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Abstract
In multivariate nonparametric regression, the additive models are very useful when a
suitable parametric model is difficult to find. The backfitting algorithm is a powerful
tool to estimate the additive components. However, due to complexity of the estima-
tors, the asymptotic p value of the associated test is difficult to calculate without a
Monte Carlo simulation. Moreover, the conventional tests assume that the predictor
variables are strictly continuous. In this paper, a new test is introduced for the addi-
tive components with discrete or categorical predictors, where the model may contain
continuous covariates. This method is also applied to the semiparametric regression to
test the goodness of fit of the model. These tests are asymptotically optimal in terms of
the rate of convergence, as they can detect a specific class of contiguous alternatives at
a rate of n−1/2. An extensive simulation study and a real data example are presented
to support the theoretical results.

Keywords Additive model · Categorical data analysis · Backfitting algorithm ·
Generalized likelihood ratio test · Semiparametric model · Local polynomial
regression

1 Introduction

The additive model is a widely used multivariate smoothing technique. It was orig-
inally suggested by Friedman and Stuetzle (1981) and popularized due to extensive
discussion in Hastie and Tibshirani (1990). It models a random sample {(Yi , X i ) : i =
1, 2, . . . , n} by
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1398 A. Mandal

Yi = α +
P∑

p=1

m p(X pi ) + εi ,

where the random error εi has mean zero and constant variance σ 2 and the additive
component m p is an unknown smooth function for p = 1, 2, . . . , P . Stone (1985,
1986) have shown that the additive model reduces a full P-dimensional nonparametric
regression effectively to a one-dimensional problem by fitting themodel with the same
asymptotic efficiency, i.e., an optimal convergence rate of n−2/5 for twice continuously
differentiable functions. So, it has the very desirable property of reducing the “curse
of dimensionality” in a satisfactory manner. In this paper, the additive function is
estimated using the backfitting algorithm proposed by Buja et al. (1989). Opsomer and
Ruppert (1997),Wand (1999) andOpsomer (2000) studied asymptotic properties of the
backfitting estimators. In the literature, there are several other algorithms, such as the
marginal integration estimation method (Tjøstheim and Auestad 1994), the estimating
equationmethod (Mammen et al. 1999) and the Bayesian backfitting algorithm (Hastie
and Tibshirani 2000).

To our knowledge, there are relatively limited theoretical results on the testing
problem for the additive models where discrete or categorical (possibly mixed with
continuous) explanatory variables are considered. Sperlich et al. (2002) and Yang
et al. (2003) considered marginal integration estimators to construct tests for testing
the additive components with continuous variables. The asymptotic critical values of
these tests are difficult to obtain due to the complicated expressions for the bias and
the variance of the test statistic. Moreover, the authors observed that the asymptotic
accuracy of their result is limited for small and moderate sample sizes. In the same
setup, Fan et al. (2001) and Fan and Jiang (2005) proposed the generalized likelihood
ratio (GLR) test for testing the significance of additive components using backfitting
estimators. The idea is based on comparison of pseudo-likelihood functions under
the null and the alternative hypotheses, which leads to the log ratio of the variance
estimators under the null and the alternative. Similar to the maximum likelihood ratio
tests in parametric models, the GLR test has an important fundamental property that
the asymptotic null distribution of the test is independent of nuisance parameters
and functions. This property is referred to as the Wilks phenomenon. The GLR test
is asymptotically distribution-free, and it is asymptotically optimal in terms of con-
vergence of the nonparametric hypothesis testing problem (see Ingster 1993a, b, c;
Spokoiny 1996). However, the authors mentioned that the GLR test may not be accu-
rate as the test statistic contains an unknown bias term. So, aMonte Carlo simulation or
a bootstrap technique is performed to calculate the p value of the test. This somehow
restricts the method for being widely applicable among the general practitioners.

In this paper, we propose a GLR test for the additive components having discrete- or
categorical-valued predictors, while the model may contain continuous-valued covari-
ates. For categorical predictors, this test may be regarded as the generalized analysis of
covariance (ANCOVA), where covariates aremodeled by nonparametric functions and
the normality assumption on the error term is not required. In this case, the predictors
may be referred as treatment or block of the design of experiment.
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The rest of the paper is organized as follows. We give an overview of the non-
parametric additive model and the semiparametric additive model in Sects. 2 and 3,
respectively. In Sect. 4, we introduce the GLR test and present the theoretical proper-
ties. Extensive simulation studies are performed in Sect. 5 to explore the behavior of
the proposed test. In Sect. 6, we apply our method to analyze a real data containing
diamond price and we propose an appropriate model based on quality attributes and
physical measurements. Section 7 contains some concluding remarks. The assump-
tions of the theorems are given in “Appendix A.” Online Appendix B presents a brief
description of the backfitting estimator. The proofs of the theorems are given in Online
Appendix C.

2 The nonparametric additive model

Let us consider a one-dimensional response variable Y , a P-dimensional predic-
tor X = (X1, X2, . . . , X P )T and an additional Q-dimensional covariate Z =
(Z1, Z2, . . . , Z Q)T. We assume that X contains only discrete or categorical vari-
ables, but Z may contain all types of variables—categorical, discrete or continuous.
If X p is a discrete-valued random variable, then kp denotes the number of distinct
values, x p1, x p2, . . . , x pkp , where kp < ∞ for all p = 1, 2, . . . , P . If X p is a
categorical variable, then x p1, x p2, . . . , x pkp are different levels of the variable. Let
(Y1, X1, Z1), . . . , (Yn, Xn, Zn) be a random sample of size n from (Y , X, Z). The
nonparametric additive model is given by

Yi = α +
P∑

p=1

m p(X pi ) +
Q∑

q=1

m P+q(Zqi ) + εi , (1)

where the random error εi has mean zero and a constant variance σ 2. To ensure
identifiability of components of the additive model, we set E(m p(X pi )) = 0 for all
p = 1, 2, . . . , P and E(m P+q(Zqi )) = 0 for all q = 1, 2, . . . , Q. The intercept
parameter α = E(Yi ) is generally estimated by α̂ = Ȳ = ∑

i Yi/n. The backfitting
estimator is used to estimate the nonparametric functions md(·) for d = 1, 2, . . . , P +
Q. For the ease of readability, a discussion on the backfitting estimators is given
in Online Appendix B. We have divided regressors into two groups—predictor and
covariate, as we construct a test of significance for predictors only, whereas their
effect is adjusted by “nuisance” covariates. In other words, if we are interested to test
the effect of a subset of regressors in the additive model, we name those regressors
as predictors and remaining regressors as covariates. We require all predictors to be
discrete or categorical variables, but there is no restriction on covariates.

3 The semiparametric additive model

The semiparametric additive model (SAM) is the combination of a parametric model
and a nonparametric additive model. Here, some of the additive components are
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modeled parametrically, while the remaining ones are unspecified and are estimated
nonparametrically. First, we model predictors parametrically and covariates nonpara-
metrically, and then, a generalized model is considered. In general, the predictors are
assumed to be discrete-valued random variables. However, if the predictors are ordinal
categorical variables, their order or rank may also be modeled parametrically. Let us
consider the following SAM model:

Yi = α +
P∑

p=1

m p,θ p (X pi ) +
Q∑

q=1

m P+q(Zqi ) + εi , (2)

where Mp,�p = {m p,θ p (X pi ), θ p ∈ �p} is a family of parametric functions for
p = 1, 2, . . . , P . We assume that m p,θ p (·) is completely known except for the value
of the parameter θ p, p = 1, 2, . . . , P . Opsomer and Ruppert (1999) and Jiang et al.
(2007) have studied this model when the parametric models are linear functions. One
might be interested to build a SAM when the main interest of study is to precisely
quantify the effect of the predictors X1, X2, . . . , X P on the dependent variable Y , but
the relationship is observed in the presence of “nuisance” covariates Z1, Z2, . . . , Z Q .
The use of the parametric forms for predictors, if properly specified, allows us to
make an easily interpretable inference about their effect on Y . On the other hand,
modeling covariates nonparametrically, one may avoid potential introduction of bias
in the estimated relationship between predictors and Y . Another possible situation
when a SAM would be useful, if someone is fairly confident about the shape of the
relationship between predictors and Y , but not about that of the other covariates. It can
be shown that bymodeling some predictors using appropriate parametric functions, the
risk of over-fitting the model is reduced by decreasing the overall degrees of freedom
of the test.

To ensure the identifiability of the model, we assume that the expectation of
the parametric term is zero, i.e., E[m p,θ p (X p)] = 0 for all p = 1, 2, . . . , P , and
E(m P+q(Zqi )) = 0 for all q = 1, 2, . . . , Q. We consider the case where m p,θ p (·)
is a polynomial for all p = 1, 2, . . . , P . As X p takes kp values, one needs at most
(kp − 1) parameters to completely specify m p,θ p (·). So, we assume that m p,θ p (·) is a
polynomial of degree rp, where 0 < rp < kp − 1, p = 1, 2, . . . , P . Therefore, with
a slight abuse of notation, we write

m p,θ p (X p) = αp +
rp∑

s=1

θps Xs
p,

where θ p = (θp1, θp2, . . . , θprp )
T, p = 1, 2, . . . , P . Note that αp is not an

independent parameter, it just makes m p,θ p centered at zero. Let us define θ =
(α∗, θT1 , θT2 , . . . , θTP )T, where α∗ = ∑

p αp. For a < b, we define
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b
aX(p) =

⎡

⎢⎢⎢⎢⎣

Xa
p1 Xa+1

p1 . . . Xb
p1

Xa
p2 Xa+1

p2 . . . Xb
p2

...
...

. . .
...

Xa
pn Xa+1

pn . . . Xb
pn

⎤

⎥⎥⎥⎥⎦
, (3)

and if a = b then b
aX(p) is a vector containing the first column of Eq. (3). Let X∗ =

(1n,
r1
1 X(1),

r2
1 X(2), . . . ,

rP
1 X(P)). Then, following Speckman (1988), the estimates of

the additive components are derived from the backfitting algorithm as the solution of
the following equations:

˜θ =
(
X∗TX∗)−1

X∗T
⎛

⎝Y∗ −
Q∑

q=1

m̃P+d

⎞

⎠,

m̃P+q = S∗
P+q

⎛

⎝Y∗ − X∗
˜θ −

∑

d �=q

m̃P+d

⎞

⎠, for q = 1, 2, . . . , Q, (4)

provided (X∗TX∗)−1 exists. Here, S∗
P+q is the centered smoothing matrix S∗

d for
d = P + q as defined after Equation (A3) in Online Appendix B. Suppose W P+q

is the additive smoother matrix of mP+q , so that the backfitting estimate of mP+q is

m̃P+q = W P+q(Y∗ −X∗
˜θ) for q = 1, 2, . . . , Q. Let us defineW [Z ] = ∑Q

q=1 W P+q

and m̃[Z ] = ∑Q
q=1 m̃P+q . Then, the above normal equations are solved non-

iteratively as

˜θ =
(
X∗T (

In − W [Z ]
)
X∗)−1

X∗T (
In − W [Z ]

)
Y∗,

m̃[Z ] = W [Z ]
(
Y∗ − X∗

˜θ
)

. (5)

Sometimes the experimenter may have a prior knowledge about some of the vari-
ables and would like to model them parametrically, whereas keeping other variables
in the nonparametric model. In that case, one may consider the following generalized
SAM model:

Yi = α +
P1∑

p=1

m p,θ p (X pi ) +
P∑

p=P1+1

m p(X pi ) +
Q1∑

q=1

m P+q,θ P+q (Zqi )

+
Q∑

q=Q1+1

m P+q(Zqi ) + εi , (6)

where P1 ≤ P, Q1 ≤ Q and Mp,�p = {m p,θ p (X pi ), θ p ∈ �p} for
p = 1, 2, . . . , P1, MP+q,�P+q = {m P+q,θ P+q (Zqi ), θ P+q ∈ �P+q} for q =
1, 2, . . . , Q1 are families of parametric functions. For simplicity, we assume thatmd is
a polynomial of degree rd for all d = 1, 2, . . . , P1 and d = P +1, P +2, . . . , P + Q1.
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4 The generalized likelihood ratio test

Let us consider the generalized SAMmodel defined in Eq. (6). For thismodel, onemay
be interestedmainly in two types of tests based on the predictor variables—agoodness-
of-fit test for the parametric function and a model utility test for the nonparametric
function. First, we present the generalized test that includes both types of tests, and
then, we discuss about the individual test. So, we are now interested in the following
null hypothesis:

H0 : m p(·) ∈ Mp,�p for p = 1, 2, . . . , P1, and m p(·)
= 0 for p = P1 + 1, P1 + 2, . . . , P. (7)

Under H0, we define m̃d(·) and m̃d ,̃θd
as the backfitting estimators of md(·) and md,θd ,

respectively. Then, the residual sum of squares, under H0, is given by

RSS0 =
n∑

i=1

⎛

⎝Yi − α̂ −
P1∑

p=1

m̃ p,̃θ p
(X pi ) −

Q1∑

q=1

m̃ P+q ,̃θ P+q
(Zqi ) −

Q∑

q=Q1+1

m̃ P+q(Zqi )

⎞

⎠
2

.

As we are testing only for predictors by keeping covariates unchanged, the uncon-
strained model is

Yi = α +
P∑

p=1

m p(X pi ) +
Q1∑

q=1

m P+q,θ P+q (Zqi ) +
Q∑

q=Q1+1

m P+q(Zqi ) + εi . (8)

Under this model, the residual sum of square is given by

RSS1 =
n∑

i=1

⎛

⎝Yi − α̂ −
P∑

p=1

m̂ p(X pi ) −
Q1∑

q=1

m̂ P+q ,̂θ P+q
(Zqi ) +

Q∑

q=Q1+1

m̂ P+q(Zqi )

⎞

⎠
2

,

where m̂d(·) and m̂d ,̂θd
are the backfitting estimators of md(·) and md,θd , respectively,

under the unconstrained model. The generalized likelihood ratio (GLR) test statistic
for testing null hypothesis H0 is defined as

λn(H0) = n(RSS0 − RSS1)

RSS1
. (9)

If the difference between RSS0 and RSS1 is small, then the GLR test statistic may
be approximated by n log(RSS0RSS1

). In the parametric model, this is equivalent to the
log-likelihood ratio test statistic, where estimators are replaced by the corresponding
maximum likelihood estimators. Generally, the nonparametric maximum likelihood
estimate does not exist and even when it does exist, the resulting maximum likelihood
ratio test is not optimal (see Fan and Jiang 2005; Hall and Marron 1988). So, the GLR
test statistic may be regarded as a log ratio of the quasi-likelihoods.
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An optimal test for the additive model 1403

We assumed homoscedasticity of the error term, i.e., error εi in model (6) has a
constant variance. If this assumption is not valid, one may consider a GLR statistic
by taking weighted residual sum of squares. The subsequent analysis and the back-
fitting algorithm will be modified similar to the weighted likelihood approach for the
parametric models.

4.1 Asymptotic distribution

To derive the null distribution of the GLR test statistic, let us define cp =
(
√

cp1,
√

cp2, . . . ,
√cpkp )

T, where cpj = P(X p = x pj ) for j = 1, 2, . . . , kp and
p = 1, 2, . . . , P . We also define b

aZ(P+q) in a similar way of b
aX(p) as defined

in Eq. (3) by replacing X with Z. Let us denote T∗ = (1n,
r1
1 X(1),

r2
1 X(2), . . . ,

rP1
1 X(P1),

rP+1
1 Z(P+1),

rP+2
1 Z(P+2), . . . ,

rP+Q1
1 Z(P+Q1)). Suppose I = ∑P1

p=1(kp −
rp − 1) + ∑P

p=P1+1 kp, and �1 is a I × I -dimensional block diagonal matrix whose
pth diagonal block is an identity matrix of order (kp − rp − 1) if p ≤ P1, and(
Ikp − cpcTp

)
if p > P1. Define another I × I -dimensional block matrix �2, whose

pth diagonal block is the identity matrix of order (kp − rp − 1) if p ≤ P1, and of
order kp if p > P1. For p �= p′ ∈ {1, 2, . . . , P}, the pp′th off-diagonal block of �2
is given by

�pp′ = lim
n→∞

(
RT

pR p

)−1/2
RT

pR p′
(
RT

p′ R p′
)−1/2

, (10)

where R p = kp−1
rp+1X(p) if p ≤ P1 and R p = kp−1

0 X(p) if p > P1. Then, the following
theorem gives the asymptotic null distribution of the GLR statistic.

Theorem 1 Suppose that regularity conditions (C1)–(C8) in “Appendix A” hold. Fur-
ther assume that the limit of n−1T∗TT∗ exists and it is invertible. Let us consider the
unconstrained model (8) and the null hypothesis H0 in (7), where m p,θ p is a polyno-
mial of degree rp and 0 < rp < (kp − 1), for p = 1, 2, . . . , P1. Then, under H0,
the asymptotic distribution of the GLR test statistic coincides with

∑s
i=1 λi V 2

i , where
V1, V2, . . . , Vs are independent and identically distributed (i.i.d.) standard normal
variables, λ1, λ2, . . . , λs are nonzero eigenvalues of �1�2�1 and s is the rank of
�1�2�1.

The proof of the theorem is given in Online Appendix B. Theorem 1 shows that
the asymptotic null distribution of the GLR test statistic is a linear combination of
Chi-square variables. The critical region of the test may be calculated using the algo-
rithm proposed by Davies (1980). Note that the null distribution does not depend on
the modeling of covariates as we keep covariates unchanged under both the null and
the alternative hypotheses. But, in practice, it reduces the possible over-fitting; thus,
the finite sample performance of the test improves due to parametric modeling those
covariates. However, one must be careful while modeling covariates, and it is impor-
tant to verify whether such a parametric model is valid or not. A wrong model may
cause severe power loss as demonstrated in the simulation studies. A special case of
Theorem 1when the predictor variables are pairwise independent, the null distribution
is reduced to a single Chi-square as mentioned in the following corollary.
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Corollary 1 Suppose that the predictor variables are pairwise independent, and the
assumptions of Theorem 1 hold. Then, under H0, the asymptotic distribution of the
GLR test statistic is a Chi-square distribution with degrees of freedom

∑P1
p=1(kp −

rp − 1) + ∑P
p=P1+1(kp − 1).

It is shown in the simulation section that even if the predictors are not pairwise
independent one may approximate the null distribution using Corollary 1 unless pre-
dictors are strongly correlated. Simulation studies show that the approximation makes
the test little anti-conservative in small or moderate sample sizes. However, as sample
size increases, it gives a good approximation.

It is interesting to note that the asymptotic null distribution of the GLR test statistic
does not depend on the nuisance parameters—the design densities of Z, md functions
for the covariates and the error distribution. But, in general, it depends on the design
densities of X as shown in Theorem 1. So, the Wilks phenomenon does not hold in
the true sense; however, it holds good if predictors are pairwise independent.

The main advantage of our method is that it is easy to calculate the p values of the
test. In fact, the discrete-valued predictors make the test simple. On the other hand, as
shown by Fan and Jiang (2005) and Jiang et al. (2007), if the predictors are continuous
the GLR test becomes complicated, and the asymptotic null distribution depends on
kernel density functions and bandwidth parameters. Moreover, the authors mentioned
that the null distribution may not be accurate as the test statistic contains an unknown
bias term. So, the null distribution is calculated by Monte Carlo simulation or using a
conditional bootstrap method. In our test, we do not need any additional conditions to
choose the bandwidth parameter for continuous covariates as long as assumption (C5)
holds. Therefore, for simplicity, we may use the same bandwidth parameter which is
optimal for estimation (see Sect. 5).

Themain contribution of this paper is that theGLR test is constructed for the additive
components with discrete or categorical predictors. The asymptotic distribution of
the GLR test statistic is derived in Fan and Jiang (2005) with the strict assumption
that all the predictors and covariates are continuous; more specifically, their marginal
distributions must be Lipschitz continuous on some bounded support. Keeping in
mind the real applications, this restriction is modified for the discrete or categorical
predictors. For this reason, the proof of the theorem does not directly follow from the
previous method, and we used a novel approach to derive the asymptotic distribution.

4.2 Power function

We now consider the power function of the GLR test. Let us take the following con-
tiguous alternative hypothesis:

H1 : m p(·) = n−1/2m∗
p(·) for p = 1, 2, . . . , P,

wherem∗
p is an additive function under the alternative hypothesis such that E(m∗

p) = 0.
We define m′

p as the best fitted polynomial of degree rp to m∗
p for p = 1, 2, . . . , P1

and m′
p = m∗

p for p = P1 + 1, P1 + 2, . . . , P . Using the following theorem, we get
the power function of the GLR test.
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Theorem 2 Let us consider the notations and assumptions of Theorem 1. Then, under
H1, the asymptotic distribution of the GLR test statistic coincides with δ2+∑s

i=1 λi V 2
i ,

where δ2 = ∑P
r ,s=1 E(m′

r m′
s).

It is interesting to note that the GLR test detects a specific class of contiguous
alternatives at a rate of n−1/2. So, the power of the test is asymptotically optimal
in terms of the rate of convergence. For a fixed alternative, the power of the GLR
test convergences to one, i.e., the test is consistent. In case of pairwise independent
predictors, the theorem simplifies as follows.

Corollary 2 Suppose that the predictor variables are pairwise independent, and the
assumptions of Theorem 1 hold. Then, under H1, the asymptotic distribution of
the GLR test statistic is non-central Chi-square with the non-centrality parameter∑P

p=1 E(m′
p
2
) and the degrees of freedom

∑P1
p=1(kp − rp − 1) + ∑P

p=P1+1(kp − 1).

It is not surprising that the GLR statistic is
√

n-consistent, whereas most of the non-
parametric tests have relatively slower rate. Estimating the m p function corresponding
to a discrete or categorical predictor X p is a finite-dimensional problem as we assume
that kp, the domain of X p, is finite. Thus, all m p functions for p = 1, 2, . . . , P of the
additive models in (6) and (8) are equivalent to the parametric part of the semipara-
metric model. So, the corresponding convergence rate is consistent with Corollary 1 of
Opsomer and Ruppert (1999). The same result is also obtained by Speckman (1988).
However, this rate depends on the bandwidth parameter selected for smoothing the
continuous covariates (if any). The bandwidth parameter must be selected based on
assumption (C5) given in “Appendix A.” Even if when the model contains continuous
covariates, as the null hypothesis is the significance only for the predictors, the GLR
test has a convergence rate similar to a parametric model. Intuitively, in large sample
sizes, the effect of smoothers for continuous covariates cancels out when two residual
sums of squares are subtracted in the numerator of the GLR statistic in Eq. (9). Mean-
while, the denominator (decided by n) of the GLR statistic converges to σ 2, the error
variance of the additive model. So, those continuous smooth functions do not have
any major role in the rate of convergence of the GLR test as long as their bandwidth
parameters are optimally selected.

We have started with a very general test in H0 that includes both the goodness-of-fit
test and the model utility test. For this reason, the construction of �1 and �2 used in
Theorem 1 looks slightly complicated. However, if we are interested only in one type
of test, those matrices become very simple. In these cases, the residual sum of squares
RSS0 and RSS1 also has simpler expressions. Now, we discuss these special cases.
To make the procedure further simple, we assume that all covariates are modeled
nonparametrically.

4.3 The goodness-of-fit test for the semiparametric model

Let us consider the full nonparametric additive model given in (1). With respect to
that base model, we now construct a goodness-of-fit test for the semiparametric model
(2), where all predictors are modeled parametrically. So, the null hypothesis for this
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1406 A. Mandal

problem is
H∗
0 : m p(·) ∈ Mp,�p , for p = 1, 2, . . . , P. (11)

The residual sum of squares, under H∗
0 , is given by

RSS∗
0 =

n∑

i=1

⎛

⎝Yi − α̂ −
P∑

p=1

m̃ p,˜θ p
(X pi ) −

Q∑

q=1

m̃ P+q(Zqi )

⎞

⎠
2

,

where m̃ p,˜θ p
is the backfitting estimator of m p,θ p under H∗

0 for p = 1, 2, . . . , P and

m̃ P+q is the backfitting estimator of m P+q under H∗
0 for q = 1, 2, . . . , Q. Under the

unconstrained nonparametric additive model, the residual sum of square is given by

RSS∗
1 =

n∑

i=1

⎛

⎝Yi − α̂ −
P∑

p=1

m̂ p(X pi ) −
Q∑

q=1

m̂ P+q(Zqi )

⎞

⎠
2

, (12)

where m̂1(·), m̂2(·), . . . , m̂ P+Q(·) are the backfitting estimators under the full model
given in (1). Suppose L = ∑P

p=1(kp − rp − 1), and �2 is a L × L-dimensional
block matrix, whose pth diagonal block is an identity matrix of order (kp − rp − 1),
and for p �= p′ ∈ {1, 2, . . . , P} the pp′th off-diagonal block of �2 is given in

Eq. (10) with R p = kp−1
rp+1X(p). Notice that �1, defined in Sect. 4.1, becomes an

identity matrix in this setup as P1 = P . Moreover, we need existence of n−1X∗TX∗
instead of n−1T∗TT∗, where X∗ is defined in Sect. 3 after Eq. (3). Then, the following
result gives the asymptotic null distribution of the GLR goodness-of-fit test statistic

λn(H∗
0 ) = n(RSS∗

0−RSS∗
1)

RSS∗
1

.

Corollary 3 Suppose that the limit of n−1X∗TX∗ exists and it is invertible, and regu-
larity conditions (C1)–(C8) in “Appendix A” hold. Let us consider the unconstrained
model (1) and the null hypothesis H∗

0 in (11), where m p,θ p is a polynomial of degree
rp and 0 < rp < (kp − 1) for all p = 1, 2, . . . , P. Then, the asymptotic distribu-
tion of the GLR goodness-of-fit test statistic, under H∗

0 , coincides with
∑s

i=1 λi V 2
i ,

where V1, V2, . . . , Vs are i.i.d. standard normal variables, λ1, λ2, . . . , λs are nonzero
eigenvalues of �2 and s is the rank of �2.

In general, the asymptotic null distribution of the GLR goodness-of-fit test statistic
is a linear combination of Chi-square variables. But, the distribution comes out to be
a single Chi-square if the predictor variables are pairwise independent. In this case,
the degrees of freedom of the test statistic become

∑P
p=1(kp − rp − 1).

4.4 Model utility test for the nonparametric additive model

Let us consider the null hypothesis that there is no association between Y and
X1, . . . , X p, where Z1, . . . , Zq are covariates of the nonparametric additive model
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(1). The null hypothesis can be written as

H∗∗
0 : m p(·) = 0 for all p = 1, 2, . . . , P. (13)

Let m̃ P+1(·), m̃ P+2(·), . . . , m̃ P+Q(·) be the backfitting estimators under H∗∗
0 . Then,

the residual sum of squares, under H∗∗
0 , is given by

RSS∗∗
0 =

n∑

i=1

⎛

⎝Yi − α̂ −
Q∑

q=1

m̃ P+q(Zqi )

⎞

⎠
2

.

Under the unconstrained nonparametric additive model (1), the residual sum of square
is given in Eq. (12). So, the GLR nonparametric test statistic becomes λn(H∗∗

0 ) =
n(RSS∗∗

0 −RSS∗
1)

RSS∗
1

.

Suppose �1 is a K × K -dimensional block diagonal matrix whose pth diagonal

block is
(
Ikp − cpcTp

)
for p = 1, 2, . . . , P . Define another K × K -dimensional

block matrix �2, whose pth diagonal block is an identity matrix of order kp, and for
p �= p′ ∈ {1, 2, . . . , P} the i j th element of the pp′th off-diagonal block of �2 is
given by

σpp′,i j = 1√
cpi cp′ j

P(X p = x pi , X p′ = x p′ j ),

where i = 1, 2, . . . , kp and j = 1, 2, . . . , kp′ . The following result gives the asymp-
totic distribution of the GLR nonparametric test statistic for testing the null hypothesis
H∗∗
0 .

Corollary 4 Let us assume that regularity conditions (C1)–(C8) in “Appendix A” hold.
Let us consider the unconstrained model (1) and the null hypothesis H∗∗

0 in (13).
Then, under H∗∗

0 , the asymptotic distribution of the GLR nonparametric test statistic
coincides with

∑s
i=1 λi V 2

i , where V1, V2, . . . , Vs are i.i.d. standard normal variables,
λ1, λ2, . . . , λs are nonzero eigenvalues of �1�2�1 and s is the rank of �1�2�1.

If the predictor variables are pairwise independent, the GLR nonparametric test
statistic follows the Chi-square distribution with degrees of freedom

∑P
p=1(kp − 1)

under the null hypothesis. The setup of the GLR nonparametric test is similar to
the classical ANCOVA when predictors are categorical variables. In ANCOVA,
predictors are called treatments or blocks, and covariates are modeled parametrically.
The goal is to test the treatment or block effect in the design of experiment. So,
the GLR test is generalization the classical ANCOVA, where covariates are modeled
nonparametrically. Moreover, we do not need to assume that the error distribution is
normal.

5 Simulation

In the first part of the simulation, we check the null distribution of the GLR non-
parametric test statistic for the hypothesis given in (13). Then, we demonstrate the
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power of the GLR test and compare it with the F test associated with the nested linear
models in the regression analysis. And finally, the performance of the general GLR
test for testing H0 in (7) under the semiparametric model is presented. All numerical
examples in this paper are performed using R software. The R code for the GLR test
will be provided on request.

5.1 Null distribution

Let us consider the nonparametric additive model defined in (1), where P = 5 and
Q = 4. All five random variables in X and the first two random variables in Z
are discrete. The number of discrete values taken by X1, X2, . . . , X5 and Z1, Z2 are
3, 4, 5, 4, 3 and 5, 4, respectively, starting from zero with an increment one. The
probabilities for each of these variables are generated independently from a uniform
(0,1) distribution, and then, they are standardized so that the total probabilities become
one. We have discarded very low values of probability (< 0.05) to avoid very small or
zero frequencies. To make the situation general, we have taken few independent and
few dependent variables. X1 and X2 are independent random variables; X3, X4, X5
form a group of dependent variables, but they are independent of X1 and X2. Similarly,
(Z1, Z2) and (Z3, Z4) are two independent groups. The covariance matrices for the
dependent groups are also generated randomly. Finally, these parameters are kept fixed
throughout the entire simulation. To generate a set of dependent discrete variables,
first, a random sample is drawn from a multivariate normal distribution with a fixed
covariance matrix and then observations are discretized based on their probabilities.
Here,we are interested in testing the null hypothesis H∗∗

0 : m1 = m2 = · · · = m5 = 0.
To show the null distribution, we have taken m p = 0 for all p = 1, 2, . . . , 5. For
covariates, the md functions are taken as

m6(Z1) = Z1, m7(Z2) = Z2
2, m8(Z3) = Z2

3, and m9(Z4) = sin(π Z4). (14)

Notice that these functions are not centered at mean zero. However, it does not violate
assumptions of model (1) as constants needed to center those functions contribute to
the intercept term α. The smoother using Nadaraya–Watson estimator (Watson 1964)
is taken to smooth Z3 and Z4. We used the default bandwidth parameter for the kernel
density as h = 1.06sn−1/5, where s is the standard deviation of corresponding variable
and n is the sample size. We have taken two different types of error distributions—
the standard normal distribution and the Chi-square distribution with five degrees
of freedom. A sample of size 500 from (Y , X, Z) is generated, and this exercise
is replicated 1000 times. The histograms of the observed GLR nonparametric test
statistic are presented in Fig. 1, and the corresponding kernel density estimates are
also plotted. The plots show that the empirical distributions match with the theoretical
null distribution obtained from Corollary 4. The plots give an indication of inflated
level, but further simulation studies show that the convergence improves as sample
size increases. In the same figure, we have plotted the density of the null distribution
of the GLR test under independence assumption on the predictors. It is a single Chi-
square distribution with degrees of freedom

∑P
p=1(kp − 1) = 14. It gives a good
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Fig. 1 The observed kernel density estimate of the GLR test, the fitted theoretical null distribution and its
approximation assuming all predictors are independent. The error distribution is a N (0, 1) and b χ2(5)

approximation of the null distribution. In fact, further simulation studies show that,
unless some predictors are strongly correlated, this approximation works reasonably
well. In Fig. 1a, b, the error distributions are different in two plots, so they demonstrate
that the null distribution of the GLR test does not depend on the choice of the error
distribution.

5.2 Power function

In the power calculation for testing H∗∗
0 : m1 = m2 = · · · = m5 = 0, we have

taken the same setup of the previous example, except for the distribution of X1 and
the corresponding m1 function. Here, we have taken

m1(x1) = β(x1 − 0.75)2, (15)

and the distribution of X1 is given by P(X1 = 0) = p2, P(X1 = 1) =
2pq and P(X1 = 2) = q2, where p = 1 − q = 0.75. So, it violates the null
hypothesis H∗∗

0 if β �= 0. As we compare the power of the GLR test and the classical
F test associated with the nested linear models, the error term is generated from the
standard normal distribution to make all results comparable. For each value of β, we
simulated 500 samples and repeated it 1000 times to calculate the observed power. The
observed power is the proportion of the test statistics greater than the corresponding
critical value at 5% level of significance obtained from Corollary 4. In Fig. 2a, the
GLR test shows a good power, but the F test completely fails in this situation. The
GLR test is slightly anti-conservative at null, which is also reflected in Fig. 1. In the
same plot, we presented the observed powers of few other tests including the GLR test
under independence assumption, abbreviated as GLR (ind.). Its performance is very
similar to the original GLR test although predictors were not pairwise independent.
We also plotted the theoretical power function of the GLR test calculated from Corol-
lary 2 under the independence assumption. The observed and the theoretical power
functions are very close to each other.
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Fig. 2 Simulated powers of the F test and different GLR tests when—a both Y , X and Y , Z are nonlinear,
b Y , X is nonlinear but Y , Z linear, c Y , X is linear but Y , Z nonlinear, and d both Y , X and Y , Z are linear

If we fit a linear regression model in this setup, the breakdown situation of the F
test is apparent as the least square estimates of the regression coefficients vanish in
the large sample sizes. Conditioning on the other variables the expected value of the
least square estimate of the regression coefficient corresponding to X1 turns out to be

βLS = Cov(X1, Y )

Var(X1)
= −pm1(0) + (1 − 2q)m1(1) + qm1(2),

which simplifies to zero for all values of β in Eq. (15) when p = 0.75. Thus, H∗∗
0

seems to be true for all values of β with respect to a linear model, and the power
function for the F test centers around the nominal level of the test. On the other hand,
the full additive model successfully captures the nonlinear relationship, and the power
of the GLR test tends to one as β increases.

In the same plot, we presented the observed power function of the GLR semi-
parametric test (abbreviated as GLR Semi.), assuming that all covariates are linearly
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related to Y (although it is not true), where the predictors are modeled nonpara-
metrically. As the covariates are highly nonlinear, including a sin function, the
semiparametric test breaks down. Notice that the distribution of the GLR test statis-
tic does not change if the covariates are modeled parametrically, so the theoretical
critical value of the GLR semiparametric test is same as the GLR nonparametric
test, and it is obtained from Corollary 4. The GLR Semi. (ind.) test in Fig. 2a
is the approximation of the GLR semiparametric test under independence assump-
tion on the predictor variables. The performance of these two tests is similar to
the F test. It shows that a wrong model of the covariates may cause severe power
loss.

We have investigated few more cases by generating different relationships between
Y , X and Y , Z . Figure 2b presents power functions where Y , X is nonlinear as given
in Equation (15), but Y , Z is linear. The functions corresponding to the linear rela-
tionships between Y and Z are taken simply as md(z) = z for d = 6, 7, 8, 9 instead
of nonlinear functions in Eq. (14). Here, we get the similar results from the GLR
and F test. The GLR semiparametric test gives almost equal power as described
by its theoretical power function derived from Corollary 2. In fact, in this case,
the theoretical power of the GLR semiparametric test is same as the GLR nonpara-
metric test. But the advantage of semiparametric modeling is that its finite sample
performance is better than the full nonparametric test, if the modeling of the para-
metric part is correct. For this reason, the nonparametric GLR test is showing slightly
inflated level, whereas the GLR semiparametric test properly maintains the level of
the test.

In Fig. 2c, we plot the power functions when Y , X is linear by taking m1(x) = βx
instead of Eq. (15), but Y , Z is nonlinear as given in Eq. (14). Even if the F test suc-
cessfully models the relationship between Y and X , its power is almost unchanged as
it fails to model the relationship between Y and Z . Similarly, the GLR semiparametric
test is also showing poor power.

Finally, the power functions of these tests, when both the relationships between
Y , X and Y , Z are linear, are plotted in Fig. 2d. Here, all assumptions of the F test
are satisfied, so it is the most powerful among all unbiased tests. It is interesting to
notice that the power of all GLR tests is very competitive with the F test. There-
fore, even if the both relationships are linear, we do not expect to lose a significance
amount of power by conducting the GLR test. These simulation results show that
it is better to use the GLR test unless we are confident of a suitable parametric
model. If some assumptions of the parametric model are violated, the F test may
break down. On the other hand, the GLR test produces very high power almost in all
situations.

5.3 The goodness-of-fit test

In a similar setup, we have studied the general GLR test including the goodness-of-fit
testing problem for the semiparametric model. We test the null hypothesis (7) that
there exists a linear relationship between Y and X2, but there is no effect of other
components, i.e., m1 = m3 = m4 = m5 = 0. We did not assume any parametric
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Fig. 3 a The observed and theoretical null distributions of the GLR semiparametric test statistic for the
goodness-of-fit problem. b The power functions of different GLR semiparametric test statistics

model for the covariates. In this simulation, we have taken m2(x2) = 1
2 x2 and the

same m1 as given in Eq. (15). So, the null hypothesis is true when β = 0, and power of
theGLR test should increase asβ deviates fromzero. The other setup for the simulation
is same as the previous simulations including the functions for the covariates as given
in Eq. (14). Figure 3a shows that the observed and theoretical null distributions are
close to each other. The power functions of different tests are shown in Fig. 3b. All tests
in this plot are semiparametric tests; however, to make similarity with the previous
simulation, we denote “GLR Semi.” when all covariates are assumed to be linear.
“GLR Test” refers to the main semiparametric test whose null distribution is derived
from Theorem 1 without assuming that covariates are linearly modeled. Similarly,
“GLR (ind.)” is the approximation of this test by assuming that all predictors are
pairwise independent. The black dotted line in the plot is the approximate power
function derived for Corollary 2 that assumes all predictors are pairwise independent.
The main GLR test maintains the nominal level of the test and gives good power when
the null hypothesis is not true. GLR (ind.) shows slight inflated power; however, it
gives good approximation of the original test. GLR Semi. and GLR Semi. (ind.) fail
to produce any significant power as the linearity assumptions on covariates are not
satisfied.

As a whole, these simulation results in Sect. 5 give enough justification for the
theoretical results derived in the paper. These GLR tests are simple to calculate and
produce a good power. As a virtue of the nonparametric method, the tests do not
depend on the error distribution of the model. For the model utility test, the GLR
test gives better power than the classical F test when the parametric modeling is not
appropriate. And even if the parametric model holds good, the GLR test produces a
comparative power. The GLR test can be further simplified if we assume that the pre-
dictors are pairwise independent. In this case, the test is slightly anti-conservative,
but overall the approximation is good unless some predictors are strongly corre-
lated.
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6 Real data example

In this section,we apply theGLR test to analyze the diamonds dataset used inWickham
(2009). This dataset contains the price (in 2008 US dollars) and other attributes of
53,940 diamonds. The attributes include the four C’s of diamond quality—cut, color,
clarity and carat. There are three main physical measurements x , y and z—the largest
length, width and height of a diamond, respectively. The dataset has other two physical
measurements—depth and table, but we have not included them in this analysis as they
are functions of x , y and z. Carat is a unit of mass used for measuring gemstones and
pearls. Cut is an objectivemeasure of a diamond’s light performancewhatwe generally
think of as sparkle. Cut, color and clarity are categorical variables, and other variables
are continuous. There are five categories of cut—Fair, Good, VeryGood, Premium and
Ideal, and the percentage of each diamond in this dataset is 2.98, 9.10, 22.30, 25.57
and 39.95, respectively. Color has seven categories D (best) to J (worst) with 12.56%,
18.16%, 17.69%, 20.93%, 15.40%, 10.05% and 5.21%, respectively. Clarity contains
eight categories I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1 and IF (best) with
1.37%, 17.04%, 24.22%, 22.73%, 15.15%, 9.39%, 6.77% and 3.32%, respectively.

As cut, color and clarity are categorical variables, we apply the GLR test for testing
their effect in diamond price, whereas carat, x , y and z serve as covariates. The sample
size is huge, so a slight deviation from a null hypothesis may cause rejection of the null
hypothesis. For this reason, we have taken a random subsample of 1000 observations
from the dataset. At first, we test the null hypothesis (13) that there is no effect of cut,
color and clarity. So, H∗∗

0 : m1 = m2 = m3 = 0. The p value of the GLR test comes
out to be zero. Then, we have conducted three different tests to check themain effect of
cut, color and clarity, separately, by taking others as covariates (e.g., H∗∗

0 : m1 = 0).
Even in these cases p values of the GLR tests are 6.45 × 10−5 for cut and zero for
color and clarity. This is not surprising as there is a strong effect of cut, color and
clarity in the price of diamonds.

All categorical variables, cut, color and clarity, maintain an order in their quality.
So, in the next step, we have conducted some goodness-of-fit tests to know the effect
of different levels of those variables. We are particularly interested to know whether
there is any specific pattern in the order of different levels of a category. The levels are
ranked according to the increasing order of quality. In our first goodness-of-fit test,
we have taken the order of cut as a single predictor (P = 1) and six other variables
including the ranks of color and clarity as covariates (Q = 6). We tested the null
hypothesis that the diamond price is linear with the rank of the levels of cut. The p
value of the GLR test is 0.5476. This indicates that the diamond price may be modeled
as a linear function of the rank of its cutting quality. The box plots in Fig. 4a show the
partial effect of cut after eliminating the effects of other variables. Themiddlemost line
of median in the box plot is replaced by the corresponding mean, so it gives the mean
effect of cut for that category. The red line in the plot is the least square regression
line of the price difference on the rank of the cut effect. The plot also shows that the
ranks in cut maintain a proper linear relationship in modeling the diamond price.

In the second semiparametric test, we checked the linearity effect of the rank of
color in diamond price. The GLR test gave a p value of 2.02×10−8, so we considered
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Fig. 4 Box plots showing the partial effect of a cut, b color and c clarity on the diamond price. The red line
gives the fitted least square estimates, where x-axis is converted to the corresponding rank. d Plot of fitted
price from the semiparametric model against the original price. The red line indicates the perfect fit (color
figure online)

a quadratic model for the rank of color. The p value of the test came out to be 0.0857,
so the quadratic effect of color is not rejected at 5% level of significance (see Fig. 4b).
Similarly, the p values of corresponding to the linear, quadratic and cubic models of
the rank of clarity are 10−15, 0.0412 and 0.4233, respectively. So, the effect of clarity
in diamond price may be modeled as a cubic function of its rank (see Fig. 4c).

Finally, we have constructed a semiparametric model where the ranks of cut, color
and clarity were taken as linear, quadratic and cubic functions, respectively. Carat, x ,
y and z serve as covariates for this test, and they are modeled nonparametrically. So,
according to our notations P = 3 and Q = 4. The GLR test (11) for the goodness-
of-fit of the model gave a p value of 0.1104 for this semiparametric model. Figure 4d
displays the scatter plot of the original price of diamonds and their fitted price from the
semiparametric model; the correlation between the two prices is 0.9632. The points
in the plot cluster around the red line which represents the perfect fit. These results
indicate that if we build a semiparametric model for these data the appropriate choices
of the additive components for the rank of cut, color and clarity are linear, quadratic
and cubic functions, respectively.

The estimate of the overall mean price for the dataset is α̂ = 3931.3760, and the
standard deviation is σ̂ = 4149.5376. Let us consider an additive model as y =

123



An optimal test for the additive model 1415

α̂ + σ̂
∑7

d=1 md , where m1, m2, . . . , m7 being the additive effects of the rank of cut,
color, clarity, carat, x , y and z, respectively. Then, the parametric parts of the fitted
semiparametric model are given by

m1(x1) = −0.1330 + 0.0344x1, m2(x2) = 0.1271 + 0.0312x2 − 0.0146x22 ,

m3(x3) = −1.1149 + 0.5466x3 − 0.0801x23 + 0.0042x33 . (16)

7 Discussion

In an additive model, a novel method is derived for testing the main effect
of the predictor variables which take discrete or categorical values. The main
effect is adjusted by covariates possibly containing continuous-valued random
variables. The predictors and covariates are modeled nonparametrically using an
additive model, so the test avoids loss of power because model misspecifica-
tion often arises in classical parametric tests. This method is further extended
to the semiparametric model, and a goodness-of-fit test is derived. The simula-
tion results show that the GLR test may outperform the parametric test when
the model for just one of the components fails, and at the same time, it pro-
duces a comparable power as the conventional tests if the assumed parametric
model holds good. The power of the GLR test is asymptotically optimal in
terms of the rate of convergence, and it can detect a specific class of contigu-
ous alternatives at a rate of n−1/2. In case of categorical predictors, the GLR
test generalizes the classical ANCOVA by modeling covariates nonparametri-
cally and without assuming normality of the error term. So, it is a development
of the basic statistical theory, and the methodology can be widely useful in
practice.
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Appendix A: Regularity conditions

To derive the asymptotic distribution of the GLR test statistic, we need the following
assumptions:

(C1) Suppose cpj = P(X p = x pj ), then cpj ∈ (0, 1) for all j = 1, 2, . . . , kp and

p = 1, 2, . . . , P , where
∑kp

j=1 cpj = 1.
(C2) The kernel function K (z) is bounded and Lipschitz continuous with a bounded

support.
(C3) If Zq is continuous, then the density fq of Zq is Lipschitz continuous and

bounded away from 0 and has bounded supports q for q ∈ {1, 2, . . . , Q}.
(C4) If both Zq and Zq ′ are continuous, then the joint density fqq ′ of Zq and Zq ′ is

Lipschitz continuous on its support q × q ′ for q �= q ′ ∈ {1, 2, . . . , Q}.
(C5) nhq/ log(n) → ∞ as n → ∞ and hq → 0 for q = 1, 2, . . . , Q.
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(C6) If Zq is continuous and dq is the degree of the polynomial used for smoothing
of Zq , then the (dq + 1)th derivative of m P+q , for q ∈ {1, 2, . . . , Q}, exists and
is bounded and continuous.

(C7) σ 2 = Var[ε] = E[ε2] < ∞.
(C8) E[mq(Zq)|X p = x pj ] = 0 for all j = 1, 2, . . . , kp, p = 1, 2, . . . , P and

q = 1, 2, . . . , Q.
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