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C Proofs of asymptotic results in the fixed design case

C.1 Proof of Lemma 5

To prove Lemma 5, we first need the following technical lemma.

Lemma 1. Assume model (2) holds under assumptions (A1’), (A2’) and (A4’). Then we

have

sup
x∈[0,1]

min
i∈{1,...,n}
|xi,n−x|≤bn

|εi,n| = oP (1).

Proof. The proof is similar to the proof of Lemma A.2 in Drees et al. (2018) but some

adaptations are needed to deal with non-equidistant fixed design points. Let Z1, Z2, . . . be

iid with the same distribution as −εi,n with cumulative distribution function U . To prove

the result, we shall show that

lim
n→∞

P

 sup
x∈[0,1]

min
i∈{1,...,n}
|xi,n−x|≤bn

Zi > ε

 = 0, ε > 0.

For n ≥ 1, let 0 < k ≤ n, x ∈ [0, 1] and set In = [x − bn, x + bn]. Assume that exactly k

points lie in In, say

xm+1,n < · · · < xm+k,n ∈ In

for some m < n+ 1− k. We shall distinguish two cases.
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and Efficiency) is gratefully acknowledged.
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(1) If (xm,n, xm+k+1,n) ∈ [0, 1]2, it means that

2bn = |In| < xm+k+1,n − xm,n =
m+k∑
j=m

(xj+1,n − xj,n) ≤ (k + 1)∆̄n,

since ∆̄n ≥ xj,n − xj−1,n for any 1 ≤ j ≤ n+ 1.

(2) If xm,n or xm+k+1,n do not exist, which means that either xm+1,n = x0,n = 0 or

xm+k+1,n = xn+1,n = 1. Consider the first case xm+1,n = x0,n (the extremal case is

x = 0). Then we have

bn =
|In|
2

< xk,n − x0,n =
k−1∑
j=0

(xj+1,n − xj,n) ≤ k∆̄n.

A similar inequality holds for xm+k+1,n = xn+1,n = 1 (with the extremal case x = 1).

In both cases, (1) and (2) yield to

bn < k∆̄n ⇒ k >
bn
∆̄n

, n ≥ 1.

Then, for all y > 0, we have with dn := d bn
∆̄n
e

P

 sup
x∈[0,1]

min
i∈{1,...,n}
|xi,n−x|≤bn

Zi > y

 ≤ P
({

max
j∈{1,...,n−dn}

min
i∈{j,...,j+dn}

Zi > y

})

≤
n−dn∑
j=1

P
(

min
i∈{j,...,j+dn}

Zi > y

)
= (n− dn)P

(
min

i∈{1,...,dn+1}
Zi > y

)
= (n− dn)U(y)dn+1.

Thus it remains to show that for all ε > 0

(n− dn)U(ε)dn+1 −−−→
n→∞

0

which is true since dn ∼
n→∞

bn
∆̄n

and

bn
∆̄n

log(U(ε)) + log(n− dn) ≤ bn
∆̄n

log(U(ε)) + log(n)

= log(n)

(
bn

∆̄n log(n)
log(U(ε)) + 1

)
−−−→
n→∞

−∞

since U(ε) < 1 under (A1’) and bn
∆̄n log(n)

−−−→
n→∞

∞ under (A4’). This concludes the proof.

2

The proof of Lemma 5 is analogous to the proof of Lemma 3.
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C.2 Proof of Theorem 6 in the fixed design case

The first part of the proof is similar to the random design case. Here, we use

sup
ϑ∈Θ
|Mn(ϑ)−M(ϑ)| ≤ sup

ϑ∈Θ
‖Gn(ϑ, ĥϑ)− Ḡn(ϑ, ĥϑ)‖+ sup

ϑ∈Θ
‖Ḡn(ϑ, ĥϑ)− G̃n(ϑ, ĥϑ)‖

+ sup
ϑ∈Θ
‖G̃n(ϑ, ĥϑ)−G(ϑ, ĥϑ)‖+ sup

ϑ∈Θ
‖G(ϑ, ĥϑ)−G(ϑ, hϑ)‖,

where the definition for M and G is as in the random case, and

Ḡn(ϑ, h)(y, s) =
1

n

n∑
i=1

I{Λϑ(Yi,n)− h(xi,n) ≤ y}
(
I{xi,n ≤ s} − FX(s)

)
.

Further,

G̃n(ϑ, h)(y, s) =
1

n

n∑
i=1

F0

(
Λ0(Λ−1

ϑ (y + h(xi,n)))− h0(xi,n)
)
I{xi,n ≤ s} (C.1)

− FX(s)
n∑

i=1

F0

(
Λ0(Λ−1

ϑ (y + h(xi,n)))− h0(xi,n)
)

is a Riemann-sum approximation of G(ϑ, h)(y, s). Note that for any deterministic function

h we have G̃n(ϑ, h) = E[Ḡn(ϑ, h)]. The assertion of the theorem follows from

sup
ϑ∈Θ
‖Gn(ϑ, ĥϑ)− Ḡn(ϑ, ĥϑ)‖ ≤ sup

s∈[0,1]

|F̂X,n(s)− FX(s)| = o(1) (C.2)

and from Lemmas 2–4 by an application of the arg-max theorem. For (C.2) note that with

assumption (A2”)

sup
s∈[0,1]

|F̂X,n(s)− FX(s)| = sup
s∈[0,1]

∣∣∣∣ 1n
n∑

i=1

I{xi,n ≤ s} −
∫ s

0

fX(x) dx

∣∣∣∣ (C.3)

≤ sup
s∈[0,1]

∣∣∣∣ n∑
i=1

∫ xi,n

xi−1,n

fX(x) dxI{xi,n ≤ s} −
∫ s

0

fX(x) dx

∣∣∣∣+ o(1)

= sup
s∈[0,1]

∣∣∣∣ ∫ s

max{xi,n|xi,n≤s}
fX(x) dx

∣∣∣∣+ o(1)

= ∆̄n sup
x∈[0,1]

fX(x) + o(1) = o(1). (C.4)

2

Lemma 2. Under the assumptions of Theorem 6 (ii),

sup
ϑ∈Θ
‖Ḡn(ϑ, ĥϑ)− G̃n(ϑ, ĥϑ)‖ = oP (1).
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Proof. As in the proof of Lemma 10 we assume in what follows that (25) holds. We

only consider the difference between the first sum in the definitions of Gn(ϑ, h) and the first

sum in G̃n(ϑ, h) (see (8) and (C.1), respectively). The difference of the second sums can be

treated similarly. Applying (25) the first sum in Gn(ϑ, ĥϑ)(y, s) can be nested as

1

n

n∑
i=1

I{Λϑ(Yi,n)− hϑ(xi,n) ≤ y − an}I{xi,n ≤ s}

≤ 1

n

n∑
i=1

I{Λϑ(Yi,n)− ĥϑ(xi,n) ≤ y}I{xi,n ≤ s}

≤ 1

n

n∑
i=1

I{Λϑ(Yi,n)− hϑ(xi,n) ≤ y + an}I{xi,n ≤ s}

while the first sum in G̃n(ϑ, ĥϑ)(y, s) can be nested as

1

n

n∑
i=1

F0

(
Λ0(Λ−1

ϑ (y − an + hϑ(xi,n)))− h0(xi,n)
)
I{xi,n ≤ s}

≤ 1

n

n∑
i=1

F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(xi,n)))− h0(xi,n)
)
I{xi,n ≤ s}

≤ 1

n

n∑
i=1

F0

(
Λ0(Λ−1

ϑ (y + an + hϑ(xi,n)))− h0(xi,n)
)
I{xi,n ≤ s}.

Thus we have to consider

H
(1)
n,ϑ(y, s) =

1

n

n∑
i=1

(
I{Λϑ(Yi,n)− hϑ(xi,n) ≤ y + an}

− F0

(
Λ0(Λ−1

ϑ (y + an + hϑ(xi,n)))− h0(xi,n)
) )
I{xi,n ≤ s}

H
(2)
n,ϑ(y, s) =

1

n

n∑
i=1

(
F0

(
Λ0(Λ−1

ϑ (y + an + hϑ(xi,n)))− h0(xi,n)
)

− F0

(
Λ0(Λ−1

ϑ (y + hϑ(xi,n)))− h0(xi,n)
) )
I{xi,n ≤ s}

and the same terms with y + an replaced by y− an, which can be treated completely analo-

gously. We have to show that supϑ∈Θ ‖H
(1)
n,ϑ‖ = oP (1) and supϑ∈Θ ‖H

(2)
n,ϑ‖ = o(1).

Recall condition (N1) and note that supϑ∈Θ sup s∈[0,1]
y∈C
|H(2)

n,ϑ(y, s)| = o(1) follows from

uniform continuity of F0 and of Λ0 ◦ Λ−1
ϑ uniformly in ϑ (see (B5) and (B4)), from the

representation hϑ = Λϑ ◦ Λ−1
0 ◦ h0 and uniform continuity of Λϑ uniformly in ϑ (see (B3)),

and an → 0.

Now to prove supϑ∈Θ ‖H
(1)
n,ϑ‖ = oP (1), let ε > 0 and for the moment fix s ∈ [0, 1], ϑ ∈ Θ

and y ∈ C. Choose δ > 0 corresponding to ε as in assumption (B5). Let n be large enough

such that |an| ≤ τ for τ both from (B5) and (B4).
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Partition [0, 1] into finitely many intervals [sj, sj+1] such that FX(sj+1)− FX(sj) < ε for

all j. For the fixed s, denote the interval containing s by [sj, sj+1] = [s`, su].

Now choose a finite sup-norm bracketing of length γ for the class LS = {Λϑ|S : ϑ ∈ Θ}
according to (10) with γ as in assumption (B4) corresponding to the above chosen δ. For

the fixed ϑ this gives a bracket h` ≤ hϑ ≤ hu of sup-norm length γ.

Choose a finite sup-norm bracketing of length δ for the class L1
S̃

= {Λ0 ◦ Λ−1
ϑ |S̃ : ϑ ∈ Θ}

according to (10). For the fixed ϑ this gives a bracket V ` ≤ Λ0 ◦ Λ−1
ϑ ≤ V u.

Then consider the bounded and increasing function

Dn(y) =
1

n

n∑
i=1

F0(V `(y + an + h`(xi,n))− h0(xi,n))

and choose a finite partition of the compact C in intervals [yk, yk+1] such that Dn(yk+1) −
Dn(yk) < ε. For the fixed y, denote the interval containing y by [yk, yk+1] = [y`, yu]. Note

that the brackets depend on n. This is suppressed in the notation because it is not relevant

for the remainder of the proof because the number of brackets is O(ε−1), uniformly in n.

Now we can nest as follows

I{Λ0(Yi,n) ≤ V `(y` + an + h`(xi,n))}I{xi,n ≤ s`}
≤ I{Λϑ(Yi,n)− hϑ(xi,n) ≤ y + an}I{xi,n ≤ s}
= I{Yi,n ≤ Λ−1

ϑ (y + an + hϑ(xi,n))}I{xi,n ≤ s}
≤ I{Λ0(Yi,n) ≤ V u(yu + an + hu(xi,n))}I{xi,n ≤ su},

and have

1

n

n∑
i=1

(
E[I{Λ0(Yi,n) ≤ V u(yu + an + hu(xi,n))}I{xi,n ≤ su}]

− E[I{Λ0(Yi,n) ≤ V `(y` + an + h`(xi,n))}I{xi,n ≤ s`}]
)

≤ F̂X,n(su)− F̂X,n(s`)

+
1

n

n∑
i=1

∣∣∣F0 (V u(yu + an + hu(xi,n))− h0(xi,n))− F0

(
V `(y` + an + h`(xi,n))− h0(xi,n)

) ∣∣∣
≤ 2ε+ o(1)

+
1

n

n∑
i=1

∣∣∣F0 (V u(yu + an + hu(xi,n))− h0(xi,n))− F0

(
V `(yu + an + h`(xi,n))− h0(xi,n)

) ∣∣∣
by (C.3) and the definitions of [s`, su] and [y`, yu]. Further, we can bound the last sum by

1

n

n∑
i=1

∣∣∣F0 (V u(yu + an + hu(xi,n))− h0(xi,n))
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− F0

(
Λ0(Λ−1

ϑ (yu + an + hu(xi,n)))− h0(xi,n)
) ∣∣∣

+
1

n

n∑
i=1

∣∣∣F0

(
Λ0(Λ−1

ϑ (yu + an + h`(xi,n)))− h0(xi,n)
)

− F0

(
V `(yu + an + h`(xi,n))− h0(xi,n)

) ∣∣∣
+

1

n

n∑
i=1

∣∣∣F0

(
Λ0(Λ−1

ϑ (yu + an + hu(xi,n)))− h0(xi,n)
)

− F0

(
Λ0(Λ−1

ϑ (yu + an + h`(xi,n)))− h0(xi,n)
) ∣∣∣

≤ 3ε

using the construction of brackets above (note that ‖V u−Λ0◦Λ−1
ϑ ‖∞ ≤ δ, ‖Λ0◦Λ−1

ϑ −V `‖∞ ≤
δ, ‖hu − h`‖∞ ≤ γ and recall assumptions (B5) and (B4)).

Thus supϑ∈Θ sup s∈[0,1]
y∈C
|H(1)

n,ϑ(y, s)| can be bounded by O(ε) + o(1) plus a finite maximum

over the absolute value of terms

1

n

n∑
i=1

(
I{Λ0(Yi,n) ≤ V u(yu + an + hu(xi,n))} − E[I{Λ0(Yi,n) ≤ V u(yu + an + hu(xi,n))}]

)
and

1

n

n∑
i=1

(
I{Λ0(Yi,n) ≤ V `(y` + an + h`(xi,n))} − E[I{Λ0(Yi,n) ≤ V `(y` + an + h`(xi,n))}]

)
.

However, those converge to zero in probability by a simple application of Chebychev’s in-

equality.

This completes the proof of supϑ∈Θ ‖H
(1)
n,ϑ‖ = oP (1) and thus of the lemma. 2

Lemma 3. Under the assumptions of Theorem 6 (ii),

sup
ϑ∈Θ
‖G(ϑ, hϑ)−G(ϑ, ĥϑ)‖ = oP (1).

Proof. The proof is analogous to the proof of Lemma 11. 2

Lemma 4. Under the assumptions of Theorem 6 (ii),

sup
ϑ∈Θ
‖G̃n(ϑ, ĥϑ)−G(ϑ, ĥϑ)‖ = oP (1).

Proof. According to assumption (N1) it suffices to show

sup
ϑ∈Θ

sup
s∈[0,1]
y∈C

|G̃n(ϑ, ĥϑ)(y, s)−G(ϑ, ĥϑ)(y, s)| = oP (1).

6



Recalling the definitions of G̃n in (C.1) and G in (7) we only consider the first sum and first

integral, respectively. It holds by the mean value theorem for integration∣∣∣∣∣ 1n
n∑

i=1

F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(xi,n)))− h0(xi,n)
)
I{xi,n ≤ s}

−
∫
F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(x)))−h0(x)
)
I{x ≤ s}fX(x) dx

∣∣∣∣∣
=

∣∣∣∣ n∑
i=1

( 1

n
F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(xi,n)))− h0(xi,n)
)

−
∫ xi,n

xi−1,n

F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(x)))− h0(x)
)
fX(x)dx

)
I{xi,n ≤ s}

−
∫ s

max{xi,n|xi,n≤s}
F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(x)))− h0(x)
)
fX(x) dx

∣∣∣∣
≤

n∑
i=1

∣∣∣∣ 1nF0

(
Λ0(Λ−1

ϑ (y + ĥϑ(xi,n)))− h0(xi,n)
)

− F0

(
Λ0(Λ−1

ϑ (y + ĥϑ(ξi,n)))− h0(ξi,n)
)
fX(ξi,n)(xi,n − xi−1,n)

∣∣∣∣
+O(∆̄n)

for some ξi,n ∈ [xi−1,n, xi,n]. Now the assertion follows from assumption (A2”), uniform

continuity of F0 and of Λ0 ◦ Λ−1
ϑ (uniformly in ϑ) and from

|ĥϑ(xi,n)− ĥϑ(ξi,n)| ≤ ‖ĥϑ − hϑ‖∞ + |Λϑ(Λ−1
0 (h0(xi,n))− Λϑ(Λ−1

0 (h0(ξi,n)))|

in connection with Lemma 7 and assumptions (A3), (B3). 2

D Identifiability of the model in the fixed design case

To prove identifiability in the case of deterministic covariates as in Remark 3 one starts

similarly to the proof in section B of the appendix (main paper) with the cdf of εi,n(ϑ1) =

Λϑ1(Yi,n)− hϑ1(xi,n) in y to obtain that H−1(y + H(hϑ0(xi,n)))− hϑ0(xi,n) does not depend

on xi,n for y ∈ (−∞, 0]. Due to continuity of the functions and ∆̄n → 0 one obtains that

H−1(y +H(hϑ0(x)))− hϑ0(x) does not depend on x ∈ [0, 1] for y ∈ (−∞, 0]. The remainder

of the proof is as in section B.
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E Figures and Tables
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Figure 5: Data corresponding to the model in Figure 1. The true curve is dotted, while

the local constant estimator is given by the solid line and the smoothed estimator (with

bandwidths bn = n−1/3 and an = bn/2) by the dashed line.
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n = 50 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.192 0.197 (0.102) 0.001 0.009 (0.037) -0.038 -0.139 (0.118) 0.225 0.208 (0.118)

ϑ0 = 0.5 0.778 0.691 (0.191) 0.378 0.402 (0.092) 0.239 0.302 (0.410) 0.858 0.798 (0.274)

ϑ0 = 1 1.290 1.340 (0.233) 0.728 0.741 (0.232) 0.388 0.264 (1.000) 1.370 1.350 (0.308)

ϑ0 = 1.5 1.750 1.790 (0.195) 1.160 1.290 (0.368) 0.507 0.292 (1.810) 1.790 1.790 (0.222)

ϑ0 = 2 1.940 2.060 (0.201) 1.590 1.750 (0.478) 0.585 0.424 (2.880) 1.970 2.060 (0.141)

n = 100 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.017 0.018 (0.037) 0.080 0.079 (0.014) 0.061 0.073 (0.022) -0.020 -0.004 (0.020)

ϑ0 = 0.5 0.496 0.517 (0.028) 0.338 0.346 (0.042) 0.516 0.578 (0.080) 0.521 0.548 (0.032)

ϑ0 = 1 0.973 0.979 (0.044) 0.745 0.745 (0.092) 0.906 1.050 (0.225) 1.030 1.020 (0.054)

ϑ0 = 1.5 1.480 1.460 (0.059) 1.210 1.230 (0.123) 1.310 1.510 (0.412) 1.510 1.490 (0.060)

ϑ0 = 2 1.960 2.000 (0.059) 1.690 1.740 (0.144) 1.550 1.860 (0.822) 1.920 1.940 (0.058)

Table 6: Mean, median and MISE for Model (12) for n = 50 and n = 100 with an = bn/2.

n = 50 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.156 0.167 (0.076) -0.050 -0.062 (0.031) 0.022 0.103 (0.095) 0.191 0.198 (0.0,86)

ϑ0 = 0.5 0.713 0.646 (0.130) 0.324 0.336 (0.088) 0.268 0.407 (0.348) 0.781 0.695 (0.197)

ϑ0 = 1 1.260 1.310 (0.191) 0.655 0.646 (0.242) 0.447 0.511 (0.919) 1.330 1.350 (0.258)

ϑ0 = 1.5 1.720 1.780 (0.188) 1.100 1.180 (0.365) 0.619 0.559 (1.660) 1.720 1.780 (0.177)

ϑ0 = 2 1.970 2.060 (0.141) 1.550 1.660 (0.442) 0.726 0.619 (2.630) 1.960 2.060 (0.111)

n = 100 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.001 0.050 (0.044) 0.129 0.128 (0.023) 0.028 0.037 (0.016) -0.014 -0.042 (0.015)

ϑ0 = 0.5 0.467 0.474 (0.033) 0.282 0.287 (0.063) 0.497 0.533 (0.057) 0.481 0.486 (0.034)

ϑ0 = 1 0.934 0.942 (0.043) 0.674 0.649 (0.130) 0.878 0.999 (0.190) 0.965 0.960 (0.049)

ϑ0 = 1.5 1.420 1.390 (0.056) 1.120 1.130 (0.185) 1.320 1.500 (0.336) 1.440 1.400 (0.053)

ϑ0 = 2 1.910 1.920 (0.071) 1.590 1.610 (0.228) 1.560 1.850 (0.790) 1.850 1.790 (0.079)

Table 7: Mean, median and MISE for Model (12) for n = 50 and n = 100 with an = bn/20.
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n = 50 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.141 0.010 (0.309) 0.020 0.012 (0.008) -0.056 -0.053 (0.016) 0.137 0.028 (0.260)

ϑ0 = 0.5 0.519 0.549 (0.039) 0.518 0.506 (0.023) 0.521 0.532 (0.040) 0.546 0.574 (0.038)

ϑ0 = 1 1.010 1.010 (0.085) 1.000 0.996 (0.040) 0.996 0.998 (0.071) 1.040 1.030 (0.077)

ϑ0 = 1.5 1.530 1.530 (0.125) 1.500 1.490 (0.066) 1.500 1.510 (0.113) 1.550 1.570 (0.110)

ϑ0 = 2 1.960 2.060 (0.118) 2.010 2.040 (0.069) 1.950 2.000 (0.156) 1.970 2.050 (0.093)

n = 100 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.019 0.009 (0.022) 0.006 0.000 (0.004) 0.043 0.038 (0.007) -0.014 -0.007 (0.013)

ϑ0 = 0.5 0.522 0.524 (0.023) 0.505 0.498 (0.013) 0.562 0.555 (0.020) 0.528 0.524 (0.022)

ϑ0 = 1 1.030 1.030 (0.042) 1.010 1.000 (0.021) 1.080 1.080 (0.038) 1.030 1.020 (0.042)

ϑ0 = 1.5 1.550 1.550 (0.061) 1.510 1.510 (0.030) 1.600 1.590 (0.055) 1.550 1.550 (0.061)

ϑ0 = 2 2.040 2.060 (0.066) 2.000 2.000 (0.037) 2.070 2.070 (0.061) 2.020 2.050 (0.058)

Table 8: Mean, median and MISE for Model (13) for n = 50 and n = 100 with an = bn/2.

n = 50 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.097 0.031 (0.223) 0.005 0.016 (0.008) -0.037 -0.030 (0.013) -0.087 -0.001 (0.174)

ϑ0 = 0.5 0.487 0.506 (0.039) 0.479 0.462 (0.021) 0.506 0.508 (0.036) 0.514 0.522 (0.035)

ϑ0 = 1 0.976 0.978 (0.092) 0.965 0.962 (0.044) 0.984 0.997 (0.074) 1.020 1.020 (0.078)

ϑ0 = 1.5 1.499 1.469 (0.120) 1.440 1.430 (0.063) 1.450 1.470 (0.119) 1.530 1.500 (0105)

ϑ0 = 2 1.920 1.990 (0.105) 1.960 1.960 (0.069) 1.940 1.940 (0.127) 1.930 1.970 (0.086)

n = 100 TKS TCM TKSCM TCMKS

ϑ0 = 0 0.017 0.004 (0.016) 0.004 0.000 (0.004) 0.042 0.039 (0.007) -0.010 -0.007 (0.007)

ϑ0 = 0.5 0.530 0.537 (0.021) 0.507 0.497 (0.011) 0.563 0.554 (0.019) 0.534 0.539 (0.021)

ϑ0 = 1 1.020 1.020 (0.042) 1.000 1.000 (0.020) 1.080 1.070 (0.035) 1.020 1.010 (0.039)

ϑ0 = 1.5 1.550 1.560 (0.064) 1.510 1.510 (0.031) 1.600 1.600 (0.054) 1.560 1.550 (0.064)

ϑ0 = 2 2.050 2.060 (0.069) 2.020 2.040 (0.041) 2.090 2.100 (0.064) 2.030 2.060 (0.059)

Table 9: Mean, median and MISE for Model (13) for n = 50 and n = 100 with an = bn/20.
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Figure 6: The setting is similar to Figure 5 with model from Figure 2 in the main paper.

Method Pearson Kendall Spearman

Original data -0.634 -0.456 -0.612

True parameter ϑ0 0.001 0.001 0.001

TKS 0.001 0.001 0.001

TCM 0.009 0.006 0.008

TKSCM 0.005 0.002 0.004

TCMKS 0.002 0.001 0.001

Table 10: Pearson’s, Kendall’s and Spearman’s correlation coefficients (the average over 1000

iterations) between the covariates and the errors for the model (13) when n = 100. The first

line corresponds to the correlations for the original data while the second line is for the true

transformation parameter (ϑ0 = 0.5). The last four lines correspond to the correlations for

each estimator.
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