
1

Supplementary material on "Comparing the marginal
densities of two strictly stationary linear processes"

Paul Doukhan . Ieva Grublyt
e .

Denys Pommeret . Laurence Reboul

1 Representation of the value of (Q̃∗1)
(1)
∞ (0) with respect to the

quantity σ2
ε

The following �gure shows how the derivative (Q̃∗1)
(1)
∞ (0) is very sensible to the

value of σ2
ε .
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Fig. 10 Representation of (Q̃∗1)
(1)
∞ (0) with respect to σ2

ε for n = 500.

2 Simulation study under transformations of ARFIMA model

In this section, we complete the previous numerical study by considering two
transformations of ARFIMA processes. First, an exponential transformation
with K(x) = L(x) = exp(x), yielding log-normal margins. Second, a quadratic
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transformation with K(x) = L(x) = x2, yielding scaled chi-square distributed
margins. From Sang and Sang (2016), Theorem 2.2, if a transformation of
an ARFIMA stationary process has a power rank equal to 1, then under mild
condition the memory parameter of the transformed process is this of the
ARFIMA process. We will use this property to construct our test statistic .

2.1 Models

We place in the same condition than Section 6.1; that is, we simulate n ∈
{100, 200, 500, 1000, 2000} independent ARFIMA processes X and Y with
margin distributionsM(0, δX , µX , 1) andM(0, δY , µY , 1), respectively. We de-
duce the following two transformed processes:

X ′ = exp(X), Y ′ = exp(Y ), and X ′′ = X2, Y ′′ = Y 2.

Based on the observations of X ′, Y ′ or X ′′, Y ′′, we investigate several null and
alternative distributions.

� Null hypothesis: both process X ′, Y ′ (resp. X ′′, Y ′′) have same margins.
� Mean deviation alternative hypotheses: the original simulated ARFIMA

have di�erent means µX 6= µY .
� Long-memory deviation alternative hypotheses: the original simulated ARFIMA

have di�erent memory parameters δY 6= δX .

2.2 Test statistics

According to the support of both transformed processes considered here, we
used the exponential distribution with parameter 1 as reference measure ν,
with associated Laguerre polynomials. Then we have

Q̃k(x) = Lk(x) exp(x),

where Lk is the kth order Laguerre polynomial with L0 = 1 and L(x) = 1−x.
Writing h′(x) = Q̃∗1(exp(x)) and h

′′(x) = Q̃∗1(x
2) we obtain

(h′(1)∞ (0) = E(exp(−X ′)X ′(X ′ − 2))

(h′′(1)∞ (0) = E(2(X ′′(X ′′2 − 2) exp(−X ′′2).

If we assume that both previous quantities are non null, that is both transfor-
mations have power rank equal to 1, then from Theorem 2.2. of Sang and Sang
(2016) it follows that X ′, Y ′ and X ′′, Y ′′ have the same memory parameters
than X and Y . In that case we can estimate δX and δY directly from the
observed transformed processes X ′, Y ′ or X ′′, Y ′′.

The limit variance is still estimated from (25) or (26).
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2.3 Empirical levels

We consider as null model the case where the processes X and Y are the same
and are governed by the modelM(0, δX , 0, 1). In that case, X ′ and Y ′ have the
same log-normal distribution, and X ′′ and Y ′′ have the same scaled chi-square
distribution. Di�erent values of the long memory parameter are considered,
namely δX ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.45, 0.49}.

Empirical levels for log-normal processes X ′, Y ′, and for chi-square pro-
cesses X ′′, Y ′′, are represented on Figure 11. For large values of δX = δY , that
is values close to 0.5, the convergence to the nominal 5% is unstable, and very
slow, especially for the exponential transformation. This is due to the previous
loss of stationarity phenomena.
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Fig. 11 Empirical levels for δX = 0.01, 0.1, 0.2, 0.3, 0.40.49. X is M(0, δX , 0, 1), Y is
M(0, δY , 0, 1), and δX = δY . The observed data are K(X) and L(Y ). The test is
H0 : fK(X) = fL(Y ). On left, K(x) = L(x) = exp(x). On right, K(x) = L(x) = x2.

2.4 Empirical powers

Long memory deviations First alternatives considered are memory deviations
where the process X is governed by the modelM(0, δX , 0, 1) and the process
Y is governed byM(0, δY , 0, 1), with δX 6= δY . Figure 12 shows the empirical
powers obtained with small or large di�erence between δX and δY . We can
observe how these deviations are detected through the transformed processes
X ′, Y ′ and X ′′, Y ′′.

We observed similar results for exponential and quadratic transformations.
On the one hand, the more memory parameters are di�erent and the higher
the power seems. Thus the strongest power was obtained when δY = 0.01 and
δX = 0.49, which contrasts here a process close to the short memory to a
process closer to non stationarity.
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For both transformations, we can also observe a low power when both
memory parameters are close to 0, and the lower power is obtained when
δY = 0.01 and δX = 0.1, which is the closest case to the short memory case.
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Fig. 12 Empirical powers. X is M(0, δX , 0, 1), Y is M(0, δY , 0, 1), and (δY , δX) ∈
{(0.01, 0.49), (0.1, 0.4), (0.2, 0.3), (0.01, 0.1), (0.4, 0.49)}. The observed data are K(X) and
L(Y ). The test is H0 : fK(X) = fL(Y ). On left, K(x) = L(x) = exp(x). On right,

K(x) = L(x) = x2.

Mean deviation Second alternatives considered are mean deviations where the
process X is governed by the modelM(0, δX , 0, 1) and the process Y is gov-
erned byM(0, δX , µY , 1), with µY 6= 0.

Figure 13 (resp. 14) shows the empirical powers obtained with the expo-
nential (resp. quadratic) transformation. As expected, the power is greater
for larger values of µY . The alternative with µY = 0.1 is not well detected,
excepted for δX = 0.01, but this case correspond to an instability of the test
statistic. For large values of δX the power decreases, as shown in both Fig-
ures 13-14, when δX = 0.4 or δX = 0.49, which can be explained by the non
stationarity proximity.
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Fig. 13 Empirical powers. X is M(0, δX , 0, 1) and Y is M(0, δY , µY , 1), with µY =
0.1, 1, 10. The observed data are X′ = exp(X), Y ′ = exp(Y ). First �gure, µY = 0.1. Second
�gure: µY = 1. Third �gure: µY = 10.
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Fig. 14 Empirical powers. X is M(0, δX , 0, 1) and Y is M(0, δY , µY , 1), with µY =
0.1, 1, 10. The observed data are X′′ = X2, Y ′′ = Y 2. First �gure, µY = 0.1. Second
�gure: µY = 1. Third �gure: µY = 10.

3 Proof of Proposition 4

Following the proof of Doukhan et al. (2015)'s Theorem 2, one has

P1(Kn ≥ 2) ≤
d(n)∑
k=2

1

log n
E1

(
|U (k)
n |2

)
.

Let Qak(.) = Qk(.)− ak and Qbk(.) = Qk(.)− bk. We have

U (k)
n =

1

un

n∑
s=1

Q̃ak(Xs)−
1

un

n∑
s=1

Q̃bk(Ys) + nγk/un. (34)

So,

E1

(
U (k)
n

)2
= A∗n(k) +B∗n(k) + n2γ2k/u

2
n,
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where A∗n(k) and B
∗
n(k) are de�ned as in (29) with E1 in place of E0. As in

the proof of (A) in Propositions 1 to 3 one has under (i) and (ii)

1

log n

d(n)∑
k=2

(A∗n(k) +B∗n(k))→ 0.

Moreover under H∗1

1

log n

d(n)∑
k=2

n2γ2k/u
2
n → 0

so that P1(Kn ≥ 2) → 0. Therefore, using the proofs of Propositions 1 to 3
according to δX and δY , we get the limiting law of the statistic under H∗1 .

4 Proof of Proposition 5

Under H∗∗1 , one has by similar arguments P1(Kn > K) tends to zero. On the
other hand, following the proof of Doukhan et al. (2015)'s Theorem 2

P1(Kn < K) ≤ KP1

(
|U (K)
n |√
log(n)

≤
√
K

)
,

with

U (K)
n =

1

un

n∑
s=1

Q̃∗K(Xs)−
1

un

n∑
s=1

Q̃∗K(Ys)+nγK/un =
√
log nDn(K)+nγK/un.

One has

KP1

(
|U (K)
n |√
log(n)

≤
√
K

)
≤ KP1

(
U

(K)
n√
log(n)

≤
√
K

)

≤ KP1

(
Dn(K) +

nγK

un
√

log(n)
≤
√
K

)

≤ KP1

(
Dn(K) ≤

√
K − nγK

un
√
log(n)

∩Dn(K) > 0

)

+ KP1

(
Dn(K) ≤

√
K − nγK

un
√
log(n)

∩Dn(K) ≤ 0

)
.

UnderH∗∗1 , there exists some n0 such that for all n > n0,
√
K−nγK/(un

√
log n) <

0, so for n > n0

P1(Kn < K) = KP1

(
−Dn(K) ≥ nγK

un
√
log(n)

−
√
K ∩Dn(K) ≤ 0

)
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≤ KP1

(
−Dn(K) ≥ nγK

un
√
log(n)

−
√
K

)

≤ K
E1

(
Dn(K)2

)(
nγK

un

√
log(n)

−
√
K

)2

which goes to zero as n goes ti ∞. It follows that Kn → K. Moreover under
H∗∗1

U (K)
n = Dn(K) + nγK/un

P−→∞,

so Ñn goes to in�nity.

5 Proof of Lemma 1

It is easily seen that for all k = 0, 1, . . ., the �rst third derivatives of Q̃k exist
and are bounded. The same holds for Q̃∗k and conditions (iv) and (vii) in
Propositions 1-3 are satis�ed.

Secondly, using the classical recursion properties of Hermite polynomials
we show that the �rst derivative can be expressed as

Q̃′k(x) = exp(−x2/2) (−xHk(x) +H ′k(x))

= exp(−x2/2) (−(Hk+1(x) + kHk−1(x)) + kHk−1(x))

= − exp(−x2/2)Hk+1(x) = −Q̃k+1(x).

Since |Q̃k+1(x)| < C(k + 1)−1/12 we obtain (v). Moreover we have

|Q̃∗k(x)− Q̃∗k(y)| = |Q̃k(x)− Q̃k(y)|
< C(k + 1)−1/12|x− y|,

and it follows that conditions (i) and (ii) are satis�ed, that is Q̃∗k is qk-Lipschitz
with qk = C(k + 1)−1/12 and

1

i

i∑
k=1

q2k < C2.

Finally, let us show that m1 = 1 for the Hermite functions. Writing h = Q̃∗1
for simplicity we have

h(1)∞ (0) =
∂

∂m
E(h(m+X0))|m=0

=
1√
2π

∂

∂m
E(exp(−(m+X0)

2/2))(m+X0)|m=0

=
1√
2π

E(exp(−(m+X0)
2/2))(1− (m+X0)

2)|m=0

=
1√
2π

E(exp(−X2
0/2)(1−X2

0 )),
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which is strictly positive except if X0 has a Dirac distribution concentrated
on 1 which is excluded.
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