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Abstract
In this paper, we deal with a penalized least-squares (PLS) method for a linear regres-
sion model with orthogonal explanatory variables. The used penalties are an adaptive
Lasso (AL)-type �1 penalty (AL penalty) and a generalized ridge (GR)-type �2 penalty
(GR penalty). Since the estimators obtained by minimizing the PLS methods strongly
depend on the regularization parameters, we optimize them by a model selection cri-
terion (MSC) minimization method. The estimators based on the AL penalty and the
GR penalty have different properties, and it is universally recognized that these are
completely different estimators. However, in this paper, we show an interesting result
that the two estimators are exactly equal when the explanatory variables are orthogonal
after optimizing the regularization parameters by the MSC minimization method.

Keywords Adaptive Lasso · Cp criterion · GCV criterion · Generalized ridge
regression · GIC · Linear regression · Model selection criterion · Optimization
problem · Regularization parameters · Sparsity

1 Introduction

We deal with a linear regression model with an n-dimensional vector of response
variables y = (y1, . . . , yn)′ and an n×k matrix of nonstochastic explanatory variables
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X , where n is the sample size and k is the number of explanatory variables. Here,
without loss of generality, we assume that y and X are centralized, i.e., y′1n = 0 and
X ′1n = 0k , where 1n is an n-dimensional vector of ones and 0k is a k-dimensional
vector of zeros. Moreover, in this paper, we particularly assume that the following
equations hold:

rank(X) = k < n − 1, X ′X = D = diag(d1, . . . , dk), d1 ≥ · · · ≥ dk > 0.

The relation X ′X = D indicates that the explanatory variables are orthogonal.
Examples of models with orthogonal explanatory variables include those of prin-
cipal component analysis (Massy 1965; Jolliffe 1982; Yanagihara 2018), generalized
ridge (GR) regression (Hoerl and Kennard 1970), and smoothing using orthogonal
basis functions (Yanagihara 2012; Hagiwara 2017).

The least-squares (LS) method is widely used for estimating the regression coeffi-
cients β = (β1, . . . , βk)

′ of a linear regression model. The LS estimator (LSE) of β

is obtained by minimizing the residual sum of squares (RSS) defined by

RSS(β) = ( y − Xβ)′( y − Xβ). (1)

There also exist penalized LS (PLS) methods for estimating β. In a PLS method,
an estimator of β is obtained from a minimization of a penalized RSS (PRSS) defined
by adding the RSS to a penalty term. There are many kinds of PLS methods. One
such method is the GR regression proposed by Hoerl and Kennard (1970), which is
designed to avoid multicollinearity among explanatory variables. The GR estimator
(GRE) of β is obtained by minimizing the PRSSGR defined by adding the RSS to the
GR-type �2 penalty (GR penalty) as

PRSSGR(β) = RSS(β) +
k∑

j=1

θ jβ
2
j , (2)

where θ j ∈ R+ = {θ ∈ R | θ ≥ 0} ( j = 1, . . . , k) are regularization parameters
called ridge parameters. When θ1 = · · · = θk = 0, the PRSSGR coincides with the
RSS. Most researchers consider it commonsense that the GRE does not have sparsity.
Since the value of the GRE of β depends on ridge parameters, the optimization of
these parameters is very important. Methods for optimizing ridge parameters include
model selection criterion (MSC) minimization methods, for example the generalized
Cp (GCp; Atkinson 1980) and GCV (Craven andWahba 1979) minimizationmethods
(Nagai et al. 2012;Yanagihara 2018), and a fast algorithm forminimizingMSC (Ohishi
et al. 2020).

Moreover, Lasso, proposed by Tibshirani (1996), and adaptive Lasso (AL), pro-
posed by Zou (2006) as an extension of the Lasso, give sparse estimates of unknown
parameters. The AL estimator (ALE) of β is obtained by minimizing PRSSAL, which
is defined by changing the GR penalty in (2) to the AL-type �1 penalty (AL penalty)
as
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Equivalence between adaptive Lasso and generalized ridge estimators 1503

PRSSAL(β) = RSS(β) + 2λ
k∑

j=1

w j |β j |, (3)

where λ ∈ R+ is a regularization parameter called a tuning parameter and w j ( j =
1, . . . , k) is a weight. The PRSSAL with λ = 0 coincides with the RSS, and the
AL with w j = 1 coincides with the ordinary Lasso. The ALE of β usually cannot
be obtained without a numerical search algorithm, e.g., LARS (Efron et al. 2004),
coordinate descent (Friedman et al. 2010), or ADMM (Boyd et al. 2011). However,
in the case of using orthogonal explanatory variables as in this paper, the ALE can be
obtained in closed form. For the weights w j ( j = 1, . . . , k) in the AL, Zou (2006)
proposed w j = 1/|β̂LS

j |δ (δ ∈ R+\{0}), where β̂LS
j is the LSE of β j . Using these

weights, it is known that the ALE satisfies the oracle property (Fan and Li 2001).
Since the value of the ALE of β depends on a tuning parameter, the optimization of
this parameter is very important. Methods for optimizing the tuning parameter include
MSC minimization methods as in the case of GR. As examples, there are the CV and
an ERIC (Francis et al. 2015) minimization methods (Zou 2006; Francis et al. 2015)
and selection stability (Sun et al. 2013).

In this paper, we give the closed form of the tuning parameter optimized by the
GCV minimization method when w j = 1/|β̂LS

j |. Moreover, although it is widely
recognized that the GRE and the ALE are different estimators because the GRE does
not have sparsity and the ALE has sparsity, we show an interesting result that the GRE
and the ALE with w j = 1/|β̂LS

j | are exactly equal after optimizing the regularization
parameters by the MSC minimization method.

This paper is organized as follows: In Sect. 2, we show that the tuning parameter
of the AL optimized by the GCV minimization method can be obtained in closed
form. Moreover, we show the equivalence between the ALE with w j = 1/|β̂LS

j | and
the GRE after optimizing the regularization parameters based on minimizing GCV
criterion. In Sect. 3, we show the equivalence between the ALE with w j = 1/|β̂LS

j |
and the GRE after optimizing the regularization parameters by the MSCminimization
method. Technical details are provided in “Appendix.”

2 Equivalence between two estimators optimized by the GCV
minimizationmethod

In the beginning of this section, we consider the ALE of β with the tuning parameter
optimized by the GCV minimization method. Since the explanatory variables are
orthogonal, it follows from the singular value decomposition that

X = P
(

D1/2

On−k,k

)
= P1D1/2, (4)

where On,k is an n × k matrix of zeros, P is an orthogonal matrix of order n, and P1
satisfying P ′

1P1 = Ik and P ′
11n = 0k is the n × k matrix that consists of the first k

columns of P . Using P1, we define the k-dimensional vector z1 as
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z1 = (z1, . . . , zk)
′ = P ′

1 y. (5)

Then, the LSE of β that minimizes the RSS in (1) is given as

β̂
LS =

(
β̂LS
1 , . . . , β̂LS

k

)′ = D−1X ′ y = D−1/2z1

=
(
z1/
√
d1, . . . , zk/

√
dk
)′

. (6)

When the explanatory variables are orthogonal as in this paper, the ALE of β that
minimizes (3) can be obtained in closed form, given as in the following theorem (the
proof is given in “Appendix A.1”).

Theorem 1 Let Lλ be the diagonal matrix of order k of which the j th diagonal element
is defined by

�λ, j = 1

d j
S
(
1, λw j/

(
|z j |
√
d j

))
,

where S(x, a) is a soft-thresholding operator, i.e., S(x, a) = sign(x)(|x |−a)+. Then,
the ALE of β that minimizes the PRSSAL in (3) is given by

β̂
AL
λ =

(
β̂AL

λ,1, . . . , β̂
AL
λ,k

)′ = LλX ′ y = LλD1/2z1,

that is, β̂AL
λ, j is expressed as

β̂AL
λ, j = 1√

d j
S
(
z j , λw j/

√
d j

)
. (7)

From Theorem 1 and the result in Ohishi and Yanagihara (2017), we can see that the
ALE coincides with the ordinary Lasso estimator when w j = 1 and the LSE in (6)
when λ = 0.

Let HAL
λ be a hat matrix of the AL, i.e., HAL

λ = XLλX ′. Then, the predictive value
of y from the AL is given by

ŷALλ = Xβ̂
AL
λ = HAL

λ y.

The GCV criterion for optimizing a tuning parameter consists of the following esti-
mator of variance σ̂ 2

AL and generalized degrees of freedom dfAL:

σ̂ 2
AL(λ) = 1

n

(
y − ŷALλ

)′ (
y − ŷALλ

)
= 1

n
y′ (In − XLλX ′)2 y, (8)

dfAL(λ) = 1 + tr
(
HAL

λ

)
= 1 + tr(LλD). (9)
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Equivalence between adaptive Lasso and generalized ridge estimators 1505

The generalized degrees of freedom in (9) with w j = 1 coincide with that proposed
by Tibshirani (1996). Using the above equations, the GCV criterion for optimizing a
tuning parameter is given by

GCVAL(λ) = σ̂ 2
AL(λ)

{1 − dfAL(λ)/n}2 .

In this paper, a common weight proposed by Zou (2006) with δ = 1 is used as w j :

w j = 1

|β̂LS
j | =

√
d j

|z j | ( j = 1, . . . , k).

Then, from Theorem 1, the j th element of the ALE with w j = 1/|β̂LS
j | is calculated

as

β̂AL
λ, j = 1√

d j
S
(
z j , λ/|z j |

)
. (10)

The σ̂ 2
AL(λ) and dfAL(λ) are rewritten as in the following lemma (the proof is given

in “Appendix A.2”).

Lemma 1 The σ̂ 2
AL(λ) and dfAL(λ) with w j = 1/|β̂LS

j | can be expressed as

σ̂ 2
AL(λ) = 1

n

⎡

⎣nσ̂ 2
0 +

k∑

j=1

{
1 − S

(
1, λ/z2j

)}2
z2j

⎤

⎦ ,

dfAL(λ) = 1 +
k∑

j=1

S
(
1, λ/z2j

)
,

(11)

where σ̂ 2
0 is given by

σ̂ 2
0 = 1

n
y′ (In − XD−1X ′) y. (12)

Since when k < n − 1, σ̂ 2
0 �= 0 in most cases, we assume σ̂ 2

0 �= 0 in this paper.
Moreover, let t0 = 0, t j ( j = 1, . . . , k) be the j th-order statistic of z21, . . . , z

2
k , i.e.,

t j =
{
min

{
z21, . . . , z

2
k

}
( j = 1)

min
{{
z21, . . . , z

2
k

} \ {t1, . . . , t j−1
}}

( j = 2, . . . , k)
, (13)

R j ( j = 0, 1, . . . , k) be the range defined by

R j =
{

(t j , t j+1] ( j = 0, 1, . . . , k − 1)

(tk,∞) ( j = k)
, (14)
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and s2a (a = 0, 1, . . . , k) be the estimators of variance defined by

s2a = nσ̂ 2
0 +∑a

j=0 t j

n − k − 1 + a
(a = 0, 1, . . . , k). (15)

As the relation between Ra and s2a , Yanagihara (2018) showed that the following
statement is true:

∃!a∗ ∈ {0, . . . , k − 1} s.t . s2a∗ ∈ Ra∗ .

Then, the tuning parameter optimized by the GCV minimization method is as in the
following theorem (the proof is given in “Appendix A.3”).

Theorem 2 Let w j = 1/|β̂LS
j | and let λ̂ be the tuning parameter optimized by the

GCV minimization method, i.e.,

λ̂ = arg min
λ∈R+

GCVAL(λ).

Then, the closed form of λ̂ is given by λ̂ = s2a∗ .

By using Theorem 2, from (10), we can see that the ALE of β with w j = 1/|β̂LS
j |

after optimizing the tuning parameter by the GCV minimization method is obtained
as the following closed form:

β̂AL
λ̂, j

= 1√
d j

S
(
z j , s

2
a∗/|z j |

)
. (16)

Next, in order to show the equivalence between the ALE with w j = 1/|β̂LS
j | and

the GRE, we consider the GRE of β with the ridge parameters optimized by the GCV
minimization method. The GRE that minimizes the PRSSGR in (2) is given by

β̂
GR
θ = D−1

θ X ′ y = D−1
θ D1/2z1,

where Dθ = D + diag(θ1, . . . , θk) and θ = (θ1, . . . , θk)
′. Since it is easy to see that

the j th element of β̂
GR
θ depends on only θ j , we write it as

β̂GR
θ j , j =

√
d j z j

d j + θ j
. (17)

Let HGR
θ be a hat matrix of the GR, i.e., HGR

θ = XD−1
θ X ′. Then, the predictive value

of y from the GR is given by

ŷGRθ = Xβ̂
GR
θ = HGR

θ y.
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Equivalence between adaptive Lasso and generalized ridge estimators 1507

The GCV criterion for optimizing the ridge parameters consists of the following esti-
mator of variance σ̂ 2

GR and generalized degrees of freedom dfGR:

σ̂ 2
GR(θ) = 1

n

(
y − ŷGRθ

)′ (
y − ŷGRθ

)
= 1

n
y′ (In − Jn − XD−1

θ X ′)2 y, (18)

dfGR(θ) = 1 + tr
(
HGR

θ

)
= 1 + tr

(
D−1

θ D
)
. (19)

Using the above equations, the GCV criterion for optimizing ridge parameters is given
by

GCVGR(θ) = σ̂ 2
GR(θ)

{1 − dfGR(θ)/n}2 .

Yanagihara (2018) showed that the ridge parameters optimized by the GCVminimiza-
tion method are obtained as the following closed forms:

θ̂ j =

⎧
⎪⎪⎨

⎪⎪⎩

d j s2a∗
z2j − s2a∗

(
s2a∗ < z2j

)

∞
(
s2a∗ ≥ z2j

) ( j = 1, . . . , k).

As the result, we have

√
d j

d j + θ̂ j
= 1√

d j
S
(
1, s2a∗/z

2
j

)
.

Consequently, from the above equation and (17), the GRE after optimizing the ridge
parameters by the GCV minimization method is given by

β̂GR
θ̂ j , j

= 1√
d j

S
(
z j , s

2
a∗/|z j |

)
. (20)

From the result that (20) includes 0, we can see that the GRE after optimizing the ridge
parameters has sparsity. By comparing (16) and (20), we can obtain the following
theorem.

Theorem 3 When the explanatory variables are orthogonal, the ALE with w j =
1/|β̂LS

j | is exactly equal to the GRE after optimizing the regularization parameters by

the GCV minimization method, i.e., β̂AL
λ̂, j

= β̂GR
θ̂ j , j

( j = 1, . . . , k).

3 Equivalence between two estimators optimized by theMSC
minimizationmethod

In the previous section, we showed the equivalence between the ALE with w j =
1/|β̂LS

j | and the GRE after optimizing the regularization parameters by the GCV
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minimization method. In this section, we show that the ALE with w j = 1/|β̂LS
j | is

equal to the GRE optimized not only by the GCV minimization method but also by a
general MSC minimization method. First, we consider the ALE with w j = 1/|β̂LS

j |
after optimizing the tuning parameter by theMSCminimizationmethod. TheMSC for
optimizing a tuning parameter can be expressed by a bivariate function with respect to
the σ̂ 2

AL(λ) in (8) and dfAL(λ) in (9). From Lemma 1, we obtain the following lemma
about the ranges of σ̂ 2

AL(λ) and dfAL(λ) (the proof is given in “Appendix A.4”).

Lemma 2 Ranges of σ̂ 2
AL(λ) and dfAL(λ) with w j = 1/|β̂LS

j | are given by

σ̂ 2
AL(λ) ∈ [σ̂ 2

0 , σ̂ 2∞], dfAL(λ) ∈ [1, k + 1],

where σ̂ 2
0 is given by (12) and σ̂ 2∞ = limλ→∞ σ̂ 2

AL(λ), i.e.,

σ̂ 2∞ = 1

n
y′(In − Jn) y.

A general expression of the MSC comes from using the following bivariate function
given by Ohishi et al. (2020).

Definition 1 The f (r , u) is a bivariate function that satisfies the following conditions:

(C1) f (r , u) is a continuous function at any (r , u) ∈ (0, σ̂ 2∞] × [1, u0),
(C2) f (r , u) > 0 for any (r , u) ∈ (0, σ̂ 2∞] × [1, u0),
(C3) f (r , u) is first order partially differentiable at any (r , u) ∈ (0, σ̂ 2∞]×[1, u0) and

ḟr (r , u) = ∂

∂r
f (r , u) > 0

(
∀(r , u) ∈ (0, σ̂ 2∞] × [1, u0)

)
,

ḟu(r , u) = ∂

∂u
f (r , u) > 0

(
∀(r , u) ∈ (0, σ̂ 2∞] × [1, u0)

)
,

where u0 ≤ n.

By using the bivariate function f (r , u), the MSC for optimizing a tuning parameter
can be expressed as

MSCAL(λ) = f
(
σ̂ 2
AL(λ), dfAL(λ)

)
. (21)

Specific forms of the functions f of existing criteria, for example a generalized Cp

(GCp; Atkinson 1980), a generalized information criterion (GIC; Nishii 1984) under
normality, and an extendedGCV (EGCV;Ohishi et al. 2020), are expressed as follows:

f (r , u) =

⎧
⎪⎨

⎪⎩

nr/s20 + αu (GCp)

r exp(αu/n) (GIC)

r/(1 − u/n)α (EGCV : u < n)

,
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Equivalence between adaptive Lasso and generalized ridge estimators 1509

where s20 is given by (15) and α is some positive value expressing the strength of a
penalty for model complexity.We can see that s20 �= 0 because we assume that σ̂ 2

0 �= 0.
Moreover, the original GIC under normality is expressed as n log r + αu. The GIC in
this paper is defined as an exponential transformation of the original GIC divided by
n. Using (21), the tuning parameter optimized by the MSC minimization method is
given by

λ̂ = arg min
λ∈R+

MSCAL(λ).

Hence, it follows from λ̂ and (10) that the ALE with w j = 1/|β̂LS
j | after optimizing

the tuning parameter by the MSC minimization method is given by

β̂AL
λ̂, j

= 1√
d j

S
(
z j , λ̂/|z j |

)
. (22)

Next, in order to show the equivalence between the ALE with w j = 1/|β̂LS
j |

and the GRE, we give the GRE after optimizing the ridge parameters by the MSC
minimization method. From Ohishi et al. (2020), the ridge parameters optimized by
the MSC minimization method are

θ̂ =
(
θ̂1, . . . , θ̂k

)′ = arg min
θ∈Rk

MSCGR(θ),

MSCGR(θ) = f
(
σ̂ 2
GR(θ), dfGR(θ)

)
, (23)

where f is given by Definition 1 and σ̂ 2
GR(θ) and dfGR(θ) are given by (18) and (19),

respectively. The following lemma describes the ranges of σ̂ 2
GR(θ) and dfGR(θ) (the

proof is given in Ohishi et al. 2020).

Lemma 3 Ranges of σ̂ 2
GR(θ) and dfGR(θ) are given by

σ̂ 2
GR(θ) ∈ [σ̂ 2

0 , σ̂ 2∞], dfGR(θ) ∈ [1, k + 1].

Here, we consider the following class of ridge parameters defined by Ohishi et al.
(2020):

∀h ∈ R+, g(h) = (g1(h), . . . , gk(h))′, g j (h) =

⎧
⎪⎨

⎪⎩

d j h

z2j − h

(
h < z2j

)

∞
(
h ≥ z2j

) . (24)

In the class, k ridge parameters are written in terms of one parameter h, and hence, the
codomain of the class becomes smaller than that of θ . Nevertheless, Ohishi et al. (2020)
showed that the optimal ridge parameters are included in the class. Hence, it follows
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from (23) and (24) that the ridge parameters optimized by the MSC minimization
method are given by

θ̂ = (θ̂1, . . . , θ̂k)
′ = g(ĥ) = (g1(ĥ), . . . , gk(ĥ))′, g j (ĥ) =

⎧
⎪⎪⎨

⎪⎪⎩

d j ĥ

z2j − ĥ

(
ĥ < z2j

)

∞
(
ĥ ≥ z2j

) ,

ĥ = arg min
h∈R+

MSCGR(g(h)).

Equation (17) and θ̂ = g(ĥ) imply that the GRE after optimizing the ridge parameters
by the MSC minimization method is given as

β̂GR
θ̂ j , j

= 1√
d j

S
(
z j , ĥ/|z j |

)
. (25)

From the result that (25) includes 0, we can see that the GRE after optimizing the
ridge parameters has sparsity as in (20).

Equations (22) and (25) imply that if λ̂ = ĥ, the ALE withw j = 1/|β̂LS
j | is exactly

equal to the GRE after optimizing the regularization parameters. The equality is shown
if the function for optimizing λ is the same as that for optimizing h. The equivalence
of the two functions can be derived by the following lemma (the proof is given in
“Appendix A.5”).

Lemma 4 When w j = 1/|β̂LS
j |, we have

∀x ∈ R+, MSCAL(x) = MSCGR(g(x)).

Lemma 4 implies that λ̂ = ĥ. Hence, we can obtain the following theorem.

Theorem 4 Suppose that w j = 1/|β̂LS
j |. Let λ̂ and ĥ be the minimizers ofMSCAL(λ)

and MSCGR(g(h)), respectively, i.e.,

λ̂ = arg min
λ∈R+

MSCAL(λ), ĥ = arg min
h∈R+

MSCGR(g(h)).

When the explanatory variables are orthogonal, λ̂ is exactly equal to ĥ, and hence,
the ALE is exactly equal to the GRE, i.e., β̂AL

λ̂, j
= β̂GR

θ̂ j , j
( j = 1, . . . , k).

Theorem 4 shows the equivalence between the ALE with w j = 1/|β̂LS
j | and the GRE

after optimizing the regularization parameters by theMSCminimizationmethodwhen
the explanatory variables are orthogonal.

We consider that various factors caused the equivalence. The orthogonality of
explanatory variables is one of the important factors. TheGR regression can be usually
interpreted as the method that estimates the regression coefficients after orthogonal
transformation by the transposed matrix of the orthogonal matrix that diagonalizes
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Equivalence between adaptive Lasso and generalized ridge estimators 1511

X ′X . This means that the GR regression is equal to the GR-penalized principal com-
ponent regression with principal component scores of which norms are not 1. Hence,
we can consider that the orthogonality is implicitly assumed in the GR regression. On
the other hand, (adaptive) Lasso does not generally assume the orthogonality. There-
fore, the orthogonality plays an important role to compare (adaptive) Lasso and the
GR regression on an equal footing.

When we use the PLS method based on the AL penalty or the GR penalty, although
we have to calculate λ̂ or ĥ, the values can be obtained in a calculation of order O(k)
by using a fast algorithm proposed by Ohishi et al. (2020).

4 Conclusion

In this paper, we dealt with the PLS methods based on the AL penalty and the
GR penalty when the explanatory variables are orthogonal. Although the estimators
obtained from these penalties are different, we showed the interesting result that the
two estimators with the regularization parameters optimized by the MSC minimiza-
tion method are exactly equal. The equivalence of the two estimators was derived from
the result that the function for optimizing the tuning parameter in the AL is equal to
that for optimizing the ridge parameters in the GR. Therefore, the two PLS methods
are completely equivalent when the explanatory variables are orthogonal. For the case
of general explanatory variables, although the ALE cannot be obtained without itera-
tive calculation, the GRE can be obtained in closed form. If the equivalence or some
relationship between the ALE and the GRE can be obtained for general explanatory
variables, we may easily obtain the ALE through the GRE. The results in this paper
suggest that possibility.
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Appendix

A.1 Proof of Theorem 1

Using the orthogonal matrix P in (4), we define the n-dimensional vector z = P ′ y.
Then, since P = (P1, P2), by using z1 in (5), z can be partitioned as

z = (z1, . . . , zn)
′ = P ′ y =

(
P ′
1 y

P ′
2 y

)
=
(
z1
z2

)
. (26)

These equations imply that

PRSSAL(β) = ( y − Xβ)′P P ′( y − Xβ) + 2λ
k∑

j=1

w j |β j |
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1512 M. Ohishi et al.

=
{
z −

(
D1/2

On−k,k

)
β

}′ {
z −

(
D1/2

On−k,k

)
β

}
+ 2λ

k∑

j=1

w j |β j |

=
k∑

j=1

{(
z j −√d jβ j

)2 + 2λw j |β j |
}

+
n∑

j=k+1

z2j .

Hence, theminimization of the PRSSAL is equivalent to that of the following function:

ζ(β j | d j ) =
(
z j −√d jβ j

)2 + 2λw j |β j |
= d jβ

2
j − 2

{
z j
√
d j − λw j sign(β j )

}
β j + z2j ( j = 1, . . . , k).

Since d j > 0, ζ(β j | d j ) is a piecewise quadratic function. If the sign of z j d
1/2
j −

λw j sign(β j ) that is the β j -coordinate of the vertex of ζ(β j | d j ) is equal to the sign of
β j , then the minimizer of ζ(β j | d j ) is the β j -coordinate of the vertex, and otherwise,
it is 0. This result implies (7). Moreover, by using X = P1D1/2 and z1 = P ′

1 y, we
have

β̂
AL
λ =

⎛

⎜⎝
β̂AL

λ,1
...

β̂AL
λ,k

⎞

⎟⎠ =
⎛

⎜⎝
�λ,1

√
d1z1

...

�λ,k
√
dkzk

⎞

⎟⎠ = LλD1/2z1 = LλD1/2P ′
1 y = LλX ′ y.

Consequently, Theorem 1 is proved. 
�

A.2 Proof of Lemma 1

First, we show the result about σ̂ 2
AL(λ). The σ̂ 2

AL(λ) can be calculated as

σ̂ 2
AL(λ) = 1

n
y′
{
P P ′ − P

(
Ik

On−k,k

)
D1/2LλD1/2(Ik, Ok,n−k)P ′

}2
y

= 1

n
z′
{
In −

(
D1/2LλD1/2 Ok,n−k

On−k,k On−k,n−k

)}2
z

= 1

n
(z′1, z′2)

(
(Ik − D1/2LλD1/2)2 Ok,n−k

On−k,k In−k,n−k

)(
z1
z2

)

= 1

n

{
z′1(Ik − D1/2LλD1/2)2z1 + z′2z2

}
,

where P and z are the matrix of order n and the n-dimensional vector given by (4)
and (26), respectively. Notice that Ik − D1/2LλD1/2 is a diagonal matrix and that
β̂LS
j = z j/d

1/2
j . When w j = 1/|β̂LS

j |, the j th diagonal element is expressed as
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Equivalence between adaptive Lasso and generalized ridge estimators 1513

1 − �λ, j d j = 1 − S
(
1, λ/z2j

)
.

Moreover, z′2z2 can be expressed as

z′2z2 = y′P2P ′
2 y = y′(In − P1P ′

1) y = y′(In − XD−1X ′) y = nσ̂ 2
0 .

Hence, σ̂ 2
AL(λ) is given by (11).

Next, we show the result about dfAL(λ). When w j = 1/|β̂LS
j |, the j th element of

LλD is expressed as

�λ, j d j = 1 −
{
1 − S

(
1, λ/z2j

)}
= S

(
1, λ/z2j

)
.

Hence, dfAL(λ) is given by (11). Consequently, Lemma 1 is proved. 
�

A.3 Proof of Theorem 2

The σ̂ 2
AL(λ) and dfAL(λ) in Lemma 1 are rewritten as the following piecewise func-

tions:

σ̂ 2
AL(λ) = σ̂ 2

AL,a(λ) = σ̂ 2
0 + 1

n
(c1,a + c2,aλ

2) (λ ∈ Ra), (27)

dfAL(λ) = dfAL,a(λ) = 1 + k − a − c2,aλ (λ ∈ Ra), (28)

where Ra is the range given by (14), σ̂ 2
0 and t j are given by (12) and (13), respectively,

and c1,a and c2,a are nonnegative constants defined by

c1,a =
a∑

j=0

t j , c2,a =

⎧
⎪⎨

⎪⎩

k∑

j=a+1

1

t j
(a = 0, 1, . . . , k − 1)

0 (a = k)

.

Hence, the GCV criterion for optimizing the tuning parameter is also expressed as a
piecewise function, as follows:

GCVAL(λ) = φa(λ) = σ̂ 2
AL,a(λ)

{1 − dfAL,a(λ)/n}2 (λ ∈ Ra).

In order to obtain λ̂ that is theminimizer of theGCV,we have to solve theminimization
problem of φa(λ). Since c2,k = 0 when a = k, φk(λ) is the constant σ̂ 2∞/(1 − n−1)2

at any λ ∈ Rk . When a < k, the derivative of φa(λ) is given by

d

dλ
φa(λ) = c2,a

n2{b + (a + c2,aλ)}3 · ψa(λ), (29)

123



1514 M. Ohishi et al.

where

b = 1 − 1

n
(k + 1), ψa(λ) = (a + nb)λ − (nσ̂ 2

0 + c1,a).

Here, by using ψa(λ), we define the function ψ(λ) (λ ∈ (0, tk]) as

ψ(λ) = ψa(λ) (λ ∈ Ra).

Since c2,a/n2{b + (a + c2,aλ)}3 that is the coefficient of ψa(λ) in (29) is positive,
it is enough to examine the sign of ψa(λ) in order to search for the local minimum
of φa(λ). Hence, we should find the point such that the sign of the linear function
ψa(λ) changes negative to positive. The ψa(λ) is monotonic increasing function at
any λ ∈ Ra because a + nb that is the gradient of the linear function is positive. It
follows from the simple calculation that ψ(λ) is continuous at any λ ∈ (0, tk], i.e.,

ψa(ta+1) = ψa+1(ta+1) (a = 0, 1, . . . , k − 2).

Notice thatψ0(0) = −nσ̂ 2
0 < 0 andψk−1(tk) = (n−2)tk−(nσ̂ 2

0 +c1,k−1) > 0.Hence,
since ψ(λ) is a piecewise increasing linear function with ψ(0) < 0 and ψ(tk) > 0, λ
satisfying ψ(λ) = 0 uniquely exists, i.e., the following statement is true:

∃!a∗ ∈ {0, . . . , k − 1} s.t. ψa∗(λ) = 0, λ ∈ Ra∗ .

Notice that nσ̂ 2
0 + c1,a = (n − k − 1 + a)s2a . Consequently, Theorem 2 is proved by

solving ψa∗(λ) = 0. 
�

A.4 Proof of Lemma 2

It follows from (27) and (28) that σ̂ 2
AL,a(λ) is a monotonic increasing function and

dfAL,a(λ) is a monotonic decreasing function. Notice that

σ̂ 2
AL,a(ta+1) = σ̂ 2

AL,a+1(ta+1) (a = 0, 1, . . . , k − 2),

dfAL,a(ta+1) = dfAL,a+1(ta+1) (a = 0, 1, . . . , k − 2),

where t j is the j th-order statistic given by (13). Hence, σ̂ 2
AL(λ) is a continuous mono-

tonic increasing function and dfAL(λ) is a continuous monotonic decreasing function.
Moreover, Lemma 1 implies

σ̂ 2
AL(0) = σ̂ 2

0 , dfAL(0) = k + 1,

lim
λ→∞ σ̂ 2

AL(λ) = lim
λ→∞ σ̂ 2

AL,k(λ) = 1

n

(
nσ̂ 2

0 + z′1z1
)

= 1

n
y′(In − Jn) y,

lim
λ→∞ dfAL(λ) = lim

λ→∞ dfAL,k(λ) = 1.

Consequently, Lemma 2 is proved. 
�
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A.5 Proof of Lemma 4

From results in Yanagihara (2018), σ̂ 2
GR(θ) in (18) and dfGR(θ) in (19) are expressed

as

σ̂ 2
GR(θ) = 1

n

⎧
⎨

⎩nσ̂ 2
0 +

k∑

j=1

(
θ j

d j + θ j

)2

z2j

⎫
⎬

⎭ , dfGR(θ) = 1 + k −
k∑

j=1

θ j

d j + θ j
.

These equations imply

σ̂ 2
GR(g(h)) = 1

n

⎧
⎨

⎩nσ̂ 2
0 +

k∑

j=1

(
g j (h)

d j + g j (h)

)2

z2j

⎫
⎬

⎭ ,

dfGR(g(h)) = 1 + k −
k∑

j=1

g j (h)

d j + g j (h)
,

(30)

where z j and σ̂ 2
0 are given by (5) and (12), respectively. Moreover, by using (24) and

the soft-thresholding operator, we have

g j (h)

d j + g j (h)
= S

(
h/z2j , 1

)
+ 1.

Hence, (30) can be expressed as

σ̂ 2
GR(g(h)) = 1

n

⎡

⎣nσ̂ 2
0 +

k∑

j=1

{
S(h/z2j , 1) + 1

}2
z2j

⎤

⎦ = σ̂ 2
AL(h),

dfGR(g(h)) = 1 −
k∑

j=1

S
(
h/z2j , 1

)
= dfAL(h),

where σ̂ 2
AL(λ) and dfAL(λ) are given by (11). Recall that

MSCAL(h) = f
(
σ̂ 2
AL(h), dfAL(h)

)
,

from (21). Hence, we have

MSCAL(h) = MSCGR(g(h)).

Consequently, Lemma 4 is proved. 
�
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