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Abstract
In this paper, we adapt a data-driven smooth test to the comparison of the marginal
distributions of two independent, short or long memory, strictly stationary linear
sequences. Some illustrations are shown to evaluate the performances of our test.

Keywords Linear processes · Local Whittle estimator · Long memory · Schwarz’s
rule · Smooth test · Strictly stationary process

1 Introduction

Long-range dependent (LRD) strictly stationary processes, empirically observed by a
slowly decaying autocovariance function, is a topic of active research in probability
theory (see e.g., Robinson 2003; Surgailis 2000; Beran et al. 2013) but also in appli-
cations (Hsing 2000; Taqqu 1975). The importance of these processes in many fields,
such as Econometrics, Finance, Hydrology and other physical sciences, is abundantly
demonstrated [see Doukhan et al. (2003), Baillie (1996) and the references therein].
Long-memory linear processes are an important class of such processes. Some of
their theoretical properties have been studied in e.g., Giraitis et al. (2012), Surgailis
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(2000) and Ho and Hsing (1999). Classical examples are fractional autoregressive-
integrated moving average (ARFIMA) time series (see Dittmann and Granger 2002;
Hosking 1981), extensively used in Econometrics. Nonlinear transformations of such
processes allow to construct ordinary statistics of linear processes, such as the empiri-
cal variance or the empirical process. These models received much attention in recent
years (see Abadir et al. (2014); Giraitis and Surgailis (1999); Dittmann and Granger
(2002); Ho and Hsing (1997); Wu (2006, 2002); Sang and Sang (2016); Giraitis et al.
(2012); Giraitis (1985); Ho (2000)). One of the interesting problems highlighted by
these previous works is to make nonparametric inference on the marginal distribution
of such processes.

In this paper, we propose a nonparametric test of comparison for the marginal
densities of strictly stationary linear processes. More precisely, consider the linear
processes X = (Xt )t∈Z and Y = (Yt )t∈Z such that

Xt =
∑

j<t

αt− jε j and Yt =
∑

j<t

βt− j e j , (1)

where the innovations εi ’s and ei ’s are i.i.d. centered standard variables, α j ∼
cα| j |δX−1, β j ∼ cβ | j |δY−1 and δY , δX < 1/2, cα and cβ are real constants such
that cα �= 0, cβ �= 0. Thus, long-range-dependent (LRD) and short-range-dependent
(SRD) models are considered here, according to the values of δX and δY (see Sect. 2),
the non-summability of the covariances following from δY , δX > 0 . Denoting by fX
and fY the unknown marginal densities at any given time of X and Y , we want to test
the nonparametric hypothesis

H0 : fX = fY , (2)

based on the observation of a sample of the series.
More generally, if L and K are two measurable functions, we want to test the

nonparametric hypothesis
H0 : fL(X) = fK (Y ), (3)

based on the observation of a sample of the series from L(X) and K (Y ).
Such a nonparametric hypothesis testing iswell-addressed for i.i.d. observations but

very few works exist when the series exhibits some kind of dependence [see Doukhan
et al. (2015) and references therein for a review]. In the short-memory context, Munk
et al. (2009) proposed a goodness-of-fit test for α-mixing sequences; Koul and Sur-
gailis (2010), Koul et al. (2013) and Koul et al. (2016) proposed goodness-of-fit tests
for the density of long-memory linear processes. In the two-sample case, Doukhan
et al. (2015) recently proposed a data-driven test for comparing the marginal densities
of a bivariate strictly stationary-dependent process Z under different assumptions on
the dependence structure of Z , including m-dependence, α-mixing, θ -weakly depen-
dent and Gaussian long or short-memory processes. Extending Janic-Wróblewska and
Ledwina (2000), Ghattas et al. (2011), Ignaccolo (2004) and Munk et al. (2009), the
test proposed by Doukhan et al. (2015) is based on a coefficient’s comparison of den-
sities expansions along an appropriated orthogonal basis. The number of coefficients
to compare is chosen by a data-driven method (see Kallenberg and Ledwina 1995). In
this paper, we extend this test strategy to LRD case, combining the approach proposed

123



Comparing two strictly stationary linear processes 1421

in Doukhan et al. (2015) with some properties of transformations of linear processes
obtained by Ho and Hsing (1997).

The rest of the paper is organized as follows. In Sect. 2, we recall some properties of
linear processes and their transformations. In Sect. 3, we briefly recall themethodology
of Doukhan et al. (2015)’s test. Section 4 contains our main theoretical results. In
Sect. 5, we discuss the practical implementation of the test. Section 6 is devoted to
numerical results when both processes X and Y are ARFIMA processes. In Sect. 7, a
real dataset is studied, consisting of measurements of the widths of the annual rings
of Bristlecone Pine in Nevada hills. Section 8 contains a discussion and possible
extensions. The simulation study is completed in the supplementary material file with
quadratic and exponential transformations of ARFIMA processes.

2 Main tool on transformations of linear processes

Let γ (s) = cov(Xt , Xt+s), for all t, s ∈ Z, be the autocovariance function of a
discrete time stationary process X = (Xt )t∈Z. The decay rate of γ (s) as s goes to
infinity characterizes the type of dependence of the process X . More precisely,

X is SRD if �X =
∞∑

s=−∞
γ (s) �= 0,

∞∑

s=−∞
|γ (s)| < ∞,

X is LRD if
∞∑

s=−∞
|γ (s)| = ∞.

Another way to characterize dependence is to fix a decay rate of the autocovariance
function:

γ (s) ∼ c|s|2δ−1, s → ∞, for some δ < 1/2, c ∈ R.

Then, this is clear that δ < 0 and �X �= 0 together imply SRD. If 0 < δ < 1/2
and c > 0, then X is LRD. The case δ = 0 is another SRD special case, and may
lead to normal behaviors with

√
n log n−normalization under additional tail regularity

conditions (see Szewcsak (2012)). Restraining to |δ| < 1/2 concerns the memory
models I (d) defined from the properties of the spectral density, and the memory
parameter is often denoted d instead of δ, see definition 3.1.3. page 36 in Giraitis et al.
(2012);

Finally, in the case of linear processes

Xt =
∑

j<t

αt− jε j ,

where the εi ’s are i.i.d. and centered standard variables, another way to characterize
dependence is to assume that α j ∼ c| j |δ−1 for δ < 1/2, c is a real nonzero constant.
Thus, X is SRD if δ < 0 and

∑∞
s=−∞ γ (s) �= 0; it is LRD if 0 < δ < 1/2.

These two classes of processes (SRD and LRD) especially differ with asymptotic
behavior of their partial sumprocess: a classical

√
n−CLTholds undermild conditions
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1422 P. Doukhan et al.

for SRD processes. This is no more true for LRD for which partial sums may converge
(or not) toward a possibly non-Gaussian process at a slower rate than

√
n.

Remark 1 The process X admits a negative memory (NRD) if

�X =
∞∑

s=−∞
γ (s) = 0,

∞∑

s=−∞
|γ (s)| < ∞.

Due to simple heredity properties of dependence conditions, transformations of
SRD processes are still short memory, under mild conditions [see Rosenblatt (1956)
or Dedecker et al. (2007)]. Heredity properties of LRD are not so simple as quoted
in Doukhan et al. (2003) and Giraitis et al. (2012). Two particular classes of LRD
processes have been intensively studied in the literature: Gaussian processes and lin-
ear processes. Hereafter, we briefly recall main results on transformations of linear
processes; the Gaussian case is detailed in Dobrushin andMajor (1979), and the linear
case is considered in Ho and Hsing (1997). For that, we need to introduce the notion
of power rank which is a main tool [we refer the reader to Giraitis et al. (2012) for
more details].

Let L be a measurable function such that E(L(X)) = 0. Following Ho and Hsing
(1997), we say that L has “power rank” m ≥ 1 with respect to the linear process X if

L(m)∞ (0) �= 0 and L(r)∞ (0) = 0, for all 1 ≤ r < m,

L(r)∞ (w) = ∂r

∂wr
E(L(w + X0)). (4)

Let 0 < δ < 1/2, that is, the process is LRD. Under mild conditions on L and the
innovations of X , it can be shown (see Sang and Sang (2016), Theorem 2.1) that

(C1) If m(1 − 2δ) < 1 then L(X) is LRD. The convergence of the partial sums of
L(X) holds at a n1−m(1/2−δ)−rate to a Rosenblatt process of order m at point 1.
In case m = 1, this process is just the fractional Brownian motion with Hurst
parameter H = δ + 1/2.

(C2) If m(1− 2δ) > 1 then L(X) is SRD (if moreover �L(X) �= 0). The convergence
of the partial sums of L(X) holds at a

√
n−rate to a standard Gaussian.

Then, let us consider two transformations K (X) and L(Y ) of the linear processes X
and Y with known in advance power ranks. We will see that properties (C1) and (C2)

will allow to restrict our study to K = L = Id (the identity function). This argument
is developed in Sect. 4.
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Comparing two strictly stationary linear processes 1423

3 Methodology

3.1 Construction of the test statistic

Let Z = (X ,Y ), with X and Y independent strictly stationary processes satisfying

Xt =
∑

j<t

αt− jε j , and Yt =
∑

j<t

βt− j e j , (5)

where the innovations εi and ei are i.i.d. and centered standard variables, α j ∼
cα| j |δX−1, β j ∼ cβ | j |δY−1 with δX , δY < 1/2, cα and cβ are real positive constants.
For simplicity, we shall set δY ≤ δX .

Let ν be a given probability measure with density g with respect to a reference
measure λ (Lebesgue’s measure for instance). We denote by fX and fY the respective
common unknownmarginal densities of the Xt ’s and Yt ’s with respect to λ and assume
that they belong to L2(ν).

We want to test

H0 : fX = fY , against H1 : fX �= fY , (6)

based on the observations {Z1, . . . , Zs, . . . , Zn} of the process Z . For that task, we
consider the expansions of fX and fY along a family (Q j ) j∈N of orthonormal functions
in L2(ν):

fX =
∑

j≥0

a j Q j and fY =
∑

j≥0

b j Q j,

with

a j = E(Q̃ j (X1)) =
∫

R

Q j (t) fX (t)dν(t), b j = E(Q̃ j (Y1)) =
∫

R

Q j (t) fY (t)dν(t),

and Q̃ j = gQ j for all j ∈ N. It is clear that H0 can be rewritten as

H0 : ai = bi , for all i = 1, 2, . . . (7)

In view to define a test strategy for (7), let us set, for k ≥ 1,

V ( j)
s = Q̃ j (Xs) − Q̃ j (Ys), Vs(k) =

(
V ( j)
s

)

1≤ j≤k
. (8)

Next, define the k-dimensional random vector of the renormalized partial sums of the
process (Vs(k))s∈Z

Un(k) = (U ( j)
n )1≤ j≤k = 1

un

n∑

s=1

Vs(k),
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1424 P. Doukhan et al.

where (un)n>0 is an appropriately chosen positive norming sequence such that
limn→∞ un = ∞. We will consider the sequence of Neyman’s-type test statistics
defined as follows:

Nn(k) = ‖Un(k)‖2 =
k∑

j=1

(
U ( j)
n

)2
, k = 1, . . . , d(n), (9)

where d(n) → ∞ as n → ∞. For any fixed k > 0, the statistic Nn(k) is the
renormalized sum of the squared differences between the empirical estimates of the k
first coefficients.

3.2 Data-driven selection criterion

In view to select the number of components k, we use in the sequel a data-driven
selection rule inspired from Schwarz’s Bayesian information criterion. At first step,
select among every k = 1, . . . , d(n) the value Kn that minimizes an information
criterion:

Kn = min
{
arg max
1≤k≤d(n)

(Nn(k) − k log(n))
}
. (10)

Once Kn is determined, we use the test statistic

Ñn = Nn(Kn). (11)

This criterion has been used in Kallenberg and Ledwina (1995) for independent
observations and consists of a modified version of Schwarz (1978)’s Bayesian infor-
mation rule, based on an expansion of themaximum likelihood function. The extension
of this rule to the paired context and to the strong-mixing context has been heuristically
justified by Ghattas et al. (2011) and Munk et al. (2009), respectively (see Remarks 3
of both papers).

The test statistic Ñn has been proposed in Doukhan et al. (2015) to test (3) for the
margins X and Y of a strictly stationary process Z under different assumptions on the
dependence structure of Z .

Before setting our main results on the asymptotic behavior of the statistic, let us
heuristically describe the output of the rule (10) and the information that it provides
on the distribution. Assume that H0 holds. Thus, all the statistics {Nn(k)}k>0 are
bounded in probability so that the rule will choose Kn = 1. Now, assume that H1
holds. Let k0 be the first index leading to an unbounded statistic Nn(k0); this means
that the first difference between fX and fY is detected on the order k0 coefficients.
Since δY ≤ δX , it will be seen that the order of magnitude at which Nn(k0) explodes is
un = max(

√
n, n1/2+δX ) which is more than log n thus the rule will choose Kn = k0.
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4 Main results

From now on, we assume that

d(n) = o(log(n)) (12)

and we set
Q̃∗

k = Q̃k − E0(Q̃k(X0)). (13)

We will denote by mk the power rank of Q̃∗
k . Following Doukhan et al. (2015)’s

Theorems 1 and 2, we give below the asymptotic distribution of Ñn under the null, as
well as consistency results under contiguous alternatives in the particular case where
the power rank of Q̃∗

1 is equal to 1, that is

m1 = 1. (14)

We will discuss this condition in Sect. 8.2. In particular, this condition is easily
satisfied when the support of X and Y is R. In that case, the choice of a Gaussian
reference measure ν with associated Hermite polynomials leads to m1 = 1. As it
will be detailed in Remark 2 below, our results rely on suitable assumptions ensuring
that a central limit theorem holds for the partial sums Un(1) of the process V (1) and
allowing to control the asymptotic behavior of the partial sums of the series of absolute
autocovariances γk(t) of the stationary processes V (k) under H0:

rn(k) =
n−1∑

t=0

|γk(t)| =
n−1∑

t=0

∣∣E0(Q̃
∗
k(X0)Q̃

∗
k(Xt ) + Q̃∗

k(Y0)Q̃
∗
k(Yt ))

∣∣ . (15)

4.1 Convergence under the null hypothesis

In the rest of the paper, we denote by Z a Chi-squared random variable with one degree
of freedom.

We set

Un(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1/2
n∑

s=1

Vs(k), if δX < 0,

n−1/2−δX

n∑

s=1

Vs(k), if δX > 0.

(16)

Recall here that we assumed δY ≤ δX , and the statistic will then depend on the
greatest value δX .

Moreover, consider the following assumptions:

(i) Q̃∗
k is qk-Lipschitz.

(i i) There exists some B such that for all i > 0,
1

i

i∑

k=1

q2k < B.
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1426 P. Doukhan et al.

Then, we prove

Proposition 1 Let δX < 0. Assume that (i) and (ii) hold. In addition, assume

(iii) E0(ε
4
0) < ∞ and E0(e40) < ∞.

(iv) Q̃∗
1 is differentiable with continuous bounded derivative.

(v) E0((Q̃∗
1(X0))

2) < ∞.

Then, under H0, Ñn
L−→ σ 2Z , with

σ 2 =
∑

t∈Z
γ1(t).

Proposition 2 Let δY < 0 < δX . Assume that the above conditions (i), (ii) and (v)
hold. In addition, assume

(vi) E0(ε
8
0) < ∞ and E0(ν

4
0 ) < ∞.

(vii) Q̃∗
1 has a continuous bounded third-order derivative.

Then under H0, Ñn
L−→ σ 2Z , where

σ 2 = c2α
(
(Q̃∗

1)
(1)∞ (0)

)2
C(δX )2, (17)

C(δX ) =
√
B(1 − 2δX , δX )

δX (1 + 2δX )
, (18)

a, b > 0, B(a, b) is the Beta function and (Q̃∗
1)

(1)∞ (0) is defined as in (4).

Proposition 3 Let 0 < δY ≤ δX . Assume that (i), (ii), (v) and (vii) hold. In addition,
assume

(ix) E0(ε
8
0) < ∞ and E0(ν

8
0) < ∞.

Then under H0

(a) if δY < δX , Ñn
L−→ σ 2Z, where σ 2 is defined by (17),

(b) if δY = δX , Ñn
L−→ σ 2Z, where σ 2 = (c2α + c2β)

(
(Q̃∗

1)
(1)∞ (0)

)2
C(δX )2 and

C(δX ) is defined by (18).

Remark 2 Notice that assumptions (i) and (ii) imply that

1

d(n)

d(n)∑

k=1

rn(k) = O

(
u2n
n

)
. (19)

This assumption [denoted (A) inDoukhan et al. (2015)] drives the asymptotic behavior
of rn(k), the absolute series of autocovariances of the process V (k). When the V (k)’s
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Comparing two strictly stationary linear processes 1427

are SRD, this assumption is satisfied by definition. In the LRD case, it controls the
rate at which rn(k) goes to infinity. Moreover, this assumption implies, see Doukhan
et al. (2015), that under H0:

Kn
P−→ 1. (20)

This means that rule (10) selects the first statistic Nn(1) to test (3) under the null. That
is why we only need to get the asymptotic distribution of the partial sums of V (1) to
calibrate the test.

Other assumptions involved in Propositions 1–3 are those of Ho and Hsing (1997)’s
Theorem 4.1 and Corollary 3.3. They allow to get the limit distributions of the partial
sums of the processes Q̃∗

1(X) and Q̃∗
1(Y ) in the SRD and LRD cases, respectively.

According to (C1) and (C2), these limits and their convergence rates un,X and un,Y

depend on the power rank m1, δX and δY . Here, m1 = 1 which implies Gaussian
asymptotic distributions. Since

U (1)
n = 1

un,X

n∑

t=1

V (1)
t = 1

un,X

n∑

t=1

Q̃∗
1(Xt ) − un,Y

un,X

(
1

un,Y

n∑

t=1

Q̃∗
1(Yt )

)
,

then it ensures Doukhan et al. (2015)’s condition (B):

Un(1)
L−→ U . (21)

The asymptotic behavior ofUn(1) is overseen by the process Q̃∗(X) or Q̃∗(Y ) having
the longest memory. When δX > δY un,Y /un,X → ∞ and the limit distribution is that
of the partial sums of Q̃∗(X). When δX = δY , un,X/un,Y = 1 and the independence
between X and Y allows to obtain the limit distribution.

Remark 3 Conditions (i), (i i), (iv), (v), (vi i) on Q̃1 in Propositions 1–3 would be
satisfied as soon as the support of the processes is R, choosing the Gaussian distribu-
tion for ν with associated Hermite polynomials (see Sect. 6.2 for detail). Moreover,
Conditions (iv), (v), (vi i) are satisfied as soon as Q̃1(x) = x .

To conclude this section, we extend Propositions 1–3 to any transformations of X
and Y . We consider two measurable functions L and K such that both power ranks of
Q̃∗

1 ◦ L and Q̃∗
1 ◦ K are equal to 1. We want to test

H0 : fL(X) = fK (Y ) against H1 : fL(X) �= fK (Y ).

We adapt the test statistics Ñn and Nn(k), replacing (8) by

V ( j)
s = Q̃ j ◦ L(Xs) − Q̃ j ◦ K (Ys), Vs(k) =

(
V ( j)
s

)

1≤ j≤k
,

and changing (i), (iv), (v) and (vi i) by

(i) (Q̃k ◦ L)∗ and (Q̃k ◦ K )∗ are qk-Lipschitz.
(iv) (Q̃1◦L)∗ and (Q̃1◦K )∗ are differentiable with continuous bounded derivatives.
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1428 P. Doukhan et al.

(v) E0(((Q̃1 ◦ L)∗(X0))
2) < ∞ and E0(((Q̃1 ◦ K )∗(Y0))2) < ∞.

(vii) (Q̃1 ◦ L)∗ and (Q̃1 ◦ K )∗ have a continuous bounded third-order derivatives.

Corollary 1 – Let δX < 0. Assume that (i), (ii), (iii), (iv) and (v) hold. Then, under

H0, Ñn
L−→ σ 2Z , with

σ 2 =
∑

t∈Z
E0((Q̃1 ◦ L)∗(X0)(Q̃1 ◦ L)∗(Xt ) + (Q̃1 ◦ K )∗(Y0)(Q̃1 ◦ K )∗(Yt )).

– Let δY < 0 < δX . Assume that (i), (ii), (v), (vi) and (vii) hold. Then under H0,

Ñn
L−→ σ 2Z , where

σ 2 = c2α
(
((Q̃1 ◦ L)∗)(1)∞ (0)

)2
C(δX )2, (22)

where C(δX ) is given by (18).
– 0 < δY ≤ δX . Assume that (i), (ii), (v), (vii) and (ix) hold. Then under H0,

(a) if δY < δX , Ñn
L−→ σ 2Z, where σ 2 is defined by (22),

(b) if δY = δX , Ñn
L−→ σ 2Z, where

σ 2 =
(
c2α

(
((Q̃1 ◦ L)∗)(1)∞ (0)

)2 + c2β

(
((Q̃1 ◦ K )∗)(1)∞ (0)

)2)
C(δX )2.

4.2 Convergence under contiguous alternatives

In the sequel, we show that for suitable alternatives, the test based on the limiting
quantile is consistent. Namely, let us set γk = ak − bk and consider the following two
alternatives:

H∗
1 : max

k≤d(n)
γk = O(un/n),

H∗∗
1 : ∃ K > 1 such that max

k<K
γk = O(un/n)

and γK n/(log(n)un) → ∞ as n → ∞.

Wewill denote by E1 and P1 the expectation and probability under the correspond-
ing alternative.

Proposition 4 – Let 0 > δX . Assume that (i)–(iv) hold. Then, under H∗
1 , Kn

P−→ 1
and Ñn has the limiting distribution given in Proposition 1.

– Let δY < 0 < δX . Assume that (i) and (v)–(vii) hold. Then, under H∗
1 , Kn

P−→ 1
and Ñn has the limiting distribution given in Proposition 2.

– Let 0 < δY < δX . Assume that (i) and (vi)–(viii) hold. Then, under H∗
1 , Kn

P−→ 1
and Ñn has the limiting distribution given in Proposition 3(a).
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Comparing two strictly stationary linear processes 1429

– Let δX = δY > 0. Assume that (i) and (vi)–(viii) hold. Then, under H∗
1 , Kn

P−→ 1
and Ñn has the limiting distribution given in Proposition 3(b).

Proposition 5 For every item of Proposition 4 and under the same assumptions, one

has under H∗∗
1 , Kn

P−→ K and Ñn
P−→ +∞, that is, ∀ε > 0, P(Ñn < ε) → 0.

Therefore, under H∗
1 , the perturbation will not be detected by the test procedure,

while it will be detected under H∗∗
1 .

The proofs of Propositions 4–5 are relegated in the supplementary material file.

5 Practical implementation of the test

Choice of d(n) The computation of the test requires a numerical choice for d(n).
Previous studies (see Doukhan et al. 2015) have shown that the empirical levels and
powers obtained do not depend on d(n) for sufficiently large values of this parameter.
In practice, d(n) will be set at 10.

Choice of the basis (Q j ) j≥0 and of the reference measure A family (Q j ) j≥0 and a
reference measure have to be selected. In practice, this choice depends on the support
of the distributions considered. When the support is R, we can use the standard Gaus-
sian distribution and its associated Hermite polynomials or the classical orthogonal
Hermite functions. For distributions on R

+, we can use the exponential measure and
its associated Laguerre polynomials. For bounded densities, we can use the uniform
measure and its associated Legendre polynomials [see Doukhan et al. (2015) for more
details]. We detail the Gaussian case with Hermite polynomials in Sect.6.2.

Estimation of δX and δY The memory parameters are estimated here using the semi-
parametric local Whittle estimator [see Giraitis et al. (2012) for other choices of
estimators]. Namely, δX may be estimated as

δ̂X = arg min−1/2≤δ≤1/2
Un(δ, X), (23)

with

Un(δ, X) = log

⎛

⎝1

r

r∑

j=1

j2δ IX
(
2π

j

n

)
⎞

⎠ − 2δ

r

r∑

j=1

log j,

r is a positive integer such that r < n/2 and IX denotes the periodogram based on
(X1, . . . , Xn) :

IX (u) = 1

2πn

∣∣∣∣∣∣

n∑

j=1

X je
i ju

∣∣∣∣∣∣

2

.

Estimation of σ 2 The limiting distribution of the test statistic requires the estimation
of the unknown variance parameter.

– SRD case: For σ 2 in the SRD case of Proposition 1, we propose to use a class of
estimators based on kernel estimate of the spectral density which has been intro-
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duced in econometrics literature by Newey and West (1987) and Andrews (1991)
[see Newey and West (1994) and Andrews and Monahan (1992) for refinements].
They take the form

σ̂ 2 =
∑

|s|<n

K

(
s

�n

)
σ̃ 2
s , (24)

with

σ̃ 2
s =

⎧
⎪⎨

⎪⎩

1

n

n−s∑

h=1

V (1)
h V (1)

h+s if 0 ≤ s ≤ n,

σ̃ 2−s if − n ≤ s < 0.

In Formula (24), �n is a bandwidth satisfying �n → +∞ and �n/n → 0; K is a
symmetric kernel function satisfying K (0) = 1, |K (x)| ≤ 1 for all x ∈ R, K is
continuous at x = 0 and at almost all other points of R. Consistency of σ̂ 2 has
been obtained by several authors under more or less strong conditions on V (1) and
�n [see e.g., Andrews (1991)’s Theorem 1]. We refer the reader to Doukhan et al.
(2015) for a practical implementation.

– LRD case: The estimation of the variance in the LRD cases of Propositions 2 and
3 requires to estimate δX , δY , cα, cβ and (Q̃∗

1)
(1)∞ (0). For the last quantity, since

Q̃∗
1 is known, we shall empirically estimate the order one moment of its derivative

Q̃(1)
1 = ∂

∂w
Q̃∗

1 by

̂
(Q̃∗

1)
(1)
∞ (0) = 1

n

n−1∑

s=0

Q̃(1)
1 (Xs).

The former parameters are estimated with the Whittle estimator, for instance:

ĉα = k̂α�(2 − 2̂δX ) cos
(
π(1 + 2̂δX )

)
,

with

k̂α = 1

r

r∑

j=1

u2̂δXj IX
(
2π

j

n

)
,

where δ̂X is defined as previously. We obtain ĉβ similarly. Finally, we get variance
estimator of the form

σ̂ 2 = ĉ2α

(
̂

(Q̃∗
1)

(1)
∞ (0)

)2

C (̂δX )2. (25)

6 Simulation study under ARFIMAmodels

In this section, we study the finite-sample performances of our test on Monte Carlo
simulations, performed on several sample sizes and models. The models consist of
marginal distributions of different autoregressive fractionally integrated moving aver-
age (ARFIMA) models, with different long-memory parameters. We will not develop
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the short-memory case here since it has been largely studied in Doukhan et al. (2015).
The nominal level is fixed at α = 5%.

6.1 Models

In order to study a wide range of LRD situations, the simulated examples consist of
observation of sequences with respective sizes n ∈ {100, 200, 500, 1000, 2000} of
independent ARFIMA processes X and Y that we briefly describe here [see Granger
and Joyeux (1980) and Hosking (1981) for more details]. Setting Bkxt = xt−k , recall
that X is an ARFIMA(p, δ, q) with mean μ if

�(B)(1 − B)δ(Xt − μ) = �(B)εt , (26)

with

�(B) = 1 − �1B − · · · − �p B
p, �(B) = 1 + �1B + · · · + �q B

q ,

(1 − B)δ =
∞∑

k=0

�(k − δ)

�(−d)�(k + 1)
Bk,

and the εi ’s is a white noise sequence with mean zero and variance σ 2
ε . We fix � = 0

(resp. � = 0) if p = 0 (resp. q = 0). ARFIMA are particular cases of I (δ) models
(see Sect. 3). Parameters p and q model short-term dependency effects. The memory
parameter δ is allowed to assume every real value. The restriction of δ to integer
values gives rise to classical ARIMA processes. For |δ| ≥ 1/2, this is a non-stationary
process. For δ ∈ (0, 1/2), the process is long memory, and for δ ∈ (−1/2, 0), this is a
negativememory process. For δ = 0, this is a particular case of short-memory process,
which corresponds to a stationary ARMA model. When |�(z)| > 0 and |�(z)| > 0
for all |z| ≤ 1 and |d| < 0.5, X has a moving average representation given on page
181 of Giraitis et al. (2012).

In our design, X is a pure fractional model ARFIMA(0, δX , 0) with δX ∈ (0, 1/2).
This model has the moving average representation:

Xt = μ +
∞∑

k=0

αk B
kεk, with αk = �(k + δX )

�(δX )�(k + 1)
.

Notice (see Giraitis et al. 2012, pp. 176–177) that αk ∼ (�(δX ))−1kδX−1 as k → ∞,

which sticks to our hypotheses. The marginal distribution of a mean μ ARFIMA with
standard Gaussian innovations is Gaussian with mean μ and variance

σ 2
ε · �(1 − 2δ)

(�(1 − δ))2
.

Hereafter, we denote byM(p, δ, μ, σ 2
ε ) the ARFIMA(p, δ, 0) with mean μ and vari-

ance innovation σ 2
ε . With this notation X is M(0, δX , 0, 1). Varying the parameters
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δ, p, μ and σ 2
ε , we investigate several null and alternative distributions of the process

Y .

– Null hypothesis: the process Y is M(0, δY , 0, 1), with δY = δX , that is both
processes X and Y are the same.

– Mean deviation alternative hypotheses: Y is M(0, δY , μ, 1), with δY = δX and
μ �= 0.

– Variance deviation alternative hypotheses: Y is M(0, δY , 0, σ 2
ε ), with δY = δX

and ε �= 1.
– Long-memory deviation alternative hypotheses: Y is M(0, δY , 0, 1), with δY �=

δX .

Remark 4 Another second null hypothesis should be the case where the process Y is
M(0, δY , 0, σ

′2
ε ), such that

�(1 − 2δX )

(�(1 − δX ))2
= σ

′2
ε · �(1 − 2δY )

(�(1 − δY ))2
, (27)

in such a way X and Y have the same marginal distribution.
However, it can be seen that for all alternatives, there is no combination of param-

eters such that the marginal distributions of X and Y are the same.

The ARFIMA sequences were computed using the fracdiff package R. We used a
burn-in period of 10000.

6.2 Test statistics

The limiting distribution under the null of the test statistics depends on the unknown
values δX and δY . We used the semi-parametric local Whittle estimators defined by
(23) to estimate these parameters. The form of the test statistic depends of the sign of
δX and δY , and whether δX = δY or not. We suggest in Sect. 8 a possible method in
order to test these values.

The computation of the test statistics requires also the estimation of the asymptotic
variance. We used the variance estimators given in (24) and (25).

Finally, according to the support R of the processes considered in our simulation
study, we used here the standard Gaussian distribution and its associated Hermite
polynomials. The proof is given in the supplementary material file. We have

Q̃k(x) = Hk(x) exp(−x2/2),

where Hk is the kth-order Hermite polynomial.

Lemma 1 Conditions (i), (i i), (iv), (v) and (vi i) are satisfied. Moreover, the power
rank of Q∗

1 is equal to 1.
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Fig. 1 Empirical levels for δX =
0.01, 0.1, 0.2, 0.3, 0.40.49. X is
M(0, δX , 0, 1), Y is
M(0, δY , 0, 1), and δX = δY
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6.3 Empirical levels

The empirical levels were defined as the percentage of rejection of the null hypoth-
esis over 10,000 replications of the test statistics. We investigated their values
for samples of size n ∈ {100, 200, 500, 1000, 2000}. We consider as null model
the case where processes X and Y are the same and are governed by the model
M(0, δX , 0, 1). Different values of the long-memory parameter are considered,
namely δX ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.45, 0.49}. The larger the value of δX is, the
higher is the memory of the process. The empirical levels are represented in Fig. 1.
Here, the values of the test statistic T are compared to the asymptotic distribution
given in (b) of Proposition 3. We are confronted at two numerical difficulties when
we browse the range (0, 1/2) of δX . First, for small values of δX , the model is close
to a short-memory process for which the asymptotic distribution is different. As seen
in Proposition 1–3, there is no continuity between these asymptotic distributions and
a larger size is necessary to distinguish LRD and SRD models. This phenomena is
clearly represented in Fig. 1 where the empirical level associated with δX = 0.001 is
far from the asymptotic theoretical one of 5%. This is an instability due to the discon-
tinuity of the type of range memory, that is, LRD or SRD. Second, for large values of
δX , the convergence rate of the test statistic becomes very slow since un = n1/2+δX .
Moreover, there is no more stationarity when δX = 0.5. This phenomena is repre-
sented by the empirical level associated with δX = 0.49 in Fig. 1 which is relatively
far from the asymptotic level. This instability is due to the discontinuity of the sta-
tionarity. Globally, the convergence seems to be slow. It can be explained by the rate
1/un = n−1/2−δX .

Figure 2 shows the empirical levels under the null, for σ 2
ε ∈ {1/2, 2}. These results

show that the empirical level is smaller when the innovation variance σ 2
ε is small.

Then for σ 2
ε = 1/2, it can be observed that the empirical level is smaller than the

theoretical one. Conversely, when σ 2
ε = 2, the empirical level is larger than 5%. This

phenomena can be explained by the expression of the variance of the test statistic given
in (17). Both quantities cα and C(δ) are stable with respect to σ 2

ε . But the derivative
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Fig. 2 Empirical levels for δX = 0.01, 0.1, 0.2, 0.3, 0.40.49. X isM(0, δX , 0, σ 2
ε ), Y isM(0, δY , 0, σ 2

ε ),
and δX = δY . On left: σ 2

ε = 1/2; on right: σ 2
ε = 2

(Q̃∗
1)

(1)∞ (0) is very sensitive to the value of σ 2
ε . As an illustration, in the supplementary

material file, Figure 10 represents the value of (Q̃∗
1)

(1)∞ (0) with respect to the quantity

σ 2
ε , when n = 500. Clearly, due to the factor

(
(Q̃∗

1)
(1)∞ (0)

)2
, the variance σ 2 of the

limit null distribution decreases to zero when the innovation variance increases, and
then the test statistic increases. To avoid this phenomena, one solution is to normalize
both processes X and Y before testing their margins.

6.4 Empirical powers

The empirical powers were defined as the percentage of rejection of the null hypoth-
esis over 1000 replications of the test statistics. We investigated their values for
samples of size n ∈ {100, 200, 500, 1000, 2000} and long-memory values δX ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.45, 0.49}.For the set ofmean deviation alternative hypothe-
ses, we usedμ ∈ {0.1, 1, 10}. For the set of variance deviation alternative hypotheses,
weusedσ 2

ε ∈ {0.5, 2}. For the set of long-memorydeviation alternative hypotheses,we
used (δY , δX ) varying in {(0.01, 0.49), (0.1, 0.4), (0.2, 0.3), (0.01, 0.1), (0.4, 0.49)}.
Long-memory deviations First alternatives considered are memory deviations where
the process X is governed by the modelM(0, δX , 0, 1) and the process Y is governed
by M(0, δY , 0, 1), with δX �= δY . For such alternatives, the adapted statistic is from
Proposition 3(a). Figure 3 shows the empirical powers obtained with small or large
difference between δX and δY . Globally, alternatives seem to be well-detected, espe-
cially for large values of both δX and δY , or for large differences between δX and δY .
Conversely, when δX and δY are close together, or when both have small values, it can
be observed that the power increases more slowly.

Mean deviation Second alternatives considered are mean deviations where the pro-
cess X is governed by the model M(0, δX , 0, 1) and the process Y is governed by
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Fig. 3 Empirical powers. X id
M(0, δX , 0, 1), Y is
M(0, δY , 0, 1), and (δY , δX ) ∈
{(0.01, 0.49), (0.1, 0.4), (0.2, 0.3), (0.01, 0.1),
(0.4, 0.49)}
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Fig. 4 Empirical powers. X is M(0, δX , 0, 1) and Y is M(0, δY , μY , 1), with μY = 0.1, 1, 10. δY =
δX = 0.01 (left). δY = δX = 0.1 (right)

M(0, δX , μY , 1), with μY �= 0. For such alternatives, the adapted statistic is from
Proposition 3(b). Figures 4, 5 and 6 show the empirical powers obtained. As expected,
the power is greater for larger values of μY . The alternative with μY = 0.1 is not
well-detected, except for δX = 0.01, but this case corresponds to an instability of the
test statistic. For large values of δX , the power decreases, as shown in Fig. 6, with
δX = 0.4 and δX = 0.49.

Variance deviation The last alternatives are variance deviations where the process
X is governed by the model M(0, δX , 0, σ 2

ε ) and the process Y is governed by
M(0, δX , 0, σ 2

ε′), with σ 2
ε �= σ 2

ε′ . Figure 7 presents the empirical powers obtained
with σ 2

ε = 1 and σ 2
ε′ ∈ {1/2, 2}. The powers are relatively similar in both cases.

Empirical powers are greater for small values of d, that is, close to the short-memory
case (d = 0).
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Fig. 5 Empirical powers. X is M(0, δX , 0, 1) and Y is M(0, δY , μY , 1), with μY = 0.1, 1, 10. δY =
δX = 0.02 (left). δY = δX = 0.3 (right)
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Fig. 6 Empirical powers. X is M(0, δX , 0, 1) and Y is M(0, δY , μY , 1), with μY = 0.1, 1, 10. δY =
δX = 0.04 (left). δY = δX = 0.49 (right)

7 Real data

One application of the two-sample test should detect a possible rupture in the station-
arity of a LRD process. This topic exceeds the scope of this paper but we can explore
briefly this idea as follows: we consider the Bristlecone Pine data which consist of
width measurements of the annual rings of Bristlecone Pine in Nevada hills. The series
contains yearly measurements on rings formed in the tree from year 1 to 1967. Such
data are usually considered as LRD [see for instance the ARFIMA approach for the
measurements of the widths of the annual rings of a Mount Campito Bristlecone pine
in Hipel and McLeod (1994)]. The data are represented in Fig. 8.

The graph of this series could suggest a change around year 900. More precisely,
minimum and maximum values are close, observed in year 810 and in year 896,
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Fig. 7 Empirical powers for different values of d: under models M(0, δX , 0, 1), and M(0, δX , 0, 1/2)
(left); under models M(0, δX , 0, 1), and M(0, δX , 0, 2) (right)

Fig. 8 Representation of the
widths rings from year 1 to 1967
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respectively. We then decided to cut the series into two new ones, one before 800,
denoted by X , and the other after 1167, denoted by Y . We let enough delay time
between the two series to assume independence of both processes. For simplicity, we
keep the same length for both series, but this constraint could be easily relaxed. Figure
9 represents these series. We want to compare the stationary distributions on these
two periods, that is, we want to test H0 : fX = fY . To use the appropriated statistics,
we first estimated the δ parameters, getting δX = 0.27 and δY = 0.22. At this step,
we can decide to consider the test statistic given in Proposition 3(b), that is, when
δX = δY , or the statistic given in (a), that is, when δX �= δY . Again, this approach
should be more detailed, with a more cautious cutting and with a test procedure on
these parameters δX and δY (see the Discussion in Sect. 8). But our purpose here is
to indicate one possible way of application of our two-sample test. We applied the
test statistics given in Proposition 3, in case (a) or (b). We obtained the following
estimations and associated p-values:
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Fig. 9 Representation of the widths rings from year 1 to 800 (left) and from year 1168 to 1967 (right)

Case (a): Ñn/σ
2 = 0.17 (p-value = 0.670).

Case (b): Ñn/σ
2 = 7.08 (p-value = 0.008).

In conclusion, if we accept the equality of the dependence parameters δX and δY
(the b) case), then our test procedure leads to the rejection of the margins equality,
that is, fX �= fY . Conversely, if we consider that δX �= δY (the a) case), then we could
accept the equality of the margins, that is, fX = fY . In both cases, the conclusion is
that the two series differ. There is a change even in the range of dependence, or in the
stationary distribution.

8 Discussion

In this paper, we proposed a test for comparing twomargins of SRD or LRD processes
X = (Xt )t∈Z and Y = (Yt )t∈Z having the form

Xt =
∑

j<t

αt− jε j and Yt =
∑

j<t

βt− j e j .

As shown in Corollary 1, we can extend our results to the case of transformations
K (X) = (K (Xt ))t∈Z and L(Y ) = (L(Yt ))t∈Z. A simulation study on LRD processes
was considered, and it appeared that the test procedure yields good results for depen-
dence parameters not too close to 0 or 0.5. The first case will lead to an instability
due to the loss of stationarity, while the second case will lead to an instability due to
the loss of LRD. In an ARFIMA context, it was noted that the test gave good results,
with a possible normalization of both processes to conduct a stable test procedure. The
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results concerning simulation of transformations of ARFIMA processes are reported
in the supplementary file. In such a situation, if we assume the knowledge of the power
rank of the transformations, then from Theorem 2.2 of Sang and Sang (2016), we can
deduce an estimator of the memory parameters of the original processes, and then we
can construct our test statistic. In a more general context, it is necessary to know or to
estimate the memory parameters of both original processes, possibly having observed
them before transformation. The test was also used on the widths of the annual rings
of Bristlecone Pine in Nevada hills to detect a possible rupture in the LRD process.
The conclusion was that there exists a change around year 900. This change could be
due to a difference of dependence parameters or a difference of margins. Eventually,
such conditions on memory parameters or on power ranks are necessary to apply all
our results. To conclude this work, we suggest possible ways for testing them.

8.1 Testing the value of thememory parameter

Propositions 1–3 of Sect. 4.1 highlight the dependence of limiting distribution of the
test statistics under the null on the values of the parameters δX and δY . However, the
knowledge of these values may be not possible in some cases. Notice that several tests
on the values of (δX , δY ) may be easily built from our results or those of Giraitis and
Surgailis (1990).

Testing SRD versus LRD For I(d) processes, this may be done for instance using the
V/S test developed in Giraitis et al. (2012). Based on our results, another test for

H0 : δ < 0 against H1 : δ > 0,

consists of restricting the statistic given in (16) to the one sample case, with a sample
X1, · · · , Xn with memory parameter δ. We can modify our test statistic as follows:
first we change (8) by

V ( j)
s = Q̃ j (Xs) − E(Q̃ j (Ys)), Vs(k) =

(
V ( j)
s

)

1≤ j≤k
.

Then, in proof of (A), (28) becomes

E
(
U (k)
n

)2 = E

(
1

un

n∑

s=1

Q̃∗
k(Xs)

)2

An(k).

The rest of the proof is mimicked to get (30), and we deduce the limit distribution of
the statistic Ñn under the null.

More precisely, under H0, Ñn
L−→ σ 2Z , where Z has a χ2(1) distribution and

σ 2 =
∑

t∈Z

∣∣E0(Q̃
∗
k(X0)Q̃

∗
k(Xt ))

∣∣,

while under H1, Ñn
P−→ +∞, which permits to detect the alternative.
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Testing for the equality of the memory parameters To test

H0 : δY = δX against H1 : δY �= δX ,

we can construct a test statistic based on the asymptotic normality of the Whittle
estimator given by (23) under smoothness assumptions on the spectral density (see
Giraitis and Surgailis (1990)). So, by independence of the samples from X and Y ,√
n(̂δX − δ̂Y ) may be approached under H0 by a centered Gaussian distribution with

variance equal to the sumof the asymptotic variances of δ̂X and δ̂Y described inGiraitis
and Surgailis (1990).

8.2 Testing the power rank

We have assumed throughout that the power rank m of Q̃∗
1 with respect to X (resp.

Y ) is equal to 1. This assumption leads to a simpler limit distribution of the test
statistic in the case where 0 < δX < 1/2. First of all, this situation is the most
encountered in the literature and there exists numerous cases of functions satisfying
m = 1, see e.g., Bai and Taqqu (2018). In addition, the authors of this paper discuss
the instability issue of power rank appearing in limit theorems under longmemory and
argue that a rank greater than 1 can be disturbed by a transformation and only a rank
equal to 1 is stable. Indeed, assuming a higher-order rank when it is really not may
result in underestimating the order of fluctuation of the statistic of interest. In order to
perform valid inference, they suggest to adopt the assumption that the rank is always
1, regardless of any nonlinear transformation resulting from the statistical procedure.

However, we can construct a test to verify such a condition for linear processes.
This test is related to the construction of our statistic but it could be extended to various
situations. Considering the power rank of Q̃∗

1 associated with the process X , it consists
of testing H0 : m = 2 versus H1 : m = 1, based on the observations of X . A more
general test is in preparation in view to automatically detect the exact value of the
power rank. From Ho and Hsing (1997), when 0 < δX < 1/2, we have

nm(1−2δX )−2
n∑

s=1

Q̃∗
1(Xs) → Tm = γ 2m Q̃∗(m)∞ (0)Zm

for any value of the power rank m, where Zm is a random variable with multiple
Wiener-Itô integral representation given in Corollary 3.3 of Ho and Hsing (1997). We
then consider the following test statistic

T = nm(1−2δX )−2
n∑

s=1

Q̃∗
1(Xs).

Under H0, we have T → T2 = γ 4 Q̃∗(2)∞ (0)Z2, and under H1, we have the divergence

of the test statistic, that is, T
P−→ +∞. But this test procedure requires to estimate
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the memory parameter of X , so it does not apply to the transformation case where the
original process X is not observed.

9 Proofs of Propositions 1 to 3

According to Doukhan et al. (2015)’s Theorem 1 and Remark 2, we have to prove

(A) : There exists some C > 0 and n0 > 0 such that for all n > n0,

1

d(n)

d(n)∑

k=1

E0|U (k)
n |2 < C .

(B) : U (1)
n

L−→ U under H0, where U is a random variable whose distribution
possibly depends on a nuisance parameter.

9.1 Proof of (A)

Since X and Y are independent processes

E0
(
U (k)
n

)2 = E0

(
1

un

n∑

s=1

Q̃∗
k(Xs) − 1

un

n∑

s=1

Q̃∗
k(Ys)

)2

= E0

(
1

un

n∑

s=1

Q̃∗
k(Xs)

)2

+ E0

(
1

un

n∑

s=1

Q̃∗
k(Ys)

)2

= An(k) + Bn(k). (28)

In order to control the terms at the right-hand side of (28), we will need the following
Lemma

Lemma 2 Let δ < 1/2 and {Xt = ∑∞
j=0 α jεt− j , t ∈ Z} be a moving average process,

where (εt )t∈Z is an i.i.d. standardized sequence and
∑

α2
j < ∞. Let us denote by

(Fε
t )t∈Z the natural filtration of the process (εt ) and set for all t > s,

Ps(Xt ) = E
(
Xt |Fε

s

) − E
(
Xt |Fε

s−1

)
.

Let Q be a q-Lipschitz measurable function. Then,

|Ps(Q(Xt ))| ≤ q|αt−s | (|εs | + E(|ε0|)) .

Proof

Xt =
∑

j>0

α jεt− j =
∑

j≤t−s−1

α jεt− j + αt−sεs +
∑

j≥t−s+1

α jεt− j = F + αε + P
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1442 P. Doukhan et al.

where F ∈ σ(εs+1, . . . , εt , . . .), ε ≡ εs ∈ Fε
s , and P ∈ Fε

s−1.

Let PF be the distribution of F and P(F,ε) = PF ⊗ Pε be the joint distribution of
(ε, F). Then,

|Ps(Q(Xt ))| = |
∫

Q(P + αε + v)dPF (v) −
∫

Q(P + αu + v)dP(ε,F)(u, v)|.

By independence of present and future, one has P(ε,F) = PFPε, so that

|Ps(Q(Xt ))| =
∣∣∣∣
∫

Q(P + αε + v)dP(ε,F)(u, v) −
∫

Q(P + αu + v)dP(ε,F)(u, v)

∣∣∣∣

=
∣∣∣∣
∫

(Q(P + αε + v) − Q(P + αu + v))dP(ε,F)(u, v)

∣∣∣∣

≤
∫

|Q(P + αε + v) − Q(P + αu + v)|dP(ε,F)(u, v)

≤ q|α|
∫

|ε − u|dP(ε,F)(u, v)

≤ q|αt−s | (|εs | + E0|ε0|) .

��
Noticing that for each measurable function Q one has Q(Xt ) =

∑

s<t

Ps(Q(Xt ))

and applying Lemma 2 to Q = Q̃∗
k (it is a Lipschitz function by (i)),

E0
( n∑

s=1

Q̃∗
k(Xs)

)2 =
n∑

r=1

n∑

l=1

E0
(
Q̃∗

k(Xr )Q̃
∗
k(Xl)

)

≤
n∑

r=1

n∑

l=1

∑

s<min(l,r)

E0
(
Ps(Q

∗
k(Xl))Ps(Q

∗
k(Xr ))

)

≤
n∑

r=1

n∑

l=1

∑

s<min(l,r)

E0
(|Ps(Q∗

k(Xl))||Ps(Q∗
k(Xr ))|

)

≤ 4 (E0|ε0|)2 q2k
n∑

r=1

n∑

l=1

∑

s<min(l,r)

|αl−s ||αr−s |

≤ Cq2k L
(X)
n , (29)

where C = 8 (E0|ε0|)2 and

L(X)
n =

n∑

r=1

r∑

k=1

n∑

j=0

|α j ||α j+k |.

The way to obtain a upper bound for the right-hand side of (29) depends on δX .
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– When δX < 0, the α j s are absolutely summable and

E0
( n∑

s=1

Q̃∗
k(Xs)

)2 ≤ CXn · q2k , (30)

with

CX = C

⎛

⎝
∑

j≥0

|α j |
⎞

⎠
2

.

– When 0 < δX < 1/2, then as in proof of (ii) in Proposition 3.2.1, p. 39 of Giraitis
et al. (2012), as k → ∞, one has

∞∑

j=0

|α j ||α j+k | ∼ γ 2k2δX−1B(δX , 1 − 2δX ),

where

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx, a > 0, b > 0

so that as r → ∞
r∑

k=1

∞∑

j=0

|α j ||α j+k | ∼ γ 2 B(δX , 1 − 2δX )

r∑

k=1

k2δ−1 ∼ γ 2 · B(δX , 1 − 2δX )

2δX
r2δX

and as n → ∞

L(X)
n ∼ γ 2 · B(δX , 1 − 2δX )

2δX (2δX + 1)
· n2δX+1

so that

E0

(
n∑

s=1

Q̃∗
k(Xs)

)2

≤ CδX n
1+2δX q2k , (31)

with

CδX = C∗
X · B(δX , 1 − 2δX )

δX (2δX + 1)
· n2δX+1,

with C∗
X = CX/2. Similar results occur for E0

( n∑

s=1

Q̃∗
k(Ys)

)2 replacing δX by δY and

the α j ’s by the β j ’s.
Therefore,

• When δY ≤ δX < 0, un = √
n and

An(k) = 1

n
E0

( n∑

s=1

Q̃∗
k(Xs)

)2 ≤ CXq
2
k
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1444 P. Doukhan et al.

by (30). Similarly,

Bn(k) ≤ CYq
2
k , with CY = C

⎛

⎝
∑

j≥0

|β j |
⎞

⎠
2

,

so that (A) obtains by (ii).
• When δY < 0 < δX , then un = n1/2+δX ,

An(k) = n−1/2−δX E0
( n∑

s=1

Q̃∗
k(Xs)

)2 ≤ Cδq
2
k

and

Bn(k) = n−1/2−δX E0
( n∑

s=1

Q̃∗
k(Ys)

)2 ≤ CYn
−2δX q2k → 0

so that (A) obtains by (ii).
• When 0 < δY ≤ δX < 1, then un = n1/2+δX ,

An(k) ≤ CδX q
2
k and Bn(k) ≤ CδY n

2(δY−δX )q2k ,

with

CδY = C ′′γ ′2B(δY , 1 − 2δY )

2δY (1 + 2δY )

which tends to 0 if δY < δX or equals CδY q
2
k if δY = δX so that (A)

obtains by (ii). ��

9.2 Proof of (B)

Let us set

U (1)
n = 1

un

n∑

s=1

Q̃∗
1(Xs) − 1

un

n∑

s=1

Q̃∗
1(Ys) = UX ,n −UY ,n .

In order to prove (B), we find in each case the limits UX and UY of UX ,n and UY ,n

usingHo andHsing (1997)’s results. SinceUX ,n andUY ,n are independent, the limiting
distribution of UX ,n −UY ,n is that of UX −UY .

– Assume δ ≤ δY < 0, we can apply Ho and Hsing (1997)’s Theorem 4.1 to UX ,n

and UY ,n under (iii)–(v) and (i). Indeed, (iv) implies that the condition C(1, 0, λ)

of Theorem 4.1 is satisfied. Moreover (i) implies condition (3.3) of Theorem 4.1.
Indeed, setting

X0,l =
l∑

j=1

α jε− j ,
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one has E0((Q̃∗
1(X0) − Q̃∗

1(X0,l))
2 ≤ q21

∑
j>l α

2
j which converges to zero as l

goes to infinity. Therefore,

UX ,n
L−→ N (0, σ 2

X ), UY ,n
L−→ N (0, σ 2

Y )

σ 2
X =

∑

t∈Z
E0(Q̃

∗
1(X0)Q̃

∗
1(Xt )), σ 2

Y =
∑

t∈Z
E0(Q̃

∗
1(Y0)Q̃

∗
1(Yt )),

so that
U (1)
n

L−→ N (0, σ 2),

where
σ 2 = σ 2

X + σ 2
Y .

– When 0 < δY < δX , we have un = n1/2+δ and we can apply on the one hand
Ho and Hsing (1997)’s Corollary 3.3 with k = m1 = 1 to UX ,n under (vi),
(vii) and (iii). Indeed, (vii) implies that C(t, 0, λ) of the corollary is satisfied for
t = 0, 1, 2, 3. Thus,

UX ,n
L−→ (Q̃∗

1)
(1)∞ (0)

√
γC(δX )Z1,

where Z1 is a standard Gaussian variable and C(δX ) is defined by (18). On the
other hand, under (v), (vi) and (i), one has

n1/2+δX

n1/2
UY ,n

L−→ N (0, σ 2
Y ),

where σ 2
Y is defined as above. Then, UY ,n

P−→ 0 so that

U (1)
n

L−→ N (0, σ 2),

with

σ 2 =
(
(Q̃∗

1)
(1)∞ (0)

)2
cαC(δX )2.

– When δX = δY < 1 Proposition 3(a), (B) follows from Ho and Hsing (1997)’s
Corollary 3.3 under (i) and (vii)–(ix). Namely, U (1)

n has the same distribution
as (Q̃∗

k)
(1)∞ (0)C(δ)

(√
cαZ1 − √

cβ Z2
)
, where Z1 and Z2 are two independent

standard Gaussian variables. Therefore,

U (1)
n

L−→ N (0, σ 2),

with

σ 2 =
(
(Q̃∗

k)
(1)∞ (0)

)2
cαC(δX )2(cα + cβ).
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1446 P. Doukhan et al.

– For 0 < δY < δX , (B) follows from Ho and Hsing (1997)’s Corollary 3.3 under
(i) and (vii)–(ix). Namely, as in Proposition 2,

UX ,n
L−→ N (0, σ 2),

with

σ 2 =
(
(Q̃∗

1)
(1)∞ (0)

)2
cαC(δX )2

and
n1/2+δX

n1/2+δY
UY ,n

L−→ N (0, σ 2),

so that UY ,n
P−→ 0 and U (1)

n has the same distribution as in Proposition 2. U (1)
n

has the same distribution as (Q̃∗
1)

(1)∞ (0)K1,1−2δX Z1, where K1,1−2δX is defined as
in Equation (32) of Doukhan et al. (2015) and Z1 is a standard Gaussian variable.
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