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Abstract
In this paper, we study asymptotic properties of nonlinear support vector machines
(SVM) in high-dimension, low-sample-size settings. We propose a bias-corrected
SVM (BC-SVM) which is robust against imbalanced data in a general framework.
In particular, we investigate asymptotic properties of the BC-SVM having the Gaus-
sian kernel and compare them with the ones having the linear kernel. We show that
the performance of the BC-SVM is influenced by the scale parameter involved in the
Gaussian kernel. We discuss a choice of the scale parameter yielding a high perfor-
mance and examine the validity of the choice by numerical simulations and actual
data analyses.
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1 Introduction

Acommon feature of high-dimensional data is that the data dimension is high; however,
the sample size is relatively low. We call such data “HDLSS” data. The current work
handles the classification problem in the HDLSS framework. Suppose we have two
independent populations, Πi , i = 1, 2, having a d-variate distribution with unknown
mean vector μi and unknown covariance matrix Σ i . We do not specify any dis-
tributional function for Πi . We have independent and identically distributed (i.i.d.)
observations, xi1, . . . , xini , from each Πi . We assume ni ≥ 2. Let x0 be an observa-
tion vector of an individual belonging to one of the Πi s. We assume x0 and xi j s are
independent. Let N = n1 + n2. We consider the HDLSS context in which d → ∞
while N is fixed or N/d → 0 as d, N → ∞.

In the HDLSS context, Hall et al. (2005), Marron et al. (2007) and Qiao et al.
(2010) considered distance weighted classifiers. Hall et al. (2008), Chan and Hall
(2009) and Aoshima and Yata (2014) considered distance-based classifiers. Aoshima
and Yata (2019) considered a distance-based classifier based on a data transformation
technique. Aoshima and Yata (2011, 2015) considered geometric classifiers based on
a geometric representation of HDLSS data. Aoshima and Yata (2018b) considered
quadratic classifiers in general and discussed an optimality of the classifiers under
high-dimension, non-sparse settings. On the other hand, Hall et al. (2005), Chan and
Hall (2009), Qiao and Zhang (2015) and Nakayama et al. (2017) investigated asymp-
totic properties of the linear support vector machine (SVM) in the HDLSS context.
Huang (2017) investigated the SVM in the high-dimension, large-sample-size context
as d/N → c > 0. Vapnik (2000), Schölkopf and Smola (2002), Hall et al. (2005)
and Qiao and Zhang (2015) investigated the versatility of the SVM for both low-
dimensional and high-dimensional data. Hall et al. (2005), Chan and Hall (2009) and
Qiao and Zhang (2015) showed that the misclassification rates of the linear SVM
tend to zero as d → ∞ under certain strict conditions in the HDLSS context. Under
mild conditions in the HDLSS context, Nakayama et al. (2017) pointed out the strong
inconsistency of the linear SVM when ni s are imbalanced. Nakayama et al. (2017)
gave a bias-corrected linear SVM and showed its superiority to the linear SVM. As
long as we know, asymptotic properties of nonlinear SVMs seem not to have been suf-
ficiently studied in the HDLSS context. In the current paper, we investigate nonlinear
SVMs in the HDLSS context.

We introduce a high-dimensional geometric representation. Let us consider the
following condition for Σ i , i = 1, 2:

tr(Σ2
i )/tr(Σ i )

2 → 0 as d → ∞. (1)

We note that the ratio, tr(Σ2
i )/tr(Σ i )

2, is a measure of sphericity and (1) is equivalent
to “λmax(Σ i )/tr(Σ i ) → 0 as d → ∞,”whereλmax(Σ i ) denotes the largest eigenvalue
ofΣ i . See Ahn et al. (2007) and Aoshima and Yata (2019). If we assume (1) and (A-ii)
given in Sect. 3, we have that

‖x0 − μi‖ = tr(Σ i )
1/2{1 + oP (1)} as d → ∞ when x0 ∈ Πi
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Fig. 1 The histograms of ‖x0 − μi ‖/d1/2 for x0 ∈ Πi , i = 1, 2, when d = 16, 80, 400 and 2000

from the fact that Var(‖x0 − μi‖2) = O{tr(Σ2
i )} when x0 ∈ Πi , where ‖ · ‖ denotes

the Euclidean norm. Thus, the centroid data concentrate near on the surface of an
expanding sphere with radius, tr(Σ i )

1/2, when the dimension is large. See Hall et al.
(2005) for the details of the geometric representation. We consider a toy example to
see the geometric representation. We set Πi : Nd(μi ,Σ i ), i = 1, 2, having Σ1 = Id

and Σ2 = 2Id , where Id denotes the d-dimensional identity matrix. Note that (1)
and (A-ii) are met. Thus, for a large d, we expect that ‖x0 − μ1‖/d1/2 ≈ 1 when
x0 ∈ Π1 and‖x0−μ2‖/d1/2 ≈ 21/2 when x0 ∈ Π2. Independent pseudorandom2000
observations of ‖x0 − μi‖/d1/2 were generated when x0 ∈ Πi for i = 1, 2. In Fig. 1,
we gave histograms of ‖x0 − μi‖/d1/2 for x0 ∈ Πi , i = 1, 2, when d = 16, 80, 400
and 2000.We observed that ‖x0−μi‖/d1/2s converge to tr(Σ i )

1/2/d1/2 for each case
as d increases. In other words, x0 concentrates on the surface of the d-dimensional
sphere with center μi and radius tr(Σ i )

1/2 as in Fig. 2. In this paper, we focus on the
geometric representation for high-dimensional classification.

In Sect. 2, we consider nonlinear SVMs in a general framework and study their
asymptotic properties in the HDLSS context. We show that nonlinear SVMs are
heavily biased in the HDLSS context, especially for imbalanced data. In order to
overcome such difficulties, we propose a bias-corrected SVM (BC-SVM). In Sect. 3,
we give asymptotic properties of the BC-SVM for both the linear and Gaussian ker-
nels. We show that the BC-SVM with the Gaussian kernel draws information about
heteroscedasticity thorough the geometric representation of expanding two spheres
having different radii, tr(Σ i )

1/2s. In Sect. 4, we show that the performance of the BC-
SVM is influenced by the scale parameter involved in the Gaussian kernel. We discuss
a choice of the scale parameter yielding a high performance. Finally, in Sect. 5, we
examine the performance of the BC-SVMwith the Gaussian kernel for several choices
of the scale parameter by numerical simulations and actual data analyses.
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Fig. 2 The geometric representation of expanding two spheres having different radii, tr(Σ i )
1/2s

2 SVM in HDLSS settings

In this section, we consider the SVM in a general framework. We give asymptotic
properties of the SVM under the following divergence condition:

(D) d → ∞ either when N → ∞ as d → ∞ or N is fixed.

2.1 Setup of SVM

Since HDLSS data are mostly separable by a hyperplane, we first consider the hard-
margin SVM:

y(x) = wTφ(x) + b, (2)

where φ(·) is a featuremap,w is a weight vector and b is an intercept term. Let us write
that (x1, . . . , xN ) = (x11, . . . , x1n1, x21, . . . , x2n2). Let t j = −1 for j = 1, . . . , n1
and t j = 1 for j = n1+1, . . . , N . By differentiating the Lagrangian formulation with
respect to w and b, we obtain the following dual form:

L(α) =
N∑

j=1

α j − 1

2

N∑

j=1

N∑

j ′=1

α jα j ′ t j t j ′k(x j , x j ′), (3)

where k(x j , x j ′) = φ(x j )
Tφ(x j ′) is a kernel function, α = (α1, . . . , αN )T and α j s

are Lagrange multipliers such as w = ∑N
j=1 α j t jφ(x j ). The optimization problem

can be transformed into the following: argmaxα L(α) subject to

α j ≥ 0, j = 1, . . . , N , and
N∑

j=1

α j t j = 0. (4)
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Let us write that

α̂ = (α̂1, . . . , α̂N )T = argmax
α

L(α) subject to (4).

Note that
∑n1

j=1 α̂ j = ∑N
j=n1+1 α̂ j . There exist some x j s satisfying that t j y(x j ) = 1

(i.e., α̂ j 	= 0). Such x j s are called the support vector. Let Ŝ = { j |α̂ j 	= 0, j =
1, . . . , N } and NŜ = # Ŝ, where #A denotes the number of elements in a set A. The

intercept term is given by b̂ = N−1
Ŝ

∑
j∈Ŝ{t j − ∑

j ′∈Ŝ α̂ j ′ t j ′k(x j , x j ′)}. Then, the
classifier in (2) is given by

ŷ(x) =
∑

j∈Ŝ

α̂ j t j k(x, x j ) + b̂. (5)

One classifies x0 into Π1 if ŷ(x0) < 0 and into Π2 otherwise. See Vapnik (2000) for
the details.

Let e(i) denote the error rate of misclassifying an individual from Πi into the other
class for i = 1, 2. We claim that a classifier has the consistency if

e(i) → 0 as d → ∞ for i = 1, 2. (6)

In this paper, we mainly investigate the following typical kernels.

(I) The linear kernel: k(x j , x j ′) = xTj x j ′ and

(II) The Gaussian kernel: k(x j , x j ′) = exp(−‖x j − x j ′ ‖2/γ ),

where γ (> 0) is a scale parameter. In addition, we discuss a choice of γ in Sect. 4.
We examine the following kernels numerically.

(III) The polynomial kernel: k(x j , x j ′) = (ζ + xTj x j ′)r and
(IV) The Laplace kernel: k(x j , x j ′) = exp(−‖x j − x j ′ ‖1/ξ),

where ζ ≥ 0, ξ > 0, r ∈ N and ‖ · ‖1 denotes the L1-norm.
We also investigate the soft-margin SVM in Sect. 6.

2.2 Asymptotic properties of nonlinear SVM

Let K be an N × N gram matrix with the ( j, j ′) element k(x j , x j ′). First, we assume
the following assumption under the divergence condition (D):

(A-i) k(x1 j , x1 j ′) = κ1 + oP (Δ) for all 1 ≤ j < j ′ ≤ n1,
k(x1 j , x1 j ) = κ2 + oP (Δ) for all 1 ≤ j ≤ n1,
k(x2 j , x2 j ′) = κ3 + oP (Δ) for all 1 ≤ j < j ′ ≤ n2,
k(x2 j , x2 j ) = κ4 + oP (Δ) for all 1 ≤ j ≤ n2,
and k(x1 j , x2 j ′) = κ5 + oP (Δ) for all 1 ≤ j ≤ n1 and 1 ≤ j ′ ≤ n2,

where Δ = κ1 + κ3 − 2κ5 and κls are variables (which may depend on d) such that
Δ > 0, κ2 ≥ κ1 and κ4 ≥ κ3.
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Note that (A-i) is regarded as a convergence condition for the gram matrix and Δ is a
distance between the two populations. Also, note that κi s are characteristic variables
for each kernel in high-dimensional settings. They are naturally obtained by high-
dimensional asymptotics. For example,Δ = ‖μ1−μ2‖2, κ1 = ‖μ1‖2, κ2 = ‖μ1‖2+
tr(Σ1), κ3 = ‖μ2‖2, κ4 = ‖μ2‖2 + tr(Σ2) and κ5 = μT

1 μ2 when k(·, ·) is the linear
kernel. See Sect. 3.1. Also, see Sects. 3.2 and 7 for the Gaussian and polynomial
kernels, respectively.

Let η1 = κ2 − κ1 and η2 = κ4 − κ3. We note that k(xi j , xi j ′) = k(xi j ′ , xi j ) for all
j 	= j ′ (i = 1, 2). Then, under (A-i), we write that

K/Δ ≈
(

κ1 Jn1,n1 + η1 In1 κ5 Jn1,n2
κ5 Jn2,n1 κ3 Jn2,n2 + η2 In2

)
/Δ (= K 0/Δ, say),

where Jn1,n2 denotes the n1 × n2 matrix with all the elements 1. Let ά =
(−α1, . . . ,−αn1 , αn1+1, . . . , αN )T. We note that

∑n1
j=1 α j = ∑N

j=n1+1 α j (=
α�, say) under (4). Then, it holds that

ά
TK 0ά = Δα2

� + η1

n1∑

j=1

α2
j + η2

N∑

j=n1+1

α2
j . (7)

The second and third terms in (7) are regarded as a bias part. See Proposition 1. We
have that L(α) = 2α� − ά

TK ά/2 under (4). Then, from (7) we claim the following
lemma.

Lemma 1 Under (4), (A-i) and (D), it holds that

L(α) = 2α� − Δ

2
α2

� − 1

2

⎛

⎝η1

n1∑

j=1

α2
j + η2

N∑

j=n1+1

α2
j

⎞

⎠ + oP (Δα2
� ).

Note that

min
α

η1

n1∑

j=1

α2
j = α2

�η1/n1 and min
α

η2

N∑

j=n1+1

α2
j = α2

�η2/n2

when α1 = · · · = αn1 = α�/n1 and αn1+1 = · · · = αN = α�/n2 under (4). We first
consider the following condition under (D):

lim inf
d→∞

ηi

niΔ
> 0 for i = 1, 2. (8)

LetΔ∗ = Δ+η1/n1+η2/n2.Note that 2α�−Δ∗α2
�/2 = −Δ∗(α�−2/Δ∗)2/2+2/Δ∗.

Then, in a way similar to Sect. 2 of Nakayama et al. (2017), it follows from Lemma 1
that
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max
α

L(α) = −Δ∗
2

(
α� − 2 + oP (1)

Δ∗

)2

{1 + oP (1)} + 2 + oP (1)

Δ∗

under (4), (8), (A-i) and (D), so that α� ≈ 2/Δ∗. Let α̂� = ∑n1
j=1 α̂ j . Note that

∑N
j=n1+1 α̂ j = α̂�.

Proposition 1 Assume (A-i) and (8). It holds that

α̂� = (2/Δ∗){1 + oP (1)},
n1∑

j=1

α̂2
j = 4

Δ2∗n1
{1 + oP (1)} and

N∑

j=n1+1

α̂2
j = 4

Δ2∗n2
{1 + oP (1)} (9)

under (D). We also assume

(A-i’) k(x0, xi j ) = κ2i−1 + oP (Δ) for all 1 ≤ j ≤ ni and k(x0, xi ′ j ) = κ5 + oP (Δ)

for all 1 ≤ j ≤ ni ′ when x0 ∈ Πi for i = 1, 2; i ′ 	= i .

It holds that under (D)

ŷ(x0) = Δ

Δ∗

(
(−1)i + δ

Δ
+ oP (1)

)
when x0 ∈ Πi for i = 1, 2, (10)

where δ = η1/n1 − η2/n2.

We note that “δ/Δ” is a (normalized) bias term of the SVM. From Proposi-
tion 1, under (A-i) and (8), it holds that

∑n1
j=1(α̂ j − α̂�/n1)

2 = oP {(n1Δ
2∗)−1} and

∑N
j=n1+1(α̂ j − α̂�/n2)

2 = oP {(n2Δ
2∗)−1}, so that

α̂ j = 2

Δ∗n1
{1 + oP (1)} for all j = 1, . . . , n1; and

α̂ j = 2

Δ∗n2
{1 + oP (1)} for all j = n1 + 1, . . . , N (11)

when d → ∞ while N is fixed. It should be noted that all the data points are support
vectors under (A-i) and (8) in the HDLSS context. Ahn and Marron (2010) called this
phenomenon the “data piling.”

Next, we consider the following condition instead of (8) under (D):

ηi

niΔ
= o(1) for i = 1, 2. (12)

It follows from Lemma 1 that

max
α

L(α) = −Δ

2

(
α� − 2 + oP (1)

Δ

)2{1 + oP (1)} + 2 + oP (1)

Δ
(13)

under (4), (12), (A-i) and (D), so that α� ≈ 2/Δ.
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Proposition 2 Assume (A-i) and (12). It holds that α̂� = (2/Δ){1+oP (1)} under (D).
Furthermore, we assume (A-i’). It holds that under (D)

ŷ(x0) = (−1)i + oP (1) when x0 ∈ Πi for i = 1, 2. (14)

It should be noted that the data piling does not occur under (12). However, ŷ(x0)
has the consistency in the sense of (14). We consider the following condition under
(D):

(C-i) lim sup
d→∞

|δ|
Δ

< 1.

Note that (C-i) is met under (12). From Proposition 1, “δ/Δ” is a normalized bias
term of the SVM. From (10), if (C-i) is met, it holds that P{(−1)i ŷ(x0) > 0} → 1
when x0 ∈ Πi under (A-i), (A-i’) and (D). Thus, we have the following result.

Theorem 1 Under (A-i), (A-i’), (C-i) and (D), the SVM (5) holds the consistency (6).

However, without (C-i), we have the following results.

Corollary 1 Under (A-i), (A-i’) and (D), the SVM (5) holds the following properties:

e(1) = 1 + o(1) and e(2) = o(1) as d → ∞
if lim inf

d→∞
δ

Δ
> 1, and (15)

e(1) = o(1) and e(2) = 1 + o(1) as d → ∞
if lim sup

d→∞
δ

Δ
< −1. (16)

Remark 1 For the linear SVM, Hall et al. (2005), Qiao and Zhang (2015) and
Nakayama et al. (2017) showed the consistency (6) and the results in Corollary 1.

From Corollary 1, if |δ| is larger than Δ, the SVM would give a bad performance.
When ni/ni ′ → 0 for some i ( 	= i ′), |δ| tends to become large. Such imbalanced data
are called the “extremely imbalanced data.” In such cases, the SVM brings the strong
inconsistency property as “e(1) = 1 + o(1)” when η1 = η2, Δ/ηi = o(1) and n1 is
fixed but n2 → ∞. In order to overcome such difficulties, we propose a bias-corrected
SVM.

2.3 Bias-corrected nonlinear SVM

Let

η̂i =
ni∑

j=1

k(xi j , xi j )

ni − 1
−

ni∑

j=1

ni∑

j ′=1

k(xi j , xi j ′)

ni (ni − 1)
for i = 1, 2; and

Δ̂∗ =
2∑

i=1

( ni∑

j=1

ni∑

j ′=1

k(xi j , xi j ′)

n2
i

)
− 2

n1∑

j=1

n2∑

j ′=1

k(x1 j , x2 j ′)

n1n2
.
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Bias-corrected SVM in HDLSS settings 1265

Weconsider estimatingΔ and δ as Δ̂ = Δ̂∗−η̂1/n1−η̂2/n2 and δ̂ = η̂1/n1−η̂2/n2.
We have the following lemma.

Lemma 2 Under (A-i) and (D) it holds that

Δ̂/Δ = 1 + oP (1) and δ̂/Δ̂∗ = δ/Δ∗ + oP
(
Δ/Δ∗

)
.

From Proposition 1 and Lemma 2, we give a bias-corrected SVM (BC-SVM) as
follows:

ŷBC (x0) = ŷ(x0) − δ̂

Δ̂∗
. (17)

One classifies x0 intoΠ1 if ŷBC (x0) < 0 and intoΠ2 otherwise.Wehave the following
result.

Theorem 2 Under (A-i), (A-i’) and (D), the BC-SVM (17) holds the consistency (6).

It should be noted that the BC-SVM (17) claims the consistency without (C-i) even
when |δ/Δ| → ∞.

For imbalanced cases, Benjamin and Nathalie (2010) proposed the boosting SVM.
There are several studies on SVMs in imbalanced cases. See He and Garcia (2009)
for the review. However, it should be noted that they are algorithmic methods. On
the other hand, the BC-SVM (17) can theoretically ensure the accuracy and have the
consistency property at a low computational cost even for extremely imbalanced data.

Remark 2 Nakayama et al. (2017) gave a bias-corrected linear SVM. In this paper, we
generalize the concept of the BC-SVM to nonlinear kernels.

2.4 Performance of the BC-SVM

We setΠi : Nd(μi ,Σ i ), i = 1, 2, havingμ2 = 0,Σ1 = c1B(0.3|i− j |1/3)B andΣ2 =
c2B(0.4|i− j |1/3)B, where B = diag[{0.5+ 1/(d + 1)}1/2, . . . , {0.5+ d/(d + 1)}1/2].
Note that tr(Σ i ) = ci d for i = 1, 2. We considered

μ1 = (−1/5, 1/5,−1/5, . . . ,−1/5, 1/5)T (= μα, say),

where the r -element is (−1)r/5 for r = 1, . . . , d.
First, we considered the linear SVM (LSVM) and the Gaussian kernel SVM

(GSVM). We compared the performance of the bias-corrected LSVM (BC-LSVM)
and bias-corrected GSVM (BC-GSVM) with the above ones. See (18) and (19) for
the BC-LSVM and BC-GSVM. We set (n1, n2) = (20, 10), d = 2s, s = 5, . . . , 12,
and γ = d/4 in the Gaussian kernel (II). We considered three cases:

(a) μ1 = μα and (c1, c2) = (1, 1),
(b) μ1 = 0 and (c1, c2) = (0.9, 1.1), and
(c) μ1 = μα and (c1, c2) = (0.9, 1.1).
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1266 Y. Nakayama et al.

Fig. 3 The error rates of the BC-LSVM, LSVM, BC-GSVM and GSVM for (a–c). The left panels display
e(1), the middle panels display e(2), and the right panels display e for d = 2s , s = 5, . . . , 12. For the
LSVM and GSVM, e(2) was too high to describe

Note that ‖μ1 − μ2‖2 = d/25 for (a) and (c), ‖μ1 − μ2‖2 = 0 for (b), |tr(Σ1) −
tr(Σ2)| = 0 for (a), and |tr(Σ1) − tr(Σ2)| = 0.2d for (b) and (c). We repeated 2000
times to confirm if the classifier does (or does not) classify x0 ∈ Πi correctly and
defined Pir = 0 (or 1) accordingly for each Πi (i = 1, 2). We calculated the error
rates, e(i) = ∑2000

r=1 Pir/2000, i = 1, 2. Also, we calculated the average error rate,
e = {e(1) + e(2)}/2. Their standard deviations are less than 0.0112 from the fact that
Var{e(i)} = e(i){1− e(i)}/2000 ≤ 1/8000. In Fig. 3, we plotted e(1), e(2) and e for
d = 2s, s = 5, . . . , 12.

We observed that the BC-SVMs give good performances as d increases for (a)
and (c). However, for (b), the error rate of the BC-LSVM is close to 0.5 because
‖μ1 − μ2‖ = 0. On the other hand, the BC-GSVM gave good performances as d
increases by drawing information about heteroscedasticity thorough the geometric
representation as in Figs. 1 and 2 . For the LSVM and GSVM, e(1) and e(2) became
quite unbalanced as d increases. In particular, the strong inconsistency (16) occurred
for the GSVM. This is because of the bias in the GSVM. We give their theoretical
backgrounds in Sect. 3.2.

Next, we considered (a) to (c) for (n1, n2) = (20, 10), d = 1024 (= 210) and
γ = 2s, s = 5, . . . , 14 in (II). Similar to Fig. 3, we calculated the average error rate e
by 2000 replications and plotted the results in Fig. 4. We observed that the BC-GSVM
and GSVM are close to the BC-LSVM and LSVM, respectively, as γ increases for
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Fig. 4 The average error rate, e, of the BC-GSVM and GSVM for (a–c) when d = 1024 and γ = 2s , s =
5, . . . , 14. The average error rates of the BC-LSVM and LSVM are described by the lines

Fig. 5 The average error rates of the BC-SVM and SVM for (III) and (IV) in cases of (a–c), where
(ζ, r) = (d, 2) in (III) and ξ = d/4 in (IV). The panels display the error rates for d = 2s , s = 5, . . . , 12

(a) and (c). We give their theoretical backgrounds in Sect. 3.3. For (b) and (c), the
BC-GSVM gave better performances than the other SVMs for several settings of γ .
We note that the performance of the BC-GSVM (or GSVM) heavily depends on γ .
We discuss a choice of γ in Sect. 4.

Finally, we compared the performance of the BC-SVM with SVM for kernel func-
tions (III) and (IV). We set (ζ, r) = (d, 2) in (III) and ξ = d/4 in (IV). We considered
(a) to (c) for (n1, n2) = (20, 10) and d = 2s, s = 5, . . . , 12. Similar to Fig. 3, we
calculated the average error rate e by 2000 replications and plotted the results in Fig. 5.
We observed that the BC-SVM with (III) or (IV) gives good performances compared
to the SVMs for (a) and (c). On the other hand, for (b) the BC-SVM with (IV) gave
good performances as d increases. This is probably because the kernel function (IV)
can draw information about heteroscedasticity via the difference of Σ i s. We investi-
gated their performances in other high-dimensional settings as well. In most cases, the
BC-SVM with (III) or (IV) gave better performances than the SVMs. We investigate
asymptotic properties of the BC-SVM with (III) in Sect. 7.

3 Asymptotic properties by kernel functions

In this section, we investigate asymptotic properties of the nonlinear SVM brought by
kernel functions. We assume that lim supd→∞ ‖μi‖2/d < ∞ and tr(Σ i )/d ∈ (0,∞)

as d → ∞ for i = 1, 2.Here, for a function, f (·), “ f (d) ∈ (0,∞) as d → ∞” implies
lim infd→∞ f (d) > 0 and lim supd→∞ f (d) < ∞. Similar to Bai and Saranadasa
(1996) and Aoshima and Yata (2014), we assume the following assumption for Πi s
as necessary:
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(A-ii) Let zi j , j = 1, . . . , ni , be i.i.d. random pi -vectors having E(zi j ) = 0 and
Var(zi j ) = I pi for each i (= 1, 2) and some pi . Let zi j = (zi1 j , . . . , zipi j )

T

whose components satisfy that lim supd→∞ E(z4ir j ) < ∞ for all r and

E(z2ir j z
2
is j ) = E(z2ir j )E(z2is j ) = 1 and E(zir j zis j zi t j ziu j ) = 0

for all r 	= s, t, u. Then, the observations, xi j s, from each Πi (i = 1, 2) are
given by xi j = Γ i zi j + μi , j = 1, . . . , ni , where Γ i is a d × pi matrix such
that Γ iΓ

T
i = Σ i .

Note that zir j s are i.i.d. as the standard normal distribution when theΠi s are Gaussian

and Γ i = Σ
1/2
i . Thus, (A-ii) naturally holds when the Πi s are Gaussian. Another

example satisfying (A-ii) is the case when the Πi s have a skew normal distribution.
See Remark S4.1 in Aoshima and Yata (2018a) for the details.

3.1 Linear kernel

We consider the linear SVM (LSVM); that is, the classifier (5) has the kernel function
(I). We set κ1 = ‖μ1‖2, κ2 = ‖μ1‖2 + tr(Σ1), κ3 = ‖μ2‖2, κ4 = ‖μ2‖2 + tr(Σ2)

and κ5 = μT
1μ2, so that

Δ = ‖μ1 − μ2‖2 (= Δ(I ), say) and ηi = tr(Σ i ) (= ηi(I ), say) for i = 1, 2.

We note that the LSVM is invariant to linear transformations on the data set. Thus,
in Sect. 3.1, we assume μ2 = 0 without loss of generality, so that κ3 = κ5 = 0,
κ4 = η2(I ) and Δ(I ) = ‖μ1‖2. In addition, we assume the following condition under
(D):

(C-ii)
ni tr(Σ2

i )

Δ2
(I )

= o(1) for i = 1, 2.

Note that Δ2
(I )/tr(Σ

2
i ) = O(d) from the facts that lim supd→∞ Δ(I )/d < ∞,

tr(Σ2
i ) ≥ tr(Σ i )

2/d and tr(Σ i )/d ∈ (0,∞) as d → ∞ for i = 1, 2. Thus, ni = o(d)

when (C-ii) is met. Under (1), (C-ii) holds when lim infd→∞ Δ(I )/d > 0 and ni s are
fixed. We have the following result.

Lemma 3 Assume (A-ii) and (C-ii). Then, the assumptions (A-i) and (A-i’) are met for
the kernel function (I).

By combining Lemma 3 with Theorem 1 and Corollary 1, we have the following
results.

Corollary 2 For the LSVM, one can claim that

(6) holds if lim sup
d→∞

|δ(I )|
Δ(I )

< 1, (15) holds if lim inf
d→∞

δ(I )

Δ(I )
> 1, and

(16) holds if lim sup
d→∞

δ(I )

Δ(I )
< −1

under (A-ii), (C-ii) and (D), where δ(I ) = η1(I )/n1 − η2(I )/n2.
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Nakayama et al. (2017) gave the results of Corollary 2 under slightly different
conditions. Theyprovided the followingbias correction of the linear SVM:LetΔ∗(I ) =
Δ(I ) + η1(I )/n1 + η2(I )/n2. Estimate Δ∗(I ) and δ(I ) by

Δ̂∗(I ) = ‖x1n1 − x2n2‖2 and δ̂(I ) = tr(S1n1)/n1 − tr(S2n2)/n2,

where xini = ∑ni
j=1 xi j/ni and Sini = ∑ni

j=1(xi j − xini )(xi j − xini )
T/(ni −1). Note

that E(Δ̂∗(I )) = Δ∗(I ) and E(δ̂(I )) = δ(I ). Let ŷ(I )(x0) denote ŷ(x0) given by using
the kernel function (I). Then, Nakayama et al. (2017) gave the bias-corrected linear
SVM (BC-LSVM) as

ŷBC(I )(x0) = ŷ(I )(x0) − δ̂(I )/Δ̂∗(I ). (18)

One classifies x0 into Π1 if ŷBC(I )(x0) < 0 and into Π2 otherwise.
We note that Δ̂∗(I ) and δ̂(I ) are equivalent to Δ̂∗ and δ̂ when k(·, ·) is the linear

kernel. From Lemma 3 and Theorem 2, we have the following result.

Corollary 3 Under (A-ii), (C-ii) and (D), the BC-LSVM holds the consistency (6).

The BC-LSVM has the consistency property without (C-i). Chan and Hall (2009)
considered a different bias correction for the LSVM.Nakayama et al. (2017) compared
the BC-LSVMwith the LSVM in both numerical simulations and actual data analyses.
They concluded that theBC-LSVMgives adequate performances forHDLSSdata even
when ni s are quite unbalanced (i.e., extremely imbalanced data).

3.2 Gaussian kernel

Weconsider theGaussian kernel SVM (GSVM); that is, the classifier (5) has the kernel
function (II).We setκ1 = exp{−2tr(Σ1)/γ } (= κ1(I I ), say),κ3 = exp{−2tr(Σ2)/γ }
(= κ3(I I ), say), κ2 = κ4 = 1, and κ5 = exp[−{tr(Σ1) + tr(Σ2) + Δ(I )}/γ ] (=
κ5(I I ), say), so that

Δ = κ1(I I ) + κ3(I I ) − 2κ5(I I ) (= Δ(I I ), say) and

ηi = 1 − exp
(−2tr(Σ i )/γ

)
(= ηi(I I ), say) for i = 1, 2.

We note that Δ(I I ) > 0 when μ1 	= μ2 or tr(Σ1) 	= tr(Σ2). Let tr(Σmin) =
mini=1,2 tr(Σ i ) and ψ = exp{−2tr(Σmin)/γ }. We assume the following condition
under (D):

(C-iii)
ni tr(Σ2

i ) + Δ(I )
{
ni tr(Σ2

i )
}1/2

min{γ 2Δ2
(I I )/ψ

2, γ 2} = o(1) for i = 1, 2.

We note that (C-iii) is a convergence condition of the GSVM. Under (1), (C-iii) holds
when lim infd→∞ Δ(I I ) > 0, lim infd→∞ γ /d > 0 and ni s are fixed. Note that
ψ → 1 and γΔ(I I ) = 2Δ(I ){1 + o(1)} as d → ∞ under d2/(γΔ(I )) = o(1) as
d → ∞ from the fact that “d2/(γΔ(I )) = o(1)” implies “d/γ = o(1).” Thus, (C-iii)
holds under (C-ii) and d2/(γΔ(I )) = o(1). See Sect. 3.3 for the relation between the
kernels (I) and (II). We have the following result.
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Lemma 4 Assume (A-ii) and (C-iii). Then, the assumptions (A-i) and (A-i’) are met
for the kernel function (II).

By combining Lemma 4 with Theorem 1 and Corollary 1, we have the following
results.

Corollary 4 For the GSVM, one can claim that

(6) holds if lim sup
d→∞

|δ(I I )|
Δ(I I )

< 1, (15) holds if lim inf
d→∞

δ(I I )

Δ(I I )
> 1, and

(16) holds if lim sup
d→∞

δ(I I )

Δ(I I )
< −1

under (A-ii), (C-iii) and (D), where δ(I I ) = η1(I I )/n1 − η2(I I )/n2.

We denote η̂i (i = 1, 2) and Δ̂∗ for the kernel function (II) by η̂i(I I ) and Δ̂∗(I I ).
Here, η̂i and Δ̂∗ are defined in Sect. 2.3.

Let Δ∗(I I ) = Δ(I I ) + η1(I I )/n1 + η2(I I )/n2 and δ̂(I I ) = η̂1(I I )/n1 − η̂2(I I )/n2.
Let ŷ(I I )(x0) denote ŷ(x0) given by using the kernel function (II). Then, we give the
bias-corrected GSVM (BC-GSVM) as

ŷBC(I I )(x0) = ŷ(I I )(x0) − δ̂(I I )/Δ̂∗(I I ). (19)

One classifies x0 into Π1 if ŷBC(I I )(x0) < 0 and into Π2 otherwise. From Theorem 2
and Lemma 4, we have the following result.

Corollary 5 Under (A-ii), (C-iii) and (D), the BC-GSVM holds the consistency (6).

The BC-GSVM has the consistency property without (C-i).
Now, we consider the following condition:

γ /d ∈ (0,∞) as d → ∞. (20)

Let

ΔΣ = |tr(Σ1) − tr(Σ2)|, θ1 = exp(−Δ(I )/γ ) and θ2 = exp(−ΔΣ/γ ).

Note that Δ(I ) = O(d) and

Δ(I I )/ψ = (1 − θ2)
2 + 2θ2(1 − θ1). (21)

If one assumes that

lim inf
d→∞ ΔΣ/d > 0,

it follows that lim infd→∞ Δ(I I ) > 0 under (20), so that (C-iii) holds as d → ∞
while N is fixed under (1) and (20). Thus, the BC-GSVM has the consistency (6)
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even when μ1 = μ2. On the other hand, the BC-LSVM (or the LSVM) does not hold
the consistency property when μ1 = μ2. We emphasize that the BC-GSVM (or the
GSVM) draws information about heteroscedasticity via the difference of tr(Σ i )s. The
accuracy becomes higher as the difference grows. See Fig. 3.

3.3 Relation between the linear kernel and Gaussian kernel

We consider the following conditions for γ > 0:

(C-iv)
d2

γΔ(I )
→ 0 as d → ∞, and (C-v)

Δ(I ) + Δ2
Σ/Δ(I )

γ
→ 0 as d → ∞.

Note that (C-iv) implies (C-v). By noting thatψ → 1 as d → ∞ under (C-iv), it holds
from (21) that under (C-iv)

γΔ(I I ) = 2Δ(I ){1 + o(1)}. (22)

Thus, the GSVM becomes close to the LSVM under (C-iv). In fact, we have the
following result.

Proposition 3 Under (A-ii), (C-ii), (C-iv) and (D), it holds that

ŷ(I I )(x0) = ŷ(I )(x0){1 + oP (1)} when x0 ∈ Πi for i = 1, 2.

Hence, the GSVM is asymptotically equivalent to the LSVM when γ satisfies
(C-iv). On the other hand, it holds from (21) that under (C-v)

γΔ(I I ) = 2ψΔ(I ){1 + o(1)}. (23)

Proposition 4 Under (A-ii), (C-ii), (C-v) and (D), it holds that

(
Δ(I )

Δ∗(I )

Δ∗(I I )

Δ(I I )

)
ŷBC(I I )(x0) = ŷBC(I )(x0){1 + oP (1)}

when x0 ∈ Πi for i = 1, 2.

Hence, the BC-GSVM is asymptotically equivalent to the BC-LSVM when γ sat-
isfies (C-v).

4 How to choose � in the Gaussian kernel

In this section, we discuss a choice of γ in the Gaussian kernel function (II).
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4.1 Behaviors of1(II) for several settings of �

We consider the following two conditions for Δ(I ) and ΔΣ :

ΔΣ/Δ(I ) → 0 as d → ∞, and (24)

lim inf
d→∞ ΔΣ/Δ(I ) > 0. (25)

We first consider Δ(I I ) under (24). From (21), it holds that Δ(I I )/ψ = 1 +
exp(−2ΔΣ/γ )+o(1) under lim infd→∞ ΔΣ /γ > 0 and (24), so that the BC-GSVM
(or GSVM) loses information about Δ(I ). Thus, we do not consider the case when
lim infd→∞ ΔΣ/γ > 0 under (24). Under (24) we consider the following conditions
for γ , Δ(I ) and ΔΣ :

ΔΣ/γ → 0 as d → ∞, and (26)

Δ(I )/γ → 0 as d → ∞. (27)

From (21), it holds that under (24) and (26)

γΔ(I I )/ψ = 2γ {1 − exp(−Δ(I )/γ )}{1 + o(1)}.

On the other hand, it holds from (23) that under (24) and (27)

γΔ(I I )/ψ = 2Δ(I ){1 + o(1)}

because (C-v) holds under (24) and (27). From Proposition 4, we note that the BC-
LSVM is asymptotically equivalent to the BC-GSVM under (24) and (27). Also, note
that γ {1 − exp(−Δ(I )/γ )} ≤ Δ(I ) for any γ > 0. Then, from the convergence
condition (C-iii), when (24) is met, we recommend to use the BC-LSVM or the BC-
GSVM with γ satisfying (27).

Next, we consider Δ(I I ) under (25). From (21), it holds that under (25) and (26)

γΔ(I I )/ψ = 2Δ(I ) + o(ΔΣ).

When (25) is met, the BC-GSVM (or GSVM) with γ satisfying (26) loses information
about heteroscedasticity via the difference of tr(Σ i )s. Thus, we do not consider the
casewhenΔΣ/γ = o(1) as d → ∞ under (25). Under (25), we consider the following
conditions for γ and ΔΣ :

ΔΣ/γ → ∞ as d → ∞, or (28)

ΔΣ/γ ∈ (0,∞) as d → ∞. (29)

It holds that under (25) and (28)

γΔ(I I )/(ψΔΣ) = (γ /ΔΣ){1 + o(1)} = o(1).
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Also, it holds that under (25) and (29)

lim inf
d→∞ γΔ(I I )/(ψΔΣ) > 0.

Hence, from the convergence condition (C-iii), when (25) is met, we recommend to
use the BC-GSVM with γ satisfying (29).

4.2 Choice of � in the GSVM

In this section, we give a choice of γ in the GSVM. From Sect. 4.1, we recommend
to use the BC-GSVM with γ satisfying

(i) the condition (27) when (24) is met, and
(ii) the condition (29) when (25) is met.

For the dual form (3), from Lemma 1, under (4) and several conditions, it holds
that άTK ά = Δα2

� {1 + oP (1)} + η1
∑n1

j=1 α2
j + η2

∑N
j=n1+1 α2

j , so that

ά
TK ά

α2
�Δ

− 1 − η1
∑n1

j=1 α2
j + η2

∑N
j=n1+1 α2

j

α2
�Δ

(= Loss(γ ), say). (30)

We emphasize that the accuracy of the BC-SVM (or SVM) heavily depends on the
convergence rate of Loss(γ ) because the bias in ŷ(x0) converges to δ in Proposition 1.
See Lemma 1 in Sect. 2. Thus, for the Gaussian kernel (II), we consider such γ as
to have a higher convergence rate of Loss(γ ). From Proposition 1 and (47) to (52) in
Sect. 8, we can evaluate that under several conditions

Loss(γ ) = 1

γΔ(I I )

(
n1(n1 − 1)κ1(I I )

n2
1

+ n2(n2 − 1)κ3(I I )

n2
2

+ 2κ5(I I )

)
× OP (ε)

= κ1(I I ) + κ3(I I ) + 2κ5(I I )

γΔ(I I )
× OP (ε),

where ε = maxi=1,2[tr(Σ2
i )+Δ(I ){tr(Σ2

i )}1/2]1/2. Thus, from (30), onemay consider
γ as

γ0 = argmin
γ>0

κ1(I I ) + κ3(I I ) + 2κ5(I I )

γΔ(I I )
. (31)

When (24) is met, we have the following result.

Proposition 5 Under (24) it holds that Δ(I )/γ0 → 0 as d → ∞.

Hence, when (24) is met, the BC-GSVM with γ0 is asymptotically equivalent to
the BC-LSVM because (C-v) is met under (24) and (27). See Proposition 4.
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Fig. 6 The left panel displays log γ0�, and the right panel displays γ0�/(ω
3/3) for ω = 1, . . . , 100

Next, we consider the case when

lim sup
d→∞

Δ(I )/ΔΣ ≤ 1. (32)

Proposition 6 Under (32) it holds that ΔΣ/γ0 ∈ (0,∞) as d → ∞.

Finally, we consider the case when

lim inf
d→∞ Δ(I )/ΔΣ ≥ 1 and lim sup

d→∞
Δ(I )/ΔΣ < ∞. (33)

Since it is very difficult to evaluate γ0 under (33), we investigate the behavior of
γ0 numerically. Let γ� = γ /ΔΣ and ω = Δ(I )/ΔΣ . By noting that Δ(I I )/ψ =
1 + θ22 − 2θ1θ2 and (κ1(I I ) + κ3(I I ) + 2κ5(I I ))/ψ = 1 + θ22 + 2θ1θ2, it holds that

ΔΣ

κ1(I I ) + κ3(I I ) + 2κ5(I I )

γΔ(I I )
= ΔΣ

γ

(
1 + 4θ1θ2

1 + θ22 − 2θ1θ2

)

= 1

γ�

(
1 + 4 exp

{ − (ω + 1)/γ�

}

1 + exp(−2/γ�) − 2 exp
{ − (ω + 1)/γ�

}
)

( = F(γ�), say
)
.

(34)

Thus, we consider the following minimization:

γ0� = argmin
γ�>0

F(γ�).

Note that γ0 = ΔΣγ0�. Hence, (31) depends only onω.We plotted γ0� and γ0�/(ω
3/3)

for ω = 1, . . . , 100 in Fig. 6.
We observed that γ0� behaves around ω3/3. One may conclude that γ0� = O(ω3),

so that from Proposition 6 it holds that ΔΣ/γ0 = 1/γ0� ∈ (0,∞) as d → ∞ when
(25) is met.
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In conclusion, we recommend to use the BC-GSVMwith γ0. From (34) we estimate
γ0 as

γ̂0 = argmin
γ>0

γ −1
{
1 + 4θ̂1θ̂2/

(
1 + θ̂22 − 2θ̂1θ̂2

)}
, (35)

where θ̂1 = exp(−Δ̂∗(I )/γ ) and θ̂2 = exp(−Δ̂Σ/γ )with Δ̂Σ = |tr(S1n1)−tr(S2n2)|.
See Sect. 5 for the performance of the BC-SVM with γ̂0.

Remark 3 We note that E(Δ̂(I )) = Δ(I ), where Δ̂(I ) = Δ̂∗(I ) − tr(S1n1)/n1 −
tr(S2n2)/n2. However, it does not hold P(Δ̂(I ) ≥ 0) = 1. Thus, we use Δ̂∗(I ) in
(35) since P(Δ̂∗(I ) ≥ 0) = 1.

Remark 4 Note that E(Δ̂∗(I )) = Δ∗(I ), and Var(Δ̂(I )) = O[∑2
i=1{tr(Σ2

i )/n2
i +

Δ(I )tr(Σ2
i )

1/2/ni }] and Var{tr(Sini )} = O{tr(Σ2
i )/ni } under (A-ii). Thus, if

tr(Σ i )/(niΔ(I )) = o(1) and tr(Σ2
i )/(niΔ

2
Σ) = o(1) as d, N → ∞ for i = 1, 2,

it holds that Δ̂∗(I ) = Δ(I ){1+oP (1)} and Δ̂Σ = ΔΣ {1+oP (1)} as d, N → ∞ since
tr(Σ2

i ) ≤ tr(Σ i )
2, so that γ̂0 becomes close to γ0 in (31).

5 Performance of the BC-SVM

In this section, we check the performance of the BC-SVM in both numerical simula-
tions and actual data analyses.

5.1 Simulations

For the settings (a) to (c) in Sect. 2.4, we first checked the performance of the BC-
GSVM with γ̂0. Similar to Sect. 2.4, we calculated the error rates, e(1), e(2) and
e, of the BC-GSVM and the GSVM with γ = γ̂0 by 2000 replications and plotted
the results in Fig. 7. We laid e(1), e(2) and e for the BC-LSVM and the LSVM
by borrowing them from Fig. 3. In the r th replication, we evaluated γ̂0r by (35) and
calculated γ 0 = ∑2000

r=1 γ̂0r/2000. In Fig. 8, we plottedΔ(I )/γ 0,Δ(I )/γ0,ΔΣ/γ 0 and
ΔΣ/γ0 for (a) to (c). As expected theoretically, we observed that the BC-GSVMwith
γ̂0 is asymptotically equivalent to the BC-LSVM for (a). See Sect. 4.2. On the other
hand, γ̂0 did not become close to γ0 for (b) and (c). However, one may conclude that
ΔΣ/γ 0 < ∞ as d → ∞. The BC-GSVMdraws information about heteroscedasticity
via the difference of tr(Σ i )s. See Sect. 4.1. This is the reason why the BC-GSVMwith
γ̂0 gave adequate performances for (b) and (c).

Next, we compared the performance of the BC-SVMs with the SVMs in non-
Gaussian and imbalanced settings. We set μ2 = 0, Σ1 = 1.3B(0.3|i− j |1/3)B and
Σ2 = 0.7B(0.4|i− j |1/3)B. Letd∗ = 2�d1/2/2
, where �x
denotes the smallest integer
≥ x . We set μ2 = (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1)T whose first d∗/2 elements are
1 and last d∗/2 elements are −1. Note that Δ(I ) = d∗ ≈ d1/2, so that (C-ii) does

not hold. We generated xi j − μi (= Σ
1/2
i (zi1 j , . . . , zid j )

T ), j = 1, 2, . . . (i = 1, 2)
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Fig. 7 The error rates of the BC-LSVM, LSVM, BC-GSVM with γ = γ̂0 and GSVM with γ = γ̂0
for (a–c). The left panels display e(1), the middle panels display e(2), and the right panels display e for
d = 2s , s = 5, . . . , 12. For the LSVM and GSVM, e(2)was too high to describe. Their standard deviations
are less than 0.0112

independently from zir j = (yir j − 1)/21/2 (r = 1, . . . , d) in which yir j s are i.i.d.
as the chi-squared distribution with 1 degree of freedom. Note that (A-ii) holds. We
considered two cases for d = 2s, s = 5, . . . , 12:

(d) (n1, n2) = (5, 5 log2 d) and (e) (n1, n2) = (100, 5).

For the BC-LSVM, LSVM, BC-GSVMwith γ = γ̂0 and GSVMwith γ = γ̂0, similar
to Sect. 2.4, we calculated the error rates by 2000 replications and plotted the results
in Fig. 9.

We observed that theBC-SVMsgive adequate performances evenwhen ni /ni ′ → 0
for some i ( 	= i ′).

Throughout the simulations, γ̂0 by (35) was a preferable choice. We recommend to
use a cross-validation procedure for γ around γ̂0. See Sect. 5.2.

5.2 Examples: microarray data sets

In this section, we analyze gene expression data sets by using the BC-SVMs and
SVMs. We summarized the information on the data sets together with Δ̂Σ/Δ̂(I ) in
Table 1, where Δ̂(I ) and Δ̂Σ are given in Sect. 4.2.

We randomly split the data sets from (Π1,Π2) into training data sets of sizes
(n1, n2) and test data sets of sizes (m1 − n1, m2 − n2). We constructed the BC-SVM
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Fig. 8 Behaviors of Δ(I )/γ 0, Δ(I )/γ0, ΔΣ/γ 0 and ΔΣ/γ0 for (a–c)

Fig. 9 The error rates of the BC-LSVM, LSVM, BC-GSVM with γ = γ̂0 and GSVM with γ = γ̂0 for
(d) and (e). The left panels display e(1), the middle panels display e(2), and the right panels display e for
d = 2s , s = 5, . . . , 12. Their standard deviations are less than 0.0112

Table 1 Microarray data sets and Δ̂Σ/Δ̂(I )

Data set Number of genes Sample size
Δ̂Σ

Δ̂(I )

d m1 m2

Colon cancer by Alon et al. (1999) 2000 40 22 0.03

Leukemia by Golub et al. (1999) 7129 25 47 0.093

DLBCL by Shipp et al. (2002) 7129 58 19 0.668

HGG by Nutt et al. (2003) 12,625 28 22 2.66

Breast cancer by Chang et al. (2003) 12,625 14 10 0.78

and SVM by using the training data sets. We checked accuracy by using the test
data set for each Πi and denoted the misclassification rates by ê(1)r and ê(2)r . We
repeated this procedure 100 times and obtained ê(1)r and ê(2)r , r = 1, . . . , 100,
for the BC-LSVM, LSVM, BC-GSVM and GSVM. For the BC-GSVM and GSVM,
we used the average of the parameters selected by 5-fold cross-validation among
γ = (2s − 1)γ̂0 (s = 1, . . . , 5) with γ̂0 given by (35). We used the BC-GSVM
and GSVM with γ̂0 (without applying the cross-validation) for Breast cancer because
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Table 2 The average error rate e for five microarray data sets in Table 1

Data set (n1, n2) BC-GSVM GSVM BC-LSVM LSVM

Colon cancer (10, 10) 0.157 0.158 0.163 0.159

(20, 10) 0.148 0.166 0.159 0.173

(30, 10) 0.135 0.172 0.178 0.213

(10, 15) 0.149 0.15 0.17 0.17

(20, 15) 0.131 0.142 0.154 0.157

(30, 15) 0.133 0.133 0.159 0.181

Leukemia (5, 10) 0.055 0.071 0.06 0.08

(10, 10) 0.041 0.04 0.04 0.041

(20, 10) 0.035 0.041 0.039 0.05

(5, 20) 0.049 0.099 0.049 0.102

(10, 20) 0.037 0.033 0.035 0.041

(20, 20) 0.03 0.029 0.037 0.037

DLBCL (10, 5) 0.082 0.096 0.079 0.079

(30, 5) 0.072 0.096 0.055 0.115

(50, 5) 0.099 0.137 0.069 0.147

(10, 15) 0.042 0.052 0.045 0.054

(30, 15) 0.028 0.027 0.021 0.021

(50, 15) 0.019 0.025 0.017 0.019

HGG (5, 10) 0.282 0.333 0.304 0.316

(10, 10) 0.269 0.277 0.28 0.286

(20, 10) 0.231 0.29 0.288 0.292

(5, 15) 0.279 0.476 0.313 0.344

(10, 15) 0.246 0.387 0.281 0.281

(20, 15) 0.246 0.262 0.268 0.267

Breast cancer (3, 3) 0.226 0.236 0.245 0.239

(6, 3) 0.202 0.264 0.228 0.243

(9, 3) 0.182 0.369 0.234 0.253

(3, 5) 0.218 0.277 0.257 0.276

(6, 5) 0.168 0.176 0.226 0.225

(9, 5) 0.149 0.217 0.211 0.206

mi s are quite small for the data set. We calculated the average misclassification rates,
e(1) (= ∑100

r=1 ê(1)r/100), e(2) (= ∑100
r=1 ê(2)r/100) and e (= {e(1) + e(2)}/2) for

the SVMs and BC-SVMs in various combinations of (n1, n2) in Table 2.
Weobserved that theBC-SVMsgive adequate performances compared to the SVMs

especially when n1 and n2 are unbalanced. See Sects. 3.1 and 3.2 for theoretical
reasons. On the other hand, the BC-GSVM gave adequate performances compared to
theBC-SVMforHGGandBreast cancer data sets. This is because Δ̂Σ/Δ̂(I ) is large for
those data sets, so that the BC-GSVM can draw information about heteroscedasticity
via the difference of tr(Σ i )s.
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6 Appendix A: soft-margin SVM

In Sects. 2–5, we discussed asymptotic properties and the performance of the hard-
margin SVMs (hmSVM). In this section, we consider soft-margin SVMs (smSVM).
The smSVM is given by ŷ(x) after replacing (4) with

0 ≤ α j ≤ C, j = 1, . . . , N , and
N∑

j=1

α j t j = 0, (36)

where C(> 0) is a regularization parameter. Let nmin = min{n1, n2}. From (11) in
Sect. 2, we can asymptotically claim that α̂ j ≤ 2/(Δ∗nmin) for all j . Thus, we consider
the following condition for C :

lim inf
d→∞

CΔ∗nmin

2
> 1. (37)

Let ŷ(S)(x0) and ŷBC(S)(x0) denote ŷ(x0) and ŷBC (x0) after replacing (4) with
(36), respectively. Then, we have the following result.

Proposition 7 Assume (A-i), (A-i’) and (8). Under (37), it holds that when x0 ∈ Πi

for i = 1, 2

ŷ(S)(x0) = Δ

Δ∗

(
(−1)i + δ

Δ
+ oP (1)

)
and ŷBC(S)(x0) = Δ

Δ∗
{(−1)i + oP (1)}.

FromProposition7, the bias-corrected smSVM(BC-smSVM)holds the consistency
(6) even when |δ/Δ| → ∞. Hence, for smSVMs, we recommend to use the BC-
smSVM.

For the settings (a) to (c) in Sect. 2.4, we checked the performance of the BC-
smSVM and smSVM together with the hmSVM and bias-corrected hmSVM (BC-
hmSVM) for the kernel function (II). We set (n1, n2) = (20, 10), d = 1024 (= 210)
and γ = d/4. We set C = 2−5+t/(nminΔ∗), t = 1, . . . , 10, for the smSVMs. Similar
to Fig. 3, we calculated e by 2000 replications and plotted the results in Fig. 10. We
observed that smSVMs give bad performances when C < 2/(nminΔ∗). As expected,
the smSVMs are close to the hmSVMs when C > 2/(nminΔ∗).

7 Appendix B: Polynomial kernel SVM

In this section, we consider the polynomial kernel SVM; that is, the classifier (5) has
the kernel function (III). We give some asymptotic properties of the polynomial kernel
SVM. We consider the following conditions for ζ and r :

ζ/d ∈ (0,∞) and r ∈ (0,∞) as d → ∞. (38)
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Fig. 10 The average error rate, e, of the BC-smSVM, smSVM, BC-hmSVMand hmSVMwith (II) for (a–c)
when d = 1024 and C = 2−5+t /(nminΔ∗), t = 1, . . . , 10. The average error rates of the BC-smSVM
and smSVM are described by the dashed lines, and the average error rates of the BC-hmSVM and hmSVM
are described by the solid lines

We set κ1 = (ζ + ‖μ1‖2)r , κ2 = (ζ + tr(Σ1) + ‖μ1‖2)r , κ3 = (ζ + ‖μ2‖2)r ,
κ4 = (ζ + tr(Σ2) + ‖μ2‖2)r and κ5 = (ζ + μT

1 μ2)
r . Then, we have the following

result.

Proposition 8 Assume (1), (38) and (A-ii). Assume that N is fixed and

lim inf
d→∞

∣∣∣
‖μ1‖2 − ‖μ2‖2

d

∣∣∣ > 0. (39)

Then, the assumptions (A-i) and (A-i’) are met for the polynomial kernel (III). Fur-
thermore, the BC-SVM (17) with the polynomial kernel (III) holds the consistency
(6).

See Fig. 5 for the performance of the BC-SVM with the polynomial kernel (III).

Remark 5 For the Laplace kernel (IV), it is difficult to provide asymptotic properties
of the kernel SVM unless Πi s are Gaussian. Detailed study of the BC-SVM with the
Laplace kernel is left to a future work.

8 Appendix C: proofs

8.1 Proof of Lemma 1

Note that L(α) = ∑N
j=1 α j − ά

TK ά/2. The result is obtained from (7) straightfor-
wardly. ��

8.2 Proofs of Propositions 1 and 2

We assume (A-i) and (A-i’). From Lemma 1, it holds that under (8) and (D)

η1

n1∑

j=1

α̂2
j /α̂

2
� = η1/n1 + oP (Δ) and η2

N∑

j=n1+1

α̂2
j /α̂

2
� = η2/n2 + oP (Δ), (40)
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so that L(α̂) = 2α̂� − Δ∗α̂2
� {1 + oP (Δ/Δ∗)}/2. Then, it holds that

α̂� = (2/Δ∗){1 + oP (Δ/Δ∗)}. (41)

Also, from (40) we have (9) under (8).
Next, we consider the second result of Proposition 1. Let Ŝ1 = { j |α̂ j 	= 0, j =

1, . . . , n1}, Ŝ2 = { j |α̂ j 	= 0, j = n1 + 1, . . . , N }, n̂1 = # Ŝ1 and n̂2 = # Ŝ2. Then, we
have that when x0 ∈ Πi for i = 1, 2,

N∑

j=1

α̂ j t j k(x0, x j ) + 1

NŜ

∑

j∈Ŝ

(
t j −

∑

j ′∈Ŝ

α̂ j ′ t j ′k(x j , x j ′)
)

= (−1)i α̂�(κ2i−1 − κ5) + n̂2 − n̂1

NŜ

− α̂�

(−κ1n̂1 − η1 + κ3n̂2 + η2 + (n̂1 − n̂2)κ5

NŜ

)
+ oP (Δα̂�)

= (−1)i α̂�(κ2i−1 − κ5) + (n̂2 − n̂1)(1 − α̂�Δ∗/2)
NŜ

+ α̂�(κ1 − κ3)

2

+ α̂�

η1/n1 − η2/n2

2
+ α̂�

η1(1 − n̂1/n1) − η2(1 − n̂2/n2)

NŜ

+ oP (Δα̂�). (42)

Here, we note that η1
∑n1

j=1 α̂2
j /α̂

2
� ≥ η1/n̂1. Thus, from (40) it holds that

n̂1(η1/n̂1 − η1/n1) = η1(1 − n̂1/n1) = oP (n̂1Δ) (43)

under (8). Similarly, we have η2(1 − n̂2/n2) = oP (n̂2Δ) under (8). Then, from (41)
and (42), we have that when x0 ∈ Πi for i = 1, 2,

ŷ(x0) = 2(−1)i κ2i−1 − κ5

Δ∗
+ κ1 − κ3

Δ∗
+ η1/n1 − η2/n2

Δ∗
+ oP

( Δ

Δ∗

)

= (−1)iΔ/Δ∗ + δ/Δ∗ + oP (Δ/Δ∗) (44)

under (8). Hence, we conclude the second result of Proposition 1.
Finally, we consider the proof of Proposition 2. In view of (13), we claim the first

result. By noting that Δ∗/Δ → 1 and δ/Δ = o(1) under (12) and (D), it holds from
(42) that ŷ(x0) = (−1)i + oP (1) under (12) and (D). We conclude the second result.

��

8.3 Proofs of Theorem 1 and Corollary 1

We assume (A-i) and (A-i’). We consider the following conditions under (D):

lim inf
d→∞ η2/(n2Δ) > 0 and η1/(n1Δ) = o(1). (45)
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Let Δ∗2 = Δ + η2/n2. Note that η1
∑n1

j=1 α̂2
j /α̂

2
� = oP (Δ) under (45). Similar to

(41), it holds from (42) and (43) that α̂� = (2/Δ∗2){1 + oP (Δ/Δ∗2)} and

ŷ(x0) = (−1)iΔ/Δ∗2 + δ/Δ∗2 + oP (Δ/Δ∗2) (46)

under (45) when x0 ∈ Πi for i = 1, 2. Note that Δ∗/Δ → 1 and δ/Δ∗ → 0 under
(12) and Δ∗/Δ∗2 → 1 under (45). From Propositions 1, 2 and (46), we obtain (44)
under (D) without (8). Thus, from (44), we conclude the results of Theorem 1 and
Corollary 1. ��

8.4 Proofs of Lemma 2 and Theorem 2

Under (A-i) and (D), it holds that Δ̂∗ = Δ∗ + oP (Δ) and η̂i = ηi + oP (Δ) for
i = 1, 2. Thus, we can conclude the result of Lemma 2. From the proofs of Theorem 1
andCorollary 1, we obtain (44) under (A-i) and (D). By combining (44)with Lemma 2,
we conclude the result of Theorem 2. ��

8.5 Proofs of Lemma 3, Corollaries 2 and 3

We assume (A-ii) and (C-ii). Assume also μ2 = 0 without loss of generality. Note
that κ1 = ‖μ1‖2, κ2 = ‖μ1‖2 + tr(Σ1), κ3 = κ5 = 0, κ4 = η2(I ) and Δ(I ) = ‖μ1‖2.
Also, note that

μT
1Σ iμ1 ≤ Δ(I )λmax(Σ i ) ≤ Δ(I )tr(Σ

2
i )

1/2. (47)

Then, by using Chebyshev’s inequality, for any τ > 0 we have that

n1∑

j=1

P
(
|μT

1 (x1 j − μ1)| ≥ τΔ(I )

)
≤ n1

(
τΔ(I )

)−4
E

[{
μT
1 (x1 j − μ1)

}4]

= O

{
n1

((
μT
1Σ iμ1

)2 +
p1∑

r=1

(
γ T

r μ1

)4
)

/Δ4
(I )

}
= O

(
n1tr

(
Σ2

i ]
)

/Δ2
(I )

)
→ 0

(48)

from the fact that
∑p1

r=1(γ
T
r μ1)

4 ≤ (μT
1Σ iμ1)

2, where Γ 1 = [γ 1, . . . , γ p1 ]. On the
other hand, we have that

ni∑

j< j ′
P(|(xi j − μi )

T(xi j ′ − μi )| ≥ τΔ(I ))

≤
ni∑

j< j ′
(τΔ(I ))

−4E
[
{(x1 j − μ1)

T(x1 j ′ − μ1)}4
]

= O

(
n2

i tr
(
Σ2

i

)2
/Δ4

(I )

)
→ 0.

(49)
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Note that xT1 j x1 j ′ −κ1 = (x1 j −μ1)
T(x1 j ′ −μ1)+μT

1 (x1 j −μ1 + x1 j ′ −μ1). Thus,
from (48) and (49), it holds that

xT1 j x1 j ′ = κ1 + oP (Δ(I )) for all j < j ′ ≤ n1. (50)

Note that

n1∑

j=1

n2∑

j ′=1

P(|(x1 j − μ1)
T(x2 j ′ − μ2)| ≥ τΔ(I ))

= O
(

n1n2{tr(Σ1Σ2)}2 + tr(Σ1Σ2Σ1Σ2)}/Δ4
(I )

)
→ 0 (51)

from the fact that tr(Σ1Σ2Σ1Σ2) ≤ {tr(Σ1Σ2)}2. Then, similar to (50), we have
that

xT2 j x2 j ′ = κ3 + oP (Δ(I )) for all j < j ′ ≤ n2,

xT1 j x2 j ′ = κ5 + oP (Δ(I )) for all j = 1, . . . , n1; j ′ = 1, . . . , n2,

xT0 xi j = κ2i−1 + oP (Δ(I )) for all 1 ≤ j ≤ ni , i = 1, 2, when x0 ∈ Πi

and xT0 xi ′ j = κ5 + oP (Δ(I )) for all 1 ≤ j ≤ ni , i = 1, 2 (i ′ 	= i) when x0 ∈ Πi .

In addition, for any τ > 0 we have that

ni∑

j=1

P
(∣∣‖xi j − μi‖2 − tr(Σ i )

∣∣ ≥ τΔ(I )
) = O

(
ni tr

(
Σ2

i

)
/Δ2

(I )

)
→ 0 (52)

for i = 1, 2. Thus, from (48) and (52), it holds that for all j = 1, . . . , ni ; i = 1, 2

xTi j xi j = κ2i + oP (Δ(I )).

It concludes Lemma 3.
For the proofs of Corollaries 2 and 3 , from Theorems 1, 2 and Corollary 1, we

conclude the results. ��

8.6 Proofs of Lemma 4, Corollaries 4 and 5

We assume (A-ii). Let Ω = min{γΔ(I I ) /ψ, γ }. Similar to (48), for any τ > 0, we
have that under (C-iii) and (D)

ni∑

j=1

P(|(μ1 − μ2)
T(xi j − μi )| ≥ τΩ) → 0

for i = 1, 2, so that (μ1 − μ2)
T(xi j − μi ) = oP (Ω) for all j = 1, . . . , ni ; i = 1, 2.

Similarly, ‖xi j − μi‖2 = tr(Σ i ) + oP (Ω) for all j = 1, . . . , ni ; i = 1, 2, and
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(x1 j −μ1)
T(x2 j ′ −μ2) = oP (Ω) for all j = 1, . . . , n1; j ′ = 1, . . . , n2. Then, under

(C-iii), we have that for all j = 1, . . . , n1; j ′ = 1, . . . , n2

exp(−‖x1 j − x2 j ′ ‖2/γ ) = exp(−‖(x1 j − μ1) − (x2 j ′ − μ2) + μ1 − μ2‖2/γ )

= κ5(I I ) + oP (κ5(I I )Ω/γ ) = κ5(I I ) + oP (Δ(I I )) (53)

from the fact that κ5(I I ) ≤ ψ . Similar to (53), we can conclude that the assumptions
(A-i) and (A-i’) are met. It concludes Lemma 4.

For the proofs of Corollaries 4 and 5 , from Theorems 1, 2 and Corollary 1, we
conclude the results. ��

8.7 Proofs of Propositions 3 and 4

From (23), (C-iii) holds under (C-ii) and (C-v). Thus, from (44) and Lemmas 2 to 4,
we conclude Proposition 4. For the proof of Proposition 3, we note that tr(Σ i )/γ → 0
for i = 1, 2, under (C-iv) from the fact that Δ(I ) = O(d). Thus, it holds that ψ → 1
and γ ηi(I I ) = 2tr(Σ i ) + O(d2/γ ) for i = 1, 2, under (C-iv). In addition, from (22)
it holds that δ(I I )/Δ(I I ) = δ(I ){1+ o(1)}/Δ(I ) + o(1) under (C-iv). Thus, from (44),
Lemmas 3 and 4 , we conclude Proposition 3. ��

8.8 Proof of Proposition 5

We assume (24). Note that 1/ω → 0 under (24). First, we consider the case
when lim supd→∞ γ� < ∞. Then, it holds that F(γ�) = {1 + o(1)}/γ�, so that
lim infd→∞ F(γ�) > 0. Next, we consider the case when γ� → ∞. Let ν = ω/γ� (>

0). Note that ν = Δ(I )/γ . Then, it holds that

ωF(γ�) = ν + 2ν exp(−ν){1 + o(ν)}
{1 − exp(−ν)} + o(ν)

.

Let g(ν) = ν + 2ν exp(−ν)/{1 − exp(−ν)}. Note that g(ν) is a monotonically
increasing function and g(ν) → 2 as ν → 0, so that F(γ�) = 2{1 + o(1)}/ω = o(1)
when ν → 0. We can conclude the result. ��

8.9 Proof of Proposition 6

When ω ≤ 1, it holds that F(γ�) = 2{1 + o(1)}/ω under γ� → ∞. When ω ≤ 1 and
γ� = 1, it holds that

F(γ�) = 1 + 4

exp(ω + 1) + exp(ω − 1) − 2
< 1 + 1/ω ≤ 2/ω

from the facts that exp(ω+1) > 1+(ω+1)+(ω+1)2/2 ≥ 2+3ω and exp(ω−1) ≥ ω.
Hence, whenω ≤ 1, we have thatΔΣ/γ0 ∈ (0,∞) as d → ∞. It concludes the result.

��
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8.10 Proof of Proposition 7

From Proposition 1, Lemma 2 and (11), we can conclude the results. ��

8.11 Proof of Proposition 8

We set that κ1 = (ζ + ‖μ1‖2)r , κ2 = (ζ + tr(Σ1) + ‖μ1‖2)r , κ3 = (ζ + ‖μ2‖2)r ,
κ4 = (ζ +tr(Σ2)+‖μ2‖2)r and κ5 = (ζ +μT

1 μ2)
r . From (1), we note thatμT

i Σ i ′μi ≤
‖μi‖2λmax(Σ i ) = o(d2) as d → ∞ for i, i ′ = 1, 2. Then, similar to (50)–(52), for
the polynomial kernel, we have that xTi j xi j ′ = ‖μi‖2+oP (d) for all j < j ′, i = 1, 2,

xTi j xi j = tr(Σ i ) + ‖μi‖2 + oP (d) for all i, j , and xT1 j x2 j ′ = μT
1 μ2 + oP (d) for all

j, j ′, so that k(xi j , xi j ′) = κ2i−1 + oP (dr ) for all j < j ′, i = 1, 2, k(xi j , xi j ) =
κ2i + oP (dr ) for all i, j , and k(x1 j , x2 j ′) = κ5 + oP (dr ) for all j, j ′. Here, note that

(ζ + ‖μ1‖2)r + (ζ + ‖μ2‖2)r − 2(ζ + μT
1 μ2)

r

≥ {(ζ + ‖μ1‖2)r/2 − (ζ + ‖μ2‖2)r/2}2

from the fact that (ζ + μT
1 μ2)

r ≤ (ζ + ‖μ1‖2)r/2(ζ + ‖μ2‖2)r/2. Then, it holds that
lim infd→∞ Δ/dr > 0 from (39). Thus, we have (A-i). Similarly, we can conclude
(A-i’). From Theorem 2, the BC-SVM (17) holds (6) for the polynomial kernel. It
concludes Proposition 8. ��
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