Supplementary material to "Semi-parametric transformation boundary regression models"*

NATALIE NEUMEYER, LEONIE SELK and CHARLES TILLIER

Department of Mathematics, University of Hamburg

July 31, 2019

C Proofs of asymptotic results in the fixed design case

C.1 Proof of Lemma 5

To prove Lemma 5, we first need the following technical lemma.

Lemma 1. Assume model (2) holds under assumptions (A1'), (A2') and (A4'). Then we have

$$\sup_{x \in [0,1]} \min_{\substack{i \in \{1,\dots,n\}\\|x_{i,n}-x| \le b_n}} |\varepsilon_{i,n}| = o_P(1).$$

Proof. The proof is similar to the proof of Lemma A.2 in Drees et al. (2018) but some adaptations are needed to deal with non-equidistant fixed design points. Let Z_1, Z_2, \ldots be iid with the same distribution as $-\varepsilon_{i,n}$ with cumulative distribution function U. To prove the result, we shall show that

$$\lim_{n \to \infty} \mathbb{P}\left(\sup_{\substack{x \in [0,1] \ |x_{i,n}-x| \le b_n}} Z_i > \epsilon\right) = 0, \quad \epsilon > 0.$$

For $n \ge 1$, let $0 < k \le n$, $x \in [0, 1]$ and set $I_n = [x - b_n, x + b_n]$. Assume that exactly k points lie in I_n , say

 $x_{m+1,n} < \dots < x_{m+k,n} \in I_n$

for some m < n + 1 - k. We shall distinguish two cases.

^{*}Financial support by the DFG (Research Unit FOR 1735 Structural Inference in Statistics: Adaptation and Efficiency) is gratefully acknowledged.

(1) If $(x_{m,n}, x_{m+k+1,n}) \in [0,1]^2$, it means that

$$2b_n = |I_n| < x_{m+k+1,n} - x_{m,n} = \sum_{j=m}^{m+k} (x_{j+1,n} - x_{j,n}) \le (k+1)\bar{\Delta}_n$$

since $\overline{\Delta}_n \ge x_{j,n} - x_{j-1,n}$ for any $1 \le j \le n+1$.

(2) If $x_{m,n}$ or $x_{m+k+1,n}$ do not exist, which means that either $x_{m+1,n} = x_{0,n} = 0$ or $x_{m+k+1,n} = x_{n+1,n} = 1$. Consider the first case $x_{m+1,n} = x_{0,n}$ (the extremal case is x = 0). Then we have

$$b_n = \frac{|I_n|}{2} < x_{k,n} - x_{0,n} = \sum_{j=0}^{k-1} (x_{j+1,n} - x_{j,n}) \le k\bar{\Delta}_n.$$

A similar inequality holds for $x_{m+k+1,n} = x_{n+1,n} = 1$ (with the extremal case x = 1). In both cases, (1) and (2) yield to

$$b_n < k\bar{\Delta}_n \Rightarrow k > \frac{b_n}{\bar{\Delta}_n}, \quad n \ge 1.$$

Then, for all y > 0, we have with $d_n := \left\lceil \frac{b_n}{\overline{\Delta}_n} \right\rceil$

$$\mathbb{P}\left(\sup_{x\in[0,1]}\min_{\substack{i\in\{1,\dots,n\}\\|x_{i,n}-x|\leq b_{n}}} Z_{i} > y\right) \leq \mathbb{P}\left(\left\{\max_{j\in\{1,\dots,n-d_{n}\}}\min_{i\in\{j,\dots,j+d_{n}\}} Z_{i} > y\right\}\right)$$
$$\leq \sum_{j=1}^{n-d_{n}} \mathbb{P}\left(\min_{i\in\{j,\dots,j+d_{n}\}} Z_{i} > y\right)$$
$$= (n-d_{n})\mathbb{P}\left(\min_{i\in\{1,\dots,d_{n}+1\}} Z_{i} > y\right)$$
$$= (n-d_{n})\overline{U}(y)^{d_{n}+1}.$$

Thus it remains to show that for all $\epsilon > 0$

$$(n-d_n)\overline{U}(\epsilon)^{d_n+1} \xrightarrow[n \to \infty]{} 0$$

which is true since $d_n \underset{n \to \infty}{\sim} \frac{b_n}{\Delta_n}$ and

$$\frac{b_n}{\overline{\Delta}_n} \log(\overline{U}(\epsilon)) + \log(n - d_n) \leq \frac{b_n}{\overline{\Delta}_n} \log(\overline{U}(\epsilon)) + \log(n) \\
= \log(n) \left(\frac{b_n}{\overline{\Delta}_n \log(n)} \log(\overline{U}(\epsilon)) + 1 \right) \\
\xrightarrow[n \to \infty]{} -\infty$$

since $\overline{U}(\epsilon) < 1$ under (A1') and $\frac{b_n}{\overline{\Delta}_n \log(n)} \xrightarrow[n \to \infty]{} \infty$ under (A4'). This concludes the proof.

The **proof of Lemma 5** is analogous to the proof of Lemma 3.

C.2 Proof of Theorem 6 in the fixed design case

The first part of the proof is similar to the random design case. Here, we use

$$\begin{split} \sup_{\vartheta \in \Theta} |M_n(\vartheta) - M(\vartheta)| &\leq \sup_{\vartheta \in \Theta} \|G_n(\vartheta, \hat{h}_\vartheta) - \bar{G}_n(\vartheta, \hat{h}_\vartheta)\| + \sup_{\vartheta \in \Theta} \|\bar{G}_n(\vartheta, \hat{h}_\vartheta) - \tilde{G}_n(\vartheta, \hat{h}_\vartheta)\| \\ &+ \sup_{\vartheta \in \Theta} \|\tilde{G}_n(\vartheta, \hat{h}_\vartheta) - G(\vartheta, \hat{h}_\vartheta)\| + \sup_{\vartheta \in \Theta} \|G(\vartheta, \hat{h}_\vartheta) - G(\vartheta, h_\vartheta)\|, \end{split}$$

where the definition for M and G is as in the random case, and

$$\bar{G}_n(\vartheta, h)(y, s) = \frac{1}{n} \sum_{i=1}^n I\{\Lambda_\vartheta(Y_{i,n}) - h(x_{i,n}) \le y\} (I\{x_{i,n} \le s\} - F_X(s)).$$

Further,

$$\tilde{G}_{n}(\vartheta,h)(y,s) = \frac{1}{n} \sum_{i=1}^{n} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y+h(x_{i,n}))) - h_{0}(x_{i,n}) \right) I\{x_{i,n} \leq s\}$$
(C.1)
$$- F_{X}(s) \sum_{i=1}^{n} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y+h(x_{i,n}))) - h_{0}(x_{i,n}) \right)$$

is a Riemann-sum approximation of $G(\vartheta, h)(y, s)$. Note that for any deterministic function h we have $\tilde{G}_n(\vartheta, h) = \mathbb{E}[\bar{G}_n(\vartheta, h)]$. The assertion of the theorem follows from

$$\sup_{\vartheta \in \Theta} \|G_n(\vartheta, \hat{h}_\vartheta) - \bar{G}_n(\vartheta, \hat{h}_\vartheta)\| \le \sup_{s \in [0, 1]} |\hat{F}_{X, n}(s) - F_X(s)| = o(1)$$
(C.2)

and from Lemmas 2–4 by an application of the arg-max theorem. For (C.2) note that with assumption (A2")

$$\sup_{s \in [0,1]} |\hat{F}_{X,n}(s) - F_X(s)| = \sup_{s \in [0,1]} \left| \frac{1}{n} \sum_{i=1}^n I\{x_{i,n} \le s\} - \int_0^s f_X(x) \, dx \right|$$

$$\leq \sup_{s \in [0,1]} \left| \sum_{i=1}^n \int_{x_{i-1,n}}^{x_{i,n}} f_X(x) \, dx I\{x_{i,n} \le s\} - \int_0^s f_X(x) \, dx \right| + o(1)$$

$$= \sup_{s \in [0,1]} \left| \int_{\max\{x_{i,n} | x_{i,n} \le s\}}^s f_X(x) \, dx \right| + o(1)$$

$$= \bar{\Delta}_n \sup_{x \in [0,1]} f_X(x) + o(1) = o(1).$$
(C.3)

Lemma 2. Under the assumptions of Theorem 6 (ii),

$$\sup_{\vartheta \in \Theta} \|\bar{G}_n(\vartheta, \hat{h}_\vartheta) - \tilde{G}_n(\vartheta, \hat{h}_\vartheta)\| = o_P(1).$$

Proof. As in the proof of Lemma 10 we assume in what follows that (25) holds. We only consider the difference between the first sum in the definitions of $G_n(\vartheta, h)$ and the first sum in $\tilde{G}_n(\vartheta, h)$ (see (8) and (C.1), respectively). The difference of the second sums can be treated similarly. Applying (25) the first sum in $G_n(\vartheta, \hat{h}_\vartheta)(y, s)$ can be nested as

$$\frac{1}{n} \sum_{i=1}^{n} I\{\Lambda_{\vartheta}(Y_{i,n}) - h_{\vartheta}(x_{i,n}) \le y - a_n\}I\{x_{i,n} \le s\}$$
$$\le \frac{1}{n} \sum_{i=1}^{n} I\{\Lambda_{\vartheta}(Y_{i,n}) - \hat{h}_{\vartheta}(x_{i,n}) \le y\}I\{x_{i,n} \le s\}$$
$$\le \frac{1}{n} \sum_{i=1}^{n} I\{\Lambda_{\vartheta}(Y_{i,n}) - h_{\vartheta}(x_{i,n}) \le y + a_n\}I\{x_{i,n} \le s\}$$

while the first sum in $\tilde{G}_n(\vartheta, \hat{h}_\vartheta)(y, s)$ can be nested as

$$\frac{1}{n} \sum_{i=1}^{n} F_0 \left(\Lambda_0 (\Lambda_\vartheta^{-1} (y - a_n + h_\vartheta(x_{i,n}))) - h_0(x_{i,n}) \right) I\{x_{i,n} \le s\} \\
\le \frac{1}{n} \sum_{i=1}^{n} F_0 \left(\Lambda_0 (\Lambda_\vartheta^{-1} (y + \hat{h}_\vartheta(x_{i,n}))) - h_0(x_{i,n}) \right) I\{x_{i,n} \le s\} \\
\le \frac{1}{n} \sum_{i=1}^{n} F_0 \left(\Lambda_0 (\Lambda_\vartheta^{-1} (y + a_n + h_\vartheta(x_{i,n}))) - h_0(x_{i,n}) \right) I\{x_{i,n} \le s\}.$$

Thus we have to consider

$$H_{n,\vartheta}^{(1)}(y,s) = \frac{1}{n} \sum_{i=1}^{n} \left(I\{\Lambda_{\vartheta}(Y_{i,n}) - h_{\vartheta}(x_{i,n}) \le y + a_{n}\} - F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + a_{n} + h_{\vartheta}(x_{i,n}))) - h_{0}(x_{i,n})\right) \right) I\{x_{i,n} \le s\}$$

$$H_{n,\vartheta}^{(2)}(y,s) = \frac{1}{n} \sum_{i=1}^{n} \left(F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + a_{n} + h_{\vartheta}(x_{i,n}))) - h_{0}(x_{i,n})\right) - F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + h_{\vartheta}(x_{i,n}))) - h_{0}(x_{i,n})\right) \right) I\{x_{i,n} \le s\}$$

and the same terms with $y + a_n$ replaced by $y - a_n$, which can be treated completely analo-

gously. We have to show that $\sup_{\vartheta \in \Theta} \|H_{n,\vartheta}^{(1)}\| = o_P(1)$ and $\sup_{\vartheta \in \Theta} \|H_{n,\vartheta}^{(2)}\| = o(1)$. Recall condition (**N1**) and note that $\sup_{\vartheta \in \Theta} \sup_{\substack{s \in [0,1] \\ y \in C}} |H_{n,\vartheta}^{(2)}(y,s)| = o(1)$ follows from uniform continuity of F_0 and of $\Lambda_0 \circ \Lambda_{\vartheta}^{-1}$ uniformly in ϑ (see (**B5**) and (**B4**)), from the representation $h_{\vartheta} = \Lambda_{\vartheta} \circ \Lambda_0^{-1} \circ h_0$ and uniform continuity of Λ_{ϑ} uniformly in ϑ (see (**B3**)), and $a_n \to 0$.

Now to prove $\sup_{\vartheta \in \Theta} \|H_{n,\vartheta}^{(1)}\| = o_P(1)$, let $\epsilon > 0$ and for the moment fix $s \in [0,1], \ \vartheta \in \Theta$ and $y \in C$. Choose $\delta > 0$ corresponding to ϵ as in assumption (**B5**). Let n be large enough such that $|a_n| \leq \tau$ for τ both from (**B5**) and (**B4**).

Partition [0, 1] into finitely many intervals $[s_j, s_{j+1}]$ such that $F_X(s_{j+1}) - F_X(s_j) < \epsilon$ for all j. For the fixed s, denote the interval containing s by $[s_j, s_{j+1}] = [s^{\ell}, s^u]$.

Now choose a finite sup-norm bracketing of length γ for the class $\mathcal{L}_S = \{\Lambda_\vartheta|_S : \vartheta \in \Theta\}$ according to (10) with γ as in assumption (**B4**) corresponding to the above chosen δ . For the fixed ϑ this gives a bracket $h^\ell \leq h_\vartheta \leq h^u$ of sup-norm length γ .

Choose a finite sup-norm bracketing of length δ for the class $\mathcal{L}_{\tilde{S}}^1 = \{\Lambda_0 \circ \Lambda_\vartheta^{-1} |_{\tilde{S}} : \vartheta \in \Theta\}$ according to (10). For the fixed ϑ this gives a bracket $V^\ell \leq \Lambda_0 \circ \Lambda_\vartheta^{-1} \leq V^u$.

Then consider the bounded and increasing function

$$D_n(y) = \frac{1}{n} \sum_{i=1}^n F_0(V^\ell(y + a_n + h^\ell(x_{i,n})) - h_0(x_{i,n}))$$

and choose a finite partition of the compact C in intervals $[y_k, y_{k+1}]$ such that $D_n(y_{k+1}) - D_n(y_k) < \epsilon$. For the fixed y, denote the interval containing y by $[y_k, y_{k+1}] = [y^{\ell}, y^{u}]$. Note that the brackets depend on n. This is suppressed in the notation because it is not relevant for the remainder of the proof because the number of brackets is $O(\epsilon^{-1})$, uniformly in n.

Now we can nest as follows

$$I\{\Lambda_{0}(Y_{i,n}) \leq V^{\ell}(y^{\ell} + a_{n} + h^{\ell}(x_{i,n}))\}I\{x_{i,n} \leq s^{\ell}\}$$

$$\leq I\{\Lambda_{\vartheta}(Y_{i,n}) - h_{\vartheta}(x_{i,n}) \leq y + a_{n}\}I\{x_{i,n} \leq s\}$$

$$= I\{Y_{i,n} \leq \Lambda_{\vartheta}^{-1}(y + a_{n} + h_{\vartheta}(x_{i,n}))\}I\{x_{i,n} \leq s\}$$

$$\leq I\{\Lambda_{0}(Y_{i,n}) \leq V^{u}(y^{u} + a_{n} + h^{u}(x_{i,n}))\}I\{x_{i,n} \leq s^{u}\},$$

and have

$$\begin{aligned} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E} [I\{\Lambda_{0}(Y_{i,n}) \leq V^{u}(y^{u} + a_{n} + h^{u}(x_{i,n}))]I\{x_{i,n} \leq s^{u}\}] \\ &- \mathbb{E} [I\{\Lambda_{0}(Y_{i,n}) \leq V^{\ell}(y^{\ell} + a_{n} + h^{\ell}(x_{i,n}))]I\{x_{i,n} \leq s^{\ell}\}] \right) \\ &\leq \hat{F}_{X,n}(s^{u}) - \hat{F}_{X,n}(s^{\ell}) \\ &+ \frac{1}{n} \sum_{i=1}^{n} \left| F_{0}\left(V^{u}(y^{u} + a_{n} + h^{u}(x_{i,n})) - h_{0}(x_{i,n})\right) - F_{0}\left(V^{\ell}(y^{\ell} + a_{n} + h^{\ell}(x_{i,n})) - h_{0}(x_{i,n})\right) \right| \\ &\leq 2\epsilon + o(1) \\ &+ \frac{1}{n} \sum_{i=1}^{n} \left| F_{0}\left(V^{u}(y^{u} + a_{n} + h^{u}(x_{i,n})) - h_{0}(x_{i,n})\right) - F_{0}\left(V^{\ell}(y^{u} + a_{n} + h^{\ell}(x_{i,n})) - h_{0}(x_{i,n})\right) \right| \end{aligned}$$

by (C.3) and the definitions of $[s^{\ell}, s^{u}]$ and $[y^{\ell}, y^{u}]$. Further, we can bound the last sum by

$$\frac{1}{n}\sum_{i=1}^{n} \left| F_0\left(V^u(y^u + a_n + h^u(x_{i,n})) - h_0(x_{i,n}) \right) \right|$$

$$-F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y^{u}+a_{n}+h^{u}(x_{i,n})))-h_{0}(x_{i,n})\right)\Big|$$

+
$$\frac{1}{n}\sum_{i=1}^{n}\left|F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y^{u}+a_{n}+h^{\ell}(x_{i,n})))-h_{0}(x_{i,n})\right)\right|$$

-
$$F_{0}\left(V^{\ell}(y^{u}+a_{n}+h^{\ell}(x_{i,n}))-h_{0}(x_{i,n})\right)\Big|$$

+
$$\frac{1}{n}\sum_{i=1}^{n}\left|F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y^{u}+a_{n}+h^{\ell}(x_{i,n})))-h_{0}(x_{i,n})\right)\right|$$

-
$$F_{0}\left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y^{u}+a_{n}+h^{\ell}(x_{i,n})))-h_{0}(x_{i,n})\right)\Big|$$

\$\le\$ 3\$\epsilon\$

using the construction of brackets above (note that $\|V^u - \Lambda_0 \circ \Lambda_\vartheta^{-1}\|_\infty \leq \delta$, $\|\Lambda_0 \circ \Lambda_\vartheta^{-1} - V^\ell\|_\infty \leq \delta$, $\|h^u - h^\ell\|_\infty \leq \gamma$ and recall assumptions (**B5**) and (**B4**)).

Thus $\sup_{\substack{\vartheta \in \Theta}} \sup_{\substack{s \in [0,1]\\ y \in C}} |H_{n,\vartheta}^{(1)}(y,s)|$ can be bounded by $O(\epsilon) + o(1)$ plus a finite maximum over the absolute value of terms

$$\frac{1}{n}\sum_{i=1}^{n} \left(I\{\Lambda_0(Y_{i,n}) \le V^u(y^u + a_n + h^u(x_{i,n}))\} - \mathbb{E}[I\{\Lambda_0(Y_{i,n}) \le V^u(y^u + a_n + h^u(x_{i,n}))\}] \right)$$

and

$$\frac{1}{n}\sum_{i=1}^{n} \Big(I\{\Lambda_0(Y_{i,n}) \le V^{\ell}(y^{\ell} + a_n + h^{\ell}(x_{i,n}))\} - \mathbb{E}[I\{\Lambda_0(Y_{i,n}) \le V^{\ell}(y^{\ell} + a_n + h^{\ell}(x_{i,n}))\}] \Big).$$

However, those converge to zero in probability by a simple application of Chebychev's inequality.

This completes the proof of $\sup_{\vartheta \in \Theta} \|H_{n,\vartheta}^{(1)}\| = o_P(1)$ and thus of the lemma. \Box

Lemma 3. Under the assumptions of Theorem 6 (ii),

$$\sup_{\vartheta \in \Theta} \|G(\vartheta, h_{\vartheta}) - G(\vartheta, \hat{h}_{\vartheta})\| = o_P(1).$$

Proof. The proof is analogous to the proof of Lemma 11.

Lemma 4. Under the assumptions of Theorem 6 (ii),

$$\sup_{\vartheta \in \Theta} \|\tilde{G}_n(\vartheta, \hat{h}_\vartheta) - G(\vartheta, \hat{h}_\vartheta)\| = o_P(1).$$

Proof. According to assumption (N1) it suffices to show

$$\sup_{\vartheta \in \Theta} \sup_{\substack{s \in [0,1]\\ y \in C}} |\tilde{G}_n(\vartheta, \hat{h}_\vartheta)(y, s) - G(\vartheta, \hat{h}_\vartheta)(y, s)| = o_P(1).$$

Recalling the definitions of \tilde{G}_n in (C.1) and G in (7) we only consider the first sum and first integral, respectively. It holds by the mean value theorem for integration

$$\begin{aligned} \left| \frac{1}{n} \sum_{i=1}^{n} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(x_{i,n}))) - h_{0}(x_{i,n}) \right) I\{x_{i,n} \leq s\} \\ &- \int F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(x))) - h_{0}(x) \right) I\{x \leq s\} f_{X}(x) \, dx \right| \\ &= \left| \sum_{i=1}^{n} \left(\frac{1}{n} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(x_{i,n}))) - h_{0}(x_{i,n}) \right) \right. \\ &- \int_{x_{i-1,n}}^{x_{i,n}} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(x))) - h_{0}(x) \right) f_{X}(x) \, dx \right) I\{x_{i,n} \leq s\} \\ &- \int_{\max\{x_{i,n} \mid x_{i,n} \leq s\}}^{s} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(x))) - h_{0}(x) \right) f_{X}(x) \, dx \right| \\ &\leq \sum_{i=1}^{n} \left| \frac{1}{n} F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(x_{i,n}))) - h_{0}(x_{i,n}) \right) \\ &- F_{0} \left(\Lambda_{0}(\Lambda_{\vartheta}^{-1}(y + \hat{h}_{\vartheta}(\xi_{i,n}))) - h_{0}(\xi_{i,n}) \right) f_{X}(\xi_{i,n})(x_{i,n} - x_{i-1,n}) \right| \\ &+ O(\bar{\Delta}_{n}) \end{aligned}$$

for some $\xi_{i,n} \in [x_{i-1,n}, x_{i,n}]$. Now the assertion follows from assumption (A2"), uniform continuity of F_0 and of $\Lambda_0 \circ \Lambda_{\vartheta}^{-1}$ (uniformly in ϑ) and from

$$|\hat{h}_{\vartheta}(x_{i,n}) - \hat{h}_{\vartheta}(\xi_{i,n})| \leq ||\hat{h}_{\vartheta} - h_{\vartheta}||_{\infty} + |\Lambda_{\vartheta}(\Lambda_0^{-1}(h_0(x_{i,n})) - \Lambda_{\vartheta}(\Lambda_0^{-1}(h_0(\xi_{i,n})))|$$

in connection with Lemma 7 and assumptions (A3), (B3).

D Identifiability of the model in the fixed design case

To prove identifiability in the case of deterministic covariates as in Remark 3 one starts similarly to the proof in section B of the appendix (main paper) with the cdf of $\varepsilon_{i,n}(\vartheta_1) = \Lambda_{\vartheta_1}(Y_{i,n}) - h_{\vartheta_1}(x_{i,n})$ in y to obtain that $H^{-1}(y + H(h_{\vartheta_0}(x_{i,n}))) - h_{\vartheta_0}(x_{i,n})$ does not depend on $x_{i,n}$ for $y \in (-\infty, 0]$. Due to continuity of the functions and $\overline{\Delta}_n \to 0$ one obtains that $H^{-1}(y + H(h_{\vartheta_0}(x))) - h_{\vartheta_0}(x)$ does not depend on $x \in [0, 1]$ for $y \in (-\infty, 0]$. The remainder of the proof is as in section B.

References

Drees, H., Neumeyer, N. and Selk, L. (2018). Estimation and hypotheses tests in boundary regression models. *Bernoulli*, to appear.

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal

E Figures and Tables

Figure 5: Data corresponding to the model in Figure 1. The true curve is dotted, while the local constant estimator is given by the solid line and the smoothed estimator (with bandwidths $b_n = n^{-1/3}$ and $a_n = b_n/2$) by the dashed line.

n = 50	TKS	TCM	TKSCM	TCMKS
$\vartheta_0 = 0$	$0.192 \ 0.197 \ (0.102)$	0.001 0.009 (<u>0.037</u>)	-0.038 -0.139 (0.118)	$0.225 \ 0.208 \ (0.118)$
$\vartheta_0 = 0.5$	$0.778 \ 0.691 \ (0.191)$	0.378 0.402 (<u>0.092</u>)	$0.239\ 0.302\ (0.410)$	$0.858 \ 0.798 \ (0.274)$
$\vartheta_0 = 1$	$1.290 \ 1.340 \ (0.233)$	0.728 0.741 (<u>0.232</u>)	$0.388 \ 0.264 \ (1.000)$	$1.370 \ 1.350 \ (0.308)$
$\vartheta_0 = 1.5$	1.750 1.790 ($\underline{0.195}$)	$1.160 \ 1.290 \ (0.368)$	$0.507 \ 0.292 \ (1.810)$	$1.790 \ 1.790 \ (0.222)$
$\vartheta_0 = 2$	$1.940 \ 2.060 \ (0.201)$	$1.590 \ 1.750 \ (0.478)$	$0.585 \ 0.424 \ (2.880)$	1.970 2.060 (<u>0.141</u>)

n = 100	TKS	ТСМ	TKSCM	TCMKS
$\vartheta_0 = 0$	0.017 0.018 (0.037)	$0.080 \ 0.079 \ (\underline{0.014})$	$0.061 \ 0.073 \ (0.022)$	-0.020 -0.004 (0.020)
$\vartheta_0 = 0.5$	0.496 0.517 (<u>0.028</u>)	$0.338 \ 0.346 \ (0.042)$	$0.516 \ 0.578 \ (0.080)$	$0.521 \ 0.548 \ (0.032)$
$\vartheta_0 = 1$	$0.973 \ 0.979 \ (\underline{0.044})$	$0.745 \ 0.745 \ (0.092)$	$0.906 \ 1.050 \ (0.225)$	1.030 1.020 (0.054)
$\vartheta_0 = 1.5$	$1.480 \ 1.460 \ (\underline{0.059})$	1.210 1.230 (0.123)	1.310 1.510 (0.412)	1.510 1.490 (0.060)
$\vartheta_0 = 2$	1.960 2.000 (0.059)	$1.690 \ 1.740 \ (0.144)$	$1.550 \ 1.860 \ (0.822)$	$1.920 \ 1.940 \ (\underline{0.058})$

Table 6: Mean, median and MISE for Model (12) for n = 50 and n = 100 with $a_n = b_n/2$.

n = 50	TKS	TCM	TKSCM	TCMKS
$\vartheta_0 = 0$	$0.156 \ 0.167 \ (0.076)$	-0.050 - 0.062 (0.031)	0.022 0.103 (0.095)	$0.191 \ 0.198 \ (0.0,86)$
$\vartheta_0 = 0.5$	$0.713 \ 0.646 \ (0.130)$	0.324 0.336 (<u>0.088</u>)	$0.268 \ 0.407 \ (0.348)$	$0.781 \ 0.695 \ (0.197)$
$\vartheta_0 = 1$	1.260 1.310 (<u>0.191</u>)	$0.655 \ 0.646 \ (0.242)$	$0.447 \ 0.511 \ (0.919)$	1.330 1.350 (0.258)
$\vartheta_0 = 1.5$	1.720 1.780 (0.188)	$1.100 \ 1.180 \ (0.365)$	$0.619 \ 0.559 \ (1.660)$	1.720 1.780 (<u>0.177</u>)
$\vartheta_0 = 2$	1.970 2.060 (0.141)	$1.550 \ 1.660 \ (0.442)$	$0.726 \ 0.619 \ (2.630)$	$1.960 \ 2.060 \ (\underline{0.111})$

n = 100	TKS	TCM	TKSCM	TCMKS
$\vartheta_0=0$	0.001 0.050 (0.044)	0.129 0.128 (0.023)	$0.028 \ 0.037 \ (\underline{0.016})$	-0.014 - 0.042 (0.015)
$\vartheta_0 = 0.5$	$0.467 \ 0.474 \ (\underline{0.033})$	$0.282 \ 0.287 \ (0.063)$	0.497 0.533 (0.057)	$0.481 \ 0.486 \ (\underline{0.034})$
$\vartheta_0 = 1$	$0.934 \ 0.942 \ (\underline{0.043})$	$0.674 \ 0.649 \ (0.130)$	$0.878 \ 0.999 \ (0.190)$	0.965 0.960 (0.049)
$\vartheta_0 = 1.5$	$1.420 \ 1.390 \ (0.056)$	$1.120 \ 1.130 \ (0.185)$	$1.320 \ 1.500 \ (0.336)$	1.440 1.400 (<u>0.053</u>)
$\vartheta_0 = 2$	1.910 1.920 (<u>0.071</u>)	$1.590 \ 1.610 \ (0.228)$	$1.560 \ 1.850 \ (0.790)$	$1.850 \ 1.790 \ (0.079)$

Table 7: Mean, median and MISE for Model (12) for n = 50 and n = 100 with $a_n = b_n/20$.

n = 50	TKS	TCM	TKSCM	TCMKS
$\vartheta_0 = 0$	$0.141 \ 0.010 \ (0.309)$	0.020 0.012 (<u>0.008</u>)	-0.056 -0.053 (0.016)	0.137 0.028 (0.260)
$\vartheta_0 = 0.5$	$0.519 \ 0.549 \ (0.039)$	0.518 0.506 (<u>0.023</u>)	$0.521 \ 0.532 \ (0.040)$	$0.546 \ 0.574 \ (0.038)$
$\vartheta_0 = 1$	$1.010 \ 1.010 \ (0.085)$	1.000 0.996 ($\underline{0.040}$)	$0.996 \ 0.998 \ (0.071)$	$1.040 \ 1.030 \ (0.077)$
$\vartheta_0 = 1.5$	$1.530 \ 1.530 \ (0.125)$	1.500 1.490 (<u>0.066</u>)	1.500 1.510 (0.113)	$1.550 \ 1.570 \ (0.110)$
$\vartheta_0 = 2$	$1.960 \ 2.060 \ (0.118)$	2.010 2.040 (<u>0.069</u>)	$1.950 \ 2.000 \ (0.156)$	$1.970 \ 2.050 \ (0.093)$

n = 100	TKS	TCM	TKSCM	TCMKS
$\vartheta_0 = 0$	$0.019 \ 0.009 \ (0.022)$	0.006 0.000 (<u>0.004</u>)	$0.043 \ 0.038 \ (0.007)$	-0.014 -0.007 (0.013)
$\vartheta_0 = 0.5$	$0.522 \ 0.524 \ (0.023)$	0.505 0.498 (<u>0.013</u>)	$0.562 \ 0.555 \ (0.020)$	$0.528 \ 0.524 \ (0.022)$
$\vartheta_0 = 1$	1.030 1.030 (0.042)	1.010 1.000 (<u>0.021</u>)	1.080 1.080 (0.038)	1.030 1.020 (0.042)
$\vartheta_0 = 1.5$	$1.550 \ 1.550 \ (0.061)$	1.510 1.510 (<u>0.030</u>)	$1.600 \ 1.590 \ (0.055)$	$1.550 \ 1.550 \ (0.061)$
$\vartheta_0=2$	$2.040 \ 2.060 \ (0.066)$	2.000 2.000 (<u>0.037</u>)	$2.070 \ 2.070 \ (0.061)$	$2.020 \ 2.050 \ (0.058)$

Table 8: Mean, median and MISE for Model (13) for n = 50 and n = 100 with $a_n = b_n/2$.

n = 50	TKS	TCM	TKSCM	TCMKS
$\vartheta_0 = 0$	$0.097 \ 0.031 \ (0.223)$	0.005 0.016 (<u>0.008</u>)	-0.037 -0.030 (0.013)	-0.087 - 0.001 (0.174)
$\vartheta_0 = 0.5$	$0.487 \ 0.506 \ (0.039)$	$0.479 \ 0.462 \ (\underline{0.021})$	0.506 0.508 (0.036)	$0.514 \ 0.522 \ (0.035)$
$\vartheta_0 = 1$	$0.976 \ 0.978 \ (0.092)$	$0.965 \ 0.962 \ (\underline{0.044})$	0.984 0.997 (0.074)	$1.020 \ 1.020 \ (0.078)$
$\vartheta_0 = 1.5$	1.499 1.469 (0.120)	$1.440 \ 1.430 \ (\underline{0.063})$	$1.450 \ 1.470 \ (0.119)$	$1.530 \ 1.500 \ (0105)$
$\vartheta_0 = 2$	$1.920 \ 1.990 \ (0.105)$	1.960 1.960 (<u>0.069</u>)	$1.940 \ 1.940 \ (0.127)$	$1.930 \ 1.970 \ (0.086)$

n = 100	TKS	TCM	TKSCM	TCMKS
$\vartheta_0 = 0$	$0.017 \ 0.004 \ (0.016)$	0.004 0.000 (<u>0.004</u>)	$0.042 \ 0.039 \ (0.007)$	-0.010 -0.007 (0.007)
$\vartheta_0 = 0.5$	$0.530 \ 0.537 \ (0.021)$	0.507 0.497 (<u>0.011</u>)	$0.563 \ 0.554 \ (0.019)$	$0.534 \ 0.539 \ (0.021)$
$\vartheta_0 = 1$	$1.020 \ 1.020 \ (0.042)$	1.000 1.000 (<u>0.020</u>)	$1.080 \ 1.070 \ (0.035)$	$1.020 \ 1.010 \ (0.039)$
$\vartheta_0 = 1.5$	$1.550 \ 1.560 \ (0.064)$	1.510 1.510 (<u>0.031</u>)	$1.600 \ 1.600 \ (0.054)$	$1.560 \ 1.550 \ (0.064)$
$\vartheta_0 = 2$	$2.050 \ 2.060 \ (0.069)$	2.020 2.040 (<u>0.041</u>)	$2.090 \ 2.100 \ (0.064)$	$2.030 \ 2.060 \ (0.059)$

Table 9: Mean, median and MISE for Model (13) for n = 50 and n = 100 with $a_n = b_n/20$.

Figure 6: The setting is similar to Figure 5 with model from Figure 2 in the main paper.

Method	Pearson	Kendall	Spearman
Original data	-0.634	-0.456	-0.612
True parameter ϑ_0	0.001	0.001	0.001
TKS	0.001	0.001	0.001
TCM	0.009	0.006	0.008
TKSCM	0.005	0.002	0.004
TCMKS	0.002	0.001	0.001

Table 10: Pearson's, Kendall's and Spearman's correlation coefficients (the average over 1000 iterations) between the covariates and the errors for the model (13) when n = 100. The first line corresponds to the correlations for the original data while the second line is for the true transformation parameter ($\vartheta_0 = 0.5$). The last four lines correspond to the correlations for each estimator.