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Appendix B: Backfitting Estimators

Let us definemp = (mp(Xp1),mp(Xp2), · · · ,mp(Xpn))T for p ∈ {1, 2, · · · , P}, andmP+q =
(mP+q(Zq1),mP+q(Zq2) · · · ,mP+q(Zqn))T for q ∈ {1, 2, · · · , Q}. The additive compo-
nents, m1,m2, · · · ,mP+Q, are estimated using the backfitting estimators. The first step is
to select a suitable smoothing matrix Sd for d ∈ {1, 2, · · · , P +Q}, where m̂d = SdY res is
the estimator of md, and Y res is the residual of Y = (Y1, · · · , Yn)T given other additive
components. This step is then repeated until convergence of all additive components (Hastie
and Tibshirani 1990). As X contains categorical or discrete valued random variables, the
bin smoother at a point mass is appropriate. Suppose, for j = 1, 2, · · · , kp, there are npj

observations at Xp = xpj , where
∑kp
j=1 npj = n, p = 1, 2, · · · , P . If the observations are

sorted according to the values of Xp, then the smoothing matrix for mp is given by

Sp =


n−1
p1 Jnp1 Onp1,np2 . . . Onp1,npkp

Onp2,np1 n−1
p2 Jnp2 . . . Onp2,npkp

...
...

. . .
...

Onpkp ,np1 Onpkp ,np2 . . . n
−1
pkp
Jnpkp

 , for p = 1, 2, · · · , P, (A.1)

where Jn is a n× n matrix with elements 1, and Om,n is a m× n matrix with elements 0.
It essentially means that Sp is constructed such a way that m̂p(xpj) is the partial mean of
Y res, where Xp = xpj for p = 1, 2, · · · , P and j = 1, 2, · · · , kp.

The covariate Z may contain any type of random variable – categorical, discrete or
continuous. If some components of Z are categorical or discrete, then we use bin smoother
again. Otherwise, for continuous valued covariates, one may choose a smoother that uses
local polynomials. For the simplicity of notation, we assume that all covariates are con-
tinuous. In fact, the situation is even simpler for categorical or discrete covariates. Let dq
be the degree of the polynomial used for smoothing of Zq for q = 1, 2, · · · , Q. Note that
Nadaraya-Watson estimate (Watson 1964) is a trivial case of the polynomial smoothing
where the degree of the polynomial is zero. Suppose K(·) is the kernel function, and denote
Khq (z) = h−1

q K( z
hq

), where hq is the bandwidth parameter. Then, the smoothing matrix
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of Zq is given by

SP+q =
(
ZTzqKzqZzq

)−1
ZTzqKzq , for q = 1, 2, · · · , Q, (A.2)

where Kzq = diag{Khq (Zq1 − zq), · · · ,Khq (Zqn − zq)} is a diagonal matrix containing the
kernel weight, and

Zzq =


1 (Zq1 − zq) . . . (Zq1 − zq)dq
1 (Zq2 − zq) . . . (Zq2 − zq)dq
...

...
. . .

...
1 (Zqn − zq) . . . (Zqn − zq)dq

 .
Then, the normal equations for the backfitting estimators (Buja et al. 1989; Opsomer and
Ruppert 1998) are given by

In S∗1 . . . S∗1
S∗2 In . . . S∗2
...

...
. . .

...
S∗P+Q S

∗
P+Q . . . In



m1

m2

...
mP+Q

 =


S∗1
S∗2
...

S∗P+Q

Y ∗, (A.3)

where S∗d = (In − 1n1Tn/n)Sd is the centered smoothing matrix for d = 1, 2, · · · , P + Q,
Y ∗ = Y −Ȳ 1n and 1n is the n-dimensional vector of elements 1. The solution to the normal
equation (A.3) has the form

m̂1

m̂2

...
m̂P+Q

 =


In S∗1 . . . S∗1
S∗2 In . . . S∗2
...

...
. . .

...
S∗P+Q S

∗
P+Q . . . In


−1 

S∗1
S∗2
...

S∗P+Q

Y ∗ ≡M−1CY ∗,

provided the inverse exists. Here, M and C are the associated matrices. So, the backfitting
estimator of md is given by

m̂d = EdM
−1CY ∗ ≡W dY

∗, d = 1, 2, · · · , P +Q, (A.4)

where W d = EdM
−1C, and Ed is a block matrix of dimension n× n(P +Q) with n× n

identity matrix in the d-th block and zero elsewhere.

Let us denote W =
∑P+Q
d=1 W d. Suppose W [−d] is the smoother matrix for the additive

model after dropping out the term containing md, d = 1, 2, · · · , P + Q. Then, the follow-
ing lemma from Opsomer (2000) ensures the existence and uniqueness of the backfitting
estimators of the additive model.

Lemma 1 If ||S∗dW
[−d]|| < 1 for some d ∈ (1, 2, · · · , P + Q), where || · || denotes any

matrix norm, then the backfitting estimators uniquely exist and

W d = In −
(
In − S∗dW

[−d]
)−1

(In − S∗d) =
(
In − S∗dW

[−d]
)−1

S∗d

(
In −W [−d]

)
.

(A.5)

Appendix C: Proofs

Lemma 2 Let us assume that conditions (C2)–(C5) hold, then

S∗d = Sd −
1n1Tn
n

+ o

(
1n1Tn
n

)
a.s.,

for all d = 1, 2, · · · , P +Q. The term o

(
1n1T

n
n

)
means that each element is of order o

(
1
n

)
.
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Proof This property is proved in Opsomer and Ruppert (1997) using a local polynomial
fitting where the smoothing matrix is as defined in (A.2). This is also true for the point
mass bin smoother as

S∗d = Sd −
1n1Tn
n

Sd = Sd −
1n1Tn
n

for d = 1, 2, · · · , P. (A.6)

Note that for d = 1, 2, · · · , P the relationship is exact, and we do not need any assumption
for this.

Lemma 3 If the predictors and covariates are pairwise independent then, under conditions
(C1)–(C6), we have

S∗dS
∗
d′ = o

(
1n1Tn
n

)
a.s.,

for all d 6= d′ ∈ {1, 2, · · · , P +Q}.

Proof Using equation (A.6) for p and p′ ∈ {1, 2, · · · , P}, we get

S∗pS
∗
p′ =

(
Sp −

1n1Tn
n

)(
Sp′ −

1n1Tn
n

)
= SpSp′ −

1n1Tn
n

Sp −
1n1Tn
n

Sp′ +
1n1Tn
n

= SpSp′ −
1n1Tn
n

. (A.7)

Note that SpSp = Sp for p = 1, 2, · · · , P . For p 6= p′ ∈ {1, 2, · · · , P}, we define U = SpSp′ .
Here U is a block matrix containing each element in the rs-th block equal to

urs =
∑

i:Xpi=xpr,Xp′i=xp′s

1

nprnp′s
,

where r = 1, 2, · · · , kp and s = 1, 2, · · · , kp′ . Using strong law of large numbers (SLLN) and
assumption (C1), we get

nurs
a.s.−→

1

cprcp′s
P (Xp = xpr, Xp′ = xp′s)

=
P (Xp = xpr, Xp′ = xp′s)

P (Xp = xpr)P (Xp′ = xp′s)
. (A.8)

Combining equations (A.7) and (A.8) the ij-th element of S∗pS
∗
p′ becomes

(S∗pS
∗
p′ )ij =

1

n

(
P (Xp = xpi, Xp′ = xp′j)

P (Xp = xpi)P (Xp′ = xp′j)
− 1

)
a.s.

So, the lemma is proved for p 6= p′ ∈ {1, 2, · · · , P}. For d 6= d′ ∈ {P + 1, P + 2, · · · , P +Q}
Opsomer and Ruppert (1997) have shown that under conditions (C2)–(C6)

(S∗dS
∗
d′ )ij =

1

n

(
fdd′ (zdi, zd′j)

fd(zdi)fd′ (zd′j)
− 1

)
+ o

(
1n1Tn
n

)
a.s.,

where fdd′ (·) is the joint distribution of Zd and Zd′ , whereas fd(·) and fd′ (·) are their
marginal distributions. So, the lemma is true for d 6= d′ ∈ {P + 1, P + 2, · · · , P + Q}.
Now, using condition (C8) and applying the same technique, we can prove this result when
d = 1, 2, · · · , P , and d′ = P + 1, P + 2, · · · , P +Q, or vise versa.
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Lemma 4 Let us denote W =
∑P+Q
d=1 W d, where W d is given in equation (A.4). Then,

under conditions (C1)–(C6)

W ≈ S∗ + o

(
1n1Tn
n

)
a.s.,

where S∗ =
∑P+Q
d=1 S∗d.

Proof For P +Q = 2, we get

W [−1] = S∗2 and W [−2] = S∗1.

From equation (A.5), we have

W 1 = (In − S∗1S∗2)−1 S∗1 (In − S∗2) . (A.9)

Using Lemma 3, we have the following approximation

(In − S∗1S∗2)−1 ≈ In + o

(
1n1Tn
n

)
a.s. (A.10)

This approximation is exact when the corresponding predictors or covariates are pairwise
independent. Combining equations (A.9) and (A.10), we get

W 1 ≈ S∗1 + o

(
1n1Tn
n

)
a.s.

Similarly W 2 ≈ S∗2 + o

(
1n1T

n
n

)
a.s. Now, for all values of P and Q, we prove by recursion

that

W d ≈ S∗d + o

(
1n1Tn
n

)
a.s.

Therefore, by taking summation over d = 1, 2, · · · , P +Q the lemma is proved.

Lemma 5 Suppose conditions (C1)–(C4) and (C8) are satisfied. Then, under H∗∗0 ,

mTS∗pm = op(1),

for all p = 1, 2, · · · , P , where m =
∑P+Q
p=1 mp.

Proof Note that
Spmp = mp for all p = 1, 2, · · · , P. (A.11)

For p = 1, 2, · · · , P and q = 1, 2, · · · , Q we define u = SpmP+q = (u11Tnp1
, u21Tnp2

,

· · · , unpkp
1Tnpkp

)T . Then

uj =
∑

i:Xpi=xpj

mP+q(Zqi)

npj
, for j = 1, 2, · · · , kp.

Using strong law of large numbers (SLLN) and assumption (C8) we get

uj
a.s.−→ E[mP+q(Zq)|Xp = xpj ] = 0.

So
SpmP+q = On,1 a.s. for all p = 1, 2, · · · , P and q = 1, 2, · · · , Q. (A.12)

Hence, under H∗∗0 , for all p = 1, 2, · · · , P

mTSpm =

(
P∑
d=1

mT
p

)
Sp

(
P∑
d=1

mp

)
+ op(1) = op(1). (A.13)
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Again using SLLN we get

1TnmP+q

n

a.s.−→ E[mP+q(Zq)] = 0

for all q = 1, 2, · · · , Q. Similarly, 1Tnmp/n = 0 a.s. for all p = 1, 2, · · · , P . Hence using
Lemma 2 the lemma is proved from equation (A.13).

Lemma 6 Denote A2n = (W − In)T (W − In), then under conditions (C1)–(C6)

A2n ≈ S∗TS∗ − S∗ − S∗T + In + o

(
1n1Tn
n

)
a.s.,

where S∗ =
∑P+Q
d=1 S∗d.

Proof Using Lemma 4, we get

A2n ≈ (S∗ − In)T (S∗ − In) + o

(
1n1Tn
n

)
a.s.

= S∗TS∗ − S∗ − S∗T + In + o

(
1n1Tn
n

)
a.s. (A.14)

Proof (Corollary 4) Denote A1n = (W [Z]−In)T (W [Z]−In), where W [Z] is the smoother
matrix for the additive model after dropping all P predictors. Using an argument similar to
that in the proof of Lemma 6, we find

A1n ≈ S∗T[Z]S
∗
[Z] − S

∗
[Z] − S

∗T
[Z] + In + o

(
1n1Tn
n

)
a.s.,

where S∗[Z] =
∑Q
d=1 S

∗
P+d. So

A1n −A2n ≈ S∗[X] + S∗T[X] − S
∗T
[X]S

∗
[X] − S

∗T
[X]S

∗
[Z] − S

∗
[X]S

∗T
[Z] + o

(
1n1Tn
n

)
a.s., (A.15)

S∗[X] =
∑P
d=1 S

∗
d. Now S∗dS

∗
d = S∗d and S∗Td = S∗d for d = 1, 2, · · · , P . From the technique

used in Lemma 3, it can be shown that S∗[X]S
∗T
[Z] is a symmetric matrix. So, using Lemma

3 equation (A.15) reduces to

A1n −A2n ≈ S∗[X] + o

(
1n1Tn
n

)
=

P∑
d=1

S∗d + o

(
1n1Tn
n

)
a.s.

Now

RSS∗∗0 −RSS∗1 = Y ∗T (A1n −A2n)Y ∗

≈
P∑
d=1

Y ∗TS∗dY
∗ + op(1)

=

P∑
d=1

Y T

(
In −

1n1Tn
n

)T
S∗d

(
In −

1n1Tn
n

)
Y + op(1)

=

P∑
d=1

Y TS∗dY + op(1) (A.16)

Let us define ε = (ε1, · · · , εn)T . Then

RSS∗∗0 −RSS∗1 =
P∑
d=1

mTS∗dm+ 2
P∑
d=1

εTS∗dm+
P∑
d=1

εTS∗dε+ op(1). (A.17)
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Using Lemma 5, under H∗∗0 , we have

mTS∗dm = op(1) for all d = 1, 2, · · · , P.

Moreover, using (A.12) it is easy to show that, under H∗∗0 , εTS∗dm = op(1) for all d =
1, 2, · · · , P . Hence, from (A.17), we get

RSS∗∗0 −RSS∗1 =

P∑
d=1

εTS∗dε+ op(1). (A.18)

Now, for d = 1, 2, · · · , P , using the definition in (A.1), we have

εTSdε =

kd∑
j=1

1

ndj
(eTdjε)

T eTdjε, (A.19)

where edj is a vector with ndj elements one and rest are zero. If Xdi = xdj , then the i-th
element of edj is one. Note that in this definition, we did not sort Xd according to their
observed values. As E[ε2i ] <∞ under condition (C7), using central limit theorem (CLT), we
get

1

σ
√
ndj

eTdjε
a
≡ Udj ∼ N(0, 1).

As eTdjε and eT
dj′ε are independent for all j 6= j′ ∈ {1, 2, · · · , kd}, the components of Ud =

(Ud1, Ud2, · · · , Udkd )T are i.i.d. standard normal variables. Therefore, from (A.19), we have
1
σ2 ε

TSdε
a∼ χ2(kd). Let us define

Ū =

kd∑
j=1

√
ndj

n
Udj .

Then Ū = cTdUd a.s., where cd = (
√
cd1,
√
cd2, · · · ,

√
cdkd )T . Note that Ū2 = 1

n
εT ε. Hence

1

σ2
εTS∗dε

a
≡ UTd

(
Ikd − cdc

T
d

)
Ud ∼ χ2(kd − 1),

because (Ikd − cdc
T
d ) is an idempotent matrix of rank (kd− 1). If all predictors are pairwise

independent, then from Lemma 3, we get

S∗dS
∗
d′ = o

(
1n1Tn
n

)
a.s.

for d 6= d′ ∈ {1, 2, · · · , P}. So, εTS∗dε and εTS∗d′ε are asymptotically independent for all
d 6= d′ (see p. 84 of Bapat 2012). Therefore, if the predictors are pairwise independent, then
under H∗∗0 , equation (A.18) gives

1

σ2
(RSS∗∗0 −RSS∗1 )

a∼ χ2

(
P∑
d=1

(kd − 1)

)
. (A.20)

However, in general, the above distribution comes out to be a sum of P dependent chi-square
variables as

1

σ2
(RSS∗∗0 −RSS∗1 )

a
≡

P∑
d=1

UTd

(
Ikd − cdc

T
d

)
Ud. (A.21)
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Suppose d 6= d′ ∈ {1, 2, · · · , P}, j = 1, 2, · · · , kd and j′ = 1, 2, · · · , kd′ , then the correlation
between Udj and Ud′j′ is given by

Corr(Udj , Ud′j′ ) = lim
n→∞

Corr

(
1

σ
√
ndj

eTdjε,
1

σ
√
nd′j′

eTd′j′ε

)

= lim
n→∞

∑
i:Xdi=xdj ,Xd′i=xd′j′

1
√
ndjnd′j′

=
1

√
cdjcd′j′

P (Xd = xdj , Xd′ = xd′j′ ). (A.22)

The last expression is derived using the same techniques as used in equation (A.8). Note that
combining equations (A.21) and (A.22), we obtain result (A.20) if the predictor variables
are independent.
Now, it is easy to show that

1

n
RSS∗1 =

1

n
Y ∗TA2nY

∗

≈
1

n
Y ∗T

(
S∗TS∗ − S∗ − S∗T + In + o

(
1n1Tn
n

))
Y ∗

= σ2 + op(1). (A.23)

Therefore, using Slutsky’s theorem, σ2 in (A.21) may be replaced by 1
n
RSS∗1 , and therefore

λn(H∗∗0 )
a
≡

P∑
p=1

UTp

(
Ikp − cpc

T
p

)
Up. (A.24)

Define U = (UT1 ,U
T
2 , · · · ,UTP )T , and U∗ = Σ1U , where Σ1 is defined in Section 4.4. As

Σ1 is an idempotent matrix, λn(H∗∗0 ) in equation (A.24) is written as

λn(H∗∗0 )
a
≡ UTΣ1U = U∗TU∗, (A.25)

Now, the covariance matrix of U is Σ2 (defined in Section 4.4), which is a block matrix
with p-th diagonal block is an identity matrix of order kp, and the ij-th element of the
pp′-th off-diagonal block is given in (A.22). So, the covariance matrix of U∗ is Σ1Σ2Σ1.
Let λ1, λ2, · · · , λs are non-zero eigenvalues of Σ1Σ2Σ1, where s is the rank of Σ1Σ2Σ1.
Suppose V = (V1, V2, · · · , Vs)T is a vector of i.i.d. standard normal variables, and Λ =
diag(λ1, λ2, · · · , λs). Then, from (A.25), the theorem is proved as

λn(H∗∗0 )
a
≡ V TΛV =

s∑
i=1

λiV
2
i .

Theorem 3 Let us consider the notations and assumptions of Corollary 4. Then, under
H1, the asymptotic distribution of the GLR test statistic coincides with δ2 +

∑s
i=1 λiV

2
i ,

where δ2 =
∑P
r,s=1 E(m∗rm

∗
s).

Proof If H∗∗0 is not true, then from (A.17), we get

RSS∗∗0 −RSS∗1 =

P∑
d=1

mTS∗dm+

P∑
d=1

εTS∗dε+ op(1). (A.26)

Now, the result in equation (A.21) reduces to

1

σ2

P∑
d=1

εTS∗dε =

P∑
d=1

UTd

(
Ikd − cdc

T
d

)
Ud. (A.27)
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From the proof of Lemma 5, we have

mTSpm =

(
P∑
d=1

mT
p

)
Sp

(
P∑
d=1

mp

)
+ op(1). (A.28)

Using Spmp = mp, we get mT
r Spmp = mT

rmp for all p, r = 1, 2, · · · , P . Hence

1

n
mT
r Spmp

a.s.−→ E(mT
rmp).

Suppose uij is the (i, j)-th element of mT
r Spms for some p, r, s = 1, 2, · · · , P . Then

uij =

kp∑
l=1

∑
(i,j):Xpi=Xpj=xpl

mr(Xri)ms(Xsj)

npl
. (A.29)

Note that ∑
(i,j):Xpi=Xpj=xpl

mr(Xri)ms(Xsj)

npl

a.s.−→ E(mrms|Xp = xpl).

So, using condition (C1), we get from equation (A.29)

uij
a.s.−→ E(mrms) and

1

n
uij

a.s.−→ 0.

Hence, from equation (A.28), we get

1

n
mTSpm =

P∑
r

E(mrmp) + op(1).

Therefore

1

n

P∑
p=1

mTSpm =
P∑

r,s=1

E(mrms) + op(1). (A.30)

As E(mp) = 0 for all p = 1, 2, · · · , P , we get

1

n

P∑
p=1

mTS∗pm =

P∑
r,s=1

E(mrms) + op(1). (A.31)

Combining (A.23), (A.26), (A.27) and (A.31) the theorem is proved.

Proof (Corollary 3) The residual sum of squares under H∗0 can be written as

RSS∗0 =
(
Y ∗ −X∗θ̃ −W [Z]

(
Y ∗ −X∗θ̃

))T (
Y ∗ −X∗θ̃ −W [Z]

(
Y ∗ −X∗θ̃

))
=
(
Y ∗ −

(
In −W [Z]

)
X∗θ̃ −W [Z]Y

∗
)T (

Y ∗ −
(
In −W [Z]

)
X∗θ̃ −W [Z]Y

∗
)

= Y ∗T
(
In −An −W [Z])

T (In −An −W [Z]

)
Y ∗, (A.32)

where

An =
(
In −W [Z]

)
X∗

(
X∗T

(
In −W [Z]

)
X∗
)−1

X∗T
(
In −W [Z]

)
. (A.33)

Using Lemma 4 it can be shown that

W [Z] =

Q∑
q=1

WP+q ≈
Q∑
q=1

S∗P+q + o

(
1n1Tn
n

)
a.s. (A.34)
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Hence

In −W [Z] ≈ In + o

(
1n1Tn
n

)
a.s..

Therefore, equation (A.33) reduces to

An = X∗
(
X∗TX∗

)−1
X∗T + o

(
1n1Tn
n

)
a.s. (A.35)

As X∗
(
X∗TX∗

)−1
X∗T is an idempotent matrix, using (A.34) and (A.35) we get from

equation (A.32)

RSS∗0 = Y ∗T
(
In + S∗T[Z]S

∗
[Z] − S

∗
[Z] − S

∗T
[Z] −X

∗
(
X∗TX∗

)−1
X∗T

+ S∗T[Z]X
∗
(
X∗TX∗

)−1
X∗T +X∗

(
X∗TX∗

)−1
X∗TS∗[Z]

)
Y ∗ + op(1). (A.36)

Suppose θ0 is the true value of θ under H∗0 . So, under H∗0 , the model can be written as

Y = α1n +X∗θ0 +m[Z] + ε,

where m[Z] =
∑Q
q=1mP+q(·). Opsomer and Ruppert (1999) have shown that θ̃ is a con-

sistent estimator of θ0. Hence, under H∗0 , from equation (A.34) we get

X∗
(
X∗TX∗

)−1
X∗TY ∗ = X∗θ̃

a.s.
= X∗θ0 =

P∑
p=1

mp(·) = m[X]. (A.37)

Using a similar technique of equation (A.12) it can be shown that

S∗qmp = On,1 a.s. for all p = 1, 2, · · · , P and q = 1, 2, · · · , Q. (A.38)

So, combining (A.37) and (A.38) we get

Y ∗TS∗T[Z]X
∗
(
X∗TX∗

)−1
X∗TY ∗ = Y ∗TS∗[Z]m[X] + op(1)

= mT
[Z]m[X] + op(1)

= op(1). (A.39)

Hence, equation (A.36) simplifies to

RSS∗0 = Y ∗T
(
In + S∗T[Z]S

∗
[Z] − S

∗
[Z] − S

∗T
[Z] −X

∗
(
X∗TX∗

)−1
X∗T

)
Y ∗ + op(1).

Now, proceeding the same way as the proof of Corollary 4, we get

RSS∗0 −RSS∗1 = Y ∗T
(

2S∗[X] − S
∗T
[X]S

∗
[X] − S

∗T
[Z]S

∗
[X]

− S∗T[X]S
∗
[Z] −X

∗
(
X∗TX∗

)−1
X∗T

)
Y ∗ + op(1).

Using equations (A.11) and (A.39) we get

RSS∗0 −RSS∗1 = Y ∗T
(
S∗[X] −X

∗
(
X∗TX∗

)−1
X∗T

)
Y ∗ + op(1). (A.40)

Combining equations (A.16) and (A.17) we get

Y ∗TS∗[X]Y
∗ = mT

[X]S
∗
[X]m[X] + 2mT

[X]S
∗
[X]ε+ εTS∗[X]ε+ op(1). (A.41)
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Using CLT it is easy to establish that mT
[X]
S∗[X]ε = op(1). From equation (A.30), we have

mT
[X]
S∗[X]m[X] = mT

[X]
m[X] + op(1). Then, equation (A.41) turns out to be

Y ∗TS∗[X]Y
∗ = mT

[X]m[X] + εTS∗[X]ε+ op(1). (A.42)

Note that

Y TX∗
(
X∗TX∗

)−1
X∗TY = mT

[X]m[X] + 2mT
[X]m[Z] + 2mT

[X]ε

+mT
[Z]X

∗
(
X∗TX∗

)−1
X∗Tm[Z] + 2mT

[Z]X
∗
(
X∗TX∗

)−1
X∗T ε

+ εTX∗
(
X∗TX∗

)−1
X∗T ε. (A.43)

Using condition (C8) and equation (A.39) it can be shown that the second and the forth
terms in equation (A.43) tend to zero in probability; and by CLT the third and the fifth
terms is asymptotically zero. Therefore

Y TX∗
(
X∗TX∗

)−1
X∗TY = mT

[X]m[X] + εTX∗
(
X∗TX∗

)−1
X∗T ε+ op(1).

As 1
n
mT

[X]
1n

a.s.
= E(m[X]) = 0, we get from the above equation

Y ∗TX∗
(
X∗TX∗

)−1
X∗TY ∗ = Y TX∗

(
X∗TX∗

)−1
X∗TY

−
1Tn
n
Y TX∗

(
X∗TX∗

)−1
X∗TY

1n

n

= Y TX∗
(
X∗TX∗

)−1
X∗TY + op(1)

= mT
[X]m[X] + εTX∗

(
X∗TX∗

)−1
X∗T ε+ op(1)

(A.44)

Combining (A.42) and (A.44), we get from (A.40)

RSS∗0 −RSS∗1 = εTS∗[X]ε− ε
TX∗

(
X∗TX∗

)−1
X∗T ε+ op(1)

≈
P∑
p=1

εT
(
Sp −Rp,1

(
RTp,1Rp,1

)−1
RTp,1

)
ε+ op(1), (A.45)

where Rp,1 =
rp
0 X(p) and b

aX(p) is defined in Equation (3). It can be shown that

Sp = Rp,2
(
RTp,2Rp,2

)−1
RTp,2, (A.46)

whereRp,2 =
kp−1
0 X(p). So Sp may be regarded as the hat matrix in context of the classical

regression in fitting of a kp degree polynomial. Equation (A.46) shows that columns of the
matrix Sp form an orthogonal basis for the column space of Rp,2. Similarly, columns of

Rp,1
(
RTp,1Rp,1

)−1
RTp,1 form an orthogonal basis for the column space of Rp,1. Using

some matrix calculations it can be shown that

Sp −Rp,1
(
RTp,1Rp,1

)−1
RTp,1 = Rp

(
RTpRp

)−1
RTp , a.s.,

where Rp =
kp−1
rp+1X(p). Now Rp

(
RTpRp

)−1
RTp is an idempotent matrix with rank (kp −

rp − 1). Hence

1

σ2
εTRp

(
RTpRp

)−1
RTp ε

a
≡ UTpUp ∼ χ2(kd − rp − 1),
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where

Up
a
≡

1

σ

(
RTpRp

)−1/2
RTp ε.

So (kd − rp − 1) components of Up are i.i.d. standard normal variables. From equation
(A.45), we get

1

σ2
(RSS∗0 −RSS∗1 )

a
≡

P∑
p=1

UTpUp,

where

Cov(Up,Up′ ) = lim
n→∞

1

σ2
Cov

((
RTpRp

)−1/2
RTp ε,

(
RTp′Rp′

)−1/2
RTp′ε

)
= lim
n→∞

(
RTpRp

)−1/2
RTpRp′

(
RTp′Rp′

)−1/2
. (A.47)

Rest of the proof is done using the same technique as the proof of Corollary 4.

Proof (Theorem 1) In this case, we can show that

RSS0 −RSS1 ≈
P1∑
p=1

εT
(
Sp −Rp,1

(
RTp,1Rp,1

)−1
RTp,1

)
ε+

P∑
p=P1+1

εTS∗pε+ op(1),

where Rp,1 =
rp
0 X(p). Hence, the proof of the theorem follows from Corollaries 3 and 4.

Proof (Theorem 2) Combining steps of Theorems 1 and 3, we get the proof of the current
theorem.
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