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This supplementary document contains Appendix in which we prove all tech-
nical results.

1 Appendix

A.1 Proof of Proposition 3

We use here the same method as in Konev and Pergamenshchikov (2009). First,
note that from the definitions (19) and (35) we obtain

τ̂j,ε = τj + ε ηj , (A.1)

where

τj =

∫ 1

0

S(t) Trj(t)dt and ηj =

∫ 1

0

Trj(t) dξ̌t .

So, we have

κ̂ε =

n∑
j=[1/ε]+1

τ2
j

+ 2ε M̌ε + ε2
n∑

j=[1/ε]+1

η2
j
, (A.2)

where M̌ε =
∑n

j=[1/ε]+1
τj ηj . Note that for the continuously differentiable func-

tions (see, for example, Lemma A.6 in Konev and Pergamenshchikov (2009a))
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the Fourier coefficients (τj) for any n ≥ 1 satisfy the following inequality

∞∑
j=[1/ε]+1

τ2
j
≤ 4ε

(∫ 1

0

|Ṡ(t)|dt
)2

≤ 4ε‖Ṡ‖2 . (A.3)

We recall, that Ṡ is the derivative of S. To estimate the term M̌ε note, that it
can be represented as

M̌ε = Ǐ1

 n∑
j=[1/ε]+1

τjTrj

 .

Therefore, using the last equality in (19) and orthonormality of the functions
(Trj)j≥1, we obtain that

EQ M̌
2
ε

= κ̌Q
n∑

j=[1/ε]+1

τ2
j
≤ 4εκQ‖Ṡ‖2 .

Moreover, taking into account that for j ≥ 2 the expectation E η2
j

= κ̌Q we can

represent the last term in (A.2) as

ε2
n∑

j=[1/ε]+1

η2
j

= κ̌Q(ε2n− ε2[1/ε]) + εB2,ε(x
′) ,

where x′ = (x′
j
)1≤j≤n with x′

j
= ε1{1/ε<j≤n} and the function B2,ε(x

′) is defined

in (20). We remind that n = [1/ε2] and that for the trigonometric basis (14) the
upper bound φ∗ =

√
2. Therefore, in view of Proposition 2 and the definition

of a in (27) we obtain that

EQ

∣∣∣∣∣∣∣ε2
n∑

j=[
√

1/ε]+1

η2
j
− κ̌Q

∣∣∣∣∣∣∣ ≤ ε
(

2κQ +
√
UQ + 4

√
κQ
)
.

So, we obtain the bound (36). Hence Proposition 3.

A.2 Property of Lemma 1

In vue of the definition of Errε(λ) and the equation (19) one has

Errε(λ) =

n∑
j=1

(
(λ(j)− 1)θj + ελ(j)ξ

j

)2

+

∞∑
j=n+1

θ2
j

≥ 2ε

n∑
j=1

(λ(j)− 1)θjλ(j)ξ
j

+ ε2
n∑
j=1

λ2(j)ξ
2

j
.
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Moreover, using here the definition (20) we obtain

EQ Errε(λ) ≥ ε2
n∑
j=1

λ2(j)EQ ξ
2

j
= Pε(λ)− ε2B1,ε(λ

2) ,

where λ2 = (λ2(j))1≤j≤n. Now, Proposition 1 implies Lemma 1. �

A.3 Proof of Proposition 4

First of all note that, the density (59) on the process ξ is bounded with respect
to θj ∈ R and for any 1 ≤ j ≤ d

lim sup
|θj |→∞

f(ξ, θ) = 0 . a.s.

Now, we set

Φ̃j = Φ̃j(x, θ) =
∂ (f(x, θ)Φ(θ))/∂θj

f(x, θ)Φ(θ)
.

Taking into account the condition (60) and integrating by parts yield

Ẽ
(

((ĝ − g(θ))Φ̃j

)
=

∫
X×Rd

((ĝ(x)− g(θ))
∂

∂θj
(f(x, θ)Φ(θ)) dθPξ(dx)

=

∫
X×Rd−1

(∫
R
g′
j
(θ) f(x, θ)Φ(θ)dθj

)∏
i 6=j

dθi

 Pξ(dx) = λj .

Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain the following
lower bound for the quadratic risk

Ẽ((ĝ − g(θ))2 ≥
Λ2
j

ẼΦ̃2
j

.

To study the denominator in the left hand of this inequality note that in view
of the representation (59)

1

f(y, θ)

∂ f(y, θ)

∂θj
=

1

%1

∫ 1

0

φj(t) dwt .

Therefore, for each θ ∈ Rd,

Eθ
1

f(y, θ)

∂ f(y, θ)

∂θj
= 0

and

Eθ

(
1

f(y, θ)

∂ f(y, θ)

∂θj

)2

=
1

%2
1

∫ 1

0

φ2
j
(t)dt =

1

%2
1

‖φj‖2 .
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Taking into account that

Φ̃j =
1

f(x, θ)

∂ f(x, θ)

∂θj
+

1

Φ(θ)

∂ Φ(θ))

∂θj
,

we get

ẼΦ̃2
j

=
1

%2
1

‖φj‖2 + Ij .

Hence Proposition 4.

A.4 The absolute continuity of distributions for the Lévy
processes.

In this section we study the absolute continuity for the the Lévy processes
defined as

dyt = S(t)dt+ dξt , 0 ≤ t ≤ T , (A.4)

where S(·) is any arbitrary nonrandom square integrated function, i.e. from
L2[0, T ] and (ξt)0≤t≤T is the Lévy process of the form (7) with nonzero constants
%1 and %2. We denote by Py and Pξ the distributions of the processes (yt)0≤t≤1

and (ξt)0≤t≤1 on the Skorokhod space D[0, T ]. Now for any 0 ≤ t ≤ T and
(xt)0≤t≤T from D[0, T ] we set

Υt(x) = exp

{∫ t

0

S(u)

%2
1

dxc
u
−
∫ t

0

S2(u)

2%2
1

du

}
, (A.5)

where xc is the continuous part of the process x defined in (59). Now we study
the measures Py and Pξ in D[0, T ].

Proposition A.1. For any T > 0 the measure Py � Pξ in D[0, T ] and the
Radon-Nikodym derivative is

dPy
dPξ

(ξ) = ΥT (ξ) .

Proof. Note that to show this proposition it suffices to check that for any
0 = t0 < . . . < tn = T any bj ∈ R for 1 ≤ j ≤ n

E exp

{
i

n∑
l=1

bj(ytj − ytj−1
)

}
= E exp

{
i

n∑
l=1

bj(ξtj − ξtj−1
)

}
ΥT (ξ) .

taking into account that the processes (yt)0≤t≤T and (ξt)0≤t≤T have the inde-
pendent homogeneous increments, to this end one needs to check only that for
any b ∈ R and 0 ≤ s < t ≤ T

E exp {i b(yt − ys)} = E exp {i b(ξt − ξs)}
Υt(ξ)

Υs(ξ)
. (A.6)
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To check this equality note that the process

Υt(ξ) = exp

{∫ t

0

S(u)

%1

dwu −
∫ t

0

S2(u)

2%2
1

du

}
is the gaussian martingale. From here we directly obtain the squation (A.6).
Hence Proposition A.1.

A.5 Proof of the limit equality (94)

First, setting ζε =
∑d

j=1
κ2
j
aj , we obtain that{
Sκ /∈Wk,r

}
= {ζε > r} .

Moreover, note that one can check directly that

lim
ε→0

E ζε = lim
ε→0

1

vε

d∑
j=1

s∗
j
aj = ř = (1− γ̌)r .

So, for sufficiently small ε we obtain that{
Sκ /∈Wk,r

}
⊂
{
ζ̃ε > r1

}
,

where r1 = rγ̌/2, ζ̃ε = ζε−E ζε = v−1
ε

∑d

j=1
s∗
j
aj η̃j and η̃j = η2

j
−1 Through the

correlation inequality (see, Proposition A.1 in Galthouk and Pergamenshchikov
(2013)) we can get that for any p ≥ 2

E ζ̃p
ε
≤ (2p)p/2E|η̃1|p v−pε

 d∑
j=1

(s∗
j
)2a2

j

p/2

= O( v−
p

4k+2
ε

) ,

as ε → 0. Therefore, for any ι > 0 using the Chebychev inequality for p >
(4k + 2)ι we obtain that

vι
ε
P(ζ̃ε > r1)→ 0 as ε→ 0 .

Hence the equality (94).

A.6 Proof of Proposition 5

Substituting (19) and taking into account the definition (95) one gets

‖Š − S‖2 =

∞∑
j=1

(1− λ̌(j))2 θ2
j
− 2M̌ε + ε2

∞∑
j=1

λ̌2(j) ξ̌2
j
,
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where M̌ε = ε
∑∞
j=1 (1 − λ̌(j)) λ̌(j) θj ξj . Note now that for any Q ∈ Q∗

ε
the

expectation EQ,S M̌ε = 0 and, in view of the upper bound (9),

sup
Q∈Q∗

ε

EQ,S

∞∑
j=1

λ̌2(j) ξ
2

j
≤ ς∗

∞∑
j=1

λ̌2(j) .

Therefore,

R∗
ε
(Š, S) ≤

∞∑
j=ǰ∗

(1− λ̌(j))2 θ2
j

+
1

υε

∞∑
j=1

λ̌2(j) , (A.7)

where ǰ∗ = j∗(α̌). Setting

uε = υ2k/(2k+1)
ε

sup
j≥ǰ∗

(1− λ̌(j))2/aj ,

we obtain that for each S ∈W k
r

Υ1,ε(S) = υ2k/(2k+1)
ε

∞∑
j=ι̌

(1− λ̌(j))2 θ2
j
≤ uε

∞∑
j=ι̌

aj θ
2
j
≤ uε r .

Taking into account that ř → r, we obtain that

lim sup
ε→0

sup
S∈Wk

r

Υ1,ε(S) ≤ r1/(2k+1)

π2k(dk)2k/(2k+1)
:= Υ∗

1
.

To estimate the last term in the right hand of (A.7), we set

Υ2,ε =
1

υ1/(2k+1)
ε

n∑
j=1

λ̌2(j) .

It is easy to check that

lim sup
ε→0

Υ2,ε ≤
2(rdk)1/(2k+1) k2

(k + 1)(2k + 1)
:= Υ∗

2
.

Therefore, taking into account that by the definition of the Pinsker constant in
(53) the sum Υ∗

1
+ Υ∗

2
= l∗(r), we arrive at the inequality

lim
ε→0

υ2k/(2k+1)
ε

sup
S∈Wk

r

R∗
ε
(Š, S) ≤ l∗(r) .

Hence Proposition 5.
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