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Appendix B: Backfitting Estimators

Let us define my = (mp(Xp1), mp(Xp2), -+, mp(Xpn))T forp € {1,2,--- , P},and mp, =
(mpiq(Zq1)ymp1q(Zg2) -+ s mpiq(Zgn))T for ¢ € {1,2,---,Q}. The additive compo-
nents, mi, mo,--- ,mpiq, are estimated using the backfitting estimators. The first step is
to select a suitable smoothing matrix S4 for d € {1,2,--- , P+ Q}, where g = SgY res is
the estimator of mg, and Y ,es is the residual of Y = (Y7, -- ,Yn)T given other additive
components. This step is then repeated until convergence of all additive components (Hastie
and Tibshirani 1990). As X contains categorical or discrete valued random variables, the
bin smoother at a point mass is appropriate. Suppose, for j = 1,2,--- ,kp, there are n,;

observations at X, = x,;, where Zfil npj = n, p = 1,2,---, P. If the observations are
sorted according to the values of X, then the smoothing matrix for m,, is given by

—1
Tp1 Inp Onplw”p2 Onphnpkp
—1
Onp?anpl Npo anz s Onp?anpkp
SP: . . . . 7f0rp:1727”'7p7 (Al)
—1
Onpkpv"pl Onpkp’np2 o Mok, Inp,

where J, is a n X n matrix with elements 1, and Om,» is a m X n matrix with elements 0.
It essentially means that S, is constructed such a way that m,(z,;) is the partial mean of
Y res, where Xp = xp,; forp=1,2,--- ,Pand j =1,2,--- , kp.

The covariate Z may contain any type of random variable — categorical, discrete or
continuous. If some components of Z are categorical or discrete, then we use bin smoother
again. Otherwise, for continuous valued covariates, one may choose a smoother that uses
local polynomials. For the simplicity of notation, we assume that all covariates are con-
tinuous. In fact, the situation is even simpler for categorical or discrete covariates. Let dq
be the degree of the polynomial used for smoothing of Z; for ¢ = 1,2,---,Q. Note that
Nadaraya-Watson estimate (Watson 1964) is a trivial case of the polynomial smoothing
where the degree of the polynomial is zero. Suppose K (+) is the kernel function, and denote
Kn,(2) = hq_lK(ﬁ), where hq is the bandwidth parameter. Then, the smoothing matrix
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of Z4 is given by
T -1 T
Spig= (zquzqzzq) ZT K., forq=12-,Q, (A.2)

where K, = diag{th (Zg1 —2¢)s-++ Kh, (Zgn — zq)} is a diagonal matrix containing the
kernel weight, and
1 (Zg1 = 2q) .. (Zq1 — 29)%

1(Zg2 = 2q) . (Zg2 = 2q)%
qu = . . . .
1 (Zaqn = 2¢) -+ (Zgn — 2q)%
Then, the normal equations for the backfitting estimators (Buja et al. 1989; Opsomer and
Ruppert 1998) are given by

I, S8t ... &t my S*
S5 In ...S3| | ma S3
} . . = D e (A.3)
Sp+q@ Spiq - Inl Impig SP+a

where S} = (In — 1,17 /n)8, is the centered smoothing matrix for d = 1,2,--- , P + Q,
Y* =Y -Y1, and 1, is the n-dimensional vector of elements 1. The solution to the normal
equation (A.3) has the form

i I, St ...81q7'r st
o sy I, ...S} s
= . L ) Y*=M"lCcy”*,
mpiQ SPiq Skrq - In PtQ

provided the inverse exists. Here, M and C' are the associated matrices. So, the backfitting
estimator of my is given by

mg=E;M 1CY* =W, Y* d=1,2,--- ,P+Q, (A.4)

where Wy = E;JM~1C, and E, is a block matrix of dimension n x n(P + Q) with n x n
identity matrix in the d-th block and zero elsewhere.

Let us denote W = 25:1(2 W 4. Suppose W=l is the smoother matrix for the additive

model after dropping out the term containing mgy, d = 1,2,--- , P + Q. Then, the follow-
ing lemma from Opsomer (2000) ensures the existence and uniqueness of the backfitting
estimators of the additive model.

Lemma 1 If HS;W[_d]H < 1 for some d € (1,2,---,P + Q), where || - || denotes any
matriz norm, then the backfitting estimators uniquely exist and

Wa=1I— (I - s;w[—“l])_1 (In—83) = (I - s;w[—“”)_1 Sy (In - wi).
(A.5)

Appendix C: Proofs

Lemma 2 Let us assume that conditions (C2)-(C5) hold, then

1,17 1,17
Sy =8, +o(g) a.s.,
n n

T
foralld=1,2,--- ,P+Q. The term o (1"1" ) means that each element is of order o ( L )

n n
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Proof This property is proved in Opsomer and Ruppert (1997) using a local polynomial
fitting where the smoothing matrix is as defined in (A.2). This is also true for the point
mass bin smoother as

1,17 1,17
Sh=83—""8;=84— """ ford=1,2,---,P. (A.6)
n n
Note that for d = 1,2,--- , P the relationship is exact, and we do not need any assumption

for this.

Lemma 3 If the predictors and covariates are pairwise independent then, under conditions

(C1)-(C6), we have
1,17
S* */: —_—n c9ey
asq 0( " ) a.s
foralld#d €{1,2,---,P+Q}.

Proof Using equation (A.6) for p and p’ € {1,2,---, P}, we get

- 1,17 1,17
Spsp’ = (Sp - nn) (Sp/ — nn
1,17 1,17 1,17
_SpSp/— nnSp n"Sp/—i- non
n n
1,17
- 5,5, - o (A7)
n

Note that SpS, = Sp forp=1,2,--- ,P.Forp#p’ € {1,2,--- , P}, we define U = S;,S,,.
Here U is a block matrix containing each element in the rs-th block equal to

Urs = Z ;7

. NprTy,
VXpi:TpraXp/i:Ip/s pritp’s

where 7 = 1,2,--- ,kp and s = 1,2,--- , k. Using strong law of large numbers (SLLN) and
assumption (C1), we get

1
nurs 255 P(Xp = apr, Xpr = Tp)
cpTcp/S
_ P(XP:wPTvXp’ :xp’s) (A8)

P(Xp = xpr)P(Xp = ps)

Combining equations (A.7) and (A.8) the ij-th element of 5,5, becomes

1 P(X, = ',X/: ’s
(8355)i; = — ( (Xp = 2pi, Xpr = J)) — 1) a.s.
n

P(Xp = 2pi) P(Xpy = @1
So, the lemma is proved for p # p’ € {1,2,--- ,P}. Ford#d € {P+1,P+2,--- ,P+Q}
Opsomer and Ruppert (1997) have shown that under conditions (C2)—(C6)

. 1 ( faa(2dis 2a05) (lnIZ)
S ij=—| ——m—————— -1 —_— .S,
( d d)J n <fd(zdi)fd,(zd,j) > +o " a.s

where fg4/(+) is the joint distribution of Z; and Zg, whereas fg(-) and fq () are their
marginal distributions. So, the lemma is true for d # d' € {P+1,P +2,---,P + Q}.
Now, using condition (C8) and applying the same technique, we can prove this result when
d=1,2,---,P,andd'=P+1,P+2,--- , P+ Q, or vise versa.



4 Abhijit Mandal

Lemma 4 Let us denote W = ZgilQ W 4, where W g is given in equation (A.J). Then,
under conditions (C1)-(C6)

T
W=x~S8S*+o (ﬂ) a.s.,
n

where §* = 25:169 Sy
Proof For P+ Q = 2, we get
w1 = 8% and Wi = 57
From equation (A.5), we have
Wi =(In —87183)7" 8] (In — 53). (A.9)

Using Lemma 3, we have the following approximation

1,17
(InfSTsz)_lzIn+o( n”) a.s. (A.10)

This approximation is exact when the corresponding predictors or covariates are pairwise
independent. Combining equations (A.9) and (A.10), we get

1,17
WixSi+o (g) a.s.
n

T
Similarly Wy ~ S5 +o (%) a.s. Now, for all values of P and @, we prove by recursion
that

Wair S)+o <1nnl£) a.s
Therefore, by taking summation over d =1,2,--- | P 4+ @ the lemma is proved.
Lemma 5 Suppose conditions (C1)-(C4) and (C8) are satisfied. Then, under H*,
mTS;m = op(1),
forallp=1,2,--- P, where m = Z;:ilQ my.

Proof Note that

Spmp =myp forallp=1,2,--- , P. (A.11)
For p = 1,2,--- ,P and ¢ = 1,2,---,Q we define u = Sympy, = (u1lz;p1,uglgfp2,
S Uny, lg;pkp )T. Then
Z .
w= 3 me+alZai) g iy o k.
0 Xpi=Tpj Tpj

Using strong law of large numbers (SLLN) and assumption (C8) we get

a.s,
uj == Elmpyq(Zq)| Xp = xp;] = 0.

So
Spympiq=0n1 as forallp=1,2,--- ,Pand¢g=1,2,---,Q. (A12)

Hence, under Hg*, for allp =1,2,--- , P

P P
m?Spym = <Z m§> Sp (Z mp> + 0p(1) = op(1). (A.13)
d=1 d=1
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Again using SLLN we get

1Tmpiy as,
e == Elmpiq¢(Zq)] =

for all ¢ = 1,2,---,Q. Similarly, 1z;mp/n =0 as. for all p = 1,2,--- | P. Hence using
Lemma 2 the lemma is proved from equation (A.13).

Lemma 6 Denote Ag,, = (W — I,)T(W — I,), then under conditions (C1)-(C6)
*T Q* * *T 17112
Aoy =S S*—S*"—S"" +I,+0 —>) as.,
n

where S* = ZPJrQ Sy

Proof Using Lemma 4, we get

* T * 1”7«12
Aoy = (8" —I,)" (S*"—In)+o| —2 | as.

n

*T Q* * *T 1”7«12
=88 -8 -8 +In+o(—= | as. (A.14)
n

Proof (Corollary 4) Denote A1, = (W |z fIn)T(W[Z] —1I,), where W is the smoother
matrix for the additive model after dropping all P predictors. Using an argument similar to
that in the proof of Lemma 6, we find

A srLsr, — 8, —StL+1 Lnly )
In % 517)5(2) = S[z) ~ Blzy T In Fo| == ) as,

WhereS Zd 18P1q So

~ * *T *T Q* * *T lan
Ain = Azn % Six) + Six) — Six)Six) — S[XJS[Z]—S[X1S[Z]+O( w ) &S (A19)

X] = 25 187 Now §787 = §7 and S T =8} ford=1,2,---, P. From the technique

used in Lemma 3, it can be shown that SFX] E‘Zqi is a symmetric matrix. So, using Lemma

) o ()

3 equation (A.15) reduces to

Aqip —AQnNS[X]+O(

Now

RSS;* — RSS; = Y*T (A1, — A2,)Y™

Y*TS5Y™* +0,(1)

1,17\7 1,17
YT (In - M) S (In - M) Y +op(1)
n n

2
[ 11>

d=1

I
M~

YTS5Y 4 0,(1) (A.16)

<%
Il
—

Let us define € = (e1,--- ,€en)”. Then

P P P
RSS3* —RSST =Y m'Sim+2) €'Sim+ Y €' Sie+o0p(1). (A.17)
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Using Lemma 5, under Hg*, we have
mTS%m = o,(1) for alld = 1,2,--- , P.

Moreover, using (A.12) it is easy to show that, under Hj*, eTS:lm = o0p(1) for all d =
1,2,---, P. Hence, from (A.17), we get

P
RSS5* — RSS; =Y € Sje + 0p(1). (A.18)
d=1

Now, for d =1,2,---, P, using the definition in (A.1), we have

kd
1

el Sye = Z —(e;‘ze)Teg;e, (A.19)

1 Ny

J
where eg; is a vector with ny; elements one and rest are zero. If Xg4; = x4;, then the i-th
element of eg; is one. Note that in this definition, we did not sort Xy according to their
observed values. As E[e2] < oo under condition (C7), using central limit theorem (CLT), we
get

elie = Ug ~ N(0,1).

0\/MNdj
As eg;e and egl;./e are independent for all j # j' € {1,2,--- ,kq}, the components of Uy =
(Ug1,Uq2,- -, Udkd)T are i.i.d. standard normal variables. Therefore, from (A.19), we have

ﬁeTSde 2 x2(kq). Let us define

kq n
_ [ng;
U= E - Udj'
j=1 n

Then U = cgU,i a.s., where ¢q = (\/Cd1,1/Cd2, """ 5 /cdkd)T. Note that U2 = %eTe. Hence
1 . a
;GTSde = Ug (Ikd — cdcg) Ug~x3(kqg—1),

because (I, — cdcg) is an idempotent matrix of rank (k4 — 1). If all predictors are pairwise
independent, then from Lemma 3, we get

1,17
S% 2/20(7"”"> a.s

for d # d' € {1,2,---, P}. So, eTS;e and eTSZ,e are asymptotically independent for all
d # d’ (see p. 84 of Bapat 2012). Therefore, if the predictors are pairwise independent, then
under Hy*, equation (A.18) gives

P

1 * %k *

—5 (RSS5" — RSSY) 22 <Z(kd - 1)> ) (A.20)
d=1

However, in general, the above distribution comes out to be a sum of P dependent chi-square
variables as

i

1 ok xy &

—5(RSS5" — RSS7) £ U (Ikd - cdch) U,. (A.21)
d=1
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Suppose d #d' € {1,2,--- ,P}, j=1,2,--- kg and j' = 1,2,--- , kg, then the correlation
between Uy; and Uy is given by

Corr(Ugj,Ugrj) = lim Corr( ! eg;-e, ! egj,e>
n—00 o\/Ndj o\/Mdl i
lim Z #
noee i:Xdi:xdj,Xd/i:xd/j, VA
1

The last expression is derived using the same techniques as used in equation (A.8). Note that
combining equations (A.21) and (A.22), we obtain result (A.20) if the predictor variables
are independent.

Now, it is easy to show that

P(Xq=wg4;, Xq = xqrj1). (A.22)

1 1
—RSS; = ~Y*TA,,Y*
n n

R

1 *T *T Q* * *T 1”115 *
-Y S8 -8 -8 +In+o| —— Y
n

= 0%+ op(1). (A.23)

Therefore, using Slutsky’s theorem, o2 in (A.21) may be replaced by %RSS{, and therefore
P
a
A(HE) E S UT (Ikp - cpc?;) U,. (A.24)
p=1

Define U = (U?,Ug, e ,UE)T, and U* = XU, where X' is defined in Section 4.4. As
¥y is an idempotent matrix, A, (Hg*) in equation (A.24) is written as

MH 2UTZ U =UTU™, (A.25)
Now, the covariance matrix of U is Xy (defined in Section 4.4), which is a block matrix

with p-th diagonal block is an identity matrix of order kj, and the ij-th element of the
pp’-th off-diagonal block is given in (A.22). So, the covariance matrix of U* is X1 X9 3.

Let A1, A2,---, s are non-zero eigenvalues of X1 3531, where s is the rank of 313> 3.
Suppose V = (V4,Va,--+,V5)T is a vector of i.i.d. standard normal variables, and A =
diag(A1, A2, -+, As). Then, from (A.25), the theorem is proved as

s
A (HZ) EVTAV =S N2
=1

Theorem 3 Let us consider the motations and assumptions of Corollary 4. Then, under

Hy, the asymptotic distribution of the GLR test statistic coincides with 62 + > )\iViQ,
where 62 = S0 _ E(mrm?).

r,s=1

Proof If H}* is not true, then from (A.17), we get

P P
RSS3* — RSST = mTSim+ Y €' Sie+op(1). (A.26)
d=1 d=1

Now, the result in equation (A.21) reduces to

P P
% S TSpe=> UY (Ikd - cdch> U, (A.27)
d=1 d=1
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From the proof of Lemma 5, we have

P P
mTS,m = <Z mZ) Sy <Z mp> + op(1). (A.28)
d=1

d=1
Using Spmyp = my, we get mL Spm, = mI'm,y, for all p,r = 1,2,--- , P. Hence
1
~mIs,m, a5 E(mTm,).
n
Suppose u;; is the (i, j)-th element of mI Sp,ms for some p,7,s =1,2,---, P. Then
< (Xr)ms(Xs)
m i )m i
1=1 (4,§): X pi=Xpj = p; pl
Note that

—( 2 s(Xs5) a8 E(mrms|Xp = xp1).
(i,j):)(pi_—xpj_—zpl jl

So, using condition (C1), we get from equation (A.29)

a.s, 1 a.s,
ui; — E(mrms) and ;uij —= 0.

Hence, from equation (A.28), we get

P
1
;mTSpm = Z E(mymyp) + op(1).

Therefore
12 P
=y mTSym= > E(msms)+op(1). (A.30)
n p=1 r,s=1
As E(mp) =0forallp=1,2,---, P, we get
1 2 P
- > - mTSym = >" E(mrms)+ op(1). (A.31)
p=1 r,s=1

Combining (A.23), (A.26), (A.27) and (A.31) the theorem is proved.
Proof (Corollary 8) The residual sum of squares under H} can be written as
~ \\T ~ ~
RSS5 = (Y = X"0-Wiz (Y = X'8)) (Y'-X"0-Wz (Y - X"9))
* *n * T * *7 *

= (Y - I = W) X - Wi Y") (Y= (In - Wiz) X6 - W5 Y")

—y*T (In7An7W[Z])T(In7An7W[Z]> Y, (A.32)
where

-1
A= (In = Wiz) X* (X7 (I = Wz) X*) X (I - Wiz). (A.33)

Using Lemma 4 it can be shown that

Q Q T
* 1n1n
Wiz = E Wpig~ E Sp+q+o( - ) a.s. (A.34)
g=1 g=1
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Hence

1,17
In =Wz =1In+o (%) a.s..

Therefore, equation (A.33) reduces to

1 1n1T
A, = X* (X*TX*) xT 4o (4) as. (A.35)
n

As X* (X*TX*)71 X*T is an idempotent matrix, using (A.34) and (A.35) we get from
equation (A.32)

-1
* *T *T Q% * *T * *T * *T
RSS5 = YT (Ln+ Si71Sty — Sty - Sih - X* (X TXx*) X
+ 8T x* (X*TX*) xeT 4 xr (X*TX*) I xTg )Y* +op(1).  (A.36)
[2] [Z] PRI :
Suppose 6 is the true value of @ under H{j. So, under Hjj, the model can be written as
Y =al, +X*90 +m[z] + €,

where mz] = ZqQ:l mpq(-). Opsomer and Ruppert (1999) have shown that 0 is a con-
sistent estimator of 8g. Hence, under Hy, from equation (A.34) we get

P
-1
X+ (X*TX*) X Ty* = X0 % X*00 =Y my() = my). (A.37)
p=1

Using a similar technique of equation (A.12) it can be shown that
Symp =0y, as. forallp=1,2,--- ,Pand ¢ =1,2,---,Q. (A.38)
So, combining (A.37) and (A.38) we get
-1
YTSEX (X TX) X TY* = Y TS}, myx) +op(1)

Tz]m[X] + Op(l)
)

[
= op(1). (A.39)

=m

Hence, equation (A.36) simplifies to
—1
* *T *T Q* _ * _ *T * *T * *T *
RSS; =Y (In + i3Sty — Sty - SiH - X" (XTXT) X ) Y™ + op(1).
Now, proceeding the same way as the proof of Corollary 4, we get
* * *T * _ *T Q* _ *T Q*
RSS§ — RSST = YT (281 - St Stx) - S5 Six)
—1
*T Q* * *T * *T *
— S8 - X (XTXT) XY 4+ 0p(1).
Using equations (A.11) and (A.39) we get
-1
RSS; — RSS; =Y*T ( N - X (X*TX*) X*T) Y™ + op(1). (A.40)
Combining equations (A.16) and (A.17) we get

Y*TSE‘X]Y* = m&]SFX]m[X] + 2m[TX]S’[*X]e + eTS’[*X]e + op(1). (A.41)
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Using CLT it is easy to establish that m&]SFX]e = op(1). From equation (A.30), we have

m[q;(]SFX]m[X] = m%;(]m[X] + op(1). Then, equation (A.41) turns out to be
Y*TSE‘X]Y* = m[j;(]m[x] + eTSE‘X]e + op(1). (A.42)
Note that
-1
YyTx* (X*TX*) x*Ty = m&]m[X] + Zm&]m[Z] + Zm&]e
—1 —1
+ml X (XTX) T X Tmyg + 2ml X* (XTX7) X" Te
-1
+ el X (X*TX*) X*Te. (A.43)
Using condition (C8) and equation (A.39) it can be shown that the second and the forth
terms in equation (A.43) tend to zero in probability; and by CLT the third and the fifth
terms is asymptotically zero. Therefore
—1 —1
YTX* (X*TX*> X*TY — m[q;{]m[X] + GTX* (X*TX*> )<->|<T€+ Op(l).

a.s.

As

S|=

T
M)

E(m[x)) = 0, we get from the above equation
Y*TX* (X*TX*)ilx*Ty* — YTX* <X*TX*>71X*TY
—£YTX* (X*TX*>71 X*TYll
n n
T T b T
—yTx* (X* X*) X*TY + 0,(1)
-1
= mlmpy + e X" (X*TX*) X*Te+op(1)
(A.44)
Combining (A.42) and (A.44), we get from (A.40)

RSS3 — RSS}

-1
eTSE‘X]e—eTX* (X*TX*> X*Te+ 0p(1)

R

P —1
> er (sp — Ry (R:ZJRP,I) RTTJ) e+op(1),  (A.45)
p=1

where Ry, 1 = SPX(p) and b X ;) is defined in Equation (3). It can be shown that

-1
Sp =Ry (Rngp72) Rz;,za (A.46)

where R, 2 = IgpilX(p). So §p may be regarded as the hat matrix in context of the classical
regression in fitting of a kj, degree polynomial. Equation (A.46) shows that columns of the

matrix Sp form an orthogonal basis for the column space of Ry 2. Similarly, columns of

-1
Ry (RZ;JRPJ) RZ;I form an orthogonal basis for the column space of R, 1. Using
some matrix calculations it can be shown that

—1 -1
Sy~ Rp1 (RD.1Rp1) RL, =R, (RIR,) RI, as,

kp—1
Tpt+1
rp — 1). Hence

X (). Now R, (RTR,) ' RY

, is an idempotent matrix with rank (kp —

where R, =

1 -1
<" Ry (RZR,,) RIeZ2UTU, ~ x2(kg—rp — 1),
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where

U, = % (Rng)_l/2 Rle.

So (kq — rp — 1) components of U, are i.i.d. standard normal variables. From equation
(A.45), we get

P

1

— (RSS; — RSS) £ > UTU,
p=1

o
where
. 1 —1/2 —1/2
Cov(Up,U,) = lim — Cov ((R{Rp) R7e, (Rg,Rp,) Rg,e)
o T -1/2 . T —1/2
= lim (RIR,) " RIR, (RLR,) ' (A.47)

Rest of the proof is done using the same technique as the proof of Corollary 4.

Proof (Theorem 1) In this case, we can show that

P ) P
RSSo—RSS1 ~ 3 " (Sp ~R,, (RglRp,l) Rgl) e+ > 'Sietop(D),
p=1 p=P1+1

where Ry 1 = SPX@). Hence, the proof of the theorem follows from Corollaries 3 and 4.

Proof (Theorem 2) Combining steps of Theorems 1 and 3, we get the proof of the current
theorem.
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