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Abstract
In this study, we consider a robust estimation method for general integer-valued time
seriesmodels whose conditional distribution belongs to the one-parameter exponential
family. As a robust estimator, we employ the minimum density power divergence
estimator, and we demonstrate this is strongly consistent and asymptotically normal
under certain regularity conditions. A simulation study is carried out to evaluate the
performance of the proposed estimator. A real data analysis using the return times of
extreme events of the Goldman Sachs Group stock is also provided as an illustration.

Keywords Robust estimation · Minimum density power divergence estimator ·
General integer-valued time series · One-parameter exponential family · INGARCH
models

1 Introduction

In recent years, integer-valued time series models have received considerable attention
from researchers in diverse research areas. Since the work of McKenzie (1985) and
Al-Osh and Alzaid (1987), integer-valued autoregressive (INAR) models based on
a binomial thinning operator have been widely employed to analyze correlated time
series of counts. See Weiß (2008) for a review. Although INAR models are useful in
many cases, the equidispersion property that arises in the INAR model with Poisson
innovations can lead to a serious problem, because many real datasets exhibit over-
dispersion. To remedy this, Ferland et al. (2006) proposed to usePoisson integer-valued
generalized autoregressive conditional heteroscedasticity (INGARCH) models, and
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later, Fokianos et al. (2009) developed Poisson autoregressive (Poisson AR) models,
including nonlinear specifications for their intensity processes. These models not only
merit keeping the Poisson distribution as their underlying distributions but also capture
the over-dispersion phenomenon effectively.

Researchers invested considerable efforts to relax the Poisson assumption in
INGARCH models and extended the Poisson INGARCH model to other distribu-
tional models. Examples include negative binomial INGARCH (NB-INGARCH)
models (Davis and Wu 2009; Christou and Fokianos 2014) and zero-inflated gen-
eralized Poisson INGARCH models (Zhu 2012a, b; Lee et al. 2016). Davis and Liu
(2016) recently considered one-parameter exponential family AR models, called gen-
eral integer-valued time series models. Diop and Kengne (2017) and Lee and Lee
(2018) then utilized this framework to handle the problem of detecting a change point.
In these articles, the conditional maximum likelihood estimator (CMLE) is employed
for parameter estimation. However, the CMLE is sensitive to outliers and a model
bias when an exponential family AR model is fitted to datasets. Thus, robust esti-
mation in general integer-valued time series models is crucial and deserves a special
investigation.

In this study,we adopt theminimumdensity power divergence estimator (MDPDE),
proposed by Basu et al. (1998) (BHHJ), as a robust estimator, because this method is
well known to consistently offer robust estimators in various situations and enjoys both
efficiency and robustness as a trade-off through controlling the tuning parameter in the
MDPDE. For example, see Mihoko and Eguchi (2002), who used the density power
divergence to recover the original independent signals when their linear mixtures were
observed. Later, Lee and Song (2009), Kim and Lee (2013), Kang and Lee (2014a),
and Kim and Lee (2017) studied the MDPDE for GARCH models, the covariance
matrix of multivariate times series, Poisson ARmodels, and zero-inflated Poisson AR
models, respectively. In those studies, the MDPDE was proven to have strong robust
properties, with little loss in asymptotic efficiency relative to the MLE. Our analysis
also confirms the same conclusion for general integer-valued time series models.

The organization of this paper is as follows: Sect. 2 constructs the MDPDE for
general integer-valued time series models. Section 3 demonstrates the asymptotic
properties of theMDPDE. Section 4 presents a simulation study and real data analysis.
Finally, Sect. 5 provides a conclusion. Proofs are provided in “Appendix.”

2 MDPDE for general integer-valued time series models

BHHJ proposed the density power divergence dα between two density functions f
and g as

dα(g, f ) :=
{∫ { f 1+α(y) − (1 + 1

α

)
g(y) f α(y) + 1

α
g1+α(y)}dy, α > 0,∫

g(y)(log g(y) − log f (y))dy, α = 0.

For a parametric family {Fθ , θ ∈ �} possessing densities { fθ } and a distribution
G with density g, they defined the minimum density power divergence functional
Tα(G) by dα(g, fTα(G)) = minθ∈� dα(g, fθ ). In particular, if G = Fθ0 ∈ {Fθ }, then
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Robust estimation for integer-valued time series 1373

Tα(Fθ0) = θ0. Based on the above, given a random sample Y1, . . . , Yn with unknown
density g, the MDPDE is defined by

θ̂MDPDE
α,n = argmin

θ∈�

Hα,n(θ),

where Hα,n(θ) = 1
n

∑n
t=1 Vα(θ; Yt ) and

Vα(θ; Yt ) =
{∫

f 1+α
θ (y)dy − (1 + 1

α

)
f α
θ (Yt ), α > 0,

− log fθ (Yt ), α = 0.

When α = 0 and 1, theMDPDE is the same as theMLE and L2-distance estimator,
respectively. BHHJ showed that θ̂MDPDE

α,n is consistent for Tα(G) and asymptotically
normal, and demonstrated that the estimator is robust against outliers, but still retains
high efficiency when the true distribution belongs to a parametric family {Fθ } and α

is close to zero.
To apply the BHHJ’s procedure to general integer-valued time series models, we

require the conditional version of the MDPDE. Let {gθ (·|Ft−1)} be the parametric
family of autoregressive models indexed by the parameter θ , and let gθ0(·|Ft−1) be
the true conditional density of the time series Yt given Ft−1, where Ft−1 is a σ -field
generated by Yt−1, Yt−2, . . .. Then, the MDPDE is defined by

θ̂MDPDE
α,n = argmin

θ∈�

Hα,n(θ),

where Hα,n(θ) = 1
n

∑n
t=1 Vα(θ;Ft−1, Yt ) and

Vα(θ;Ft−1, Yt ) =
{∫

g1+α
θ (y|Ft−1)dy − (1 + 1

α

)
gα
θ (Yt |Ft−1), α > 0,

− log gθ (Yt |Ft−1), α = 0
(1)

(cf. Section 2 of Kang and Lee 2014a).
In the following, we construct the MDPDE for general integer-valued time series

models. Let Y1, Y2, . . . be observations generated from general integer-valued time
series models with the conditional distribution of the one-parameter exponential fam-
ily:

Yt |Ft−1 ∼ p(y|ηt ), Xt := E(Yt |Ft−1) = fθ (Xt−1, Yt−1), (2)

where fθ (x, y) is a nonnegative bivariate function defined on [0,∞)×N0, N0 = N∪
{0}, depending on the parameter θ ∈ � ⊂ R

d , which satisfies infθ∈� fθ (x, y) ≥ x∗
for some x∗ > 0 and for all x, y. Here, p(·|·) is a probability mass function given by

p(y|η) = exp{ηy − A(η)}h(y), y ≥ 0,

where η is the natural parameter and A(η) and h(y) are known functions. This dis-
tribution family contains many famous discrete distributions, including the Poisson,
negative binomial, and binomial distributions.
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Weset B(η) = A′(η). Then, B(ηt ) and B ′(ηt ) are the conditionalmean and variance
of Yt , respectively, and Xt = B(ηt ). The derivative of A(η) generally exists for the
exponential family (cf. Lehmann and Casella 1998). We note that since B ′(ηt ) =
V ar(Yt |Ft−1) > 0, B(η) is strictly increasing. Because the support of Yt is assumed
to include nonnegative integers, we have B(ηt ) = E(Yt |Ft−1) > 0, which implies
that A(η) is also strictly increasing. To emphasize the role of θ , we also use notation
Xt (θ) and ηt (θ) = B−1(Xt (θ)) to denote Xt and ηt .

Davis and Liu (2016) showed that the following assumption ensures the strict
stationarity and ergodicity of {(Xt , Yt )}:

(A0) For all x, x ′ ≥ 0 and y, y′ ∈ N0,

sup
θ∈�

| fθ (x, y) − fθ (x ′, y′)| ≤ ω1|x − x ′| + ω2|y − y′|,

where ω1, ω2 ≥ 0 satisfies ω1 + ω2 < 1.

Furthermore, they demonstrated that the conditional mean Xt can be expressed as a
functionof the observationsYt . That is, there exists ameasurable function f θ∞ : N

∞
0 →

[0,∞) such that Xt (θ) = f θ∞(Yt−1, Yt−2, . . .) a.s.
Given Y1, . . . , Yn generated by (2), from (1), we define theMDPDE θ̂α,n for general

integer-valued time series models as

θ̂α,n = argmin
θ∈�

H̃α,n(θ) = argmin
θ∈�

1

n

n∑
t=1

l̃α,t (θ),

where

l̃α,t (θ) =
{∑∞

y=0 p1+α(y|η̃t (θ)) − (1 + 1
α

)
pα(Yt |η̃t (θ)), α > 0,

− log p(Yt |η̃t (θ)), α = 0,
(3)

and η̃t (θ) = B−1(X̃t (θ)) is recursively updated through the following equations:

X̃t (θ) = fθ (X̃t−1(θ), Yt−1), t = 2, 3, . . . , X̃1(θ) = X̃1,

with an arbitrarily chosen initial value X̃1. From (3), we can see that the MDPDEwith
α = 0 corresponds to the CMLE.

3 Asymptotic properties of theMDPDE

3.1 Consistency and asymptotic normality of theMDPDE

In this subsection, we verify the consistency and asymptotic normality of the MDPDE
under the regularity conditions given below. Some of these are found in Lee and Lee
(2018), whereas others are newly considered to handle the MDPDE. Throughout this
study, V and ρ ∈ (0, 1) denote a generic integrable random variable and a constant,
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Robust estimation for integer-valued time series 1375

respectively; the symbol ‖ · ‖ denotes the L1 norm for matrices and vectors; and E(·)
is taken under θ0, where θ0 denotes the true value of θ .

(A1) θ0 is an interior point in the compact parameter space � ⊂ R
d .

(A2) E
(
supθ∈� X1(θ)

)4
< ∞.

(A3) infθ∈� inf0≤δ≤1 B ′((1 − δ)ηt (θ) + δη̃t (θ)) ≥ c for some c > 0.
(A4) EY 4

1 < ∞.
(A5) If there exists t ≥ 1 such that Xt (θ) = Xt (θ0) a.s., then θ = θ0.

(A6) supθ∈� sup0≤δ≤1

∣∣∣ B′′((1−δ)ηt (θ)+δη̃t (θ))

B′((1−δ)ηt (θ)+δη̃t (θ))3

∣∣∣ ≤ K for some K > 0.

(A7) The mapping θ → f θ∞ is twice continuously differentiable with respect to θ and
satisfies

E

(
sup
θ∈�

∥∥∥∥∂ f θ∞(Y0, Y−1, . . .)

∂θ

∥∥∥∥
)4

< ∞ and E

(
sup
θ∈�

∥∥∥∥∂
2 f θ∞(Y0, Y−1, . . .)

∂θ∂θT

∥∥∥∥
)2

< ∞.

(A8) supθ∈�

∥∥∥ ∂ X̃t (θ)
∂θ

− ∂ Xt (θ)
∂θ

∥∥∥ ≤ V ρt a.s.

(A9) νT
∂ Xt (θ0)

∂θ
= 0 a.s. implies ν = 0.

Remark 1 The conditions similar to (A1)–(A9) can be found in many studies (cf.
Kang and Lee 2014a, b; Cui and Zheng 2017; Lee and Lee 2018). (A2) and (A7) are
conditions related to the moments of conditional mean of Yt and its first and second
derivatives, which are essential for proving the asymptotic properties of the MDPDE.
Certain integer-valued time series models belonging to general integer-valued time
series models require additional assumption on parameters to satisfy (A4). As an
example, the case of NB-INGARCHmodel is provided in Sect. 3.2 below. In practice,
since the past history of observations and conditionalmean process is unknown, (A8) is
imposed to approximate ∂ Xt (θ)/∂θ by ∂ X̃t (θ)/∂θ exponentially fast, which is needed
to prove Lemma 6 in “Appendix.” A group of most popular INGARCH models, such
as Poisson, negative binomial, and binomial INGARCH models, satisfies (A1)–(A9)
as seen in Sect. 3.2.

Under these conditions, we obtain the following asymptotic results whose proofs
are provided in “Appendix.”

Theorem 1 Suppose that conditions (A0)–(A5) hold. Then,

θ̂α,n
a.s.−→ θ0 as n → ∞.

Theorem 2 Suppose that conditions (A0)–(A9) hold. Then,

√
n(θ̂α,n − θ0)

d−→ N (0, J−1
α Kα J−1

α ) as n → ∞,

where

Jα = −E

(
∂2lα,t (θ0)

∂θ∂θT

)
, Kα = E

(
∂lα,t (θ0)

∂θ

∂lα,t (θ0)

∂θT

)

and lα,t (θ) is defined by substituting η̃t (θ) with ηt (θ) in (3).
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Remark 2 The tuning parameter α controls the trade-off between the robustness and
asymptotic efficiency. That is, adopting a relatively large α is favorable when the
robustness is more emphasized, whereas a small α is suitable if the efficiency is the
primary concern. Fujisawa and Eguchi (2006), Toma and Broniatowski (2011), and
Durio and Isaia (2011) developed a procedure for choosing an optimal α. Here, we
adopt the method of Warwick (2005) and Warwick and Jones (2005) to choose α that
minimizes the trace of the estimated asymptotic mean squared error (ÂMSE):

ÂMSE = (θ̂α,n − θ̂1,n)(θ̂α,n − θ̂1,n)T + Âs.var(θ̂α,n),

where θ̂1,n is theMDPDEwith α = 1 and Âs.var(θ̂α,n) is an estimate of the asymptotic
variance of θ̂α,n , computed as

Âs.var(θ̂α,n) =
(

n∑
t=1

∂2l̃α,t (θ̂α,n)

∂θ∂θT

)−1 ( n∑
t=1

∂ l̃α,t (θ̂α,n)

∂θ

∂ l̃α,t (θ̂α,n)

∂θT

)(
n∑

t=1

∂2l̃α,t (θ̂α,n)

∂θ∂θT

)−1

.

This criterion is applied to our empirical study in Sect. 4.2.

3.2 INGARCHmodels

As an example, we consider the INGARCH(1,1) models defined by

Yt |Ft−1 ∼ p(y|ηt ), Xt = d + aXt−1 + bYt−1,

where Xt = B(ηt ) = E(Yt |Ft−1), θ = (d, a, b)T ∈ � ⊂ (0,∞) × [0,∞)2 with
a + b < 1, and � is compact. Then, condition (A0) holds, and thus, the process
{(Xt , Yt ), t ≥ 1} admits a strictly stationary and ergodic solution. To obtain the
asymptotic results for the INGARCH(1,1) models, (A1) is replaced by the following:

(A1)′ The true parameter θ0 lies in a compact neighborhood � ∈ R
3+ of θ0, where

� ∈ {θ = (d, a, b)T ∈ R
3+ : 0 < dL ≤ d ≤ dU , ε ≤ a + b ≤ 1 − ε}

for some dL , dU , ε > 0.

Moreover, by recursion, we have

Xt (θ) = d

1 − a
+ b

∞∑
k=0

akYt−k−1 and X̃t (θ) = d

1 − a
+ b

t−2∑
k=0

akYt−k−1,

where the initial value X̃1 is taken as d/(1 − a) for simplicity. Based on the above
and (A4), conditions (A2), (A5), and (A7)–(A9) are satisfied for the INGARCH(1,1)
models, the proof of which is essentially the same as that of Theorem 3 in Kang and
Lee (2014b). Because sufficient conditions for (A4) would depend on the conditional
distribution of Yt , we provide those conditions for Poisson, negative binomial, and
binomial INGARCH(1,1) models. We also show that (A3) and (A6) hold for these
models.
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Robust estimation for integer-valued time series 1377

1. Consider the Poisson INGARCH(1,1) model given by

Yt |Ft−1 ∼ Poisson(Xt ), Xt = d + aXt−1 + bYt−1.

Owing to Proposition 1 and Remark 2 of Cui and Zheng (2017), under (A0), Yt has
finite moments of any order. Hence, (A4) holds. In this model, ηt (θ) = log(Xt (θ))

and A(ηt (θ)) = eηt (θ). Since B ′(ηt (θ)) = Xt (θ) ≥ dL , B ′(η̃t (θ)) = X̃t (θ) ≥ dL ,
and B ′(η) = eη is strictly increasing, (A3) holds. Finally, (A6) is satisfied owing
to (A3) and the fact that B ′(η) = B ′′(η).

2. Consider the NB-INGARCH(1,1) model, defined by

Yt |Ft−1 ∼ NB(r , pt ), Xt = r(1 − pt )

pt
= d + aXt−1 + bYt−1,

where NB(r , p) denotes the negative binomial distribution with parameters r ∈ N

and p ∈ (0, 1); namely, it counts the number of failures in a sequence of Bernoulli
trials with the success probability p before the r th success occurs. This model is
considered by assuming that r is fixed and supposed to be known. Unlike in the
Poisson INGARCH(1,1)model,Yt does not havefinitemoments of any order under
(A0) (see Proposition 1 and Remark 3 of Cui and Zheng (2017) for more details).
In particular, Ahmad and Francq (2016) revealed that EY 4

t < ∞ if and only if
(a + b)4 + 6b2(a + b)2/r + b3(8a + 11b)/r2 + 6b4/r3 < 1. Hence, (A4) holds
if the latter condition is satisfied. In this model, ηt (θ) = log(Xt (θ)/(Xt (θ) + r))

and A(ηt (θ)) = r log(r/(1 − eηt (θ))). Since B ′(ηt (θ)) = reηt (θ)/(1 − eηt (θ))2 =
Xt (θ)(Xt (θ)+r)/r ≥ dL(dL +r)/r , B ′(η̃t (θ)) = X̃t (θ)(X̃t (θ)+r)/r ≥ dL(dL +
r)/r , and B ′(η) = reη/(1 − eη)2 is strictly increasing on η < 0, it follows that
(A3) holds. Next, using the fact that B ′′(η) = reη(1 + eη)/(1 − eη)3, we have
B ′′(η)/B ′(η)3 = (1− eη)3(1+ eη)/r2e2η and it is positive and strictly decreasing
on η < 0. Furthermore, owing to the fact that dL/(dL + r) ≤ eηt (θ) < 1, it holds

B ′′(ηt (θ))

B ′(ηt (θ))3
= 1

B ′(ηt (θ))
3
2

1 + eηt (θ)

(reηt (θ))
1
2

≤ r
3
2

(dL (dL + r))
3
2

2(dL + r)
1
2

(rdL )
1
2

= 2r

d2
L (dL + r)

,

and B ′′(η̃t (θ))/B ′(η̃t (θ))3 also has the same upper bound. Therefore, (A6) is
satisfied.

3. Consider the binomial INGARCH(1,1) model given by

Yt |Ft−1 ∼ B(m, pt ), Xt = mpt = d + aXt−1 + bYt−1,

where d > 0, a ≥ 0, b ≥ 0, d + am + bm ≤ m is assumed to ensure that
pt ∈ (0, 1), and m is supposed to be known. Hence, the parameter space � in
(A1)′ for the binomial INGARCH(1,1) model becomes

� ∈ {θ = (d, a, b)T ∈ R
3+ : 0 < dL ≤ d ≤ dU , ε ≤ a + b ≤ 1 − ε}

for some ε >
dU

m
.
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1378 B. Kim, S. Lee

From Proposition 1 and Remark 3 of Cui and Zheng (2017), Yt has finite moments
of any order under (A0). Thus, (A4) holds. In this model, ηt (θ) = log(Xt (θ)/(m−
Xt (θ))) and A(ηt (θ)) = m log(1 + eηt (θ)). Since Xt (θ) ≤ d + m(a + b) ≤
dU + m(1 − ε), we have that B ′(ηt (θ)) = meηt (θ)/(1 + eηt (θ))2 = Xt (θ)(m −
Xt (θ))/m ≥ dL(ε − dU /m), and similarly B ′(η̃t (θ)) ≥ dL(ε − dU /m). Because
B ′(η) is strictly increasing on η ≤ 0 and strictly decreasing on η ≥ 0, it holds
B ′((1 − δ)ηt (θ) + δη̃t (θ)) ≥ min(B ′(ηt (θ)), B ′(η̃t (θ))) ≥ dL(ε − dU /m), and
thus (A3) is satisfied. Note that

∣∣∣∣ B ′′(ηt (θ))

B ′(ηt (θ))3

∣∣∣∣ =
∣∣∣∣∣
(1 + eηt (θ))3(1 − eηt (θ))

(meηt (θ))2

∣∣∣∣∣
≤ (1 + eηt (θ))4

(meηt (θ))2
= 1

B ′(ηt (θ))2
≤ 1

d2
L(ε − dU /m)2

,

and |B ′′(η̃t (θ))/B ′(η̃t (θ))3| also has the same upper bound. Owing to the fact
that |B ′′(η)/B ′(η)3| is strictly decreasing on η ≤ 0 and strictly increasing on
η ≥ 0, we have |B ′′((1 − δ)ηt (θ) + δη̃t (θ))/B ′((1 − δ)ηt (θ) + δη̃t (θ))3| ≤
max(|B ′′(ηt (θ))/B ′(ηt (θ))3|, |B ′′(η̃t (θ))/B ′(η̃t (θ))3|) ≤ 1/(d2

L(ε − dU /m)2).
Therefore, (A6) is established.

Remark 3 One may consider nonlinear models such as the threshold Poisson autore-
gressive model (INTGARCH(1,1)) studied by Doukhan and Kengne (2015) and Diop
and Kengne (2017). The INTGARCH(1,1) model is defined by

Yt |Ft−1 ∼ Poisson(Xt ), Xt = d + aXt−1 + b1 max(Yt−1 − l, 0) + b2 min(Yt−1, l),

where θ = (d, a, b1, b2)T belongs to a compact subset � of (0,∞) × [0,∞)3 and
satisfies a+max(b1, b2) < 1, and l is a nonnegative integer value, called the threshold
parameter of themodel. In thismodel, (A0) is satisfied. The parameter space� is given
by

� = {θ = (d, a, b1, b2)
T ∈ R

4+ : 0 < dL ≤ d ≤ dU , ε ≤ a + max(b1, b2) ≤ 1 − ε}
for some dL , dU , ε > 0. Similar to the INGARCH(1,1) model, we can obtain

Xt (θ) = d

1 − a
+

∞∑
k=0

ak (b1 max(Yt−k−1 − l, 0) + b2 min(Yt−k−1, l))

and

X̃t (θ) = d

1 − a
+

t−2∑
k=0

ak (b1 max(Yt−k−1 − l, 0) + b2 min(Yt−k−1, l)) ,

where X̃1 is taken as d/(1−a). Based on the above, the conditions in Sect. 3.1 can be
verified by following the arguments similar to those for the INGARCH(1,1) models.
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Robust estimation for integer-valued time series 1379

Table 1 Sample mean (variance×102/MSE×102) of estimators for the NB-INGARCH(1,1) model when
no outliers exist

α d̂ â b̂

MDPDE

0 (CMLE) 1.079(13.22/13.82)∗ 0.367(2.675/2.780)∗ 0.201(0.218/0.218)∗
0.1 1.077(13.57/14.15) 0.368(2.740/2.839) 0.201(0.224/0.224)

0.2 1.075(14.05/14.60) 0.369(2.832/2.926) 0.201(0.233/0.233)

0.3 1.074(14.73/15.26) 0.370(2.974/3.064) 0.201(0.247/0.247)

0.4 1.074(15.30/15.83) 0.370(3.091/3.181) 0.201(0.259/0.259)

0.5 1.074(16.05/16.58) 0.369(3.240/3.330) 0.201(0.273/0.273)

0.75 1.074(17.30/17.82) 0.369(3.486/3.577) 0.202(0.304/0.304)

1 1.074(18.46/19.00) 0.369(3.725/3.820) 0.202(0.336/0.336)

4 Empirical studies

4.1 Simulation

In this subsection,we compare the performance of theMDPDE (α > 0)with that of the
CMLE(α = 0). To this end,we employ theNB-INGARCH(1,1) and INTGARCH(1,1)
models. Simulation results for the Poisson INGARCH(1,1) model can be found in
Kang and Lee (2014a). First, we consider the NB-INGARCH(1,1) model:

Yt |Ft−1 ∼ NB(r , pt ), Xt = r(1 − pt )

pt
= d + aXt−1 + bYt−1, (4)

where X1 is assumed to be 0 for the data generation and X̃1 is set to be the samplemean
of the data. In this model, we consider the case with r = 10 and θ = (d, a, b)T =
(1, 0.4, 0.2)T. For comparison, we investigate the sample mean, variance, and mean
squared error (MSE) of the estimators. The sample size under consideration isn = 500,
and the number of repetitions for each simulation is 1000.

Table 1 presents the results when the data are not contaminated by outliers. In
Tables 1, 2, 3, 4, 5, 6, and 7, the symbol ∗ stands for the minimal MSE and the italic
values represent MDPDEs with smaller MSEs than the CMLE. Table 1 shows that
when the data are not contaminated by outliers, the CMLE has minimal MSEs for all
parameters and the MSEs of the MDPDEs with small α are similar to those of the
CMLE. As α increases, the MSEs of the MDPDEs also increase, which confirms that
an MDPDE with large α results in a loss of efficiency and that the CMLE outperforms
the MDPDE when no outliers are present in the data.

Next, to evaluate the robustness of the estimators, we observe the contaminated
data Yc,t as follows (cf. Fried et al. 2015):

Yc,t = Yt + Pt Yo,t ,

where Yt are generated from (4), Pt are iid Bernoulli random variables with success
probability p, and Yo,t are iid NB(10, κ) random variables. We assume that Yt , Pt , and
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Table 2 Sample mean (variance×102/MSE×102) of estimators for the NB-INGARCH(1,1) model when
p = 0.01

α κ = 0.5

d̂ â b̂

MDPDE

0 (CMLE) 1.177(22.29/25.40) 0.376(3.979/4.031) 0.172(0.290/0.371)

0.1 1.135(18.87/20.68) 0.377(3.544/3.593)∗ 0.174(0.260/0.328)∗
0.2 1.122(18.88/20.35)∗ 0.376(3.607/3.660) 0.175(0.267/0.330)

0.3 1.117(19.27/20.62) 0.375(3.727/3.784) 0.176(0.283/0.342)

0.4 1.119(19.87/21.28) 0.372(3.845/3.917) 0.177(0.295/0.349)

0.5 1.121(20.40/21.84) 0.370(3.968/4.053) 0.178(0.310/0.359)

0.75 1.123(21.23/22.74) 0.366(4.216/4.326) 0.181(0.352/0.389)

1 1.128(22.32/23.93) 0.362(4.441/4.582) 0.184(0.389/0.415)

α κ = 0.4

d̂ â b̂

MDPDE

0 (CMLE) 1.239(28.92/34.59) 0.377(4.909/4.956) 0.155(0.364/0.565)

0.1 1.185(20.97/24.36) 0.369(3.849/3.939)∗ 0.158(0.264/0.437)

0.2 1.183(20.93/24.26)∗ 0.363(3.853/3.988) 0.160(0.264/0.425)∗
0.3 1.182(20.99/24.28) 0.360(3.906/4.063) 0.161(0.277/0.426)

0.4 1.183(21.58/24.92) 0.357(4.047/4.226) 0.163(0.296/0.431)

0.5 1.183(21.77/25.10) 0.355(4.135/4.329) 0.165(0.318/0.438)

0.75 1.192(22.91/26.58) 0.347(4.399/4.680) 0.171(0.363/0.446)

1 1.197(23.44/27.30) 0.340(4.593/4.951) 0.177(0.410/0.463)

Yo,t are all independent. In this simulation, we consider the cases of p = 0.01, 0.03
and κ = 0.5, 0.4. Tables 2 and 3 present the results when p = 0.01 and 0.03,
respectively. In most cases, the MDPDE outperforms the CMLE; that is, the MDPDE
has smaller MSEs than the CMLE. As p increases or κ decreases, the MSE of the
CMLE increases to a greater extent than that of the MDPDE in the italic values. This
indicates that as the data get more contaminated by outliers, the MDPDE performs
better than the CMLE. Moreover, when either p increases or κ decreases, the italic
values become wider and the symbol ∗ tends to move downward, which indicates that
if the data are severely contaminated by outliers, an MDPDE with large α performs
better. Note that the symbol ∗ for b̂ moves significantly further downward than those
for d̂ and â. When p = 0.03 and κ = 0.4, the smallest MSE of b̂ is achieved at α = 1.
This result indicates that outliers damage b̂ more severely than d̂ and â.

In Table 4, we additionally investigate the performance of the parameter estimators
by considering the cases of p = 0 (no outliers) and p = 0.01, κ = 0.4, based on
the asymptotic variance Âs.var(θ̂α,n) in Remark 2. Here, we use n = 2000, because
this consistently yields the estimated asymptotic variance stably, and compare the
averaged estimated asymptotic variances (AEAVs) calculated from the 1000 values
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Table 3 Sample mean (variance×102/MSE×102) of estimators for the NB-INGARCH(1,1) model when
p = 0.03

α κ = 0.5

d̂ â b̂

MDPDE

0 (CMLE) 1.341(38.64/50.21) 0.394(5.857/5.855) 0.128(0.320/0.839)

0.1 1.231(27.88/33.21) 0.394(4.737/4.737) 0.133(0.254/0.701)

0.2 1.186(26.04/29.49) 0.395(4.681/4.679)∗ 0.134(0.254/0.684)

0.3 1.175(26.13/29.18)∗ 0.392(4.816/4.818) 0.135(0.263/0.682)∗
0.4 1.172(26.61/29.54) 0.389(4.972/4.980) 0.136(0.277/0.683)

0.5 1.173(27.29/30.25) 0.385(5.145/5.162) 0.138(0.296/0.684)

0.75 1.175(28.15/31.17) 0.379(5.488/5.529) 0.142(0.353/0.686)

1 1.176(27.95/31.02) 0.373(5.595/5.660) 0.148(0.417/0.691)

α κ = 0.4

d̂ â b̂

MDPDE

0 (CMLE) 1.422(53.79/71.58) 0.421(7.662/7.699) 0.096(0.369/1.454)

0.1 1.303(38.00/47.14) 0.395(6.157/6.154) 0.099(0.222/1.243)

0.2 1.267(34.89/41.98) 0.390(5.898/5.902)∗ 0.099(0.211/1.232)

0.3 1.257(34.37/40.95)∗ 0.388(5.960/5.969) 0.099(0.222/1.233)

0.4 1.258(34.34/40.96) 0.384(6.036/6.057) 0.101(0.239/1.221)

0.5 1.266(34.83/41.84) 0.378(6.151/6.195) 0.103(0.264/1.203)

0.75 1.284(35.05/43.09) 0.362(6.360/6.495) 0.111(0.345/1.134)

1 1.287(34.32/42.54) 0.353(6.461/6.677) 0.121(0.445/1.070)∗

of the parameter estimates. The upper table of Table 4 (p = 0) shows that the CMLE
produces minimal AEAVs, and the AEAV increases as α increases as anticipated. On
the other hand, the lower table of Table 4 (p = 0.01, κ = 0.4) shows that the AEAVs
of the MDPDE are smaller than those of the CMLE, except for b̂ with α = 1. All
these results confirm that the MDPDE outperforms the CMLE in terms of efficiency
when the data are contaminated by outliers.

Now, we consider the INTGARCH(1,1) model:

Yt |Ft−1 ∼ Poisson(Xt ), Xt = d + a Xt−1 + b1 max(Yt−1 − l, 0) + b2 min(Yt−1, l),

(5)

where X1 and X̃1 are 0 and the sample mean of data, respectively. We set l = 3 and
θ = (d, a, b1, b2)T = (1, 0.4, 0.1, 0.3)T. To compare the robustness of the estimators,
we consider the contaminated data Yc,t as

Yc,t = Yt + Pt Yo,t ,
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Table 4 Samplemean (variance×102/MSE×102/AEAV×102) of estimators for the NB-INGARCH(1,1)
model when p = 0 and p = 0.01, κ = 0.4

α p = 0 (no outliers exist)

d̂ â b̂

MDPDE

0 (CMLE) 1.017(3.193/3.220/3.373)∗ 0.394(0.659/0.662/0.702)∗ 0.199(0.053/0.053/0.053)∗
0.1 1.018(3.226/3.254/3.440) 0.394(0.666/0.669/0.716) 0.199(0.054/0.054/0.054)

0.2 1.018(3.329/3.359/3.579) 0.393(0.687/0.690/0.745) 0.199(0.055/0.055/0.056)

0.3 1.019(3.469/3.501/3.757) 0.393(0.715/0.719/0.782) 0.199(0.058/0.058/0.058)

0.4 1.019(3.628/3.663/3.961) 0.393(0.747/0.752/0.824) 0.199(0.060/0.060/0.061)

0.5 1.020(3.799/3.835/4.180) 0.393(0.782/0.787/0.870) 0.199(0.063/0.063/0.064)

0.75 1.022(4.248/4.291/4.772) 0.392(0.874/0.879/0.993) 0.199(0.070/0.070/0.072)

1 1.023(4.721/4.770/5.396) 0.392(0.970/0.976/1.123) 0.199(0.077/0.077/0.080)

α p = 0.01, κ = 0.4

d̂ â b̂

MDPDE

0 (CMLE) 1.194(10.24/13.98/13.75) 0.398(1.745/1.743/2.404) 0.152(0.094/0.325/0.099)

0.1 1.123(5.745/7.248/6.580) 0.396(1.089/1.090/1.316)∗ 0.157(0.067/0.256/0.070)

0.2 1.116(5.591/6.926/6.239)∗ 0.392(1.090/1.096/1.282) 0.158(0.068/0.247/0.071)

0.3 1.119(5.708/7.111/6.439) 0.387(1.127/1.142/1.334) 0.159(0.072/0.239/0.074)

0.4 1.124(5.880/7.406/6.744) 0.383(1.171/1.199/1.402) 0.161(0.076/0.229/0.079)

0.5 1.129(6.065/7.733/7.076) 0.378(1.217/1.263/1.472) 0.163(0.081/0.218/0.084)

0.75 1.143(6.529/8.554/8.068) 0.368(1.329/1.431/1.673) 0.169(0.093/0.192/0.097)

1 1.153(6.979/9.309/9.425) 0.359(1.434/1.602/1.943) 0.174(0.106/0.172/0.110)∗

where Yt are generated from (5), Pt are iid Bernoulli random variables with success
probability p, and Yo,t are iid Poisson random variable with intensity γ . We consider
the cases of p = 0.01, 0.03 and γ = 5, 10. The results are presented in Tables 5,
6, and 7 for the cases of no outliers, p = 0.01, and p = 0.03, respectively. These
tables show results similar to those in Tables 1, 2, and 3. In Table 7, we observe that b̂1
with α = 1 has the smallest MSE when p = 0.03 and γ = 10. This result indicates
that when the data are severely contaminated by outliers, b̂1 is more severely affected
than the other parameters. Overall, our findings strongly support the MDPDE as a
promising robust estimator for general integer-valued time series models.

4.2 Real data analysis

In this subsection, we apply the MDPDE to the analysis of return times of extreme
events for Goldman Sachs Group (GS) stock, based on the daily log-returns between
May 5, 1999, and March 15, 2012. Davis and Liu (2016) studied this dataset and
considered the geometric distribution as a conditional distribution according to the
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Table 5 Sample mean (variance × 102/MSE × 102) of estimators for the INTGARCH(1,1) model when
no outliers exist

α d̂ â b̂1 b̂2

MDPDE

0 (CMLE) 1.073(17.73/18.24)∗ 0.368(2.654/2.754)∗ 0.096(0.481/0.482)∗ 0.310(0.613/0.623)∗
0.1 1.077(17.83/18.41) 0.367(2.670/2.778) 0.097(0.486/0.487) 0.310(0.624/0.633)

0.2 1.080(18.33/18.96) 0.366(2.752/2.866) 0.097(0.498/0.498) 0.309(0.648/0.657)

0.3 1.083(18.78/19.46) 0.365(2.839/2.960) 0.098(0.510/0.510) 0.309(0.681/0.689)

0.4 1.085(19.68/20.39) 0.364(3.000/3.125) 0.098(0.526/0.526) 0.309(0.724/0.731)

0.5 1.087(20.38/21.11) 0.364(3.120/3.246) 0.099(0.542/0.541) 0.308(0.766/0.772)

0.75 1.087(22.11/22.85) 0.364(3.408/3.533) 0.101(0.587/0.587) 0.307(0.873/0.878)

1 1.090(24.61/25.40) 0.364(3.768/3.896) 0.102(0.640/0.640) 0.307(0.985/0.989)

Table 6 Sample mean (variance × 102/MSE × 102) of estimators for the INTGARCH(1,1) model when
p = 0.01

α γ = 5

d̂ â b̂1 b̂2

MDPDE

0 (CMLE) 1.088(19.67/20.42) 0.373(2.924/2.994) 0.081(0.400/0.434) 0.312(0.737/0.752)

0.1 1.081(18.74/19.37)∗ 0.372(2.796/2.871)∗ 0.082(0.397/0.430)∗ 0.313(0.704/0.719)∗
0.2 1.081(18.81/19.45) 0.370(2.809/2.896) 0.082(0.406/0.438) 0.313(0.705/0.722)

0.3 1.083(19.25/19.92) 0.368(2.900/3.001) 0.082(0.417/0.448) 0.313(0.725/0.742)

0.4 1.088(20.13/20.89) 0.365(3.044/3.163) 0.083(0.432/0.461) 0.314(0.750/0.768)

0.5 1.090(20.64/21.42) 0.364(3.144/3.270) 0.083(0.448/0.476) 0.314(0.778/0.796)

0.75 1.097(22.33/23.24) 0.361(3.432/3.584) 0.084(0.488/0.512) 0.314(0.859/0.877)

1 1.105(24.04/25.13) 0.357(3.725/3.908) 0.086(0.535/0.554) 0.314(0.947/0.966)

α γ = 10

d̂ â b̂1 b̂2

MDPDE

0 (CMLE) 1.098(25.55/26.49) 0.377(3.623/3.671) 0.052(0.297/0.527) 0.323(0.871/0.925)

0.1 1.064(20.53/20.92) 0.376(2.985/3.041)∗ 0.053(0.283/0.506)∗ 0.324(0.707/0.766)

0.2 1.053(20.14/20.40)∗ 0.376(2.986/3.042) 0.053(0.287/0.506) 0.324(0.706/0.762)∗
0.3 1.052(20.52/20.78) 0.375(3.049/3.109) 0.054(0.295/0.509) 0.323(0.719/0.771)

0.4 1.053(21.16/21.41) 0.375(3.154/3.216) 0.054(0.305/0.515) 0.322(0.742/0.791)

0.5 1.053(21.63/21.89) 0.374(3.236/3.298) 0.055(0.318/0.522) 0.322(0.767/0.813)

0.75 1.055(23.68/23.96) 0.375(3.578/3.637) 0.057(0.359/0.543) 0.319(0.856/0.893)

1 1.057(25.35/25.65) 0.376(3.870/3.926) 0.060(0.412/0.573) 0.317(0.958/0.986)
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Table 7 Sample mean (variance × 102/MSE × 102) of estimators for the INTGARCH(1,1) model when
p = 0.03

α γ = 5

d̂ â b̂1 b̂2

MDPDE

0 (CMLE) 1.122(25.31/26.79) 0.379(3.538/3.580) 0.060(0.306/0.467) 0.319(0.849/0.886)

0.1 1.098(21.95/22.89) 0.377(3.135/3.186) 0.060(0.290/0.447) 0.321(0.757/0.801)

0.2 1.088(21.35/22.11)∗ 0.374(3.089/3.152)∗ 0.061(0.291/0.445)∗ 0.322(0.742/0.789)∗
0.3 1.087(21.64/22.37) 0.371(3.141/3.221) 0.061(0.299/0.448) 0.322(0.749/0.796)

0.4 1.085(22.04/22.74) 0.370(3.239/3.328) 0.062(0.309/0.455) 0.322(0.771/0.817)

0.5 1.087(22.96/23.69) 0.368(3.388/3.488) 0.062(0.322/0.463) 0.321(0.795/0.840)

0.75 1.093(24.63/25.46) 0.364(3.682/3.808) 0.064(0.353/0.484) 0.321(0.870/0.913)

1 1.099(26.51/27.46) 0.361(4.017/4.165) 0.065(0.391/0.511) 0.321(0.961/1.002)

α γ = 10

d̂ â b̂1 b̂2

MDPDE

0 (CMLE) 1.171(40.71/43.60) 0.389(5.180/5.186) 0.029(0.163/0.668) 0.333(1.383/1.489)

0.1 1.073(24.52/25.02) 0.382(3.451/3.480) 0.027(0.122/0.651) 0.338(0.813/0.960)

0.2 1.039(21.94/22.07) 0.382(3.198/3.227) 0.027(0.116/0.649) 0.337(0.736/0.870)

0.3 1.027(21.31/21.36)∗ 0.383(3.170/3.195)∗ 0.027(0.117/0.650) 0.334(0.731/0.848)∗
0.4 1.025(21.88/21.92) 0.383(3.297/3.324) 0.027(0.119/0.649) 0.333(0.755/0.860)

0.5 1.028(22.61/22.67) 0.381(3.429/3.461) 0.028(0.122/0.646) 0.331(0.780/0.877)

0.75 1.037(25.05/25.16) 0.379(3.768/3.807) 0.029(0.136/0.639) 0.329(0.851/0.934)

1 1.043(27.03/27.19) 0.379(4.085/4.126) 0.031(0.160/0.637)∗ 0.327(0.944/1.016)

result in Chang (2010). We first calculate the hitting times, τ1, τ2, . . ., for which the
log-returns ofGS stock falls outside of the 0.05 and 0.95 quantiles of the data. Then, the
return times of extreme events are obtained by Yt = τt −τt−1. Figure 1 plots the return
times of GS stock and their autocorrelation function (ACF), showing that the data are
serially autocorrelated and have some aberrant observations. The sample mean and
variance are 10.01 and 1106, respectively. A significantly large value of the sample
variance is expected to be influenced by some extraordinarily large observations.

To illustrate the behavior of the MDPDE in the presence of outliers, we fit the
geometric INGARCH(1,1) model (NB-INGARCH(1,1) model with r = 1) to the data
using both the MDPDE and CMLE. Because Yt ≥ 1, we employ a version of the
geometric distribution that counts the total number of trials instead of the failures.
More precisely, we fit the following geometric INGARCH(1,1) model to the data:

Yt |Ft−1 ∼ Geo(pt ), Xt = 1

pt
= d + aXt−1 + bYt−1,

where X̃1 is the sample mean of the data and ∂η̃1(θ̂α,n)/∂θ and ∂2η̃1(θ̂α,n)/∂θ∂θT

are set to be zero vector and matrix, respectively, for computing the standard errors
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Fig. 1 Return times of GS stock and their autocorrelation function

Table 8 Parameter estimates for the geometric INGARCH(1,1) model

α d̂ â b̂ ÂMSE

MDPDE

0 (CMLE) 0.526(0.406) 0.490(0.175) 0.483(0.156) 0.623

0.05 0.420(0.288) 0.502(0.141) 0.484(0.135) 0.476

0.1 0.416(0.250) 0.506(0.127) 0.464(0.121) 0.430

0.15 0.420(0.238) 0.509(0.123) 0.447(0.115) 0.410

0.2 0.426(0.237) 0.513(0.125) 0.432(0.114) 0.401

0.25 0.432(0.242) 0.518(0.129) 0.418(0.115) 0.398•
0.3 0.437(0.249) 0.523(0.135) 0.406(0.118) 0.399

0.35 0.439(0.258) 0.529(0.141) 0.395(0.121) 0.402

0.4 0.438(0.267) 0.535(0.148) 0.385(0.125) 0.405

0.45 0.435(0.275) 0.543(0.154) 0.375(0.128) 0.409

0.5 0.429(0.282) 0.551(0.159) 0.366(0.131) 0.411

of the estimators and ÂMSE in Remark 2. Because the MDPDE with a too large α

can result in a significant loss of efficiency (Basu et al. 1998), we consider α from
0.05 to 0.5 with increase of 0.05. Table 8 presents the parameter estimates for the
geometric INGARCH(1,1) model. In Table 8, the figures in parentheses denote the
standard errors of the corresponding estimators and the symbol • stands for theminimal
ÂMSE. In the table, we observe that the MDPDE is more stable than the CMLE. In
other words, the standard errors of the MDPDE are smaller than those of the CMLE
for all α and parameters. This result indicates that the MDPDE performs better than
the CMLE in terms of the stability when outliers are present. The optimal α is chosen
to be α = 0.25, and the corresponding MDPDE appears to be quite different from the
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CMLE. This indicates that outliers affect the parameter estimates when the geometric
INGARCH(1,1) model is employed. Note that for all α, â + b̂ are close to 1, which
resembles the behavior of integrated GARCH models. Overall, our findings confirm
that the MDPDE can provide a functional robust alternative to the CMLE in the
presence of outliers.

5 Concluding remarks

In this study, we developed an MDPDE-based robust estimation method for general
integer-valued time series models with a conditional distribution belonging to the one-
parameter exponential family. We verified that under certain regularity conditions, the
MDPDE is consistent and asymptotically normal. Our simulation study and real data
analysis confirmed the validity of the proposed estimator.
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Appendix

In this appendix, we provide the proofs of Theorems 1 and 2. Because Lee and Lee
(2018) verified the strong consistency and asymptotic normality of the CMLE under
similar conditions, we focus on the MDPDE with α > 0. The asymptotic results for
the CMLE also can be found in Davis and Liu (2016) and Cui and Zheng (2017). The
following properties of the probabilitymass function of the nonnegative integer-valued
exponential family are useful for proving the theorems. For all y ∈ N0 and η ∈ R:

(E1) 0 < p(y|η) < 1,
(E2)

∑∞
y=0 p(y|η) = 1,

(E3)
∑∞

y=0 yp(y|η) = B(η),

(E4)
∑∞

y=0 y2 p(y|η) = B ′(η) + B(η)2.

In what follows, we denote Hα,n(θ) = n−1∑n
t=1 lα,t (θ) and employ the notations

ηt = ηt (θ), η̃t = η̃t (θ) and η0t = ηt (θ0) for brevity.

Lemma 1 Suppose that the conditions (A0)–(A3) hold. Then, we have

sup
θ∈�

|X̃t (θ) − Xt (θ)| ≤ V ρt and sup
θ∈�

|η̃t − ηt | ≤ V ρt a.s.

Proof From (A0), we have

|X̃t (θ) − Xt (θ)| = | fθ (X̃t−1(θ), Yt−1) − fθ (Xt−1(θ), Yt−1)|
≤ ω1|X̃t−1(θ) − Xt−1(θ)|
≤ ωt−1

1 |X̃1 − X1(θ)|.
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Then, due to the mean value theorem (MVT) and (A3)with the fact that B−1 is strictly
increasing, it holds that

|η̃t − ηt | = |B−1(X̃t (θ)) − B−1(Xt (θ))|
= 1

B ′(B−1(X∗
t (θ)))

|X̃t (θ) − Xt (θ)|

≤ ωt−1
1

B ′(η∗
t )

|X̃1 − X1(θ)|

≤ ωt−1
1

c
|X̃1 − X1(θ)|,

where η∗
t = B−1(X∗

t (θ)) and X∗
t (θ) is an intermediate point between X̃t (θ) and

Xt (θ). Hence, the proof is completed by (A2). ��
Lemma 2 Suppose that conditions (A0)–(A4) hold. Then, we have

sup
θ∈�

|Hα,n(θ) − H̃α,n(θ)| a.s.−→ 0 as n → ∞.

Proof It suffices to show that

sup
θ∈�

|lα,t (θ) − l̃α,t (θ)| a.s.−→ 0 as t → ∞.

Note that |lα,t (θ) − l̃α,t (θ)| ≤ It (θ) + I It (θ), where

It (θ) =
∣∣∣∣∣∣

∞∑
y=0

p(y|ηt )
1+α −

∞∑
y=0

p(y|η̃t )
1+α

∣∣∣∣∣∣ ,

I It (θ) =
(
1 + 1

α

) ∣∣p(Yt |ηt )
α − p(Yt |η̃t )

α
∣∣ .

First, due to the MVT, (E1)–(E3), and the fact that B is strictly increasing, it holds
that

It (θ) ≤ (1 + α)|ηt − η̃t |
∞∑

y=0

p(y|η∗
t )1+α|y − B(η∗

t )|

≤ 2(1 + α)|ηt − η̃t |B(η∗
t )

≤ 2(1 + α)|ηt − η̃t | (B(ηt ) + |B(η̃t ) − B(ηt )|)
= 2(1 + α)|ηt − η̃t |(Xt (θ) + |X̃t (θ) − Xt (θ)|)

for some intermediate point η∗
t between ηt and η̃t . Hence,

sup
θ∈�

It (θ) ≤ 2(1 + α) sup
θ∈�

|ηt − η̃t |
(
sup
θ∈�

Xt (θ) + sup
θ∈�

|X̃t (θ) − Xt (θ)|
)

.
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According to Lemma 2.1 of Straumann andMikosch (2006) together with Lemma 1
and (A2), supθ∈� Xt (θ) supθ∈� |ηt − η̃t | → 0 a.s. as t → ∞. Therefore, supθ∈� It (θ)

converges to 0 a.s. by Lemma 1.
Next, from the MVT, (E1), and the fact that B is strictly increasing, we have

I It (θ) = (1 + α)p(Yt |η∗
t )α|Yt − B(η∗

t )||ηt − η̃t |
≤ (1 + α)|ηt − η̃t |(Yt + B(η∗

t ))

≤ (1 + α)|ηt − η̃t |(Yt + B(ηt ) + |B(η̃t ) − B(ηt )|)
= (1 + α)|ηt − η̃t |(Yt + Xt (θ) + |X̃t (θ) − Xt (θ)|).

Hence,

sup
θ∈�

I It (θ) ≤ (1 + α) sup
θ∈�

|ηt − η̃t |
(

Yt + sup
θ∈�

Xt (θ) + sup
θ∈�

|X̃t (θ) − Xt (θ)|
)

.

By using Lemma 2.1 of Straumann and Mikosch (2006) again with Lemma 1 and
(A4), it holds that Yt supθ∈� |ηt − η̃t | → 0 a.s. as t → ∞. By applying the same
method to the remaining terms, we have supθ∈� I It (θ) converges to 0 a.s. Therefore,
the lemma is validated. ��

Lemma 3 Suppose that conditions (A0)–(A5) hold. Then, we have

E

(
sup
θ∈�

|lα,t (θ)|
)

< ∞ and if θ �= θ0, then Elα,t (θ) > Elα,t (θ0).

Proof From (E1) and (E2), it can be seen that

|lα,t (θ)| ≤
∞∑

y=0

p(y|ηt )
1+α +

(
1 + 1

α

)
p(Yt |ηt )

α ≤ 2 + 1

α
,

and thus the first part of the lemma is established. Note that

Elα,t (θ) − Elα,t (θ0)

= E
[
E(lα,t (θ) − lα,t (θ0)|Ft−1)

]

= E

⎡
⎣ ∞∑

y=0

(
p(y|ηt )

1+α −
(
1 + 1

α

)
p(y|ηt )

α p(y|η0t ) + 1

α
p(y|η0t )1+α

)⎤⎦
≥ 0,

where equality holds if and only if ηt = η0t a.s. Therefore, by (A5) and the fact that B
is strictly increasing, the lemma is asserted. ��
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Proof of Theorem 1 We can express

sup
θ∈�

∣∣∣∣∣
1

n

n∑
t=1

l̃α,t (θ) − Elα,t (θ)

∣∣∣∣∣ ≤ sup
θ∈�

∣∣∣∣∣
1

n

n∑
t=1

l̃α,t (θ) − 1

n

n∑
t=1

lα,t (θ)

∣∣∣∣∣
+ sup

θ∈�

∣∣∣∣∣
1

n

n∑
t=1

lα,t (θ) − Elα,t (θ)

∣∣∣∣∣ .

By Lemma 2, the first term on the RHS of the above inequality converges to 0 a.s.
Since lα,t (θ) is stationary and ergodic with E(supθ∈� |lα,t (θ)|) < ∞ by Lemma 3, the
second term on the RHS also converges to 0 a.s. (cf. Theorem 2.7 of Straumann and
Mikosch 2006). Moreover, since Elα,t (θ) has a unique minimum at θ0 from Lemma 3,
the theorem is established. ��

In order to derive the first and second derivatives of lα,t (θ), we define two functions
hα(η) and mα(η) as

hα(η) =
∞∑

y=0

p(y|η)1+α y − B(η)

B ′(η)
− p(Yt |η)α

Yt − B(η)

B ′(η)
,

mα(η) =
∞∑

y=0

p(y|η)1+α

[
(1 + α)

(
y − B(η)

B ′(η)

)2
− B ′′(η)

B ′(η)2

y − B(η)

B ′(η)
− 1

B ′(η)

]

−p(Yt |η)α

[
α

(
Yt − B(η)

B ′(η)

)2
− B ′′(η)

B ′(η)2

Yt − B(η)

B ′(η)
− 1

B ′(η)

]
.

Then, we have

∂lα,t (θ)

∂θ
= (1 + α)hα(ηt )

∂ Xt (θ)

∂θ
,

∂2lα,t (θ)

∂θ∂θT
= (1 + α)

(
hα(ηt )

∂2Xt (θ)

∂θ∂θT
+ mα(ηt )

∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

)
.

The following four lemmas are useful for proving Theorem 2.

Lemma 4 Suppose that conditions (A3) and (A6) hold. Then, we have

|hα(ηt )| ≤ 1

c
(Yt + 3Xt (θ)),

|hα(η̃t )| ≤ 1

c
(Yt + 3Xt (θ) + 3|Xt (θ) − X̃t (θ)|),

|mα(ηt )| ≤ α

c2
Y 2

t + K Yt + α

c2
Xt (θ)2 + 3K Xt (θ) + 3 + α

c
,
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|hα(ηt ) − hα(η̃t )| ≤
[

α

c2
Y 2

t + K Yt + 2α

c2

(
Xt (θ)2 + |Xt (θ) − X̃t (θ)|2

)

+3K
(
Xt (θ) + |Xt (θ) − X̃t (θ)|)+ 3 + α

c

]
|Xt (θ) − X̃t (θ)|.

Proof Due to (E1)–(E4), (A3), and (A6), we have

|hα(ηt )| ≤ 1

c

⎛
⎝ ∞∑

y=0

yp(y|ηt ) + B(ηt )

∞∑
y=0

p(y|ηt ) + Yt + B(ηt )

⎞
⎠

= 1

c
(Yt + 3B(ηt ))

and

|mα(ηt )| ≤ 1 + α

B ′(ηt )2

∞∑
y=0

p(y|ηt ) (y − B(ηt ))
2 +
∣∣∣∣ B ′′(ηt )

B ′(ηt )3

∣∣∣∣
∞∑

y=0

p(y|ηt ) (y + B(ηt ))

+ 1

B ′(ηt )

∞∑
y=0

p(y|ηt ) + α

B ′(ηt )2
(Yt − B(ηt ))

2

+
∣∣∣∣ B ′′(ηt )

B ′(ηt )3

∣∣∣∣ (Yt + B(ηt )) + 1

B ′(ηt )

≤ 1 + α

c
+ 2K B(ηt ) + 1

c
+ α

c2

(
Y 2

t + B(ηt )
2
)

+ K (Yt + B(ηt )) + 1

c

= α

c2
Y 2

t + K Yt + α

c2
B(ηt )

2 + 3K B(ηt ) + 3 + α

c
.

Hence, the first and third parts of the lemma are verified. The second part of the lemma
can be obtained using the fact that B(η̃t ) ≤ |B(ηt ) − B(η̃t )| + B(ηt ).

Note that since mα(ηt ) = ∂hα(ηt )/∂ Xt (θ), it holds that

|hα(ηt ) − hα(η̃t )|
= |mα(η∗

t )||Xt (θ) − X̃t (θ)|
≤
(

α

c2
Y 2

t + K Yt + α

c2
B(η∗

t )2 + 3K B(η∗
t ) + 3 + α

c

)
|Xt (θ) − X̃t (θ)|

≤
(

α

c2
Y 2

t + K Yt + 2α

c2

(
B(ηt )

2 + |B(η̃t ) − B(ηt )|2
)

+3K (B(ηt ) + |B(η̃t ) − B(ηt )|) + 3 + α

c

)
|Xt (θ) − X̃t (θ)|

by the MVT, the third part of the lemma, and the fact that B(η∗
t ) ≤ B(ηt ) + |B(η̃t ) −

B(ηt )|. Therefore, the fourth part is established. This completes the proof. ��
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Lemma 5 Suppose that conditions (A0)–(A7) hold. Then, we have

E

(
sup
θ∈�

∥∥∥∥∂
2lα,t (θ)

∂θ∂θT

∥∥∥∥
)

< ∞ and E

(
sup
θ∈�

∥∥∥∥∂lα,t (θ)

∂θ

∂lα,t (θ)

∂θT

∥∥∥∥
)

< ∞.

Proof Note that

1

1 + α

∥∥∥∥∂
2lα,t (θ)

∂θ∂θT

∥∥∥∥ ≤ |hα(ηt )|
∥∥∥∥∂

2Xt (θ)

∂θ∂θT

∥∥∥∥+ |mα(ηt )|
∥∥∥∥∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

∥∥∥∥ .

Using Lemma 4 and the Cauchy–Schwarz inequality, we have

1

1 + α
E

(
sup
θ∈�

∥∥∥∥∂
2lα,t (θ)

∂θ∂θT

∥∥∥∥
)

≤
√

E

(
sup
θ∈�

|hα(ηt )|
)2√

E

(
sup
θ∈�

∥∥∥∥∂
2Xt (θ)

∂θ∂θT

∥∥∥∥
)2

+
√

E

(
sup
θ∈�

|mα(ηt )|
)2√

E

(
sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

∥∥∥∥
)2

≤
√

E

[
1

c

(
Yt + 3 sup

θ∈�

Xt (θ)

)]2√
E

(
sup
θ∈�

∥∥∥∥∂
2Xt (θ)

∂θ∂θT

∥∥∥∥
)2

+
√

E

(
α

c2
Y 2

t + K Yt + α

c2
sup
θ∈�

Xt (θ)2 + 3K sup
θ∈�

Xt (θ) + 3 + α

c

)2

×
√

E

(
sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

∥∥∥∥
)2

.

Owing to (A2), (A4), and (A7), the RHS of the last inequality is finite.
In a similar manner, we can show that

1

(1 + α)2
E

(
sup
θ∈�

∥∥∥∥∂lα,t (θ)

∂θ

∂lα,t (θ)

∂θT

∥∥∥∥
)

≤
√

E

(
sup
θ∈�

|hα(ηt )|2
)2√

E

(
sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

∥∥∥∥
)2

≤
√√√√E

[
sup
θ∈�

(
1

c
(Yt + 3Xt (θ))

)2]2√
E

(
sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

∥∥∥∥
)2

≤
√

4

c4
E

(
Y 2

t + 9 sup
θ∈�

Xt (θ)2
)2√

E

(
sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∂ Xt (θ)

∂θT

∥∥∥∥
)2

< ∞.

Therefore, the lemma is verified. ��
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Lemma 6 Suppose that conditions (A0)–(A8) hold. Then, we have

1√
n

n∑
t=1

sup
θ∈�

∥∥∥∥∥
∂lα,t (θ)

∂θ
− ∂ l̃α,t (θ)

∂θ

∥∥∥∥∥
a.s.−→ 0 as n → ∞.

Proof From Lemma 1, 4, and (A8), we can write

1

1 + α
sup
θ∈�

∥∥∥∥∥
∂lα,t (θ)

∂θ
− ∂ l̃α,t (θ)

∂θ

∥∥∥∥∥
≤ sup

θ∈�

|hα(η̃t )| sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ
− ∂ X̃t (θ)

∂θ

∥∥∥∥
+ sup

θ∈�

|hα(ηt ) − hα(η̃t )| sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∥∥∥∥
≤ 1

c

(
Yt + 3 sup

θ∈�

Xt (θ) + 3 sup
θ∈�

|Xt (θ) − X̃t (θ)|
)
sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ
− ∂ X̃t (θ)

∂θ

∥∥∥∥
+
[

α

c2
Y 2

t + K Yt + 2α

c2

(
sup
θ∈�

Xt (θ)2 + sup
θ∈�

|Xt (θ) − X̃t (θ)|2
)

+ 3K

(
sup
θ∈�

Xt (θ) + sup
θ∈�

|Xt (θ) − X̃t (θ)|
)

+ 3 + α

c

]

sup
θ∈�

|Xt (θ) − X̃t (θ)| sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∥∥∥∥
≤ 1

c

(
Yt + 3 sup

θ∈�

Xt (θ) + 3V ρt
)

V ρt + sup
θ∈�

∥∥∥∥∂ Xt (θ)

∂θ

∥∥∥∥
×
[

α

c2
Y 2

t + K Yt + 2α

c2

(
sup
θ∈�

Xt (θ)2 + V 2ρ2t
)

+3K

(
sup
θ∈�

Xt (θ) + V ρt
)

+ 3 + α

c

]
V ρt .

Hence, due to Lemma 2.1 of Straumann andMikosch (2006) together with (A2), (A4),
and (A7), the RHS of the last inequality converges to 0 exponentially fast a.s., and the
lemma is established. For details of the concept and properties of exponentially fast
a.s. convergence, we refer the reader to Straumann and Mikosch (2006) and Cui and
Zheng (2017). ��
Lemma 7 Suppose that

θ̂ H
α,n = argmin

θ∈�

Hα,n(θ),

and conditions (A0)–(A9) hold. Then, we have

θ̂ H
α,n

a.s.−→ θ0
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and

√
n(θ̂ H

α,n − θ0)
d−→ N (0, J−1

α Kα J−1
α ) as n → ∞.

Proof As in the proof of Theorem 1, we can see that supθ∈� |n−1∑n
t=1 lα,t (θ)

− Elα,t (θ)| converges to 0 a.s., and because Elα,t (θ) has a unique minimum at θ0
by Lemma 3, the first part of the lemma is validated.

Now, we verify the second part of the lemma. By using the MVT, we obtain

0 = 1√
n

n∑
t=1

∂lα,t (θ0)

∂θ
+
(
1

n

n∑
t=1

∂2lα,t (θ
∗
α,n)

∂θ∂θT

)√
n(θ̂ H

α,n − θ0),

where θ∗
α,n is an intermediate point between θ0 and θ̂ H

α,n . First, we show that

1√
n

n∑
t=1

∂lα,t (θ0)

∂θ

d−→ N (0, Kα). (6)

For ν ∈ R
d , we have

E

(
νT

∂lα,t (θ0)

∂θ

∣∣∣Ft−1

)
= (1 + α)νT

∂ Xt (θ0)

∂θ
E
(

hα(η0t )|Ft−1

)
= 0

and

E

(
νT

∂lα,t (θ0)

∂θ

)2
= νTE

(
∂lα,t (θ0)

∂θ

∂lα,t (θ0)

∂θT

)
ν < ∞

owing to the second part of Lemma 5. Thus, using the central limit theorem in Billings-
ley (1961), we obtain

1√
n

n∑
t=1

νT
∂lα,t (θ0)

∂θ

d−→ N (0, νTKαν),

which asserts (6).
Next, we show that

− 1

n

n∑
t=1

∂2lα,t (θ
∗
α,n)

∂θ∂θT
a.s.−→ Jα. (7)

In view of the first part of Lemma 5, Jα is finite. Moreover, since

E
(

mα(η0t )|Ft−1

)
=

∞∑
y=0

p(y|η0t )1+α

(
y − B(η0t )

B ′(η0t )

)2
> 0,
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it holds that

νT(−Jα)ν = (1 + α)E

[
mα(η0t )

(
νT

∂ Xt (θ0)

∂θ

)2]

= (1 + α)E

[
E
(

mα(η0t )|Ft−1

)(
νT

∂ Xt (θ0)

∂θ

)2]
> 0

by (A9), which implies that Jα is non-singular. Note that

∥∥∥∥∥
1

n

n∑
t=1

∂2lα,t (θ
∗
α,n)

∂θ∂θT
− E

(
∂2lα,t (θ0)

∂θ∂θT

)∥∥∥∥∥
≤ sup

θ∈�

∥∥∥∥∥
1

n

n∑
t=1

∂2lα,t (θ)

∂θ∂θT
− E

(
∂2lα,t (θ)

∂θ∂θT

)∥∥∥∥∥
+
∥∥∥∥∥E

(
∂2lα,t (θ

∗
α,n)

∂θ∂θT

)
− E

(
∂2lα,t (θ0)

∂θ∂θT

)∥∥∥∥∥ .

The stationarity and ergodicity of ∂2lα,t (θ)/∂θ∂θT and the first part of Lemma 5 imply
that the first term on the RHS of the above inequality converges to 0 a.s. Furthermore,
the second term goes to 0 by the dominated convergence theorem, so that (7) is verified.
Therefore, from (6) and (7), the second part of the lemma is established. ��
Proof of Theorem 2 Owing to the MVT, we have

1

n

n∑
t=1

∂lα,t (θ̂
H
α,n)

∂θ
− 1

n

n∑
t=1

∂lα,t (θ̂α,n)

∂θ
=
(
1

n

n∑
t=1

∂2lα,t (ζα,n)

∂θ∂θT

)
(θ̂ H

α,n − θ̂α,n),

where ζα,n is an intermediate point between θ̂ H
α,n and θ̂α,n . Furthermore, from the facts

that n−1∑n
t=1 ∂lα,t (θ̂

H
α,n)/∂θ = 0 and n−1∑n

t=1 ∂ l̃α,t (θ̂α,n)/∂θ = 0, we obtain

1√
n

n∑
t=1

∂ l̃α,t (θ̂α,n)

∂θ
− 1√

n

n∑
t=1

∂lα,t (θ̂α,n)

∂θ
=
(
1

n

n∑
t=1

∂2lα,t (ζα,n)

∂θ∂θT

)√
n(θ̂ H

α,n − θ̂α,n).

The LHS of the above equation converges to 0 a.s. by Lemma 6, and we can show
that n−1∑n

t=1 ∂2lα,t (ζα,n)/∂θ∂θT converges to E(∂2lα,t (θ0)/∂θ∂θT ) a.s. in a similar
manner as in the proof of Lemma 7. Therefore, the theorem is established by Lemma 7.

��

References

Ahmad, A., Francq, C. (2016). Poisson QMLE of count time series models. Journal of Time Series Analysis,
37, 291–314.

123



Robust estimation for integer-valued time series 1395

Al-Osh, M. A., Alzaid, A. A. (1987). First order integer-valued autoregressive (INAR(1)) process. Journal
of Time Series Analysis, 8, 261–275.

Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimizing a
density power divergence. Biometrika, 85, 549–559.

Billingsley, P. (1961). The Lindeberg-Lévy theorem for martingales. Proceedings of the American Mathe-
matical Society, 12, 788–792.

Chang, L. (2010). Conditional modeling and conditional inference. Ph.D. thesis, Brown University, Provi-
dence, Rhode Island.

Christou, V., Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models.
Journal of Time Series Analysis, 35, 55–78.

Cui, Y., Zheng, Q. (2017). Conditional maximum likelihood estimation for a class of observation-driven
time series models for count data. Statistics and Probability Letters, 123, 193–201.

Davis, R. A., Liu, H. (2016). Theory and inference for a class of observation-driven models with application
to time series of counts. Statistica Sinica, 26, 1673–1707.

Davis, R. A., Wu, R. (2009). A negative binomial model for time series of counts. Biometrika, 96, 735–749.
Diop, M. L., Kengne, W. (2017). Testing parameter change in general integer-valued time series. Journal

of Time Series Analysis, 38, 880–894.
Doukhan, P.,Kengne,W. (2015). Inference and testing for structural change in general poisson autoregressive

models. Electronic Journal of Statistics, 9, 1267–1314.
Durio,A., Isaia, E.D. (2011). Theminimumdensity power divergence approach in building robust regression

models. Informatica, 22, 43–56.
Ferland, R., Latour, A., Oraichi, D. (2006). Integer-valued GARCH processes. Journal of Time Series

Analysis, 27, 923–942.
Fokianos, K., Rahbek, A., Tjøstheim, D. (2009). Poisson autoregression. Journal of the American Statistical

Association, 104, 1430–1439.
Fried, R., Agueusop, I., Bornkamp, B., Fokianos, K., Fruth, J., Ickstadt, K. (2015). Retrospective Bayesian

outlier detection in INGARCH series. Statistics and Computing, 25, 365–374.
Fujisawa, H., Eguchi, S. (2006). Robust estimation in the normal mixture model. Journal of Statistical

Planning and Inference, 136, 3989–4011.
Kang, J., Lee, S. (2014a). Minimum density power divergence estimator for Poisson autoregressive models.

Computational Statistics and Data Analysis, 80, 44–56.
Kang, J., Lee, S. (2014b). Parameter change test for Poisson autoregressive models. Scandinavian Journal

of Statistics, 41, 1136–1152.
Kim, B., Lee, S. (2013). Robust estimation for the covariance matrix of multivariate time series based on

normal mixtures. Computational Statistics and Data Analysis, 57, 125–140.
Kim, B., Lee, S. (2017). Robust estimation for zero-inflated Poisson autoregressive models based on density

power divergence. Journal of Statistical Computation and Simulation, 87, 2981–2996.
Lee, S., Lee, Y., Chen, C. W. S. (2016). Parameter change test for zero-inflated generalized Poisson autore-

gressive models. Statistics, 50, 540–557.
Lee, S., Song, J. (2009). Minimum density power divergence estimator for GARCH models. Test, 18,

316–341.
Lee, Y., Lee, S. (2018). CUSUM test for general nonlinear integer-valued GARCH models: Comparison

study. Annals of the Institute of Statistical Mathematics. https://doi.org/10.1007/s10463-018-0676-
7.

Lehmann, E., Casella, G. (1998). Theory of point estimation2nd ed. New York: Springer.
McKenzie, E. (1985). Some simple models for discrete variate time series. Journal of the American Water

Resources Association, 21, 645–650.
Mihoko, M., Eguchi, S. (2002). Robust blind source separation by beta divergence. Neural Computation,

14, 1859–1886.
Straumann, D., Mikosch, T. (2006). Quasi-maximum-likelihood estimation in conditionally heteroscedastic

time series: A stochastic recurrence equations approach. The Annals of Statistics, 34, 2449–2495.
Toma, A., Broniatowski, M. (2011). Dual divergence estimators and tests: Robustness results. Journal of

Multivariate Analysis, 102, 20–36.
Warwick, J. (2005). A data-based method for selecting tuning parameters in minimum distance estimators.

Computational Statistics and Data Analysis, 48, 571–585.
Warwick, J., Jones, M. C. (2005). Choosing a robustness tuning parameter. Journal of Statistical Compu-

tation and Simulation, 75, 581–588.

123

https://doi.org/10.1007/s10463-018-0676-7
https://doi.org/10.1007/s10463-018-0676-7


1396 B. Kim, S. Lee

Weiß, C. H. (2008). Thinning operations for modeling time series of counts-a survey. AStA-Advances in
Statistical Analysis, 92, 319–341.

Zhu, F. (2012a). Modeling overdispersed or underdispersed count data with generalized poisson integer-
valued GARCH models. Journal of Mathematical Analysis and Applications, 389, 58–71.

Zhu, F. (2012b). Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of
Statistical Planning and Inference, 142, 826–839.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Robust estimation for general integer-valued time series models
	Abstract
	1 Introduction
	2 MDPDE for general integer-valued time series models
	3 Asymptotic properties of the MDPDE
	3.1 Consistency and asymptotic normality of the MDPDE
	3.2 INGARCH models

	4 Empirical studies
	4.1 Simulation
	4.2 Real data analysis

	5 Concluding remarks
	Acknowledgements
	Appendix
	References




