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Abstract
In this paper,we investigate the problemof estimating the regression function inmodels
with correlated observations. The data are obtained from several experimental units,
each of them forms a time series. Using the properties of the reproducing kernel Hilbert
spaces, we construct a new estimator based on the inverse of the autocovariance matrix
of the observations. We give the asymptotic expressions of its bias and its variance.
In addition, we give a theoretical comparison between this new estimator and the
popular one proposed by Gasser and Müller, we show that the proposed estimator
has an asymptotically smaller variance than the classical one. Finally, we conduct a
simulation study to investigate the performance and the robustness of the proposed
estimator and to compare it to the Gasser and Müller’s estimator in a finite sample set.

Keywords Nonparametric regression · Correlated observations · Growth curve ·
Reproducing kernel Hilbert space · Projection estimator · Asymptotic normality

1 Introduction

One of the situations that statisticians encounter in their studies is the estimation
of a whole function based on partial observations of this function. For instance, in
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pharmacokinetics one wishes to estimate the concentration time of some injected
medicine in the organism, based on the observations of the concentration from blood
tests over a period of time. In statistical terms, one wants to estimate a function, say g,
relating two random variables: the explanatory variable X and the response variable Y ,
without any parametric restrictions on the function g. The statistical model often used
is the following: Yi = g(Xi ) + εi where (Xi , Yi )1≤i≤n are n independent replicates
of (X , Y ) and {εi , i = 1, . . . , n} are centered random variables (called errors).

The most intensively treated model has been the one in which (εi )1≤i≤n are inde-
pendent errors and (Xi )1≤i≤n are fixed within some domain. We mention the works
of Priestly and Chao (1972), Benedetti (1977) and Gasser and Müller (1979) among
others. However, the independence of the observations is not always a realistic assump-
tion. For instance, the growth curve models are usually used in the case of longitudinal
data, where the same experimental unit is being observed on multiple points of time.
As a real life example, the heights observed on the same child are correlated. The tem-
perature observations measured along the day are also correlated. For this, we focus,
in this paper, on the nonparametric kernel estimation problem where the observations
are correlated.

In the current paper, we consider a situation where the data are generated from m
experimental units each of them having n measurements of the response. For this data,
we consider the so-called fixed design regression model with repeated measurements
given by,

Y j (ti ) = g(ti ) + ε j (ti ) for i = 1, . . . , n and j = 1, . . . , m, (1)

where {ε j , j = 1, . . . , m} is a sequence of i.i.d. centered error processes with the
same distribution as a process ε. The non-correlation of the errors {ε j , j = 1, . . . , m}
is a natural assumption since it is equivalent to assuming that the experimental units
(in general individuals) are independent.

Thismodel is usually used in the growth curve analysis and dose response problems,
see for instance, the work of Azzalini (1984). It has also been considered by Müller
(1984) with m = 1, where he supposed that the observations are asymptotically
uncorrelated when the number of observations tends to infinity, i.e., Cov(ε(s), ε(t)) =
O(1/n) for s �= t , which is not a realistic assumption, for instance, in the growth curve
analysis and temperature.

The correlated observations case was considered by Hart and Wherly (1986), who
investigated the estimation of g in Model (1) where ε is a stationary error process.
Using the kernel estimator proposed by Gasser and Müller (1979), they proved the
consistency in L

2 space of this estimator, when the number of experimental units
m tends to infinity, but not when n tends to infinity as in the case of independent
observations.

The assumption of stationarity made on the observations is however restrictive. In
the previous pharmacokinetics example for instance, it is clear that the concentration
of the medicine will be high at the beginning then decreases with time. For this,
we shall investigate the estimation of g in Model (1) where ε is not necessarily a
stationary error process. This case was partially investigated by Ferreira et al. (1997)
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and by Benhenni and Rachdi (2007), where the Gasser and Müller’s estimator was
used.

In this paper, we propose a new estimator for the regression function g in Model
(1). This estimator, which is also a linear kernel estimator, is based on the inverse of
the autocovariance matrix of the observations that we assume known and invertible.

The proposed estimator was inspired by the work of Sacks and Ylvisaker (1966,
1968, 1970) but in a different context than ours. They considered the parametric
model: Y (t) = β f (t) + ε(t) where β is an unknown real parameter and f is a
known function belonging to the reproducing kernel Hilbert space associated with
the autocovariance function of the error process ε, denoted by RKHS(R). They also
assumed that the autocovariance matrix is known and invertible. It is worth noting that
the reproducing kernel Hilbert spaces have been used in several domains, for instance,
in statistics by Sacks and Ylvisaker (1966) and more recently by Dette et al. (2016),
in mathematical analysis by Schwartz (1964) and in signal processing by Ramsay and
Silverman (2005).

We also give the asymptotic statistical performance of the proposed estimator, and
we compare it to the classical Gasser andMüller’s estimator (GM estimator), proving,
in particular, that the proposed estimator outperforms the GM estimator, in the sense
that it has an asymptotically smaller variance, whereas they both are asymptotically
unbiased. This can be argued by the fact that, in statistics in general, the best linear
estimator (or optimal predictor) is based on the inverse of the autocovariance matrix,
see for instance, Benhenni and Cambanis (1992), whereas the GM estimator does not
take into account this correlation requirement. In addition, the GM estimator is an
approximation of an integral, and as known in statistics, the best linear approximation
of an integral is based on some projection property.

This paper is organized as follows. In Sect. 2, we construct our proposed estimator
for the function g in Model (1) where ε is a centered, second-order error process
with a continuous autocovariance function R. It is constructed through the following
function defined, for x ∈ [0, 1], by,

fx,h(t) =
∫ 1

0
R(s, t)ϕx,h(t)ds where ϕx,h(t) = 1

h
K

(
x − t

h

)
for t ∈ [0, 1], (2)

where K is a Kernel and h = h(n, m) is a bandwidth.
We shall see that this function belongs to the RKHS(R). This allows us to use

the properties of this space to control the variance of the proposed estimator. These
properties were introduced by Parzen (1959) to solve various problems in statistical
inference on time series.We also give, in this section, the analytical expressions of this
estimator for the generalized Wiener process and the Ornstein–Uhlenbeck process,
since the analytical expression of the inverse of the autocovariance matrix can be
derived for this class of processes.

In Sect. 3, we derive the asymptotic performances of this estimator. We give an
asymptotic expression of the weights of this linear estimator, which is used to derive
the asymptotic expression of its bias. The properties of the RKHS(R) not only allow us
to obtain the asymptotic expression of the variance, but also to find the optimal rate of
convergence of the residual variance. After obtaining the asymptotic expression of the
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integrated mean squared error (IMSE), we derive the asymptotic optimal bandwidth
with respect to the IMSE criterion. Moreover, we prove the asymptotic normality of
the proposed estimator.

In Sect. 4, we give a theoretical comparison between the new estimator and the
Gasser and Müller’s estimator. We prove that the proposed estimator has, asymptot-
ically, a smaller variance than that of Gasser and Müller. Moreover, the proposed
estimator has an asymptotically smaller IMSE, for instance, in the case of a Wiener
process ε.

In Sect. 5, we conduct a simulation study in order to investigate the performance
of the proposed estimator in a finite sample set; then we compare it with the Gasser
and Müller’s estimator for different values of the number of experimental units and
different values of the sample size. We also study the robustness of the projection
estimator, with respect to the misspecification of the autocovariance function. Since
the classical cross-validation criterion is shown to be inefficient in the presence of
correlation (see for instance, Altman 1990; Chiu 1989; Hart 1991, 1994), we use the
optimal bandwidth that minimizes the exact IMSE, or the estimated mean average
squared error (MASE) when the autocovariance function is unknown, obtained using
the conjugated gradient algorithm. The results of this simulation study confirm our
theoretical statements given in Sects. 3 and 4.

Finally, the supplementary materials section is dedicated to the proofs of the the-
oretical results, in addition to an Appendix about the RKHS(R) and some technical
details.

2 Construction of the estimator using the RKHS approach

We consider Model (1) where g is the unknown regression function on [0, 1] and
{ε j (t), t ∈ [0, 1]} j=1,...,m is a sequence of error processes. We assume that g ∈
C2([0, 1]) and that (ε j ) j=1,...,m are i.i.d. processes with the same distribution as a
centered second-order process ε.We denote by R its autocovariance function, assumed
to be known, continuous and forms a non-singular matrix when restricted to T × T
for any finite set T ⊂ [0, 1].

2.1 Projection estimator

In this section, we shall give the definition of the new proposed estimator for the
regression function g in Model (1). This estimator (see Definition 1) is constructed
using the function fx,h given by (2) for x ∈ [0, 1], h ∈]0, 1[ and K is a first-order
kernel1 of support [−1, 1] belonging to C1. This function is well known in time series
analysis and has been used by several authors. We mention, among others, the works
of Belouni and Benhenni (2015) and Sacks and Ylvisaker (1966) for linear regression
models with correlated errors. It is mainly used due to its belonging to the reproducing
kernel Hilbert space associated with the autocovariance function R (RKHS(R)) (see
Appendix 1 for more details). This space is spanned by the functions {R(·, ti )1≤i≤n}
1 The kernel K satisfies:

∫ 1
−1 K (t)dt = 1,

∫ 1
−1 t K (t)dt = 0 and

∫ 1
−1 t2K (t)dt < +∞.
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forming a closed subspace on which an orthogonal projection of the function fx,h is
feasible.We shall call the estimator obtained by this approach, the projection estimator.

The proposed estimator, which is a kernel estimator, is linear in the observations
Y (ti ) and is given by the following definition.

Definition 1 The projection estimator of the regression function g in Model (1) based
on the observations (ti , Y j (ti ))1≤i≤n

1≤ j≤m
is given for any x ∈ [0, 1] by,

ĝpro
n (x) =

n∑
i=1

mx,h(ti )Y (ti ), (3)

where Y (ti ) = 1
m

∑m
j=1 Y j (ti ) and the weights (mx,h(ti ))1≤i≤n are being determined,

letting Tn = (ti )1≤i≤n , by,
m′

x,h|Tn
= fx,h |Tn

′ R−1
|Tn

, (4)

with fx,h|Tn
:= ( fx,h(t1), . . . , fx,h(tn))′, R|Tn := (R(ti , t j ))1≤i, j≤n , R−1

|Tn
the inverse

of R|Tn and mx,h |Tn
:= (mx,h(t1), . . . , mx,h(tn))′, where v′ denotes the transpose of a

vector v.

Remark 1 The assumption that the autocovariance function is known and that the auto-
covariance matrix is invertible, is well known in the literature. For instance, it has been
used in the linear regressionmodels, see for example Sacks andYlvisaker (1966, 1968,
1970), in order to construct the best linear unbiased estimator (BLUE) of the model’s
parameter. Likewise, this assumption was used to obtain the best linear predictor of a
process at a given value, and the best linear predictor of the integral stochastic process,
see for instance Benhenni and Cambanis (1992) and Su and Cambanis (1993).

Remark 2 In order to motivate the proposed estimator, consider the regression model
using m continuous experimental units, i.e.,

Y j (t) = g(t) + ε j (t) for t ∈ [0, 1] and j = 1, . . . , m. (5)

A continuous kernel estimator of g in Model (5) is given for any x ∈ [0, 1] by,

ĝ[0,1](x) =
∫ 1

0
ϕx,h(t)Y (t)dt with Y (t) = 1

m

m∑
j=1

Y j (t), (6)

where ϕx,h(t) = 1
h K

( x−t
h

)
for a kernel K and a bandwidth h. We refer the reader to

the works of Blanke and Bosq (2008) and Didi and Louani (2013) for more details on
the Kernel estimation of the regression function based on continuous observations.

Since in practice we only have access to discrete observations, then a linear approx-
imation of the continuous kernel estimator should be of the form:

ĝn(x) =
n∑

i=1

Wx,h(ti )Y (ti ).

123



1484 D. Benelmadani et al.

Now let,

fn,x (t) =
n∑

i=1

Wx,h(ti )R(ti , t) for t ∈ [0, 1].

Then the mean squared error (MSE) of approximation can be written as:

E
(
ĝ[0,1](x) − ĝn(x)

)2 = || fx,h − fn,x ||2,

where fx,h is given by (2) and || · || is the norm of the RKHS(R) (see Appendix for
more details). Then the best linear predictor ĝpro

n (x) of ĝ[0,1](x) satisfies:

inf
Wx,h |Tn

E
(
ĝ[0,1](x) − ĝn(x)

)2 = || fx,h − P|Tn fx,h ||2,

where P|Tn fx,h is the orthogonal projection of fx,h on the subspace of RKHS spanned
by the function {R(·, ti ), i = 1, . . . , n}. The optimal coefficients (W ∗

x,h(ti ))1≤i≤n can
then be derived by using the fact that P|Tn fx,h(ti ) = fx,h(ti ) for i = 1, . . . , n (see
Equation (88) in Appendix) and this yields W ∗

x,h|Tn

′ = fx,h |Tn
′ R−1

|Tn
.

For some classical error processes, such as the Wiener and the Ornstein–Uhlenbeck
processes, the estimator (3) has a simplified expression as shown in the following
proposition.

Proposition 1 Consider the regression model (1)where ε is of autocovariance function
R(s, t) = ∫ min(s,t)

0 uβdu for a positive constant β. Let t0 = 0, tn+1 = 1. Set Y (t0) = 0
and Y (tn+1) = Y (tn). For any x ∈ [0, 1], the projection estimator (3) can be written
as follows:

ĝpro
n (x) = 1

β + 1

(
n+1∑
i=1

Y (ti )
∫ ti

ti−1

ϕx,h(s)ds

+
n−1∑
i=0

Y (ti+1) − Y (ti )

tβ+1
i+1 − tβ+1

i

∫ ti+1

ti

(
sβ+1 − tβ+1

i+1

)
ϕx,h(s)ds

)
. (7)

Remark 3 Taking β = 0 in the previous proposition gives the expression of the pro-
jection estimator (3) in the case where ε is the classical standardWiener error process.
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Proposition 2 If the error process ε in Model (1) is the Ornstein–Uhlenbeck process
with R(s, t) = e−|t−s|, then for any x ∈ [0, 1],

ĝpro
n (x) =

n−1∑
i=2

Y (ti )
∫ ti+1

ti−1

e|s−ti |ϕx,h(s)ds + Y (t1)
∫ t2

0
es−t1ϕx,h(s)ds

+ Y (tn)
∫ 1

tn−1

etn−sϕx,h(s)ds −
n−1∑
i=1

eti+1Y (ti+1) − eti Y (ti )

1 − e−2(ti+1−ti )

∫ ti+1

ti
e−sϕx,h(s)ds

+
n−1∑
i=1

e−ti+1Y (ti+1) − e−ti Y (ti )

1 − e−2(ti+1−ti )

∫ ti+1

ti
esϕx,h(s)ds,

where ϕx,h is defined in the previous proposition.

Remark 4 As the previous propositions show, the expression of mx,h|Tn
is known ana-

lytically for error processes of practical interest. Formore complicated error processes,
numerical methods can be used. For more general error processes, we will give an
asymptotic simplified expressionof theweights of the projection estimator (seeLemma
3).

2.2 Assumptions and comments

In order to derive our asymptotic results, the following assumptions on the autoco-
variance function R and the Kernel K are required.

(A) R is continuous on the entire unit square and has left and right derivatives up to
order two at the diagonal (i.e., when s = t), i.e.,

R(0,1)(t, t−) = lim
s↑t

∂ R(t, s)

∂s
and R(0,1)(t, t+) = lim

s↓t

∂ R(t, s)

∂s
,

exist and are continuous. In a similarwaywedefine R(0,2)(t, t−) and R(0,2)(t, t+).
Off the diagonal (i.e., when s �= t in the unit square), R has continuous derivatives
up to order two.

For t ∈]0, 1[, let α(t) = R(0,1)(t, t−) − R(0,1)(t, t+). Assumption (A) gives the
following lemma concerning the jump function α.

Lemma 1 If Assumption (A) is satisfied, then the jump function α is a positive function.

To obtain our asymptotic results, we shall give next a stronger assumption on the jump
function α.

(B) We assume that α is Lipschitz on ]0, 1[, inf
0<t<1

α(t) = α0 > 0 and sup
0<t<1

α(t) =
α1 < ∞.

Assumptions (A) and (B) are classical regularity conditions andwere used in several
works, see for instance Belouni and Benhenni (2015), Sacks and Ylvisaker (1966) and
Su and Cambanis (1993).
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(C) For each t ∈ [0, 1], R(0,2)(., t+) is in the reproducing kernel Hilbert space asso-
ciated with R, denoted by RKHS(R), equipped with the norm || · ||. In addition,
sup

0≤t≤1
||R(0,2)(., t+)|| < ∞ (see Appendix for more details).

Assumption (C), which is more restrictive than (B) as indicated by Sacks and
Ylvisaker (1966), is necessary to evaluate the weights of the projection estimator (see
Lemma 3).

(D) K is an even function and K ′ is a Lipschitz function on [−1, 1].
Examples of autocovariance functions which satisfy Assumptions (A), (B) and (C)

are given below.

Example 1 1. The autocovariance function R(s, t) = σ 2min(s, t) of the Wiener
process has a constant jump function α(t) = σ 2 and R(i, j)(s, t) = 0 for all
integers i, j such that i + j = 2 and s �= t .

2. The autocovariance function R(s, t) = σ 2e−λ|s−t | of the stationary Ornstein–
Uhlenbeck process with σ > 0 and λ > 0. For this process the jump function is
α(t) = 2σ 2λ and R(0,2)(s, t) = σ 2λ2e−λ|s−t |.

3. Another general class of autocovariance functions was given by Sacks and
Ylvisaker (1966) and has the form,

R(s, t) =
∫ 1/|t−s|

0
(1 − μ|t − s|)p(μ)dμ,

where p is a probability density and p′ its derivative are such that,

lim
μ→∞μ3 p(μ) < ∞, and

∫ ∞

a
(μp′(μ) + 3p(μ))2)μ6dμ < ∞,

for some a. We have α(t) = 2
∫ ∞
0 up(u)du.

3 Local asymptotic results

Let Tn = (ti,n)1≤i≤n for n ≥ 1, be a fixed sequence of designs with Tn ∈ Dn , where

Dn = {(s1, s2, . . . , sn) : 0 ≤ s1 < s2 < · · · < sn ≤ 1}.

Set t0,n = 0, tn+1,n = 1, d j,n = t j+1,n − t j,n and let for x ∈ [0, 1], h = h(n, m),

Ix,h = {i = 1, . . . , n : [ti−1,n, ti+1,n]∩]x − h, x + h[�= ∅}.

Denote by NTn = Card(Ix,h).Recall that [x−h, x+h] is the support of the function
ϕx,h . To obtain the asymptotic results, we require that the sequence (Tn)n≥1 satisfies
the next assumption.

123



RKHS approach in nonparametric regression 1487

(E) limn→∞ sup0≤ j≤n d j,n = 0, limn,m→∞
( 1

h sup0≤ j≤n d j,n
) = 0, limn,m→∞(

NTn
1

h2
sup0≤ j≤n d2

j,n

)
= 0 and lim supn,m→∞

(
N 2

Tn

1
h2

sup0≤ j≤n d2
j,n

)
< ∞.

A simple sequence of designs that verifies Assumption (E)was presented by Sacks
and Ylvisaker (1970) as follows.

Definition 2 Let F be a distribution function of some density function f such that
sup0<t<1 f (t) < ∞ and inf0<t<1 f (t) > 0. The so-called regular sequence of designs
generated by f is defined by,

Tn =
{

ti,n = F−1
(

i

n

)
, i = 1, . . . , n

}
.

In the sequel, the density f is assumed to be at least in C2([0, 1]). This sequence of
designs verifies the following Lemma (see for instance Benelmadani et al. 2019b for
its proof).

Lemma 2 Let (Tn)n≥1 be a regular sequence of designs generated by some density
function. For x ∈]0, 1[ and h > 0, suppose that Tn ∩ [x − h, x + h] �= ∅ and that
nh ≥ 1. Then,

sup
0≤ j≤n

d j,n = O

(
1

n

)
and NTn = O(nh), (8)

where NTn and d j,n are defined as above. In addition, if limn,m→∞nh = ∞, then the
regular sequence of designs verifies Assumption (E).

3.1 Evaluation of the bias

In order to derive the asymptotic expression of the bias term of the projection estimator,
we shall first give the asymptotic approximation of the weights mx,h |Tn

[defined by
(4)] in the following lemma.

Lemma 3 Suppose that Assumptions (A), (B) and (C) are satisfied. Then for any
x ∈]0, 1[,

mx,h(ti,n)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ϕx,h(ti,n)(ti+1,n − ti−1,n) + O

(
αn,h + βn,h

)
i f i /∈ {1, n} and

[ti−1,n, ti+1,n] ∩ [x − h, x + h] �= ∅,

O
(
NTn αn,h + nβn,h

)
i f i ∈ {1, n},

O
(
βn,h

)
otherwise,
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1488 D. Benelmadani et al.

where

αn,h = sup
0≤i≤n

sup
ti,n≤s,t≤ti+1,n

di,n |α(s)ϕx,h(s) − α(t)ϕx,h(t)| = O

(
1

h2 sup
0≤ j≤n

d2
j

)
,

βn,h = sup
0≤t≤1

1

α(t)
||R(0,2)(., t)||

√
C√
h

sup
0≤ j≤n

d2
j = O

(
1√
h

sup
0≤ j≤n

d2
j

)
,

and C is a positive constant defined in Proposition 5.

Remark 5 This Lemma shows that the weights of the projection estimator are asymp-
totically equivalent to those of some well-known linear estimators of the regression
function g. For instance,

• Priestly and Chao (1972) and Benedetti (1977) used the following weights:

Wx,h(ti ) = (ti+1,n − ti,n)ϕx,h(ti ) for i = 1, . . . , n.

• Gasser and Müller (1979) used the following weights:

Wx,h(ti ) =
∫ si,n

si−1,n

ϕx,h(s)ds for i = 1, . . . , n,

where s0 = 0, sn = 1 and si,n = (ti+1,n + ti,n)/2 for i = 1, . . . , n − 1.
• Cheng and Lin (1981) replaced si,n by ti,n , in the weights of the Gasser andMüller
estimator.

Using the asymptotic approximation of the weights given in Lemma 3, we can obtain
the asymptotic expression of the bias of the projection estimator as shown in the
following proposition.

Proposition 3 Suppose that Assumptions (A)–(D) are satisfied. If Tn∩]x −h, x +h[�=
∅ and nh ≥ 1, then for any x ∈]0, 1[,

E(ĝpro
n (x))−g(x) = 1

2
h2g′′(x)B+o(h2)+O

(
NTn

h3 sup
0≤ j≤1

d3
j,n + NTn αn,h + nβn,h

)
,

where αn,h and βn,h are given in Lemma 3 and B = ∫ 1
−1 t2K (t)dt.

Remark 6 Under the assumption of Lemma 2 we have,

E (ĝpro
n (x)) − g(x) = 1

2
h2g′′(x)B + o(h2) + O

(
1

nh

)
.

In the case of a Wiener error process, a direct computation of the bias term of

the projection estimator (7), with β = 0, shows that the order term O
(

1
nh

)
can be

improved. The result is given by the following proposition.
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Proposition 4 Consider Model (1) with a Wiener error process of autocovariance
function R(s, t) = min(s, t). Let (Tn)n≥1 be a regular sequence of designs generated
by a density function f (cf. Definition 2) and let K be a kernel satisfying Assumption
(D). If Tn∩]x − h, x + h[�= ∅ and nh ≥ 1, then

E (ĝpro
n (x)) − g(x) = 1

2
h2g′′(x)B + o(h2) + O

(
1

n2h

)
,

where B is given in Proposition 3 above.

3.2 Evaluation of the variance

It is shown in Lemma 5 of Appendix that fx,h defined by (2) belongs to the RKHS(R)
equipped with its norm || ||, and

|| fx,h ||2 =
∫ 1

0

∫ 1

0
ϕx,h(s)R(s, t)ϕx,h(t)ds dt


= σ 2
x,h . (9)

In addition if P|Tn fx,h is the projection of fx,h on the subspace of F spanned by
{R(., t), t ∈ Tn} then it is shown by (F2) in the supplementary facts of Appendix that

||P|Tn fx,h ||2 = mVar ĝpro
n (x). (10)

The following proposition controls the residual variance
σ 2

x,h
m − Var ĝpro

n (x).

Proposition 5 Suppose that Assumptions (A) and (B) are satisfied. Moreover, assume
that 1

h sup1≤i≤n di ≤ 1 and let,

K∞ = sup
t∈[−1,1]

|K (t)|, R1 = sup
t,s∈[0,1]

|R(1,1)(s−, t+)| and R2= sup
t,s∈[0,1]

|R(0,2)(s, t+)|.

Then we have, for any x ∈]0, 1[,

0 ≤ σ 2
x,h

m
− Var ĝpro

n (x) ≤ C

mh
sup

0≤ j≤n
d2

j,n,

where C =
{

K 2∞( 43α1 + R1 + 4
3 R2) if (x − h) and (x + h) ∈ Tn,

K 2∞( 83α1 + 5
3 R1 + 8

3 R2) otherwise.

If moreover {Tn, n ≥ 1} satisfies Assumption (E) then Proposition 5 gives,

lim
n,m→∞

(
Var ĝpro

n (x) − σ 2
x,h

m

)
= 0.

The next proposition gives the rate of convergence of this residual variance.
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Proposition 6 Suppose that Assumptions (A), (B) and (C) are satisfied. Moreover,
assume that (Tn)n≥1 is a sequence of designs verifying Assumption (E). Then for any
x ∈]0, 1[ and for any positive integer m,

lim
n→∞

m N 2
Tn

h

(
σ 2

x,h

m
− Var ĝpro

n (x)

)
≥ 1

12
α(x)

{∫ 1

−1
K 2/3(t)dt

}3

, (11)

where σ 2
x,h is given by (9).

Using Propositions 5 and 6 we can obtain the optimal convergence rate 1/(mn2h)

of the residual variance. The result is given by the following proposition.

Proposition 7 Suppose that all the assumptions of Lemma 2, Propositions 5 and 6 are
satisfied. Then there exist some positive constants C and C ′ such that for any x ∈]0, 1[
and for any positive integer m,

lim
n→∞ mn2h

(
σ 2

x,h

m
− Var(ĝpro

n (x))

)
≤ C, (12)

and

lim
n→∞

mn2h

(
σ 2

x,h

m
− Var ĝpro

n (x)

)
≥ C ′. (13)

Under the stronger assumption (D) on the kernel K and using a regular sequence
of designs (see Definition 2), we obtain the asymptotic expression of the variance as
shown by the following proposition.

Proposition 8 Suppose that Assumptions (A)−(D) are satisfied. Moreover assume
that (Tn)n≥1 is a regular sequence of designs generated by a density function f (see
Definition 2). If limn,m→∞h = 0 and limn,m→∞nh = ∞, then for any x ∈]0, 1[,

Var(ĝpro
n (x)) = σ 2

x,h

m
− 1

12mn2

∫ x+h

x−h

α(t)

f 2(t)
ϕ2

x,h(t)dt + O

(
1

mn3h2

)
, (14)

where σ 2
x,h is given by (9).

The following lemma (proved in Benhenni and Rachdi 2007) gives the expression
of the main term of the asymptotic variance σ 2

x,h/m in terms of h.

Lemma 4 Suppose that Assumptions (A), (B) and (D) are satisfied. If limn,m→∞h =
0, then for any x ∈]0, 1[, σ 2

x,h (as given by (9)) has the following asymptotic expression

σ 2
x,h =

(
R(x, x) − 1

2
α(x)CK h

)
+ o(h), (15)

where CK = ∫ 1
−1

∫ 1
−1 |u − v|K (u)K (v)dudv.
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3.3 IMSE and optimal bandwidth

Proposition 8 and Remark 6 allow to derive the asymptotic expression of the mean
squared error (MSE) of the projection estimator (3). The integrated mean squared
error (IMSE) is then obtained by integrating theMSEwith respect to a positive density
function w. The MSE and IMSE are given, without proof, in the next theorem.

Theorem 1 If all the assumptions of Propositions 3 and 8 are satisfied and if (Tn)n≥1
is a regular sequence of designs generated by some density function (see Definition
2), then for any x ∈]0, 1[,

MSE(ĝpro
n (x)) = 1

m

(
R(x, x) − 1

2
α(x)CK h

)
+ 1

4
h4(g′′(x))2B2 + o

(
h4 + h

m

)

+O

(
1

mn2h
+ h

n
+ 1

n2h2

)
,

IMSE(ĝpro
n ) = 1

m

∫ 1

0
R(x, x)w(x)dx − CK h

2m

∫ 1

0
α(x)w(x)dx

+ B2

4
h4

∫ 1

0
[g′′(x)]2w(x)dx + o

(
h4 + h

m

)

+O

(
1

mn2h
+ h

n
+ 1

n2h2

)
,

where w is a positive density function, B is given in Proposition 3 and CK is given in
Lemma 4.

Remark 7 We note here that the term 1
12mn2

∫ x+h
x−h

α(t)
f 2(t)

ϕ2
x,h(t)dt appearing in the

asymptotic variance does not appear in the asymptotic MSE and IMSE, because it

is negligible comparing to the squared bias, precisely due to the term O
(

1
nh

)
.

However in the case of a Wiener error process, we have proven (see Proposition

4) that the previous term can be replaced by O
(

1
n2h

)
when using exact weights of

the projection estimator (and not their asymptotic expression). Therefore, when ε is a
Wiener process, the asymptotic expressions of the MSE and IMSE of the projection
estimator (7) (with β = 0) are given by the following theorem.

Theorem 2 Consider Model (1) with a Wiener error process and suppose that the ker-
nel K verifies Assumption (D). Moreover, assume that (Tn)n≥1 is a regular sequence
of designs generated by a function f (see Definition 2). If limn,m→∞h = 0 and
limn,m→∞nh = ∞, then for any x ∈]0, 1[,

MSE(ĝpro
n (x)) = 1

m

(
R(x, x) − 1

2α(x)CK h
) − 1

mn2h
α(x)

f 2(x)

∫ 1
−1 K 2(t)dt

+ 1
4h4[g′′(x)]2B2 + o

( h
m + h4

) + O
(

h
n2

+ 1
mn3h2

+ 1
mn2

+ 1
n4h2

)
,
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and

IMSE(ĝpro
n ) = 1

m

∫ 1

0
R(x, x)w(x)dx − CK h

2m

∫ 1

0
α(x)w(x)dx

− A

12mn2h

∫ 1

0

α(x)

f 2(x)
w(x)dx + B2

4
h4

∫ 1

0
[g′′(x)]2w(x)dx + o

(
h

m
+ h4

)

+ O

(
h

n2 + 1

mn3h2 + 1

mn2 + 1

n4h2

)
,

where A = ∫ 1
−1 K 2(t)dt, w, B and CK are given in Theorem 1.

The asymptotic optimal bandwidth is obtained byminimizing the asymptotic IMSE
and is given in the following corollary.

Corollary 1 (Optimal bandwidth) Suppose that the assumptions of Theorem 1 are sat-
isfied. Moreover assume that n

m = O(1) as n, m → ∞. Denote by IMSE(h) the IMSE
of the projection estimator when the bandwidth h is used. Then the bandwidth,

h∗ =
(

CK
∫ 1
0 α(x)w(x)dx

2B
∫ 1
0 [g′′(x)]2w(x)dx

)1/3

m−1/3, (16)

is optimal in the sense that

lim
n,m→∞

IMSE(h∗)
IMSE(hn,m)

≤ 1,

for any sequence of bandwidths hn,m verifying:

lim
n,m→∞hn,m = 0 and lim

n,m→∞mh3
n,m < +∞.

3.4 Asymptotic normality

The next theorem presents the asymptotic normality of the projection estimator (3)
for any error process ε.

Theorem 3 Suppose that the assumptions of Theorem 1 are satisfied. Moreover assume
that n

m = O(1) as n, m → ∞, that limn,m→∞nh2 = ∞ and that limn,m→∞
√

mh2 =
0. Then for any x ∈]0, 1[,

√
m

(
ĝpro

n (x) − g(x)
)

D−→ Z with Z ∼ N (0, R(x, x)) as n, m → ∞,

where D denotes the convergence in distribution and N is the normal distribution.
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4 Comparison with the Gasser andMüller’s estimator

In this section, we shall perform a theoretical comparison between the projection
estimator given in (3) and the classical estimator proposed by Gasser and Müller
(1979), for i.i.d. observations, and used by Hart and Wherly (1986) for correlated
observations in a time series setting. We recall its definition below.

Definition 3 The Gasser and Müller’s estimator of the regression function g based on
the observations (ti , Y j (ti ))1≤i≤n

1≤ j≤m
is given for any x ∈ [0, 1] by,

ĝGM
n (x) =

n∑
i=1

Y (ti )
∫ si

si−1

ϕx,h(s)ds , (17)

where Y , ϕx,h and h are given in Definition 1. The midpoints (si )1≤i≤n are such that:
s0 = 0, sn = 1 and for i = 1, . . . , n − 1, si = (ti + ti+1)/2.

In order to compare this estimator to the projection estimator with respect to the
IMSE, we recall in the next theorem the asymptotic expression of the IMSE of the
Gasser and Müller’s estimator (for the proof see Benhenni and Rachdi 2007; Benel-
madani 2019a).

Theorem 4 Suppose that Assumptions (A), (B) and (D) are satisfied. Moreover
assume that (Tn)n≥1 is a regular sequence of designs generated by a density func-
tion f (see Definition 2). If limn,m→∞h = 0 and limn,m→∞nh = ∞, then for any
x ∈]0, 1[,

MSE(ĝGM
n (x)) = 1

m

(
R(x, x) − 1

2
α(x)CK h

)
+ 1

4
h4(g′′(x))2B2 + o

(
h4 + h

m

)

+ O

(
h

n2 + 1

n4h2 + 1

mn3h2 + 1

mn2

)
,

and

IMSE(ĝGM
n ) = 1

m

∫ 1

0
R(x, x)w(x)dx − CK h

2m

∫ 1

0
α(x)w(x)dx

+ B2

4
h4

∫ 1

0
[g′′(x)]2w(x)dx

+ o
(

h4 + h

m

)
+ O

(
h

n2 + 1

n4h2 + 1

mn3h2 + 1

mn2

)
,

where B and CK are given in Propositions 3 and 8 and w is a continuous positive
density.

The following theorem gives an asymptotic comparison in term of the variance of
the projection estimator (3) and the Gasser and Müller’s estimator (17).
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Theorem 5 Suppose that Assumptions (A), (B) and (D) are satisfied. Moreover
assume that (Tn)n≥1 is a regular sequence of designs generated by a density func-
tion f (see Definition 2). If limn,m→∞h = 0 and limn,m→∞nh = ∞, then for any
x ∈]0, 1[,

lim
n,m→∞ mn2h

(
Var ĝGM

n (x) − Var ĝpro
n (x)

)
= 1

12

α(x)

f 2(x)
> 0.

For a comparison of the bias of these estimators, we mention that the Gasser and
Müller’s estimator converges to zero slightly faster than the bias of the projection
estimator, i.e., the term O( 1

nh ) in the bias of the projection estimator (see Remark 6) is
replaced by O( 1

n2h
) in the bias of the Gasser andMüller’s estimator (see Benelmadani

2019a). However, for the Wiener error process both estimators have the same bias
convergence rates; thus, we can compare the asymptotic IMSE of both estimators in
the following theorem.

Theorem 6 Consider Model (1) where ε is a Wiener error process. Suppose that the
assumptions of Theorem 2 are satisfied. Moreover, assume that limn,m→∞nh2 = 0
and that m

n = O(1) then,

lim
n,m→∞ mn2h (IMSE (ĝGM

n ) − IMSE (ĝpro
n )) = σ 2

12

∫ 1

0

w(x)

f 2(x)
dx > 0.

Remark 8 Theorems 5 and 6 show that the projection estimator has an asymptotically
smaller variance than the Gasser and Müller’s estimator for any error process, it also
has an asymptotically smaller IMSE when ε is a Wiener error process. However the
Gasser and Müller’s estimator doesn’t require the knowledge of the autocovariance
function whereas the projection estimator does.

5 Simulation study

In this section, we investigate the performance of the proposed estimator (3) using
finite values of experimental units m and sampling points n. The following growth
curves are considered:

(M1) g(x) = 10x3 − 15x4 + 6x5 for 0 < x < 1.

(M2) g(x) = x + 0.5 e−80(x−0.5)2 for 0 < x < 1.

This growth curves were used by Hart and Wherly (1986) and Benhenni and Rachdi
(2007), due to its similarity in shape to that of the logistic function, which is frequently
found in growth curve analysis as noted by Hart and Wherly (1986). The sampling
points are taken to be:

ti = (i − 0.5)/n for i = 1, . . . , n. (18)
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Fig. 1 The regression function of model (M1) is in solid line and the projection estimator is in dashed line

Fig. 2 The regression function of model (M2) is in solid line and the projection estimator is in dashed line

The error process ε is taken to be the Wiener error process with autocovariance
function R(s, t) = σ 2 min(s, t). The Kernel used here is the quartic kernel given by
K (u) = 15

16 (1−u2)2 I[−1,1](u), and the bandwidth is the optimal onewith respect to the
exact IMSE, obtained using the conjugated gradient algorithm (CGA).We consider the
mean of all estimators obtained from 100 simulations. We take σ 2 = 0.5, simulations
for other values of σ 2 gave similar results. The results are given in Figs. 1 and 2 for
Models (M1) and (M2), respectively, for a fixed number of observations n = 100 and
three different values of experimental units m = 5, 20, 50.

We can see for Model (M1), from Fig. 1, that the projection estimator gets closer
to the regression function when m gets bigger, which proves its good performance
and consistency when m increases. These results are confirmed for the growth curve
Model (M2) given in Fig. 2.

In this simulation study, we consider the comparison of the proposed estimator
(3) to the Gasser and Müller (17) (referred by GM estimator) with respect to the
exact IMSE in a finite sample set. For this, we consider the cubic growth curve of
model (M1). We consider also the uniform design given by (18) and the quartic kernel
K (u) = 15

16 (1−u2)2 I[−1,1](u). For the error process, we shall consider both theWiener
of autocovariance function R(s, t) = min(s, t), and the Ornstein–Uhlenbeck process
with autocovariance R(s, t) = e−|s−t |.

Theweightw, chosen here, is the uniform density on [0, 1], i.e.,w ≡ 1 on [0, 1], we
consider the optimal bandwidth with respect to the exact IMSE of the two estimators,
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Table 1 The integrated squared bias, integrated variance, IMSE and the optimal bandwidth for n = 10 and
different values of m under the Wiener error process, for the GM and the projection estimators

n = 10 m Ibias2 Ivar IMSE hopt

GM 10 1.508 × 10−3 4.507 × 10−2 4.658 × 10−2 0.335

Pro 1.304 × 10−3 4.399 × 10−2 4.530 × 10−2 0.321

GM 50 2.662 × 10−4 9.494 × 10−3 9.760 × 10−3 0.198

Pro 1.981 × 10−4 9.228 × 10−3 9.426 × 10−3 0.187

GM 100 1.505 × 10−4 4.826 × 10−3 4.977 × 10−3 0.154

Pro 0.897 × 10−4 4.689 × 10−3 4.778 × 10−3 0.142

Table 2 The integrated squared bias, integrated variance, IMSE and the optimal bandwidth for n = 10 and
different values of m under the Ornstein–Uhlenbeck error process, for the GM and the projection estimators

n = 10 m Ibias2 Ivar IMSE hopt

GM 10 2.596 × 10−3 8.821 × 10−2 9.080 × 10−2 0.387

Pro 2.494 × 10−3 8.703 × 10−2 8.952 × 10−2 0.386

GM 50 4.481 × 10−4 1.848 × 10−2 1.893 × 10−2 0.236

Pro 4.097 × 10−4 1.822 × 10−2 1.863 × 10−2 0.237

GM 100 2.299 × 10−4 9.390 × 10−3 9.620 × 10−3 0.186

Pro 1.885 × 10−4 9.265 × 10−3 9.453 × 10−3 0.187

Table 3 The integrated squared bias, integrated variance, IMSE and the optimal bandwidth for m = 20 and
different values of n under the Wiener error process, for the GM and the projection estimators

m = 20 n Ibias2 Ivar IMSE hopt

GM 10 3.293 × 10−4 1.180 × 10−2 1.213 × 10−2 0.213

Pro 2.571 × 10−4 1.147 × 10−2 1.173 × 10−2 0.203

GM 50 2.579 × 10−4 1.136 × 10−2 1.162 × 10−2 0.230

Pro 2.532 × 10−4 1.137 × 10−2 1.162 × 10−2 0.228

GM 100 2.573 × 10−4 1.135 × 10−2 1.161 × 10−2 0.235

Pro 2.549 × 10−4 1.136 × 10−2 1.161 × 10−2 0.229

i.e., inf0<h<1 IMSE(h). The bandwidth h is chosen through the algorithm CGA. The
results are given in Tables 1 and 2 for n = 10 and for different values of m, and in
Tables 3 and 4 for a fixed m = 20 and for different values of n. These tables present
the integrated bias squared denoted by Ibias2, integrated variance denoted by Ivar and
the IMSE together with the optimal bandwidth associated with each estimator.

First, we can see from Tables 1, 2, 3 and 4 that the optimal bandwidth decreases
when m increases, as shown in Corollary 1. In addition, the optimal bandwidth of the
projection estimator is slightly smaller than that of the GM estimator.
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Table 4 The integrated squared bias, integrated variance, IMSE and the optimal bandwidth for m = 20 and
different values of n under the Ornstein–Uhlenbeck error process, for the GM and the projection estimators

m = 20 n Ibias2 Ivar IMSE hopt

GM 10 1.199 × 10−3 4.507 × 10−2 4.627 × 10−2 0.315

Pro 1.145 × 10−3 4.445 × 10−2 4.559 × 10−2 0.315

GM 50 1.092 × 10−3 4.431 × 10−2 4.540 × 10−2 0.326

Pro 1.091 × 10−3 4.428 × 10−2 4.537 × 10−2 0.326

GM 100 1.090 × 10−3 4.428 × 10−2 4.537 × 10−3 0.326

Pro 1.089 × 10−3 4.428 × 10−2 4.537 × 10−3 0.326

It is also seen that both the Ivar and the Ibias2 of the two estimators decrease when
m increases. In addition, the projection estimator has a smaller Ibias2 and Ivar than
that of the GM estimator, which leads to a smaller IMSE.

Anotherway to look at these results is as follows: for a fixed number of experimental
units m = 10 and when the error process is a Wiener process (similar results for the
Ornstein–Uhlenbeck error process), the projection estimator would only need n = 10
observations on each experimental unit to obtain the performance IMSE = 4.53×10−2

(see Table 1), whereas the GM estimator would need to have n = 18 observations to
obtain the same performance, and thus requires 80%more samples in order to achieve
the same performance.

The results of this simulation study show that, even for small number of observa-
tions, the projection estimator outperforms the GM estimator with respect to IMSE.

It should be noted here that, in order to solve the problem at the edges [0, h] ∩ [1−
h, 1], it was necessary to adjust the kernel as suggested by Hart and Wherly (1986).

Robustness of the projection estimator

Since the projection estimator depends on the autocovariance function of the errors,
which is not always known in practical cases,we performhere a simulation study to test
its performance with an estimated autocovariance matrix. Suppose that a reasonable
parametric model for the error autocovariance function is known, consider for instance
the Ornstein–Uhlenbeck error process with an unknown parameter λ.

To estimate the autocovariance parameter, we use the following criterion which
gives consistent estimator of the autocovariance parameter, as done for instance in
Ferreira et al. (1997):

Qn,m(λ) = 1

n2

n∑
i=1

n∑
i=1

(
R̂(ti , t j ) − R(ti , t j )

)2
,

where the empirical correlation estimation is given by

R̂(ti , t j ) = 1

m − 1

m∑
k=1

(
Yk(ti ) − Y (ti )

)(
Yk(t j ) − Y (t j )

)
. (19)
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We generate 100 matrices (Y j (ti ))1≤ j≤n
1≤i≤n

of observations of the function g defined

by (M1), the Ornstein–Uhlenbeck error process with λ = 1 and using the uniform
design. For everymatrix, we estimate the parameter λ using theGeneralized Simulated
Annealing (GSA) algorithm to minimize Qn,m , the estimated parameter noted by λ̂ is
then the median of 100 estimated values. For more details on the use of the software R
algorithm function, see Xiang et al. (2013). This algorithm is essentially known for its
ability to handle very complex nonlinear objective functions with a very large number
of optima.

To compare the projection estimator with the Gasser and Müller’s estimator, we
used the estimated mean average squared error (MASE) given, for the projection
estimator, by:

MASEPro(h) = E(RSS(h)) − 1

nm

n∑
i=1

R(ti , ti ) + 2

nm
tr(Kh R|Tn ), (20)

where

RSS(h) = 1

n

n∑
i=1

(
ĝpro

n (ti ) − Y (ti )
)2

,

and

Kh =
(

mh(ti , tl)
)
1≤i,l≤n

with mh(·, x)|Tn = fx,h
′
|Tn

R−1
|Tn

.

For the Gasser and Müller’s estimator, we replace the matrix Kh by:

Kh =
(
1

h

∫ mi

mi−1,

K
( x − tl

h

)
dt

)

1≤i,l≤n

with mi = ti + ti+1

2
.

The estimated MASE is given by

M̂(h) = RSS(h) − 1

nm

n∑
i=1

R̂(ti , ti ) + 2

nm
tr(Kh R̂|Tn ). (21)

The results are presented in Table 5, which shows the estimated parameter λ, the
optimal bandwidth h∗ minimizing M̂(h) using the CGA, M̂(h∗) for the estimator
of Gasser and Müller, the projection estimator with the true value λ = 1 and the
projection estimator with the estimated values λ̂.

Table 5 shows that the projection estimator is robust with respect to the misspecifi-
cation of the autocovariance function, i.e., the MASE of the projection estimator with
an estimated autocovariance function is smaller than the Gasser and Müller’s one, for
a large number of measurement units m, where the estimated values of λ are close to
the real value λ = 1.
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Table 5 The estimated
parameter λ, the optimal
bandwidth h∗ and M(h∗) for
n = 10 and different values of m
under the Ornstein–Uhlenbeck
error process

n = 10 m λ̂ h∗ M(h∗)

GM 10 1.5 0.563 6.214 × 10−2

Pro(λ) 0.562 6.084 × 10−2

Pro (λ̂) 0.575 6.215 × 10−2

GM 50 1.08 0.331 1.555 × 10−2

Pro(λ) 0.333 1.525 × 10−2

Pro (λ̂) 0.337 1.545 × 10−2

GM 100 *0.94 0.266 8.234 × 10−3

Pro(λ) 0.266 8.076 × 10−3

Pro (λ̂) 0.265 8.154 × 10−3

Remark 9 In our simulations, the used bandwidth is the optimal one selected to mini-
mize the exact IMSE, which is not known in practice. As an alternative, one can use
for instance the data driven selection method, such as the cross-validation (leave one
observation out) which turned out to be inefficient in the presence of correlations of the
errors, see for instance Altman (1990) and Chiu (1989) and Hart (1991, 1994). In the
presence of correlations, we use the adaptative criterion based on Rice (1984) (see also
Hart and Wherly 1986, which consists of minimizing M̂(h) given by Equation (21)
above. If R is unknown, one can estimate it using the function R̂ given by Equation
(19) above, where the function fx,h(ti ) given in (2) can be estimated by:

f̂x,h(ti ) =
n∑

j=1

R̂(ti , t j )ϕx,h(t j )(t j+1 − t j )/2.
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