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This supplementary document contains Appendix in which we prove all tech-
nical results.

1 Appendix

A.1 Proof of Proposition 3

We use here the same method as in Konev and Pergamenshchikov (2009). First,
note that from the definitions (19) and (35) we obtain

?j)s =7, ten;, (A1)

where 1 1
Tj:/o S(t)Trj(t)dt and an/O Trj(t)dét'

So, we have

o= Y. mH2EM. A4 Y ), (A.2)
j=[1/el+1 j=[1/e]+1
where M .= Z;.L:[l s TN Note that for the continuously differentiable func-

tions (see, for example, Lemma A.6 in Konev and Pergamenshchikov (2009a))
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the Fourier coefficients (Tj) for any n > 1 satisfy the following inequality

00 1 2

S P2<4e (/O |S(t)|dt> < 4e|S). (A.3)

j=[1/el+1

We recall, that S is the derivative of S. To estimate the term ]\716 note, that it
can be represented as

j=[1/e]+1

Therefore, using the last equality in (19) and orthonormality of the functions
(Tr;);>1, we obtain that

Eg M2 =3, Y, 77 <dexg|9.
j=[1/e]+1

Moreover, taking into account that for j > 2 the expectation Enj? = 5 we can
represent the last term in (A.2) as

e Y n2= (e — 1)) + e B, (2,
j=[1/e]+1

where #’ = (27), < j<,, with @ = €1y, ). ;,,y and the function B, _(2') is defined

n (20). We remind that n = [1/£2] and that for the trigonometric basis (14) the
upper bound ¢* = /2. Therefore, in view of Proposition 2 and the definition
of @ in (27) we obtain that

n

Eqle® Y - gs(Q%QjL\/@jul\/%).
i=lV/1/el+1

So, we obtain the bound (36). Hence Proposition 3. [

A.2 Property of Lemma 1
In vue of the definition of Err.(\) and the equation (19) one has

En«e@):i:((x( )~ 1)0, + eA(j ) Z 62

j=1 j=n-+1
>2€Z ) = DAG)E, +522)\2
Jj=1



Moreover, using here the definition (20) we obtain

B, Err()) > 23 M2()EE, = P.(\) — 2B, .(3),
j=1

where \? = <)\2<j>)1§j§n' Now, Proposition 1 implies Lemma 1. [

A.3 Proof of Proposition 4

First of all note that, the density (59) on the process & is bounded with respect
tof; € Rand forany 1 <j <d

limsup f(£,0) = 0. a.s.

[0;]—00

Now, we set
o d(f(z,0)®(0))/96;
=00 = = %)

Taking into account the condition (60) and integrating by parts yield

B((@-00)%,) = [, (@)~ 90) 55 (1020 40P (0)

:/Xde—l (/R g,(6) f(x.6)% ) [T d6: | Pe(da) = A,

7]

Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain the following
lower bound for the quadratic risk

2

B(@ - 00" 2 55

To study the denominator in the left hand of this inequality note that in view
of the representation (59)

1 0f(y.0) 1 [
fly,0) 06, _91/0 Oilt) duwr.

Therefore, for each 8 € R?,

1 9f(y,0)

f(y,0) 90, -

Ey

and

! W)2_1 2t Lo
o (f(y,e) oo, ) = @), W=zl



Taking into account that

1 af@e) 1 99(0)
¥ = Fwe) o0, @) 00,

J

we get
~~ 1
E(I)? = ? ||¢j||2 + Ij.
1

Hence Proposition 4. O

A.4 The absolute continuity of distributions for the Lévy
processes.

In this section we study the absolute continuity for the the Lévy processes
defined as

dy; = S(t)dt +d&, 0<t<T, (A.4)

where S(-) is any arbitrary nonrandom square integrated function, i.e. from
L,[0,T] and (&;)<s<7 is the Lévy process of the form (7) with nonzero constants
0, and g,. We denote by P, and P, the distributions of the processes (y;)o<;<1
and (§;)g<s<; on the Skorokhod space D[0,7]. Now for any 0 < ¢t < T and
(7,)g<r<r from D[0, T] we set

T, () :exp{ /O t S;? dat — /O t Sség) du} , (A5)

1

where z¢ is the continuous part of the process x defined in (59). Now we study
the measures P, and P, in D[0,7].

Proposition A.1. For any T' > 0 the measure P, < P, in D[0,T] and the

Radon-Nikodym derivative is

P,
ap, &) = Trl)-

Proof. Note that to show this proposition it suffices to check that for any
0=ty <...<t,=Tanyb, e Rfor1<j<n

E exp {izbj(ytj - ytjl)} =E exp {izbj(ftj - ftjl)} Tr(§).
=1 =1

taking into account that the processes (y;)o<;<7 and (§;)o<;<7 have the inde-
pendent homogeneous increments, to this end one needs to check only that for
anybeRand 0<s<t<T

B exp b~ 1)) = B ewp {ib(6, ) 7' 5 - (A6)



To check this equality note that the process

is the gaussian martingale. From here we directly obtain the squation (A.6).
Hence Proposition A.1. O

A.5 Proof of the limit equality (94)

d .
" k%a,, we obtain that
7j=1 77

{Sn ¢ Wk,r} = {Cs > I‘} .

Moreover, note that one can check directly that

First, setting (. = >

e—0 U, 7

d
. .1 X 5 .
gl_{%ECE: lim —Zsjaj =r=(1-9)r.
Jj=1
So, for sufficiently small € we obtain that

{s,¢ Wk,r} - {Ze > r1} )

e _ d . o~ ~
wherer; =r7/2,(, = —E(, =v_! ijl s5a;7); and 1); = 7732'_1 Through the
correlation inequality (see, Proposition A.1 in Galthouk and Pergamenshchikov
(2013)) we can get that for any p > 2

2
J p/

B < 2Bl o | S (s0)%a2 | = 0(o 7).
j=1

as € — 0. Therefore, for any ¢ > 0 using the Chebychev inequality for p >
(4k + 2)¢ we obtain that

v;P(C;>r1)—>O as €—0.

Hence the equality (94). O

A.6 Proof of Proposition 5
Substituting (19) and taking into account the definition (95) one gets

oo

15— SI2 =3 (1= A(7))? 02 - 20 + 2 Y N2(j) €2,

j=1 j=1



where M_ = ¢ S (1= M) AG) 0; Ej. Note now that for any @ € Q the
expectation Eg ¢ ME = 0 and, in view of the upper bound (9),

sup EQSZ/\ Z <gq Z

QEQ j=1
Therefore,
e o] . 1 o] B .
Ri(S,8) < > (=205 +—> X(), (A7)
i=i. € j=1

where j, = j,(@). Setting

u, = v/ sup (1 — A(j))? /a; ,
323,

we obtain that for each S € Wf
Tl’E(S) — U?k/(2k+1 Z 9 < u, Z Cl 92 < ur.
Jj=i

Taking into account that # — r, we obtain that
P1/(2k+1)

lims T, ()< ———— :=7T*.
11;1ng ;;Ek 1:(9) < 72k (d, )2/ (E+T) 1

To estimate the last term in the right hand of (A.7), we set

1 2L o,
TQ,E = U1/(2k+1) Z A (])
€ j=1

It is easy to check that

' Q(Tdk)l/(2k+1) k2
! T, < =T
T T2 S T )2k 4 1) 2

Therefore, taking into account that by the definition of the Pinsker constant in
(53) the sum Y7 + Y5 = [,(r), we arrive at the inequality

lim v%/(%H) sup RZ(S,8) < I,(r).
e—0 SeWk

Hence Proposition 5. O
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