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Abstract
Integer-valued time series models have been widely used, especially integer-valued
autoregressive models and integer-valued generalized autoregressive conditional het-
eroscedastic (INGARCH) models. Recently, there has been a growing interest in
multivariate count time series. However, existingmodels restrict the dependence struc-
tures imposed by theway they constructed. In this paper, we consider a class of flexible
bivariate Poisson INGARCH(1,1) model whose dependence is established by a spe-
cial multiplicative factor. Stationarity and ergodicity of the process are discussed. The
maximization by parts algorithm and its modified version together with the alternative
method by using R package Template Model Builder are employed to estimate the
parameters of interest. The consistency and asymptotic normality for estimates are
obtained, and the finite sample performance of estimators is given via simulations. A
real data example is also provided to illustrate the model.

Keywords Bivariate · INGARCH model · Multiplicative factor · Poisson
distribution · Time series of counts

1 Introduction

Integer-valued time series are commonly encountered in many practical situations,
such as the number of goods sold in a shopping mall, the monthly number of insurance
claim, the daily number of transaction in stock market and so on. Recently, there have
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been plenty of attempts to deal with them, see Weiß (2008) and Scotto et al. (2015)
for some excellent reviews on INAR models.

As an alternative, the INGARCH model proposed by Ferland et al. (2006) and
Fokianos et al. (2009) is also very popular, which is defined as follows:

{
Xt |Ft−1 ∼ P(λt ), ∀t ∈ Z,

λt = α0 + ∑p
i=1 αiλt−i + ∑q

j=1 β j Xt− j ,
(1)

where α0 > 0, αi ≥ 0, β j ≥ 0, i = 1, . . . , p, j = 1, . . . , q, p ≥ 0, q ≥ 1, and
Ft−1 is the σ -field generated by {Xt−1, Xt−2, . . .}. Zhu (2011, 2012a, b) and Davis
and Liu (2016) generalized the Poisson assumption to negative binomial, generalized
Poisson, zero-inflated Poisson, negative binomial and exponential family distributions,
respectively. Inferential aspects of model (1) and its generalized forms have been well
established, including ergodicity, estimating methods and goodness-of-fit tests, see
Neumann (2011), Doukhan et al. (2012), Fokianos and Neumann (2013), Ahmad and
Francq (2016) and Douc et al. (2017), among others. Fokianos (2012, 2016) and
Tjøstheim (2012, 2016) reviewed some recent progress in this field.

In many cases, the data are observed across time leading to multivariate time series
data. Research on univariate time series of counts is quite mature; however, the lit-
erature on multivariate time series models for count data is more limited, especially
for bivariate versions. Franke and Rao (1995) proposed a multivariate INAR(1) model
and it was generalized to the p-order case by Latour (1997). Pedeli and Karlis (2011)
introduced bivariate INAR(1) model with Poisson and negative binomial innovations,
Popović (2016) proposed a bivariate INAR(1) model with random coefficients based
on different binomial thinning operators, and Liu (2012) conducted a bivariate Poisson
INGARCHmodel. But the above models only allow for positive correlations between
the two series.

This leads researchers to select feasible distributions that can deal with negative
correlation. Aitchison and Ho (1989) proposed the bivariate Poisson-lognormal model
to produce negative correlation. Karlis and Meligkotsidou (2007) developed the finite
mixtures of multivariate Poisson distributions allowing for both overdispersion in the
marginal distributions and negative correlation. Later, Cui andZhu (2018) introduced a
new bivariate INGARCHmodel which can capture both positive and negative correla-
tions. However, the dependence structure is limited and do not offer enough flexibility
for dependence modelling. So we consider some other alternative forms to construct
bivariate distribution with more complex dependence structures.

As we all know, copulas are very popular in statistical applications since they
provide a general way of introducing dependence among several series with given
continuous distributions. Because of its flexibility, copula function has also become a
widely accepted tool in the integer-valued (discrete) field during recent years. Heinen
and Rengifo (2007) used the continued extension argument to apply copulas with dis-
crete marginals and introduced contemporaneous correlation of multivariate counts.
Karlis and Pedeli (2013) considered a bivariate INAR(1) process by specifying the
innovation distribution via finite differences of the copula cumulative distribution
function. Fokianos et al. (2019) proposed a joint distribution of counts with copula
structure on the waiting time of the Poisson process instead of imposing it on dis-
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crete random variables. But in this paper, we aim to deal with the discrete case from
a different prospective. Motivated by the idea of Lakshminarayana et al. (1999), we
investigate a new class of bivariate Poisson distribution whose probability mass func-
tion is a product of Poisson marginals with multiplicative factors, and then introduce
the flexible bivariate Poisson INGARCH(1,1) model that accommodates both positive
and negative correlations.

Fokianos et al. (2019) provided a plausible approach to construct bivariate Poisson
distribution, whose aim is to introduce a copula formvia a vector of continuous random
variables. However, their model can only consider the quasi-likelihood inference due
to the implicit copula structure. Therefore, they need to determine the copula structure
and estimate the corresponding copula parameter by the bootstrap procedure based on a
parametric copula form.On the one hand, thismethod is time-consuming on estimation
of copula parameter together with its standard error. On the other hand, picking out
the optimal copula structure is challenging for real data analysis, as Fokianos et al.
(2019) mentioned. In contrast, our model has several merits as follows. First, the
positive or negative correlation between two random variates directly depends on the
dependency parameter in the expression of the multiplicative factor. Second, since the
log-likelihood function of our proposed model can be viewed as an explicit additive
decomposition, we can estimate the total parameters of interest at the same time using
the maximization by parts algorithm and its modified version. Finally, due to the
fact that above two methods might be a little bit time-consuming, we also consider
another approach using an R package Template Model Builder to obtain the accurate
estimates with faster computational speed, even when the dependency between two
random variables is quite high.

The rest of this paper is organized as follows. In Sect. 2, we first briefly review the
bivariate Poisson distribution, then present the newmodels and discuss some important
properties. The estimation procedure for the parameters of interest is given in Sect. 3.
In Sect. 4, we give some simulation results. Section 5 provides a real data example
and we conclude in Sect. 6.

Throughout this paper, we use the following notations. The term | · | denotes the
absolute value of a univariate variable; ‖x‖ and ‖x‖p are the Euclidean norm and
p-norm of vector x. ‖J‖p = maxx �=0{‖Jx‖p / ‖x‖p} stands for the p-induced norm
of matrix J for 1 ≤ p ≤ ∞. ρ(A) means the spectral radius, i.e., the largest absolute
eigenvalue of A. The terms l̇(θ) and l̈(θ) are the first- and second-order derivatives
concerning the parameter θ , respectively.

2 Flexible bivariate Poisson INGARCHmodel

2.1 The bivariate Poisson distribution

First, we recall the bivariate Poisson distribution BP(λ1, λ2, δ) defined by Lakshmi-
narayana et al. (1999). It is a product of Poisson marginals with a multiplicative factor,
whose probability mass function (pmf) is given by
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P(Y1 = y1,Y2 = y2) = λ
y1
1 λ

y2
2

y1!y2! exp{−(λ1+λ2)}[1+δ(e−y1 −e−cλ1)(e−y2 −e−cλ2)],
(2)

where c = 1−e−1. One can see that themarginal pmf ofY1 andY2 are Poisson distribu-
tion with parameters λ1 and λ2, respectively. Themean vector of the above distribution
is (λ1, λ2)


 and the correlation coefficient turns out to be ρ = δc2
√

λ1λ2e−c(λ1+λ2).
Thus, the dependence between the variates can be positive, zero or negative depending
on the value of the correlation parameter δ. It is important to mention that the func-
tion 1 + δ(e−y1 − e−cλ1)(e−y2 − e−cλ2) in (2) in a sense is used to link the marginal
distributions. However, the simplex structure is limited and cannot provide enough
flexibility for dependence modelling.

In view of this construction for BP(λ1, λ2, δ) distribution, we introduce three types
of bivariate Poisson (BP) distributions with different multiplicative factors, that is, BP
with Gaussian factor (BPG), BPwith Frank factor (BPF) and BPwith Farlie–Gumbel–
Morgenstern factor (BPFGM). These functions are given as follows:

cρ(u1, u2) = 1√
1 − ρ2

exp

(
−ρ2(q21 + q22 ) − 2ρq1q2

2(1 − ρ2)

)
, (3)

cγ (u1, u2) = −γ (e−γ − 1)e−(u1+u2)γ

[(e−γ − 1) + (e−u1γ − 1)(e−u2γ − 1)]2 , (4)

cσ (u1, u2) = 1 + σ(1 − 2u1)(1 − 2u2), (5)

where qi = Φ−1(ui ), Φ−1 is the inverse of the standard univariate normal distribution
and ui ∈ [0, 1], i = 1, 2. ρ ∈ (−1, 1), γ ∈ (−∞,+∞)\{0}, σ ∈ [−1, 1] are
regarded as dependency parameters for BP distributions.

Consider random variables Y1 and Y2, which follow independent Poisson distri-
butions marginally with parameters λ1 and λ2, respectively. We define the joint pmf
of newly proposed BP distribution given by the product of marginal densities and
multiplicative factors as

P(Y1 = y1,Y2 = y2) = 1

Z(λ1, λ2, θ)

λ
y1
1 λ

y2
2

y1!y2! exp{−(λ1 + λ2)}c(F1(y1), F2(y2)),
(6)

where c(F1(y1), F2(y2)) stands for anyone of the above multiplicative factors (see
(3)–(5)), Fi (yi ) is the Poisson marginal cumulative distribution function (cdf) of Yi ,

i = 1, 2 and Z(λ1, λ2, θ) := ∑∞
y1=0

∑∞
y2=0

λ
y1
1 λ

y2
2

y1!y2! exp{−(λ1+λ2)}c(F1(y1), F2(y2))
with θ being the dependency parameter. Note that the functions (3) and (4) are both
bounded away from 0, and (5) is nonnegative on [0, 1]2. With the above definition,
(6) satisfies the conditions for a probability of bivariate Poisson distribution. Similar
to the discussion of Appendix B in Shmueli et al. (2005), we know that the series Z
converges and both Z and Z−1 are bounded. As a result, we can treat the factor Z−1

as a constant weight when conducting estimation, see more details in Appendix A.
Since the weight Z−1 does not affect the dependence between the variates, we can

interpret (6) as a bivariate Poisson distribution constructed by a scaled copula function
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with F1(y1) and F2(y2) as marginals. In particular, E(Y1) = λ1,E(Y2) = λ2, and the
dependency parameters ρ, γ and σ can capture both positive and negative correlations
between the variates according to the values chosen in their ranges.

2.2 Model formulation and stability theory

Denote Y t = (Yt,1,Yt,2)
 as the bivariate observations at time t , that is, {Yt,1, t ≥ 1}
and {Yt,2, t ≥ 1} are two time series under consideration. As a generalization of
traditional BP model in Liu (2012), Cui and Zhu (2018) defined an INGARCHmodel
of order (1,1) based on BP(λ1, λ2, δ) as follows:

Y t |Ft−1 ∼ BP(λt,1, λt,2, δ), λt = (λt,1, λt,2)

 = ω + Aλt−1 + BY t−1,

where Ft = σ {λ1,Y1, . . . ,Y t }, ω = (ω1, ω2)

 ∈ R

2+, A, B are both 2 ×
2 matrices with nonnegative entries and the correlation Corr(Yt,1,Yt,2|Ft−1) =
δc2

√
λt,1λt,2e−c(λt,1+λt,2) for capturing dependence between Yt,1 and Yt,2. Similar

to this, here we propose a new class of BP-INGARCH(1,1) model with flexible mul-
tiplicative factor as follows:

Y t |Ft−1 ∼ BP(λt ), λt = (λt,1, λt,2)

 = ω + Aλt−1 + BY t−1, (7)

where BP stands for one of three BP distributions defined in Sect. 2.1, denoted as
BPG(λt,1, λt,2, ρ), BPF(λt,1, λt,2, γ ) and BPFGM(λt,1, λt,2, σ ). It is easy to see that
the conditional mean and variance of Y t are both equal to λt . Furthermore,

Var(Y t ) = E(Var(Y t |Ft−1)) + Var(E(Y t |Ft−1))

= E(λt ) + Var(λt ) > E(λt ) = E(Y t ),

which indicates the model (7) can account for overdispersion. The study focuses on
the bivariate Markov chain {λt , t ≥ 1}. Note that by iteration, for any s ≥ 1, we have

λt = (I + A + · · · + As−1)ω + Asλt−s +
s−1∑
k=0

AkBY t−k−1, (8)

where I is the identitymatrix.Now further assume thatρ(A) < 1 for some p ∈ [1,∞],
then we have

λt = (I − A)−1ω +
∞∑
k=0

AkBY t−k−1. (9)

Hence, under the condition ρ(A) < 1, (9) implies λt ≥ (I − A)−1ω for all t . In
addition, {λt , t ≥ 1} can be represented as an iterated random function following
the notation used by Wu and Shao (2004). To facilitate the investigation, the random
function fd(λ) according to the pmf (6) is defined as

fd(λ) = ω + Aλ + BF−1
λ (d),
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where d = (d1, d2)
 ∈ [0, 1]2,λ = (λ1, λ2)

, F−1

λ (d) = (F−1
λ1

(d1), F
−1
λ2

(d2))
 ∈
N
2
0, and F−1(d) = inf{t ≥ 0 : F(t) ≥ d}. Thus, it can be seen that for all t, λt =

fDt (λt−1), where {Dt , t ≥ 1} follows independent uniform distribution on [0, 1]2.
Next, the stability properties of the proposed model are given in the following

theorem.

Theorem 1 Suppose {Y t , t ≥ 1} follow the model defined by (7), ω, A and B have
nonnegative entries.

(a) If ρ(A + B) < 1, then there exists at least one stationary distribution to {λt }.
Moreover, if ‖A‖p < 1 for some 1 ≤ p ≤ ∞, then the stationary distribution is
unique.

(b) If ‖A‖p + 2(1−1/p) ‖B‖p < 1 for some 1 ≤ p ≤ ∞, then {λt } is a geometric
moment contraction Markov chain with a unique stationary and ergodic distribution,
denoted by π .

Proofs for the above and next theorems are deferred to the Appendix B.
To make a further comparison among the existing bivariate process, we recall the

bivariate Poisson INGARCHmodels defined by Liu (2012) and Fokianos et al. (2019).
Liu (2012) defined an INGARCH(1,1) model based on the bivariate Poisson distribu-
tion BP∗(λ1, λ2, φ) with the best known method Trivariate Reduction. In the same
setting of Sect. 2.2, Liu’s model has the following form:

Y t |Ft−1 ∼ BP∗(λt,1, λt,2, φ), λt = (λt,1, λt,2)

 = ω + Aλt−1 + BY t−1,

where the covariance Cov(Yt,1,Yt,2) = φ ≥ 0. While Fokianos et al. (2019) let the
count time series follow by Poisson distributions marginally and then impose a copula
on the waiting times to accommodate dependence. Fokianos’s linear model is defined
as

Yt,i |Ft−1 is marginally Poisson(λt,i ), i = 1, 2,

λt = (λt,1, λt,2)

 = ω + Aλt−1 + BY t−1,

the copula structurewith copula parameterψ is contained in the conditional innovation
Y t |λt .

3 Estimation

For ease of presentation, let Y1,Y2, . . . ,Yn be observations from model (7) with the
assumption that A and B are nonnegative diagonal matrices. Extension to the case of
nonnegative non-diagonal matrices for A and B is direct, but we omit it for simplicity.
Then, write the true value of the parameter as θ0 = (θ0
1 , θ02 )
, the parameter vector
turns to be θ = (θ


1 , θ2)

, where θ1 = (ω1, α1, β1, ω2, α2, β2)


, θ2 = ρ, γ or σ

depending on which multiplicative factor c(·, ·) to be used. As discussed in Appendix
A, we can regard Z−1 as a constant weight, and then, the log-likelihood function is
given by, up to a constant free of θ ,
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l(θ) =
n∑

t=2

lt (θ) =
n∑

t=2

[Yt,1 ln λt,1(θ1) + Yt,2 ln λt,2(θ1) − λt,1(θ1) − λt,2(θ1)]

+
n∑

t=2

[ln c(F1(Yt,1; λt,1(θ1)), F2(Yt,2; λt,2(θ1)))]. (10)

where Fi (Yt,i ; λt,i ) is the marginal cdf with the parameter λt,i of Yt,i , i = 1, 2.
One can see that the objective function is very complicated and the second-order

derivatives are hard to derive analytically. So we resort to the alternative approaches:
the maximization by parts (MBP) algorithm proposed by Song et al. (2005) and the
modified maximization by parts (MMBP) algorithm studied by Liu and Luger (2009).
These two algorithms can yield closed-form expressions for the iterative estimates of
the marginal parameters and make the calculation simpler. To the end, we also utilize
a faster and more flexible method based on the R package Template Model Builder
(TMB) to estimate the parameters.

3.1 MBP algorithm

Rewrite the log-likelihood function l(θ) = lm(θ1) + lc(θ1, θ2) = ∑n
t=2 lm,t (θ1) +∑n

t=2 lc,t (θ1, θ2), where the marginal density part lm(θ1) is the first term of the last
equation in (10) and the multiplicative factor part lc(θ1, θ2) is the left term. The score
equation of the full log-likelihood function in (10) is given by

∂l(θ)

∂θ
= ∂lm(θ1)

∂θ
+ ∂lc(θ1, θ2)

∂θ
.

Song et al. (2005) provided several examples where the likelihood can be decomposed
in this way and the maximum likelihood estimator (MLE) is difficult to compute
directly. The MBP algorithm proceeds as follows:

Step 1 : Solve ∂lm(θ1)

∂θ1
= 0 for θ̂

1
1,n and

∂lc(θ̂
1
1,n, θ2)

∂θ2
= 0 for θ̂12,n .

Step k : Solve ∂lm(θ1)

∂θ1
= −∂lc(θ̂

k−1
1,n , θ̂k−1

2,n )

∂θ1
for θ̂

k
1,n

and
∂lc(θ̂

k−1
1,n , θ2)

∂θ2
= 0 for θ̂k2,n, k = 2, 3, . . . .

As a promising alternative to direct maximization of the full likelihood function,
this algorithm improves efficiency of the estimates through an iterative approach.

Let θ̂
k
n = (θ̂

k

1,n, θ̂

k
2,n)


, to establish asymptotic properties of the estimators θ̂
k
n , we

introduce a neighborhood of the true parameter θ0, i.e., U0 = {θ : ∥∥θ − θ0
∥∥ < ξ}.

Nowwe study the large sample properties in terms of theMBP algorithm. To formulate
the results, first we need the following assumptions.
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Assumption 1 l(θ), lm(θ1) and lc(θ1, θ2) are twice continuously differentiable for
θ ∈ U0.

Assumption 2 (Information dominance)
∥∥I−1

m Ic
∥∥ < 1, where Im = −n−1

El̈m(θ0)

and Ic = −n−1
El̈c(θ

0).

Then, the following theorems regarding the consistency and asymptotic normality

of the estimators θ̂
k
n for both a fixed k and as k → ∞ hold true.

Theorem 2 If θ̂
1
n is consistent under Assumption 1, then θ̂

k
n is consistent for each

k = 2, 3, . . . .

Suppose the solution θ̂
k
n satisfies θ̂

k
n = Mn(θ̂

k−1
n ), where Mn(·) is an asymptotic

contraction mapping, then according to Dominitz and Sherman (2005), there exists a

fixed point such that θ̂n = limk→∞ θ̂
k
n , which is always the MLE.

Remark 1 If θ̂
1
n is not a consistent estimator of θ0, Dominitz and Sherman (2005) has

verified that as long as Mn(·) is an asymptotic contraction mapping conditional on the

data and the sample size n, the sequence {θ̂kn}∞k=1 will still converge to the MLE θ̂n .

For ease of readability, we introduce the following notations. Let

l̇i( j) = l̇i( j)(θ
0) = ∂li (θ

0)/∂θ j , l̈i( jk) = l̈i( jk)(θ
0) = ∂2li (θ

0)/∂θ j∂θ

k (11)

and I i( jk) = −n−1
El̈i( jk)(θ

0), i = m, c and j, k = 1, 2. Then at θ0, we have the
following results:

Dn =
(−n−1l̈m(11) 0

0 −n−1l̈c(22)

)
=

(Im(11) 0
0 Ic(22)

)
+ o(1) ≡ D + o(1),

Tn =
(
n−1l̈c(11) n−1l̈c(12)
n−1l̈c(21) 0

)
= −

(Ic(11) Ic(12)
Ic(21) 0

)
+ o(1) ≡ T + o(1),

V n =
(

0 0
n[l̈c(22)]−1[l̈c(21)][l̈m(11)]−1 0

)
= −

(
0 0

I−1
c(22)Ic(21)I−1

m(11) 0

)
+ o(1)

≡ V + o(1),

and � = limn→∞ D−1
n Tn = D−1T .

Theorem 3 Consider model (7) and suppose that at the true value θ0, Assumptions 1

holds. Then, θ̂
k
n is asymptotically normal with mean vector θ0 and covariance matrix

n−1�k , where �k = �k�V�

k ,�k = [�k1,�k2]
,

�V =
(
n−1

E(l̇m(1) + l̇c(1))(l̇m(1) + l̇c(1))
 n−1
El̇c(2)(l̇m(1) + l̇c(1))


n−1
E(l̇m(1) + l̇c(1))l̇
c(2) n−1

El̇c(2)l̇
c(2)

)
,

�k1 = (I − �k)I−1 + �k−1V , and �k2 = (I − �k−1)I−1,
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where I−1 = −n−1
El̈(θ0) is the inverse of the Fisher information. Moreover, when

Assumption 2 holds, �k → 0 as k → ∞, then �k → I−1.

It is necessary to note that the marginal function needs to satisfy the information
dominance condition (Assumption 2) to ensure convergence of the MBP algorithm.
In other words, it requires the marginal density function to be more informative about
the true parameter values relative to the multiplicative factor part. A necessary and
sufficient condition for Assumption 2 to hold is that the spectral radius of �(θ) is
less than one. In effect, numerical check on the information dominance condition
can be computed by a consistent estimate of �(θ) at the first step of MBP estimate

θ̂
1
n . Let �(θ̂

1
n) = {Im(θ̂

1
n)}−1Ic(θ̂

1
n), where Im(θ) = −n−1 ∑n

t=1 l̈m,t (θ),Ic(θ) =
I(θ) − Im(θ) and I(θ) = n−1 ∑n

t=1 l̇t (θ)l̇t (θ)
. Hence, if ρ(�(θ̂
1
n)) < 1, then the

information dominance condition is confirmed.
The importance of this issue is illustrated by Song et al. (2005) in a simulation study

of a bivariate Gaussian copula model with exponential marginal distributions. Their
results show that the model may fail to satisfy the information dominance condition
when the correlation between the two random variables becomes large. In other words,
MBP needs more iterations to recover the full information as the correlation increases,
and it fails to work when the correlation is too high.

3.2 MMBP algorithm

To overcome the convergence difficulties of the original MBP algorithm and improve
the efficiency of the estimates, we will introduce the MMBP algorithm proposed by
Liu and Luger (2009). The log-likelihood function can be decomposed as

l(θ) = l∗m(θ1)+l∗c (θ1, θ2) = [lm(θ1)+lc(θ1, θ̂
1
2,n)]+[lc(θ1, θ2)−lc(θ1, θ̂

1
2,n)]. (12)

The steps of MMBP are:

Step 1 : Solve ∂lm(θ1)

∂θ1
= 0 for θ̂

1
1,n and

∂lc(θ̂
1
1,n, θ2)

∂θ2
= 0 for θ̂12,n .

Step 2 : Solve ∂lm(θ1)

∂θ1
+ ∂lc(θ1, θ̂12,n)

∂θ1
= 0 for θ̂

2
1,n

and
∂lc(θ̂

2
1,n, θ2)

∂θ2
= 0 for θ̂22,n .

Step k : Solve ∂lm(θ1)

∂θ1
+ ∂lc(θ1, θ̂12,n)

∂θ1
= −

⎛
⎝∂lc(θ̂

k−1
1,n , θ̂k−1

2,n )

∂θ1
− ∂lc(θ̂

k−1
1,n , θ̂12,n)

∂θ1

⎞
⎠

for θ̂
k
1,n and

∂lc(θ̂
k−1
1,n , θ2)

∂θ2
= 0 for θ̂k2,n, k = 3, 4, . . . .
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This new algorithm is a natural choice for themodels whose log-likelihood function
can be additively decomposed and provides a better approximation to the true likeli-
hood since it uses the correctly specified joint function. The estimates from each step
naturally serve as starting points for the successive updating step. The main advantage
of the MMBP algorithm is that it resolves the convergence issues of MBP when the
correlation between the variables is high. In our simulation studies in Sect. 4, when
the correlation is high, MBP fails to ensure convergence but MMBP performs better
in convergence speed. In addition, MMBP algorithm also restores the consistency and
asymptotic normality of the iterative estimator.

3.3 Alternative method using TMB

The above two algorithms both use the idea of iteration, which may cause the compu-
tational speed a little bit slower when the sample size becomes larger. Here, we also
consider an alternative approach using R package TMB (see Kristensen et al. 2016),
which is designed for estimating complex nonlinear models both with and without
random effects. For example, Berentsen et al. (2018) utilized this method to estimate
the parameters of a Markov-switching Poisson log-linear autoregressive model and
address the inference about the underlying regimes.

Now, we first specify the log-likelihood function (10) as a C++ user template func-
tion, and then use the R function to compile, link and optimize it with the TMB
package. In fact, the TMB package supplies an object with functions to evaluate the
likelihood function and gradient exactly, which will improve the speed and accuracy.
On the other hand, to our knowledge, there are no results about asymptotic theory
based on TMB method. Thereby, we preserve MBP and MMBP algorithms to show
the consistency and asymptotic normality of the MLE.

In the current paper, our model cannot consider the covariates due to its linearity.
While the new proposed models can be easily extend to their log-linear version, which
can include or exclude the exogenous covariates. A similar study of this problem has
been discussed by Berentsen et al. (2018) and we will leave it to future research.

4 Simulation

A simulation study is conducted to evaluate the performances of the estimators with
MBP, MMBP and TMB methods. For simplicity, we choose four set-ups of our pro-
posed BP-INGARCH(1,1) models with both A and B are diagonal as follows:

(A1) BPG : θ1 = (0.5, 0.4, 0.5, 0.5, 0.4, 0.5)


with dependency parameter ρ = 0, 0.3, 0.9;
(A2) BPG : θ1 = (1, 0.5, 0.4, 0.7, 0.4, 0.5)


with dependency parameter ρ = 0, 0.3, 0.9;
(B) BPF : θ1 = (0.5, 0.45, 0.5, 0.5, 0.45, 0.5)


with dependency parameter γ = −1,−0.5, 0.5, 1;

123



Flexible bivariate Poisson integer-valued GARCHmodel 1459

Table 1 Simulation results for model A1 based on MBP&MMBP

Para ω1 α1 β1 ω2 α2 β2 ρ

ρ = 0

n = 200 MADE 0.2064 0.0733 0.0574 0.1743 0.0733 0.0604 0.0785

MSE 0.0817 0.0084 0.0052 0.0575 0.0093 0.0058 0.0091

n = 500 MADE 0.0928 0.0436 0.0353 0.1257 0.0490 0.0358 0.0654

MSE 0.0155 0.0031 0.0020 0.0270 0.0036 0.0019 0.0056

ρ = 0.3

n = 200 MADE 0.2582 0.0839 0.0692 0.2317 0.0967 0.0751 0.0541

MSE 0.1360 0.0115 0.0074 0.1061 0.0137 0.0086 0.0043

n = 500 MADE 0.1183 0.0528 0.0421 0.1514 0.0546 0.0426 0.0388

MSE 0.0259 0.0045 0.0028 0.0416 0.0049 0.0027 0.0023

ρ = 0.9

n = 200 MADE 0.3344 0.1016 0.0914 0.3398 0.1067 0.0919 0.0153

MSE 0.2445 0.0183 0.0132 0.2596 0.0200 0.0131 0.0004

n = 500 MADE 0.1391 0.0673 0.0586 0.1391 0.0706 0.0608 0.0141

MSE 0.0353 0.0076 0.0059 0.0342 0.0082 0.0060 0.0003

MADE, mean absolute deviation error; MSE, mean squared error

(C) BPFGM : θ1 = (0.5, 0.45, 0.5, 0.5, 0.45, 0.5)


with dependency parameter σ = −0.5,−0.2, 0.2, 0.5.

For the estimation of the parameters, we use the method of randomly choosing from
a uniform distribution to find out the initial values and set the sample size n = 200
and 500 with m = 200 replications for each choice of parameters. The estimators are
compared in terms of their mean absolute deviation error (MADE) and mean squared
error (MSE) according to the following formulas:

MADE = 1

m

m∑
j=1

|ϑ̂ j − ϑ0|, MSE = 1

m

m∑
j=1

(ϑ̂ j − ϑ0)2, (13)

where ϑ̂ j is the estimator of ϑ0 in the j th replication.

4.1 Simulation based onMBP &MMBP algorithms

First, we conduct simulations about the above four set-ups of models with MBP and
MMBP algorithms byMatlab. More specifically, in both two iteration algorithms, the
first step is followed by the constrained nonlinear optimization function fmincon to
obtain the minimum of constrained nonlinear multivariable function. Then for the next
iteration steps, we use lsqnonlin function to solve the function by minimizing the sum
of components’ squares with bound constraints.
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Table 2 Simulation results for model A2 based on MBP&MMBP

Para ω1 α1 β1 ω2 α2 β2 ρ

ρ = 0

n = 200 MADE 0.3253 0.0677 0.0591 0.2306 0.0735 0.0608 0.0612

MSE 0.1705 0.0071 0.0056 0.0996 0.0095 0.0058 0.0056

n = 500 MADE 0.2036 0.0423 0.0333 0.1654 0.0454 0.0364 0.0425

MSE 0.0671 0.0031 0.0018 0.0472 0.0033 0.0020 0.0027

ρ = 0.3

n = 200 MADE 0.4003 0.0776 0.0684 0.2844 0.0916 0.0716 0.0503

MSE 0.2766 0.0096 0.0075 0.1687 0.0132 0.0081 0.0038

n = 500 MADE 0.2500 0.0517 0.0396 0.1778 0.0508 0.0406 0.0283

MSE 0.1091 0.0043 0.0024 0.0562 0.0041 0.0024 0.0013

ρ = 0.9

n = 200 MADE 0.6322 0.1126 0.0967 0.4608 0.1151 0.0964 0.0205

MSE 0.2027 0.0221 0.0141 0.4745 0.0244 0.0151 0.0054

n = 500 MADE 0.2832 0.0647 0.0522 0.2158 0.0702 0.0572 0.0087

MSE 0.1373 0.0074 0.0048 0.0797 0.0081 0.0053 0.0001

MADE, mean absolute deviation error; MSE, mean squared error

Table 3 Simulation results for model B based on MBP&MMBP

Para ω1 α1 β1 ω2 α2 β2 γ

γ = −1

n = 200 MADE 0.2192 0.0620 0.0552 0.2048 0.0634 0.0568 0.4218

MSE 0.0862 0.0061 0.0046 0.0915 0.0068 0.0052 0.2597

n = 500 MADE 0.1266 0.0401 0.0373 0.1218 0.0389 0.0360 0.3834

MSE 0.0263 0.0025 0.0021 0.0249 0.0023 0.0019 0.1881

γ = −0.5

n = 200 MADE 0.2220 0.0607 0.0538 0.2044 0.0645 0.0551 0.2989

MSE 0.0879 0.0058 0.0044 0.0868 0.0063 0.0047 0.1214

n = 500 MADE 0.1316 0.0395 0.0366 0.1229 0.0384 0.0358 0.2737

MSE 0.0281 0.0024 0.0020 0.0261 0.0023 0.0020 0.0995

γ = 0.5

n = 200 MADE 0.2377 0.0616 0.0537 0.2130 0.0581 0.0518 0.3100

MSE 0.1010 0.0061 0.0045 0.1060 0.0055 0.0042 0.1478

n = 500 MADE 0.1432 0.0411 0.0375 0.1311 0.0399 0.0376 0.2274

MSE 0.0331 0.0025 0.0021 0.0298 0.0025 0.0022 0.0872

γ = 1

n = 200 MADE 0.2486 0.0638 0.0552 0.2294 0.0604 0.0545 0.3193

MSE 0.1112 0.0065 0.0048 0.1254 0.0060 0.0047 0.1579

n = 500 MADE 0.1510 0.0429 0.0391 0.1417 0.0433 0.0405 0.2154

MSE 0.0365 0.0028 0.0023 0.0356 0.0029 0.0025 0.0775

MADE, mean absolute deviation error; MSE, mean squared error
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Table 4 Simulation results for model C based on MBP&MMBP

Para ω1 α1 β1 ω2 α2 β2 σ

σ = −0.5

n = 200 MADE 0.1714 0.0699 0.0642 0.1837 0.0586 0.0503 0.2327

MSE 0.0558 0.0076 0.0065 0.0588 0.0054 0.0042 0.0694

n = 500 MADE 0.1108 0.0384 0.0383 0.0977 0.0374 0.0352 0.1720

MSE 0.0227 0.0025 0.0024 0.0186 0.0021 0.0019 0.0393

σ = −0.2

n = 200 MADE 0.1806 0.0624 0.0592 0.1665 0.0569 0.0540 0.2062

MSE 0.0676 0.0060 0.0054 0.0521 0.0051 0.0045 0.0709

n = 500 MADE 0.1171 0.0399 0.0331 0.1222 0.0367 0.0322 0.1422

MSE 0.0234 0.0023 0.0018 0.0292 0.0021 0.0017 0.0295

σ = 0.2

n = 200 MADE 0.2297 0.0631 0.0549 0.2513 0.0697 0.0597 0.1756

MSE 0.1100 0.0055 0.0042 0.1185 0.0080 0.0059 0.0458

n = 500 MADE 0.1215 0.0382 0.0358 0.1269 0.0356 0.0327 0.1135

MSE 0.0235 0.0023 0.0019 0.0317 0.0020 0.0017 0.0191

σ = 0.5

n = 200 MADE 0.2133 0.0638 0.0557 0.2266 0.0641 0.0621 0.1632

MSE 0.0930 0.0068 0.0049 0.0848 0.0070 0.0062 0.0378

n = 500 MADE 0.1606 0.0390 0.0342 0.1261 0.0372 0.0332 0.1028

MSE 0.0473 0.0023 0.0018 0.0287 0.0023 0.0020 0.0171

MADE, mean absolute deviation error; MSE, mean squared error

The summary of the simulation results are given in Tables 1, 2, 3 and 4. As the
sample size increases, the values ofMADE andMSE gradually decrease. Note that the
special case ρ = 0 reduces the bivariate case to two independent Poisson distributions.
As discussed by Liu and Luger (2009), MBP and MMBP algorithms show almost the
same efficiencies under lower correlation values, but MBP fails to work at all under
high correlation values. For example, ρ = 0 or 0.3 in Tables 1 and 2,MBP andMMBP
yield the same values of MADE and MSE for each estimate of interest, whereas when
ρ turns to be 0.9, MBP algorithm fails to converge so we only display the results for
MMBP algorithm.

Tables 3 and 4 refer to BPF and BPFGM INGARCH(1,1) models, respectively. To
evaluate the performance of estimates under two algorithms, we choose the relative
small values of the correlations. It is obvious to see that the autoregressive conditional
heteroscedastic and GARCH effect parameters in each set-up show smaller values
of MADE and MSE compared to other parameters. In addition, the average iteration
steps of MBP andMMBP algorithms are reported in Table 5. From it, we can find that
the iteration steps also decrease as the sample size increases. On the whole, MMBP
algorithm uses less iteration steps to converge than MBP in each configuration of
parameters.
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Table 5 Average iteration steps of MBP and MMBP algorithms

Model A1 n MBP MMBP Model A2 n MBP MMBP

ρ = 0 200 5.48 4.51 ρ = 0 200 4.85 3.94

500 4.97 3.76 500 4.16 3.34

ρ = 0.3 200 7.65 5.84 ρ = 0.3 200 7.07 6.83

500 6.94 4.36 500 6.48 4.34

ρ = 0.9 200 – 4.41 ρ = 0.9 200 – 5.07

500 – 3.59 500 – 3.82

Model B n MBP MMBP Model C n MBP MMBP

γ = −1 200 7.82 7.50 σ = −0.5 200 6.92 6.39

500 7.17 5.86 500 6.57 5.67

γ = −0.5 200 5.60 4.81 σ = −0.2 200 5.43 4.50

500 5.06 4.02 500 4.58 3.72

γ = 0.5 200 5.83 4.78 σ = 0.2 200 5.20 4.24

500 5.53 4.11 500 4.72 3.58

γ = 1 200 6.08 5.07 σ = 0.5 200 5.67 4.91

500 5.33 4.28 500 5.05 3.99

4.2 Simulation based on TMB

In this subsection, we also conduct some simulations based on TMB method. For
saving space of the paper, we only consider the first two set-ups (A1 & A2) to see the
performance of this algorithm, especially when the dependency parameter becomes
larger. In our case, we opt for the R-routine constrOptim to obtain the MLE with
specified constraints.

Similar to the previous results in Tables 1 and 2, all seven estimates show quite
small values of MADE andMSE, which indicates the feasibility and rationality of this
algorithm. Furthermore, the values of MADE and MSE both decrease as the sample
size increases. From Tables 6 and 7, we find that under the low correlations (ρ = 0
or 0.3), the results based on TMB do not show much difference with the results of
MBP and MMBP. What’s most interest us is the performance when the dependency
parameter ρ becomes larger. For the case ρ = 0.9, one can see that in both models,
most of the estimates for ω1 and ω2 show smaller MADE and MSE compared to the
corresponding case in Tables 1 and 2. Besides, this TMBmethod indeed increases the
computational speed. Although the simulations based on the above three methods are
conducted by different software (say TMB by R versus to MBP&MMBP byMatlab),
it is feasible to compare the time by intuition. In the practical implementation, we
find that with TMB method, the estimation for model A1 takes only 5 s with 500
observations at one replication. However in the same settings, MBP and MMBP need
a few minutes at one replication, which further verifies that TMB can speed up the
computation.
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Table 6 Simulation results for model A1 based on TMB

Para ω1 α1 β1 ω2 α2 β2 ρ

ρ = 0

n = 200 MADE 0.1723 0.0708 0.0536 0.1760 0.0751 0.0571 0.0947

MSE 0.0569 0.0081 0.0046 0.0554 0.0088 0.0053 0.0126

n = 500 MADE 0.0953 0.0423 0.0331 0.1000 0.0413 0.0311 0.0802

MSE 0.0148 0.0028 0.0017 0.0193 0.0029 0.0016 0.0083

ρ = 0.3

n = 200 MADE 0.1376 0.0692 0.0528 0.1342 0.0647 0.0541 0.0774

MSE 0.0324 0.0075 0.0045 0.0331 0.0065 0.0047 0.0086

n = 500 MADE 0.0949 0.0403 0.0330 0.0907 0.0410 0.0352 0.0613

MSE 0.0137 0.0026 0.0017 0.0135 0.0027 0.0019 0.0050

ρ = 0.9

n = 200 MADE 0.1462 0.0512 0.0539 0.1308 0.0521 0.0539 0.0159

MSE 0.0296 0.0047 0.0047 0.0249 0.0045 0.0045 0.0004

n = 500 MADE 0.1320 0.0331 0.0420 0.1308 0.0340 0.0420 0.0148

MSE 0.0226 0.0017 0.0025 0.0218 0.0017 0.0025 0.0003

MADE, mean absolute deviation error; MSE, mean squared error.

Table 7 Simulation results for model A2 based on TMB

Para ω1 α1 β1 ω2 α2 β2 ρ

ρ = 0

n = 200 MADE 0.3498 0.0728 0.0569 0.2952 0.0737 0.0525 0.0704

MSE 0.2281 0.0084 0.0052 0.1623 0.0082 0.0045 0.0077

n = 500 MADE 0.2106 0.0408 0.0293 0.1281 0.0379 0.0303 0.0542

MSE 0.0823 0.0026 0.0014 0.0313 0.0024 0.0014 0.0044

ρ = 0.3

n = 200 MADE 0.2749 0.0633 0.0509 0.1833 0.0662 0.0561 0.0600

MSE 0.1542 0.0065 0.0040 0.0618 0.0067 0.0049 0.0052

n = 500 MADE 0.1858 0.0431 0.0330 0.1197 0.0382 0.0313 0.0405

MSE 0.0547 0.0029 0.0018 0.00237 0.0023 0.0016 0.0025

ρ = 0.9

n = 200 MADE 0.2216 0.0491 0.0401 0.1607 0.0507 0.0479 0.0103

MSE 0.0721 0.0037 0.0026 0.0378 0.0042 0.0036 0.0002

n = 500 MADE 0.1775 0.0331 0.0271 0.1084 0.0329 0.0341 0.0088

MSE 0.0450 0.0018 0.0011 0.0170 0.0017 0.0017 0.0001

MADE, mean absolute deviation error; MSE, mean squared error
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Table 8 Descriptive statistics for the number of syphilis cases

States No. Mean Variance Minimum Median Maximum Cross-Corr.

Pennsylvania 209 3.5167 6.8759 0 3 12 −0.1355

Maryland 209 3.4737 9.2794 0 3 15

0 20 40 60 80 100 120 140 160 180 200
0

5

10

Weekly number of syphilis cases in Pennsylvania

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
Weekly number of syphilis cases in Maryland

0 2 4 6 8 10 12 14 16 18 20
Lag

-0.2

0

0.2

CCF

Fig. 1 Top: Number of syphilis cases in Pennsylvania. Middle: Number of syphilis cases in Maryland.
Bottom: CCF of two data series

5 Application

We now illustrate the ability and flexibility of our proposed BP-INGARCH(1,1) mod-
els with a real time series data set. Here, we still consider the case that parameter
matrices A and B are both diagonal for ease of presentation. And the extension to
non-diagonal case is straightforward.Now,we consider theweekly numbers of syphilis
cases from 2007 to 2010 in two states of the USA, Pennsylvania and Maryland. This
is a part of data set given in the ZIM package available for download at the web-
site https://cran.r-project.org/web/packages/ZIM/ZIM.pdf, which was also studied
by Borges et al. (2017).

Table 8 displays some descriptive statistics for these data. From it, one can find that
the sample variance in each series is much larger than the sample mean, which both
show overdispersion. The cross-correlation coefficient between two series is−0.1355,
and we use the MMBP algorithm to obtain the estimates of our proposed models. Two
data series paths togetherwith their cross-correlation function (CCF) are plotted in Fig-
ure 1. The CCF reveals the negative correlation between these two series. Besides, the
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Fig. 2 Top left: ACF of Pennsylvania. Top right: ACF of Maryland. Bottom left: PACF of Pennsylvania.
Bottom right: PACF of Maryland

sample autoregression function (ACF) and the sample partial autoregression function
(PACF) are presented in Figure 2.

For comparison, we fit BPG, BPF and BPFGM models along with the aforemen-
tioned BP model (Cui and Zhu 2018), Liu’s model (Liu 2012) and Fokianos’s model
(Fokianos et al. 2019). To see the accuracy of the estimates of parameters, we calcu-
late the standard errors (SE) for parameters in each model. Table 9 summarizes the
estimate of parameter with SE in parentheses, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values. From it, one can see that the first six
parameters show similar estimates in the above six different models. It is important to
mention that in Fokianos’s model, we use the quasi maximum likelihood estimation
(QMLE) to obtain the first six parameters and then conduct a parametric bootstrap to
estimate copula parameter.

Now, we focus on the parameter for describing the dependence structure in each
model. As can be seen, the dependency parameters of our proposed models together
with Fokianos’s model in Table 9 all yield negative estimates which are in accor-
dance with the negative correlation (−0.1355) between two data series. However,
the parameter δ in BP model still shows positive value with a much larger SE. The
estimate of φ(= 0.0001) in Liu’s model in fact is the predetermined lower bound of
the algorithm, which further illustrates that their model cannot capture negative cross-
correlation. Moreover, AIC and BIC values reveal the improvement in fit when we use
the models defined through multiplicative factors. Notice that although there are six
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Table 9 Comparison of different models for syphilis cases

Models Estimates AIC BIC

BPG ω̂1 = 0.1590(0.8565) ω̂2 = 1.5425(0.7376) 2160.7015 2183.8593

α̂1 = 0.9018(0.2883) α̂2 = 0.3886(0.2360)

β̂1 = 0.0570(0.0566) β̂2 = 0.1617(0.0713)

ρ̂ = −0.0597(0.0577)

BPF ω̂1 = 0.1621(0.9726) ω̂2 = 1.5041(0.7797) 2158.3271 2181.4849

α̂1 = 0.9010(0.3225) α̂2 = 0.4061(0.2517)

β̂1 = 0.0569(0.0576) β̂2 = 0.1561(0.0711)

γ̂ = −0.6331(0.2803)

BPFGM ω̂1 = 0.1644(0.8165) ω̂2 = 1.5185(0.8646) 2159.3170 2182.4749

α̂1 = 0.9006(0.3390) α̂2 = 0.4016(0.2573)

β̂1 = 0.0567(0.0597) β̂2 = 0.1571(0.0786)

σ̂ = −0.2499(0.1249)

BP ω̂1 = 0.1810(0.0565) ω̂2 = 1.7186(0.7538) 2162.4678 2185.6257

α̂1 = 0.8965(0.0402) α̂2 = 0.3460(0.2374)

β̂1 = 0.0575(0.0336) β̂2 = 0.1629(0.0713)

δ̂ = 0.7468(0.8760)

Liu’s ω̂1 = 0.1755(0.0650) ω̂2 = 1.7113(0.7406) 2163.7861 2186.9440

α̂1 = 0.8971(0.0442) α̂2 = 0.3432(0.2394)

β̂1 = 0.0571(0.0349) β̂2 = 0.1637(0.0713)

φ̂ = 0.0001(0.1519)

Fokianos’s ω̂1 = 0.1756(0.0653) ω̂2 = 1.7113(0.7342) 2161.7842 2181.6635

α̂1 = 0.8971(0.0453) α̂2 = 0.3432(0.2405)

β̂1 = 0.0574(0.0361) β̂2 = 0.1637(0.0691)

ψ̂ = −0.2176(0.1028)

AIC, Akaike information criterion; BIC, Bayesian information criterion

parameters by QMLE procedure in Fokianos’s model, their AIC is larger than our pro-
posedmodels. It is worth noting that for estimating the copula parameter in Fokianos’s
model, we let the parametric bootstrap algorithm choose between the Gaussian and
Clayton copula with 500 realizations. Indeed, there are 262 cases out of 500 (52.4%)
selecting Clayton copula, and we estimate ψ by the average of these realizations.
Nevertheless, this way for selecting the correct copula can be suspicious because we
cannot tell which copula structure is better for this data.

We also consider the Pearson residuals defined by et = Yt−λt√
λt

to further examine
the adequacy fitting of our models. Under the correct model, the sequence et should
be a white noise sequence with constant variance (see Kedem and Fokianos 2002,
Sect. 1.6.3). And we can substitute the λt by λt (θ̂) to obtain êt . Furthermore, we
show cumulative periodogram plot for BPF model (see Brockwell and Davis 1991,
Sect. 10.2). From Figure 3, we can see that the standardized cumulative periodogram
lies in the Kolmogorov–Smirnov bounds with level α = 0.05, which indicates the
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Fig. 3 Cumulative periodogram plot of the Pearson residuals of the weekly numbers of syphilis cases fitted
by BPF model

Table 10 MADE and MSE for predicted values for each model

Model BPG BPF BPFGM BP Liu’s Fokianos’s

MADE 3.1768 3.1812 3.1812 3.2032 3.1955 3.2004

MSE 3.5584 3.5629 3.5634 3.5845 3.5924 3.5925

whiteness of the Pearson residuals. Similar results hold for the other two models
(BPG & BPFGM), thus we omit them.

In addition, we perform an out-of-sample forecasting exercise on the aforemen-
tioned models for comparison. First of all, we split the data in two parts. The first part
has size T0 = 157 (year 2007–2009), with the observations {Y t , t = 1, . . . , T0}
being used for initial estimation of the model, while the remaining observations
{Y t , t = T0 + 1, . . . , T (= 209)} will be used for a forecasting. Then, we predict
the number of syphilis cases during the year 2010 by computing the one-step ahead
forecast of Y t using the conditional expectation E(Y t |Ft−1) and repeat the above
exercise for t = T0 + 1, . . . , T . Given the forecast path Ŷ t , we use the MADE and
MSE to evaluate the performance of these models, where the error terms are measured
by supremum norm and Euclidean norm, respectively. Table 10 shows the results and
we can see that the our proposedmodels based onmultiplicative factors perform better
in forecasting. In general, we choose BPF model as the preferred model among these
models for fitting this data set based on its smallest AIC and BIC.

6 Conclusion

The current paper considers a class of flexible bivariate Poisson INGARCHmodels by
introducing multiplicative factors for dependence modelling. Some important proper-
ties such as stationarity and ergodicity of the process are discussed. For estimating the
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parameters of the models, MBP, MMBP algorithms together with the method based
on TMB have been employed and the consistency and asymptotic normality of esti-
mates are also established. The numerical simulation shows that the estimation results
are reliable as long as the sample size is large enough. Finally, we apply the newly
proposed BP-INGARCH(1,1) models to an empirical example to demonstrate their
better performances.

Acknowledgements The authors are very grateful to the Editor, Associate Editor and anonymous referee
for providing several constructive comments which led to a significant improvement of the paper.

Appendix A

Let X and Y be two independent random variables from Poisson distribution with cdf
F1 and F2. Then, the joint cdf of newly proposed BP distribution C(x, y) = P(X ≤
x,Y ≤ y) should satisfy the definition of bivariate probability distribution and the
following properties:

(a) Right continuity : C(x, y + 0) = C(x, y); C(x + 0, y) = C(x, y);
(b) Boundedness : lim

x→0− C(x, y) = lim
y→0− C(x, y) = 0,

lim
x,y→+∞C(x, y) = 1;

(c) Monotonicity : C(x, y) is monotonically non-decreased for x and y,

respectively;
(d) Nonnegativity : for any x1 ≤ x2, y1 ≤ y2 such that

C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1) ≥ 0.

It is worth mentioning that from a different prospective, our model (6) can be
viewed as a bivariate Poisson distribution constructed by linking function, copula.
By imposing a positive multiplicative factor Z−1, the properties (a) and (b) can be
easily verified by relation of events and nature of probability. Now, we turn to consider
properties (c) and (d). By the form of equation (6) and the definition of Eqs. (3)–(5),
we find that the multiplicative factors c(·, ·) are all nonnegative bounded functions
on [0, 1]2 for suitably chosen range of values of the dependency parameters. Hence,
when x2 ≥ x1, we have

C(x2, y) − C(x1, y) = Z−1
x2∑

k=x1+1

y∑
s=0

λk1λ
s
2

k!s! exp{−(λ1 + λ2)}c(F1(k), F2(s)) ≥ 0.

The case for y2 ≥ y1 is similar, so (c) is verified. As for nonnegativity, we have the
following result by definition of the cdf, for any x1 ≤ x2, y1 ≤ y2,

C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1)

= P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) ≥ 0.
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Hence, property (d) is also verified. ��
In fact, Z(λ1, λ2, θ) is a bounded factor because the series converges by its defini-

tion. It also can be viewed as a weight, which makes the sum of our model’s pdf equals
to one. One can find similar methods to define some distribution families, for exam-
ple, Efron (1986) considered the double exponential families by adding a nonlinear
constant c(μ, θ, n); Shmueli et al. (2005) tackled the important task of characteriz-
ing the Conway–Maxwell–Poisson distribution by dividing a series as weight. In our
bivariate case, it is difficult to give the explicit approximation to Z−1(λ1, λ2, θ) due
to the copula structure. Instead, we could use the truncated double summation at some
k1, k2 to compute Z−1, which will give the reasonable approximation with a small
error. More specifically, we write Z(λ1, λ2, θ) = Ẑk1,k2 + Rk1,k2 , where

Ẑk1,k2 =
k1∑

y1=0

k2∑
y2=0

λ
y1
1 λ

y2
2

y1!y2! exp{−(λ1 + λ2)}c(F1(y1), F2(y2)),

Rk1,k2 =
⎛
⎝ ∞∑

y1=k1+1

k2∑
y2=0

+
k1∑

y1=0

∞∑
y2=k2+1

+
∞∑

y1=k1+1

∞∑
y2=k2+1

⎞
⎠ λ

y1
1 λ

y2
2

y1!y2!
× exp{−(λ1 + λ2)}c(F1(y1), F2(y2)).

Similar to Shmueli et al. (2005), we define the relative truncation error (TE) as

TE = Ẑ−1
k1,k2

− Z−1

Ẑ−1
k1,k2

= Rk1,k2

Z
. (14)

Here, we show some numerical simulations of different combinations with our pro-
posed model. We choose the Poisson intensity pairs as (λ1, λ2) = (1, 1), (1, 2) and
(3,2). For sake of illustration, we let k = k1 = k2 be the same truncated number,
which will specified in different cases.

(a) BPG : ρ = −0.5,−0.2, 0.2, 0.5;
(b) BPF : γ = −1,−0.5, 0.5, 1;
(c) BGFGM : σ = −0.5,−0.2, 0.2, 0.5.

Based on the fact that the kurtosis of univariate Poisson distribution is λ−1 (λ as the
Poisson intensity), leading to the flatter curve plot of pmf as λ increases. Therefore,
we know that the truncated number k needs to be increased to approximate Z as λ1, λ2
increase. In the above three scenarios, we choose the largest value of k to be 6 as λ1
and λ2 are relative small. If we increase λ1 or λ2, then k may be 10 or much larger to
approximate the infinite sum. From Table 11, we conclude that the truncated sum can
be an approximate of Z in practice.

Furthermore, following by the discussion of Appendix B in Shmueli et al. (2005)
and elementary analysis, we know that Z converges and both Z and Z−1 are bounded
by some positive constant. Therefore, going back to ourmodel (6), we can view Z−1 as
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Table 11 TE for the above three
cases

BPG ρ

(λ1, λ2) k −0.5 −0.2 0.2 0.5

(1,1) 4 0.0013 0.0049 0.0093 0.0113

(1,2) 4 0.0223 0.0434 0.0667 0.0795

(3,2) 6 0.0205 0.0314 0.0431 0.0495

BPF γ

(λ1, λ2) k −1 −0.5 0.5 1

(1,1) 4 0.0065 0.0069 0.0077 0.0080

(1,2) 4 0.0492 0.0526 0.0590 0.0619

(3,2) 6 0.0345 0.0361 0.0391 0.0405

BPFGM σ

(λ1, λ2) k −0.5 −0.2 0.2 0.5

(1,1) 4 0.0075 0.0074 0.0072 0.0070

(1,2) 4 0.0534 0.0549 0.0570 0.0587

(3,2) 6 0.0427 0.0397 0.0355 0.0322

a regularity constant weight. The rest terms by removing Z−1 at the right-hand side of
(6) will dominate the pmf and can be convenient to use, thus we only consider the rest
dominated terms for estimation and inference parts. As mentioned by Efron (1986),
he suggested to leave out the highly nonlinear multiplicative factor when estimating
the parameters.

Appendix B

Proof of Theorem 1 When considering BPFGM(λt,1, λt,2, σ ) model, this theorem can
be proved using arguments similar to Cui and Zhu (2018, Theorem 1). So we only
consider BPG(λt,1, λt,2, ρ) and BPF(λt,1, λt,2, γ ) models. The proof employs the
theory of Markov chain again, but a little difference from those in Cui and Zhu
(2018) is that we introduce a uniform constant bound for the corresponding multi-
plicative function. First note that {λt } has at least one stationary distribution, refer
to Liu (2012) for more details. From (8), it is easy to see that (I − A)−1ω is
a reachable state if Y t−1 = Y t−2 = · · · = 0 for some t ∈ N large enough.
Then we only have to show that {λt } is an e-chain, which can naturally guaran-
tee the existence of a unique invariant probability measure by the main virtue of
Meyn and Tweedie (2009, Theorem 18.8.4). To see this, we recall the definition
of e-chain, i.e., for any continuous function f with compact support defined on
[0,∞) × [0,∞) and ε > 0, there exists an η > 0 such that |Pk

x1 f − P
k
z1 f | < ε, for

‖x1 − z1‖p < η and all k ≥ 1, where x1 = (x1,1, x1,2)
, z1 = (z1,1, z1,2)
, Pk
x1 f =

E{ f (λk)|λ0 = x}. Without loss of generality, assume | f | ≤ 1, M is a finite con-
stant and take ε′ and η sufficiently small such that ε′ + 8Mη/(1 − ‖A‖p) < ε and
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| f (x1) − f (z1)| < ε′ whenever ‖x1 − z1‖p < η, for some p ∈ [1,∞]. When we
choose Gaussian factor, denote c1 = Z−1(x1,1, x1,2, ρ)cρ(F1(x1,1), F2(x1,2)), c2 =
Z−1(z1,1, z1,2, ρ)cρ(F1(z1,1), F2(z1,2)).When it comes toFrank factor, they turn to be
c1 = Z−1(x1,1, x1,2, γ )cγ (F1(x1,1), F2(x1,2)), c2 = Z−1(z1,1, z1,2, γ )cγ (F1(z1,1),
F2(z1,2)). Hence, according to (3), (4) and the fact Z−1 is bounded, one can easily see
that there exists a finite constant M , such that |c1|, |c2| ≤ M .

For the case k = 1,

|Px1 f − Pz1 f |

=
∣∣∣∣∣

∞∑
m=0

∞∑
n=0

[ f (ω + Ax1 + B(m, n)
)p(m, n|x1)

− | f (ω + Az1 + B(m, n)
)p(m, n|z1)]
∣∣∣

≤
∞∑

m=0

∞∑
n=0

p(m, n|x1)| f (ω + Ax1 + B(m, n)
) − f (ω + Az1 + B(m, n)
)|

+
∞∑

m=0

∞∑
n=0

|p(m, n|x1) − p(m, n|z1)|| f (ω + Az1 + B(m, n)
)|

= I1 + I2,

where p(m, n|x1) and p(m, n|z1) are the pmfs of BPG(x1,1, x1,2, ρ) (or BPF
(x1,1, x1,2, γ )) and BPG (z1,1, z1,2, ρ) (or BPF(z1,1, z1,2, γ )) given by (6). We start
to formulate the main part of I2, first suppose c1 ≤ c2,

∞∑
m=0

∞∑
n=0

|p(m, n|x1) − p(m, n|z1)|

≤
∞∑

m=0

∞∑
n=0

∣∣∣∣ x
m
1,1x

n
1,2

m!n! e−(x1,1+x1,2)c1 − zm1,1z
n
1,2

m!n! e−(z1,1+z1,2)c2

∣∣∣∣

≤
∞∑

m=0

∞∑
n=0

M

∣∣∣∣ x
m
1,1

m! e
−x1,1 − zm1,1

m! e
−z1,1

∣∣∣∣ x
n
1,2

n! e−x1,2

+
∞∑

m=0

∞∑
n=0

M

∣∣∣∣ x
n
1,2

n! e−x1,2 − zn1,2
n! e−z1,2

∣∣∣∣ z
m
1,1

m! e
−z1,1

≤M
∞∑
i=0

|p(i |x1,1) − p(i |z1,1)| + M
∞∑
i=0

|p(i |x1,2) − p(i |z1,2)|.

By the proof of Wang et al. (2014, Lemma 6.4), we know that
∑∞

i=0 |p(i |x1) −
p(i |z1)| ≤ 2(1−e−|x1−z1|), where p(i |x) is the pmf of a univariate Poisson distribution
with intensity x evaluated at i . And since |x1,i −z1,i | ≤ ‖x1 − z1‖1 ≤ cp ‖x1 − z1‖p,
for i = 1, 2 and any 1 ≤ p ≤ ∞, where cp = 21−1/p ≤ 2, so for any x1, z1 and
p ∈ [1,∞], we have

123



1472 Y. Cui et al.

∞∑
m=0

∞∑
n=0

|p(m, n|x1) − p(m, n|z1)| ≤ 4M(1 − e−2‖x1−z1‖p ). (A.1)

When c1 > c2, we can obtain the same results. So it follows from | f | ≤ 1 that
I2 ≤ 4M(1 − e−2‖x1−z1‖p ). As for I1, since

∥∥∥ω + Ax1 + B(m, n)
 − (ω + Az1 + B(m, n)
)

∥∥∥
p

= ‖A(x1 − z1)‖p ≤ ‖A‖p ‖x1 − z1‖p ≤ η,

so I1 ≤ ε′. Therefore, we have

|Px1 f − Pz1 f | ≤ ε′ + 4M(1 − e−2‖x1−z1‖p ). (A.2)

For the case that k = 2, it follows from

E{ f (λ2)|λ0 = x} = E{E[ f (λ2)|λ1]|λ0 = x},

then

|P2
x1 f − P

2
z1 f | =

∣∣∣∣∣
∞∑

m=0

∞∑
n=0

[p(m, n|x1)Px2 f − p(m, n|z1)Pz2 f ]
∣∣∣∣∣

≤
∞∑

m=0

∞∑
n=0

p(m, n|x1)|Px2 f −Pz2 f |+
∞∑

m=0

∞∑
n=0

|p(m, n|x1) − p(m, n|z1)||Pz2 f |,

where x2 = ω+Ax1+B(m, n)
 and z2 = ω+Az1+B(m, n)
. Since ‖x2 − z2‖p =
‖A(x1 − z1)‖p ≤ ‖A‖p ‖x1 − z1‖p ≤ η, so it follows from (A.1) and (A.2) that

|P2
x1 f − P

2
z1 f | ≤ ε′ + 4M(1 − e−2‖x2−z2‖p ) + 4M(1 − e−2‖x1−z1‖p )

≤ ε′ + 4M(1 − e−2‖A‖p‖x1−z1‖p ) + 4M(1 − e−2‖x1−z1‖p ).

Hence by induction, we have for any k ≥ 1 that

|Pk
x1 f − P

k
z1 f | ≤ ε′ + 4M

k−1∑
s=0

(1 − e−2‖A‖sp‖x1−z1‖p )

≤ ε′ + 8M
∞∑
s=0

‖A‖sp ‖x1 − z1‖p ≤ ε′ + 8Mη

1 − ‖A‖p
≤ ε,

which proves that {λt } is an e-chain. Therefore there exists a unique stationary distri-
bution to {λt }.

As for (b), it holds similar arguments to the proof of in Liu (2012, Proposition
4.2.1). ��
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Proof of Theorem 2 The proof follows the technique from Song et al. (2005, Theorem
1) andwe just rewrite them in component form.Note thatweonly prove the consistency

of θ̂
2
n , because the estimators θ̂

k
n for k > 2 can be derived from it in the same manner.

Suppose that θ̂
1
n

P−→ θ0, then θ̂
1
n = θ0 + oP(1). Because θ̂

2
n satisfies equations

l̇m(1)(θ̂
2
1,n) + l̇c(1)(θ̂

1
1,n, θ̂

1
2,n) = 0, and l̇c(2)(θ̂

1
1,n, θ̂

2
2,n) = 0.

By Taylor’s expansion, we have

0 = l̇m(1)(θ̂
2
1,n) + l̇c(1)(θ̂

1
1,n, θ̂

1
2,n)

= l̇m(1)(θ
0
1) + l̈m(11)(θ

0
1)(θ̂

2
1,n − θ01)+o(‖θ̂21,n − θ01‖2) + l̇c(1)(θ̂

1
1,n, θ̂

1
2,n),

0 = l̇c(2)(θ̂
1
1,n, θ̂

2
2,n) = l̇c(2)(θ̂

1
1,n, θ

0
2 ) + l̈c(22)(θ̂

1
1,n, θ

0
2 )(θ̂22,n−θ02 ) + o(‖θ̂22,n−θ02 ‖2).

Then we can obtain

θ̂
2
1,n − θ01 = [−n−1l̈m(11)(θ

∗
1,n)]−1n−1

×[l̇m(1)(θ
0
1) + l̇c(1)(θ̂

1
1,n, θ̂

1
2,n) + o(‖θ̂21,n − θ01‖2)], (A.3)

θ̂22,n − θ02 = [−n−1l̈c(22)(θ̂
1
1,n, θ

∗
2,n)]−1n−1[l̇c(2)(θ̂11,n, θ02 ) + o(‖θ̂22,n − θ02 ‖2)].

(A.4)

Under the regularity conditions, [−n−1l̈m(11)(θ
∗
1,n)] and [−n−1l̈c(22)(θ̂

1
1,n, θ

∗
2,n)] are

bounded and due to the consistency of θ̂
1
n , it follows that

lim
n→∞[n−1l̇m(1)(θ

0
1) + n−1l̇c(1)(θ̂

1
1,n, θ̂

1
2,n) + n−1o(‖θ̂21,n − θ01‖2)]

= lim
n→∞ n−1l̇(θ0) = 0,

lim
n→∞[n−1l̇c(2)(θ̂

1
1,n, θ

0
2 ) + n−1o(‖θ̂22,n − θ02 ‖2)]

= lim
n→∞ n−1l̇c(2)(θ

0
1, θ

0
2 ) = 0.

It is easy to find that θ̂
2
n

P−→ θ0 according to (A.3) and (A.4). ��
Proof of Theorem 3 We employ the similar arguments of Song et al. (2005, Theorem
3). First, it is important to mention that under the regularity conditions, the following
result is obvious:

n−1/2
(
l̇m(θ0)

l̇c(θ
0)

)
→ N (0,�),

where

� = lim
n→∞ n−1

(
El̇m(θ0)l̇
m (θ0) El̇m(θ0)l̇
c (θ0)

El̇c(θ
0)l̇
m (θ0) El̇c(θ

0)l̇
c (θ0)

)
.
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Then according to Theorem 2, the consistency of θkn holds and satisfies equations

l̇m(1)(θ̂
k
1,n) + l̇c(1)(θ̂

k−1
1,n , θ̂k−1

2,n ) = 0, and l̇c(2)(θ̂
k−1
1,n , θ̂k2,n) = 0.

By Taylor’s expansion without the remainder terms, we have at Step k

l̇m(1)(θ
0
1) + l̈m(11)(θ

0
1)(θ̂

k
1,n − θ01)

+ l̇c(1)(θ
0) + l̈c(11)(θ

0)(θ̂
k−1
1,n − θ01) + l̈c(12)(θ

0)(θ̂k−1
2,n − θ02) = 0,

l̇c(2)(θ
0) + l̈c(21)(θ

0)(θ̂
k−1
1,n − θ01) + l̈c(22)(θ

0)(θ̂k2,n − θ02) = 0.

Rewriting these in a matrix form, we can obtain

√
n(θ̂

k
n − θ0) = D−1

n Tn
√
n(θ̂

k−1
n − θ0) + D−1

n [n−1/2l̇(θ0)]. (A.5)

Hence by recursion, (A.5) turns to be

√
n(θ̂

k
n − θ0) = (D−1

n Tn)
k−1√n(θ̂

1
n − θ0) +

k−2∑
s=0

(D−1
n Tn)

sD−1
n [n−1/2l̇(θ0)].

Because θ̂
1
1,n is used to define θ̂12,n , a Taylor’s expansion at Step 1 leads to

√
n(θ̂

1
n − θ0) =

(−n−1l̈m(11) 0
−n−1l̈c(21) −n−1l̈c(22)

)−1 (−n−1/2l̇m(1)

−n−1/2l̇c(2)

)

= D−1
n

(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)
+ V n

(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)
.

Thus,

√
n(θ̂

k
n − θ0) =

k−1∑
s=0

(D−1
n Tn)

sD−1
n

(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)

+
k−2∑
s=0

(D−1
n Tn)

sD−1
n

(−n−1/2l̇c(1)
0

)

+ (D−1
n Tn)

k−1V n

(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)

= [I − (D−1
n Tn)

k][I − D−1
n Tn]−1D−1

n

(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)
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+ [I − (D−1
n Tn)

k−1][I − D−1
n Tn]−1D−1

n

(−n−1/2l̇c(1)
0

)

+ (D−1
n Tn)

k−1V n

(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)
.

Note that [I − D−1
n Tn]−1D−1

n = (D−1
n − Tn)

−1 = [−n−1l̈(θ0)]−1, then it follows
that

√
n(θ̂

k
n − θ0) = {[I − (D−1

n Tn)
k][−n−1l̈(θ0)]−1

+ (D−1
n Tn)

k−1V n}
(−n−1/2l̇m(1)

−n−1/2l̇c(2)

)

+ [I − (D−1
n Tn)

k−1][−n−1l̈(θ0)]−1
(−n−1/2l̇c(1)

0

)

→ N (0,�k), as n → ∞,

where �k is defined in the statement of Theorem 3.
Furthermore, when Assumption 2 holds, i.e., the marginal function lm satisfies

the information dominance condition. Then we have �k → 0 as k → ∞, thus the
asymptotic variance–covariance matrix becomes

�∞ = I−1
(
n−1

E(l̇m(1) + l̇c(1))(l̇m(1) + l̇c(1))
 n−1
El̇c(2)(l̇m(1) + l̇c(1))


n−1
E(l̇m(1) + l̇c(1))l̇
c(2) n−1l̇c(2)l̇
c(2)

)
I−1

= I−1{ lim
n→∞ n−1

El̇(θ0)l̇(θ0)
}I−1 = I−1.

��
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Popović, P. M. (2016). A bivariate INAR(1) model with different thinning parameters. Statistical Papers,

57, 517–538.
Scotto, M. G., Weiß, C. H., Gouveia, S. (2015). Thinning-based models in the analysis of integer-valued

time series: A review. Statistical Modelling, 15, 590–618.
Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., Boatwright, P. (2005). A useful distribution for fitting

discrete data: revival of the Conway–Maxwell–Poisson distribution. Journal of the Royal Statistical
Society: Series C, 54, 127–142.

Song, P. X. K., Fan, Y., Kalbfleisch, J. D. (2005). Maximization by parts in likelihood inference. Journal
of the American Statistical Association, 100, 1145–1158.

Tjøstheim, D. (2012). Some recent theory for autoregressive count time series (with discussions). Test, 21,
413–476.

Tjøstheim, D. (2016). Count time series with observation-driven autoregressive parameter dynamics. In R.
A. Davis, S. H. Holan, R. Lund & N. Ravishanker (Eds.), Handbook of discrete-valued time series,
pp. 77–100. Boca Raton: Chapman and Hall/CRC.

Wang, C., Liu, H., Yao, J. F., Davis, R. A., Li, W. K. (2014). Self-excited threshold Poisson autoregression.
Journal of American Statistical Association, 109, 776–787.

Weiß, C. H. (2008). Thinning operations for modeling time series of counts—A survey. Advances in Sta-
tistical Analysis, 92, 319–341.

123

http://arxiv.org/abs/1704.02097
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.7916/D8Z325SW
https://doi.org/10.7916/D8Z325SW


Flexible bivariate Poisson integer-valued GARCHmodel 1477

Wu,W., Shao, X. (2004). Limit theorems for iterated random functions. Journal of Applied Probability, 41,
425–436.

Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series Analysis, 32,
54–67.

Zhu, F. (2012a). Modeling overdispersed or underdispersed count data with generalized Poisson integer-
valued GARCH models. Journal of Mathematical Analysis and Applications, 389, 58–71.

Zhu, F. (2012b). Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of
Statistical Planning and Inference, 142, 826–839.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Flexible bivariate Poisson integer-valued GARCH model
	Abstract
	1 Introduction
	2 Flexible bivariate Poisson INGARCH model
	2.1 The bivariate Poisson distribution
	2.2 Model formulation and stability theory

	3 Estimation
	3.1 MBP algorithm
	3.2 MMBP algorithm
	3.3 Alternative method using TMB

	4 Simulation
	4.1 Simulation based on MBP & MMBP algorithms
	4.2 Simulation based on TMB

	5 Application
	6 Conclusion
	Acknowledgements
	Appendix A
	Appendix B
	References




