotient of the Bessel functions cancels via I1(y)
I0(y)

≤ 1, y > 0.

Example 9 (Lévy distribution) Take μ ∈ R and σ > 0. Let

p(x) =
√

σ

2π

(
x − μ

)−3/2 exp

(
− σ

2(x − μ)

)
, x > μ,

denote the density function of the Lévy distribution with location parameter μ and
scale parameter σ . Let X be a random variable which takes values in (μ,∞) almost
surely such that E[(X − μ)−1] < ∞ and E[(X − μ)−2] < ∞. Then, X has the Lévy
distribution with parameters μ and σ if, and only if, the distribution function of X has
the form

FX (t) = 1

2
E

[(
3

X − μ
− σ

(X − μ)2

)(
min{X , t} − μ

)]
, t > μ.

The following example is one which fails the regularity condition (C3). Recall that
for distributions which are not supported by the positive axis, we need (C3) fully, that
is, we cannot apply Remarks 5 or 6.

Example 10 (Shifted gamma distribution) Assume that

p(x) = λ−k

�(k)
(x − μ)k−1 exp

(− λ−1(x − μ)
)
, x > μ,

is the density function of the shifted gamma distribution with shape parameter k > 0,
scale parameter λ > 0, and location parameter μ ∈ R \ {0}. We have

p′(x)
p(x)

= k − 1

x − μ
− 1

λ
, x > μ.

Since μ �= 0, in order to establish our characterization result, we have to verify the
conditions from Theorem 3 which includes (C3). However, for k < 1, we have

∫ ∞

μ

∣∣p′(x)
∣∣ dx ≥

∫ ∞

μ

|k − 1|
x − μ

p(x) dx − 1

λ

∫ ∞

μ

p(x) dx = ∞.
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Next, we discuss the characterizations for probability distributions supported by
the positive axis in the case of exponential families. More specifically, we focus on
continuously differentiable density functions. Quite a few of the examples we already
gave can bewritten as an exponential family, but we do not reconsider them and instead
give a new example at the end of this part. Of course, the arguments below could also
be used to treat exponential families over the real line, using Theorem 1. In detail, we
let � ⊂ R

d be non-empty and consider an exponential family (over the positive axis)
in the natural parametrization given through

pϑ(x) = c(ϑ) h(x) exp
(
ϑ�T (x)

)
, x > 0, ϑ ∈ �,

where T = (T1, . . . , Td)� : (0,∞) → R
d and h : (0,∞) → [0,∞) are (Borel)

measurable functions, ϑ� is the transpose of a column vector ϑ , and

c(ϑ) =
(∫ ∞

0
h(x) exp

(
ϑ�T (x)

)
dx

)−1

.

We choose � such that 0 < c(ϑ) < ∞ for each ϑ ∈ �. The exponential family
is assumed to be strictly d-parametric, that is, we take the functions 1, T1, . . . , Td
to be linearly independent on the complement of every null set. The definition of
exponential families and insights on their properties are provided by virtually any
classical textbook on mathematical statistics.

We try to get an idea onhow the conditions (C1)–(C4) canbehandled for exponential
families. Condition (C2) remains a little cryptic, meaning that it depends on the given
example how it can be proven, and, at this point, we cannot give any improvement to
what we discussed in Remark 7 concerning that condition.

(C1) Assume that T and h are continuously differentiable, and that h is positive.
Trivially, these assumptions cover (C1) for they assure that for each ϑ ∈ �, pϑ

is continuously differentiable and positive on (0,∞). For x > 0, we have

p′
ϑ(x)

pϑ(x)
= ϑ�T ′(x) + h′(x)

h(x)
,

where T ′(x) = (
T ′
1(x), . . . , T

′
d(x)

)�.
(C3) Using the weaker subsidy for (C3) given in Remarks 5 and 6, a sufficient

condition for (C3) is derived as follows. Let ϑ ∈ �, and take Z ∼ pϑL1. Then,

∫ ∞

0
x
∣∣p′

ϑ(x)
∣∣ dx ≤ ∥∥ϑ

∥∥E

[∥∥T ′(Z)
∥∥Z
]

+ E

[∣∣∣∣
h′(Z)

h(Z)

∣∣∣∣ Z
]

.

Therefore, it suffices to know that

E

∣∣∣∣
h′(Z)

h(Z)
Z

∣∣∣∣ < ∞ and E

[∣∣T ′
j (Z)

∣∣ Z
]

< ∞, j = 1, . . . , d. (7)

Since T often consists of monomials xk , k ∈ Z, or of some logarithmic term
log(x), (7) frequently reduces to a moment constraint which is satisfied if the
expectation of T (Z) exists.
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(C4) Note that Pϑ , the distribution function corresponding to pϑ , trivially satisfies
limx ↘ 0 Pϑ(x) = 0, so if limx ↘ 0 pϑ(x) > 0 , (C4) is obviously satisfied. If
limx ↘ 0 pϑ(x) = 0, a sufficient condition for (C4) is that

lim
x ↘ 0

(
ϑ�T ′(x) + h′(x)

h(x)

)
= ∞.

We now give the characterization result that follows from Corollary 3. Corollary 2
yields a similar result via the density function, but we will not restate it explicitly.

Corollary 4 Let
{
pϑ | ϑ ∈ �

}
be an exponential family as above. Assume that each

pϑ is continuously differentiable and positive, and satisfies (C2)–(C4). Let X be a
positive random variable with

E

[(∥∥T ′(X)
∥∥+

∣∣∣∣
h′(X)

h(X)

∣∣∣∣

)
X

]
< ∞.

Then, X ∼ pϑL1 if, and only if, the distribution function of X has the form

FX (t) = E

[
−
(

ϑ�T ′(X) + h′(X)

h(X)

)
min{X , t}

]
, t > 0.

Example 11 (Log-normal distribution) For parametersμ ∈ R and σ > 0, consider the
density function of the log-normal distribution

p(x) = 1

x
√
2π σ

exp

(

−
(
log(x) − μ

)2

2σ 2

)

= √−2ϑ2 exp
( ϑ2

1

4ϑ2

) 1√
2π x

exp
(
ϑ1 log(x) + ϑ2 log2(x)

)
, x > 0,

where ϑ = (
ϑ1, ϑ2

)� = (
μ

σ 2 , − 1
2σ 2

)�. In the last representation, we see that
the class of log-normal distributions forms an exponential family with parameter
space � = R × (−∞, 0), h(x) = 1√

2π x
, T (x) = (

log(x), log2(x)
)�, as well as

c(ϑ) = √−2ϑ2 exp
( ϑ2

1
4ϑ2

)
, where c(ϑ) ∈ (0,∞) for every ϑ ∈ �. In this whole

example, we suppress the index ϑ for p. All of the following arguments are valid for
any fixed (but arbitrary) ϑ ∈ �.

The density function p is continuously differentiable since h and T are such, and
it is positive as h is so. For x > 0, we have

p′(x)
p(x)

= ϑ�T ′(x) + h′(x)
h(x)

=
(
μ − σ 2

)− log(x)

σ 2 x
.

For the log-normal density function, we have limx ↘ 0 p(x) = 0, as well as

lim
x ↘ 0

(
ϑ�T ′(x) + h′(x)

h(x)

)
= lim

x ↘ 0

(
μ − σ 2

)− log(x)

σ 2 x
= ∞,
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and the discussion of (C4) yields that this condition holds. In order to establish (C3), let
Z ∼ pL1. Then, log(Z) is Gaussian withmeanμ and variance σ 2, and the expectation
of log(Z) exists, that is, E| log(Z)| < ∞. Therefore, we have

E

∣∣∣∣
h′(Z)

h(Z)
Z

∣∣∣∣ = 1 < ∞, E
∣∣T ′

1(Z) Z
∣∣ = 1 < ∞,

and E
∣∣T ′

2(Z) Z
∣∣ = 2E

∣∣ log(Z)
∣∣ < ∞, which suffices for (C3) by the discussions

above. The proof of (C2) is a bit tedious and follows Remark 7. As it provides no
insight on that regularity condition, we omit it here. The characterization result for the
log-normal distribution as given in Corollary 4 is as follows. If X is a positive random
variable with E| log(X)| < ∞, then X follows the log-normal law with parameters
μ ∈ R and σ > 0 if, and only if, the distribution function of X has the form

FX (t) = E

[
− (μ − σ 2) − log(X)

σ 2X
min{X , t}

]
, t > 0.

Finally, we state the characterization result for a probability density function p with
spt(p) = (−∞, R], R < ∞. We omit the proof since it is a collage of earlier proofs,
and only state the result. A characterization via the density function also holds, and its
form is immediately conceivable from the result we state below. Similar observations
concerning integrability conditions carry over from the case of density function with
support bounded from below.

Corollary 5 Let p be a probability density function with spt(p) = (−∞, R] that
satisfies (C1)–(C3) and (C5). Take X : � → (−∞, R) to be a random variable with

P
(
X ∈ S(p)

) = 1, E

∣∣∣ p
′(X)
p(X)

∣∣∣ < ∞, and E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞. Then, X ∼ pL1 if, and

only if,

1 − FX (t) = E

[
p′(X)

p(X)

(
R − max{X , t}

)]
, t < R.

6 Univariate distributions with bounded support

For the sake of completeness, we study density functions p : R → [0,∞) with
spt(p) = [L, R], where L > −∞ and R < ∞. The proofs of our previous char-
acterizations rely on the fact that limx → ±∞ p(x) = 0. However, we can do more:
The results can be extended to cases where the limit to one endpoint of the support
merely exists. The techniques needed for the proofs of the statements in this section
resemble the ones we have used so far, so we shorten the arguments. As in Sect. 5, we
start with the characterizations via the density function before deriving further results
from them. We divide the study into density functions for which the limit to the right
endpoint of the support exists and such density functions for which the limit to the left
endpoint exists.

Lemma 2 Let p be a probability density function with spt(p) = [L, R] that satis-
fies (C1)–(C5), and for which the limit limx ↗ R p(x) exists. Take a random variable
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X : � → (L, R) with density function fX , and E

∣∣
∣ p

′(X)
p(X)

∣∣
∣ < ∞. Then, X ∼ pL1 if,

and only if,

fX (t) = E

[
− p′(X)

p(X)
1{X > t}

]
+ lim

x ↗ R
p(x), L < t < R.

The main ideas of the proof are summarized in the supplementary material, Sec-
tion 4.

Remark 8 Note that condition (C3) is simply
∫
S(p) |p′(x)| dx < ∞by the boundedness

of the support. Also, notice that

E

∣∣∣∣
p′(X)

p(X)
X

∣∣∣∣ ≤ max
{|L|, |R|}E

∣∣∣∣
p′(X)

p(X)

∣∣∣∣ ,

so we never have to state both integrability conditions on X .

Remark 9 By the argument of Remark 5, in the case of a continuously differentiable
density function with L = 0, we can replace the integrability condition on X com-

pletely with E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞ and substitute (C3) with

∫ R
0 x |p′(x)| dx < ∞, which

is weaker than
∫ R
0 |p′(x)| dx < ∞. However, the equality

fX (t) = E

[
− p′(X)

p(X)
1{X > t}

]
+ lim

x ↗ R
p(x)

in Lemma 2 will then only hold for L1-a.e. 0 < t < R.

Complementary to Lemma 2 (and with a similar proof), we have the following
result.

Lemma 3 Let p be a probability density function with spt(p) = [L, R] that satisfies
(C1)–(C5), and for which the limit limx ↘ L p(x) exists. Assume that X : � → (L, R)

is a random variable with density function fX , and E

∣∣∣ p
′(X)
p(X)

∣∣∣ < ∞. Then, X ∼ pL1

if, and only if,

fX (t) = E

[
p′(X)

p(X)
1{X ≤ t}

]
+ lim

x ↘ L
p(x), L < t < R.

With obvious adaptations, Remark 9 also applies here (in the case R = 0). We
now use Lemmata 2 and 3 to derive the corresponding characterization results via
the distribution function. We start again with the case of an existing limit to the right
endpoint of the support.

Corollary 6 Let p be a probability density function with spt(p) = [L, R] that satis-
fies (C1)–(C5). Assume that the limit limx ↗ R p(x) exists. Take a random variable

X : � → (L, R) with P
(
X ∈ S(p)

) = 1, and E

∣∣
∣ p

′(X)
p(X)

∣∣
∣ < ∞. Then, X ∼ pL1 if, and

only if,

FX (t) = E

[
− p′(X)

p(X)

(
min{X , t} − L

)]
+ (t − L) lim

x ↗ R
p(x), L < t < R.
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The proof runs along the lines of Theorem 3.

Remark 10 Whenever p is continuously differentiable, and L = 0, it suffices to have
∫ R
0 x |p′(x)| dx < ∞, instead of (C3), and the weaker condition E

∣∣∣ p
′(X)
p(X)

X
∣∣∣ < ∞ to

cover the requirements of Corollary 6.

The following result is complementary to Corollary 6.

Corollary 7 Assume that p is a probability density function supported by [L, R] that
satisfies (C1)–(C5). Further suppose that limx ↘ L p(x) exists. Let X : � → (L, R)

be a random variable with P
(
X ∈ S(p)

) = 1, and E

∣∣
∣ p

′(X)
p(X)

∣∣
∣ < ∞. Then, X ∼ pL1

if, and only if, the distribution function of X satisfies

1 − FX (t) = E

[
p′(X)

p(X)

(
R − max{X , t}

)]
+ (R − t) lim

x ↘ L
p(x), L < t < R.

Remark 10 applies, with minor adaptations, in the case R = 0. In general, the
characterization results for probability density functions with bounded support give
a good handle on a variety of wrapped and truncated distributions, like the truncated
normal- or the wrapped exponential distribution. However, we state only the uniform-
and the beta distribution as examples explicitly. Again, we refrain from giving the
details of the calculations to check the regularity conditions. For the beta distribution,
we invoke Remark 10.

Example 12 (Uniform distribution) For x ∈ (L, R), let p(x) = 1
R−L be the density

function of the uniform distribution on the interval (L, R). The conditions (C1)–
(C5) are trivial to check. Since the derivate of p vanishes on (L, R), the identities
from Corollaries 6 and 7 are the same. They read as follows. A random variable
X : � → (L, R) is distributed uniformly over (L, R) if, and only if, its distribution
function has the form

FX (t) = t − L

R − L
, L < x < R.

Apparently, we recovered the observation that the explicitly calculable form of the uni-
form distribution function uniquely identifies this distribution, so our characterization
is redundant in this case.

Example 13 (Beta distribution) Let α > 0, β > 1, and

p(x) = xα−1 (1 − x)β−1

B(α, β)
, 0 < x < 1,

where B(α, β) = �(α) �(β)
�(α+β)

denotes the beta function. Since β > 1, the limit to the
right endpoint of the support exists. More precisely, we have that limx ↗ 1 p(x) = 0.
Therefore, Corollary 6 yields the following characterization. Suppose X is a random

variable which takes values in (0, 1) almost surely and satisfies E

∣∣∣ X
1−X

∣∣∣ < ∞. Then,
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X has the beta distribution with parameters α > 0 and β > 1 if, and only if, the
distribution function of X has the form

FX (t) = E

[(
β − 1

1 − X
− α − 1

X

)
min{X , t}

]
, 0 < t < 1.

The beta distribution also marks a limitation of our characterizations. Namely, if
0 < α, β < 1, our results fail to hold since none of the required limits exist. A special
case for this phenomenon is the arcsine distribution, which is the beta distribution with
parameters α, β = 1

2 .

7 Applications to goodness-of-fit testing

The idea to use distributional characterizations as a basis for statistics in testing prob-
lems is classic, see Nikitin (2017) and O’Reilly and Stephens (1982). In this spirit
and regarding the results of the previous sections, we propose goodness-of-fit tests
for any distribution with a density function that satisfies the regularity conditions of
either of our characterizations (Theorems 1, 3, and Corollaries 5, 6, 7). For the sake of
readability, we give the following discussion in the case of continuously differentiable
and positive density functions on the positive axis dealt with in Corollary 3. This case
includes the largest class of examples we gave previously, and it also includes the
new test we provide. The arguments for using the characterizations for density func-
tions on the whole real line or such densities that have bounded support to construct
corresponding tests are very similar, of course.

We consider a parametric family of distributions P = {
pϑL1 | ϑ ∈ �

}
, � ⊂ R

d ,
where we assume that spt(pϑ) = [0,∞) and that pϑ is continuously differentiable
and positive on (0,∞). Moreover, pϑ is taken to satisfy the prerequisites of Corollary
3. Testing the fit of a positive random variable X to P means to test the hypothesis

H0 : P
X ∈ P (8)

against general alternatives. Let s : (0,∞) × � → (0,∞) be a measurable function,
used for scaling, such that X ∼ pϑL1 if, and only if, s(X;ϑ) ∼ pϑ∗L1 for some
ϑ∗ ∈ �∗ ⊂ �. We assume that

E

∣∣∣
∣∣
p′
ϑ∗
(
s(X;ϑ)

)

pϑ∗
(
s(X;ϑ)

) s(X;ϑ)

∣∣∣
∣∣
< ∞.

By Corollary 3, we have s(X;ϑ) ∼ pϑ∗L1 if, and only if, the distribution function of
s(X;ϑ) has the form

Fs(X;ϑ)(t) = E

[

− p′
ϑ∗
(
s(X;ϑ)

)

pϑ∗
(
s(X;ϑ)

) min
{
s(X;ϑ), t

}]

, t > 0. (9)

In order to test H0 based on a sample X1, . . . , Xn of independent and identically dis-
tributed (iid.) positive random variables, put Yn, j = s(X j ; ϑ̂n), for each j = 1, . . . , n.
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We consider the empirical distribution function F̂n of Yn,1, . . . ,Yn,n as an estimator
of Fs(X;ϑ). Hereby denoting a consistent estimator of ϑ by ϑ̂n = ϑ̂n(X1, . . . , Xn), we
use ϑ̂∗

n = ϑ̂n(Yn,1, . . . ,Yn,n) as an estimator of ϑ∗ ∈ �∗ and take

T̂n(t) = −1

n

n∑

j=1

p ′̂
ϑ∗
n

(
Yn, j

)

pϑ̂∗
n

(
Yn, j

) min
{
Yn, j , t

}
, t > 0,

as an estimator of the second quantity in (9). Taking some metric δ on a set containing
both functions, we propose as a goodness-of-fit statistic the quantity δ

(
T̂n, F̂n

)
. By

(9), this term ought to be close to zero under H0, so large values of the statistic will
lead us to rejecting the hypothesis.

As witnessed by Baringhaus and Henze (2000), Betsch and Ebner (2019a, b), tests
of this type are noteworthy competitors to established tests. An advantage lies in the
range of their applicability. A substantial proportion of known procedures relies on a
comparison between theoretical moment generating functions, see Cabaña and Quiroz
(2005), Henze and Jiménez-Gamero (2019) and Zghoul (2010), or characteristic func-
tions, see Baringhaus and Henze (1988), Epps and Pulley (1983) and Jiménez-Gamero
et al. (2009), and their empirical pendants, or on a differential equation that character-
izes the Laplace transformation, see Henze and Klar (2002) and Henze et al. (2012).
All of these share the unpleasant feature that in order to establish the theoretic basis for
the test statistics, one has to have explicit knowledge about these transformations for
the distribution in consideration. Since their handling is not possible for every distribu-
tion, our suggestions provide a genuine alternative, for they require no more than the
knowledge of the density function and its derivative. Moreover, our tests do not rely
on a characterization that is tailored to one specific distribution. Instead, we provide
a framework for testing fit to many different distributions. To illustrate the technical
setting above, we add to the supplementary material (Sections 5 and 6) insight into
how the tests for the gamma and normal distribution by Betsch and Ebner (2019a, b),
respectively, fit into this framework. The test for exponentiality by Baringhaus and
Henze (2000) also appears as a special case. Also, we provide further references which
show that these testing problems are still of interest to researchers. In Section 7 of the
supplementary material, we also explain that the Kolmogorov–Smirnov and Cramér-
von Mises tests fit into our framework.

In the remainder of this work, we propose a new goodness-of-fit test for the
two-parameter Burr Type XII distribution BurrXII(k, c), k, c > 0, based on the char-
acterization given in Example 7, fixing the scale parameter σ = 1. The distribution
is known under a variety of names, e.g., as the Singh–Maddala distribution or as the
Pareto IV distribution, for details see Kleiber and Kotz (2003), Section 6.2. We denote
the density function of theBurrXII(k, c) distribution by pϑ(x) = c k xc−1(1+xc)−k−1,
x > 0, with parameter vector ϑ = (k, c) ∈ (0,∞)2 = �. For iid. copies X1, . . . , Xn

of X , define

T̂n(t) = 1

n

n∑

j=1

(

ĉn
(̂
kn + 1

) Xĉn−1
j

1 + Xĉn
j

− ĉn − 1

X j

)

min{X j , t}, t > 0,
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in accordance with the general framework above, which leads to the family of L2-type
statistics

Bn,a = n
∫ ∞

0

∣∣T̂n(t) − F̂n(t)
∣∣2 wa(t) dt .

Here, k̂n and ĉn are consistent estimators of the parameters k and c, F̂n is the empirical
distribution function of X1, . . . , Xn , and wa(t) = exp(−at), t > 0, is a weight
function depending on a tuning parameter a > 0. Rejection of the hypothesis H0 in
(8), i.e., that the data come from the Burr Type XII family, is for large values of Bn,a .
Writing X(1) ≤ . . . ≤ X(n) for the order statistics of X1, . . . , Xn , we have after some
tedious calculations

Bn,a = 2

n

∑

1≤ j<�≤n

{

A[1]
(�),n

[
2A[1]

( j),n

a3
(
1 − e−aX( j)

)+ A[2]
( j),n

a2
(
e−aX( j) + e−aX(�)

)

+ ĉn − 2

a2
e−aX( j) − X( j)

a
e−aX( j)

]
+ A[2]

( j),n

a
e−aX(�)

}

+1

n

n∑

j=1

{
(
A[1]

( j),n

)2
(

−2X( j)

a2
e−aX( j) − 2

a3
e−aX( j) + 2

a3

)

+2( j − 1) ĉn
a2

A[1]
( j),n e

−aX( j) + 2A[2]
( j),n

a
e−aX( j)

}

+ 2̂cn
a n

n∑

j=1

j e−aX( j) − 1

a n

n∑

j=1

e−aX( j) ,

where

A[1]
( j),n = ĉn

(̂
kn + 1

) Xĉn−1
( j)

1 + Xĉn
( j)

− ĉn − 1

X( j)
, A[2]

( j),n = −ĉn
(̂
kn + 1

) Xĉn
( j)

1 + Xĉn
( j)

,

which is an easily computable formula that avoids any numerical integration routines.
In the following simulation study, we show the effectiveness of this new test statistics
in comparison with the classical procedures adapted for the composite hypothesis
H0, namely the Kolmogorov–Smirnov test Kn , the Cramér-von Mises test CM , the
Anderson–Darling test AD and theWatson testW A. Let F(x; k, c) = 1−(1+ xc)−k ,
x > 0, denote the distribution function of BurrXII(k, c). The Kn-statistic is equal to
Kn = max{D+, D−}, where

D+ = max
j = 1,...,n

(
j/n − F

(
X( j); k̂n, ĉn

))
,

D− = max
j = 1,...,n

(
F
(
X( j); k̂n, ĉn

)− ( j − 1)/n
)
.
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The statistics of Cramér-von Mises and Anderson–Darling are given by

CM = 1

12n
+

n∑

j=1

(
F
(
X( j); k̂n, ĉn

)− 2 j − 1

2n

)2

and

AD = −n − 1

n

n∑

j=1

[
(2 j − 1) log F

(
X( j); k̂n, ĉn

)

+(2(n − j) + 1
)
log
(
1 − F

(
X( j); k̂n, ĉn

))]
,

respectively, whereas the W A-statistic takes the form

WA = CM − n

⎛

⎝1

n

n∑

j=1

F
(
X( j); k̂n, ĉn

)− 1

2

⎞

⎠

2

.

For all procedures, the parameters are estimated via the maximum likelihood method,
maximizing numerically the log-likelihood function, see Jalali and Watkins (2009)
andWingo (1983). There are other estimation procedures available, like the maximum
product of spacingsmethod, see Shah andGokhale (1993). Critical points are obtained
for the classical tests, as well as for the new test, by the same parametric bootstrap
procedure, as follows: For a given sample X1, . . . , Xn of size n, compute the estimators
k̂n, ĉn of k and c. Conditionally on k̂n, ĉn , generate 100 bootstrap samples of size n
fromBurrXII (̂kn, ĉn). Calculate the value of the test statistic, say B∗

j , ( j = 1, . . . , 100),
for each bootstrap sample. Obtain the critical value pn as B∗

(90), where B
∗
( j) denote the

ordered B∗
j -values, and reject the hypothesis H0 if Bn,a = Bn,a(X1, . . . , Xn) > pn .

The following (alternative) distributions are considered (all densities defined for
x > 0 in dependence of a shape parameter θ > 0):

1. The Burr Type XII distribution BurrXII(k, c),
2. the exponential distribution Exp(θ),
3. the linear increasing failure rate law LF(θ) with density function given as

(1 + θx) exp(−x − θx2/2),
4. the half-normal distribution with density function (2/π)1/2 exp(−x2/2), denoted

by HN ,
5. the half-Cauchy distribution with density 2/

(
π(1 + x2)

)
, denoted by HC ,

6. the Gompertz law GO(θ) having distribution function 1 − exp[θ−1(1 − ex )],
7. the inverse Gaussian distribution IG(θ) with density function given through(

θ/(2π)
)1/2

x−3/2 exp[−θ(x − 1)2/(2x)],
8. the Weibull distribution with density θxθ−1 exp(−xθ ), denoted by W (θ),
9. the inverseWeibull distribution with density θ(1/x)θ+1 exp[−(1/x)θ ], denoted by

IW (θ).
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Table 1 Percentage of rejection for 10,000 Monte Carlo repetitions (n = 100, α = 0.1)

Alt./Test B0.25 B0.5 B1 B3 B5 B10 Kn CM AD WA

BurrXII(1, 1) 10 10 10 10 10 10 10 10 10 11

BurrXII(2, 1) 9 10 10 10 10 10 10 10 09 11

BurrXII(4, 1) 6 7 8 11 10 10 11 10 10 11

BurrXII(0.5, 2) 9 9 9 10 9 8 10 10 10 10

BurrXII(2, 0.5) 10 10 10 10 10 11 10 10 10 10

Exp(1) 0 27 69 55 44 42 51 61 66 53

LF(2) 0 0 2 77 73 63 56 67 74 59

LF(4) 0 0 0 56 68 60 48 57 64 46

HC 12 12 13 14 13 12 12 13 15 14

HN 0 1 64 89 81 73 78 88 90 78

GO(2) 0 4 90 99 98 93 97 99 100 98

IG(0.5) 13 45 66 81 83 82 52 64 72 61

IG(1.5) 2 6 22 40 48 46 24 31 37 32

IG(3) 1 2 8 18 24 24 16 21 23 23

W (0.5) 74 70 60 32 23 22 52 61 65 53

W (1.5) 0 0 38 66 54 47 52 60 65 52

W (3) 0 0 0 65 69 56 52 61 65 52

IW(1) 46 50 56 66 63 44 37 42 48 41

All computations are performed using the statistical computing environment R, see
R Core Team (2019). In each scenario, we consider the sample sizes n = 100 and
n = 200, and the nominal level of significance α is set to 0.1. Each entry in Tables 1
and 2 presents empirical rejection rates computed with 10,000 Monte Carlo runs. The
number of bootstrap samples in each run is fixed to 100, and for the tuning parameter
a, we consider the values {0.25, 0.5, 1, 3, 5, 10}. The best performing test for each
distribution and sample size is highlighted for easy reference.

The simulation results show the (strong) dependence on the tuning parameter, but
also, for an appropriate choice, the effectiveness of the new procedures, outperforming
the classical procedures almost uniformlywith the exception of the half-Cauchy-, half-
normal- and Gompertz distribution, where the Anderson–Darling statistic is the most
powerful test. Clearly, a data-dependent choice for an optimal tuning parameter is
desirable. Unfortunately, there is no known procedure for this kind of test statistics,
where the distribution under H0 depends on the true values of the parameters, but
results for tests of location–scale families by Allison and Santana (2015) and Tenreiro
(2019) give hope for new developments. A compromise for practitioners concerning
the choice of the tuning parameter is a = 3 in view of Tables 1 and 2.

Similar to the other procedures based on our approach, see Sections 5 and 6 in
the supplementary material, we expect the statistics Bn,a to converge under H0 to the
L2-norm of a centered Gaussian process and the tests to be consistent against fixed
alternatives.
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Table 2 Percentage of rejection for 10,000 Monte Carlo repetitions (n = 200, α = 0.1)

Alt./Test B0.25 B0.5 B1 B3 B5 B10 Kn CM AD WA

BurrXII(1, 1) 10 10 10 10 10 10 10 10 10 10

BurrXII(2, 1) 10 10 10 10 10 11 10 9 9 10

BurrXII(4, 1) 7 8 10 10 10 10 10 10 10 11

BurrXII(0.5, 2) 10 10 10 10 10 9 11 10 10 9

BurrXII(2, 0.5) 10 10 9 10 9 10 10 10 10 10

Exp(1) 4 78 95 83 71 66 81 88 92 82

LF(2) 0 0 19 97 95 89 85 92 95 88

LF(4) 0 0 0 89 91 85 75 83 89 76

HC 14 13 15 19 18 15 15 17 19 18

HN 0 17 98 100 98 94 97 99 100 98

GO(2) 0 57 100 100 100 100 100 100 100 100

IG(0.5) 29 78 93 99 99 99 82 93 97 92

IG(1.5) 1 13 41 72 82 85 44 53 66 56

IG(3) 0 2 13 34 48 61 28 37 46 40

W (0.5) 97 94 86 55 40 36 81 89 91 80

W (1.5) 0 6 84 91 81 70 80 88 92 82

W (3) 0 0 6 93 94 88 80 89 92 82

IW(1) 74 78 83 93 93 85 63 72 78 69

8 Conclusions

We devoted this work to the derivation of explicit characterizations for a large class of
continuous univariate probability distributions. Our motivation was the fact that the
characterization of the standard normal distribution as the unique fixed point of the
zero-bias transformation reduces to an explicit formula for the distribution function
of the transformed distribution. We extrapolated this formula to other distributions by
applying the Stein-type identity commonly usedwithin the density approach. Research
related to our characterizations concerns the study of distributional transformations,
see Goldstein and Reinert (2005) and Döbler (2017). While these are constructed
from scratch and are used to prove Stein-type characterizations, we took such a Stein
identity for granted and dropped the ambition to obtain distributional transformations.
Thus, starting with more information and demanding less structure from the trans-
formations, we established better accessible explicit characterization formulae. In the
last section, we discussed an immediate application. We illustrated how to use the
characterizations for the construction of goodness-of-fit tests. The corresponding pro-
cedures for the normal-, the exponential- and the gamma distribution have already
been investigated in the literature, and they show very promising performance. The
great advantage of our approach lies in the wide range of its applicability. To confirm
this last claim, we constructed the (to our best knowledge) first ever goodness-of-fit
test focused on the Burr Type XII distribution.
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