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Abstract
We develop a new model selection method for an adaptive robust efficient nonpara-
metric signal estimation observed with impulse noise which is defined by a general
non-Gaussian Lévy process. On the basis of the developed method, we construct
estimation procedures which are analyzed in two settings: in non-asymptotic and in
asymptotic ones. For the first time for such models, we show non-asymptotic sharp
oracle inequalities for quadratic and robust risks, i.e., we show that the constructed
procedures are optimal in the sense of sharp oracle inequalities. Next, bymaking use of
the obtained oracle inequalities, we provide an asymptotic efficiency property for the
developed estimation methods in an adaptive setting when the signal/noise ratio goes
to infinity. We apply the developed model selection methods for the signal number
detection problem in multi-path information transmission.

Keywords Model selection · Non-asymptotic estimation · Robust estimation · Oracle
inequalities · Efficient estimation · Statistical signal processing techniques and
analysis

1 Introduction

In this paper, we consider a signal estimation problem on the basis of observations
defined by a nonparametric regression model in continuous time with impulse noises
of small intensity, i.e.,
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d yt = S(t)d t + ε dξt , 0 ≤ t ≤ 1, (1)

where S(·) is an unknown deterministic signal (i.e., [0, 1] → R is a non-random func-
tion), (ξt )0≤t≤1 is an unobserved noise and ε > 0 is the noise intensity. The problem is
to estimate the function S based on the observations (yt )0≤t≤1 when ε → 0.Note that if
(ξt )0≤t≤1 is a Brownianmotion, then we obtain a “signal+white noise” model which is
very popular in statistical radio-physics and iswell studied bymany authors: Ibragimov
and Khasminskii (1981), Pinsker (1981) and Kutoyants (1984, 1994). The condition
ε → 0 means that the signal/noise ratio goes to infinity. In this paper, we assume that
in addition to the intrinsic noise in the radio-electronic system, approximated usually
by Gaussian white noise, the useful signal S is distorted by an impulse noise flow
defined by Lévy process with jumps introduced in the next section. The cause of the
appearance of the impulse stream in the radio-electronic systems can be, for example,
either external unintended (atmospheric) noises, intentional impulse noises or errors
in the demodulation and channel decoding for the binary information symbols. Note
that the impulse noises for the signal detection problems have been introduced for
the first time by Kassam (1988) on the basis of the compound Poisson processes.
Later, Pchelintsev (2013) and Konev et al. (2014) used the compound Poisson pro-
cesses for parametric regression models and Konev and Pergamenshchikov (2012,
2015) used these processes for nonparametric signal estimation problems. However,
the compound Poisson process can describe only the large impulses influence of small
frequencies. It should be noted that in telecommunication systems, noise impulses are
without limitations on frequencies, and therefore, the compound Poisson models are
too restricted for practical applications. To include all possible impulse noises, we
propose to use general non-Gaussian Lévy processes in the observation model (1). In
this paper, we consider a nonparametric estimation problem in the adaptive setting,
i.e., when the regularity of the signal S is unknown. Moreover, we also assume that
the distribution Q of the noise process (ξt )0≤t≤1 is unknown. It is only known that this
distribution belongs to the distribution familyQ∗

ε
defined in the next section. By these

reasons, we use a robust estimation approach proposed for nonparametric problems by
Galtchouk and Pergamenshchikov (2006) and Konev and Pergamenshchikov (2012,
2015). We set the robust risk as

R∗
ε
(̂Sε, S) = sup

Q∈Q∗
ε

RQ(
̂Sε, S), (2)

where ̂Sε is an estimator (i.e., any measurable function of (yt )0≤t≤1),

RQ(
̂Sε, S):=EQ,S ‖̂Sε − S‖2 and ‖S‖2 =

∫ 1

0
S2(t)dt . (3)

In this paper, we develop a sharp model selection method to estimate the unknown sig-
nal S. The interest in such statistical procedures can be explained by the fact that they
provide adaptive solutions for a nonparametric estimation through non-asymptotic ora-
cle inequalities which give a non-asymptotic upper bound for quadratic risks including
the minimal risk over a chosen family of estimators with a coefficient tending to one.
Such inequalities were obtained, for example, by Galtchouk and Pergamenshchikov
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Model selection for the robust efficient signal processing 1207

(2009a) for non-Gaussian regression models in discrete time and by Konev and Perga-
menshchikov (2009a) for general regression semimartingale models in continuous
time. It should be noted that model selection methods were proposed, for the first
time, by Akaike (1974) and Mallows (1973) for parametric models. Then, by using
oracle inequalities approach, these methods had been developed for nonparametric
estimation by Barron et al. (1999), for Gaussian regression models and by Fourdrinier
and Pergamenshchikov (2007) for non-Gaussian models. It is known that an oracle
inequality yields upper bounds for risks via minimal risk corresponding to a cho-
sen estimators family. Unfortunately, the oracle inequalities obtained in these papers
cannot be used for the efficient estimation in the adaptive setting, since the upper
bounds in these inequalities have some fixed coefficients in the main terms which are
more than one. In order to provide efficiency properties for model selection proce-
dures, one needs to obtain the sharp oracle inequalities, i.e., in which the coefficient
at the principal term on the right-hand side of the inequality is close to one. To obtain
such inequalities for general non-Gaussian observations, one needs to use the model
selectionmethod based on theweighted least square estimators proposed byGaltchouk
and Pergamenshchikov (2009a, b) for the heteroscedastic regressionmodels in discrete
time and developed then by Konev and Pergamenshchikov (2009a, b, 2012, 2015) for
semimartingale models in continuous time, i.e., when the observation process is given
by the following stochastic differential equation

dxt = S(t)dt + dηt , 0 ≤ t ≤ n, (n → ∞), (4)

where S is an unknown 1—periodic signal and the unobserved noise (ηt )t≥0 is
square integrated semimartingale. Note that, for any 0 < t < 1, setting x̌t =
n−1 ∑n−1

j=0(xt+ j − x j ), we can represent this model as a model with small parameter
of the (1)

dx̌t = S(t)dt + ε dη̌t , (5)

where ε = n−1/2 and η̌t = n−1/2 ∑n−1
j=0(ηt+ j −η j ). If (ηt )t≥0 is a Lévy process, then

η̌t is a Lévy process as well. But the main difference between models (1) and (5) is
that the jumps in the last one are small, i.e.,

Δη̌t = η̌t − η̌t− = O(n−1/2) = O(ε) as ε → 0. (6)

But there is no such property in model (1). It should be noted that property (6) is
crucial in the non-asymptotic analysis for observations on large time intervals, i.e.,
the methods developed for model (4) cannot be used for problem (1). Moreover,
it should be emphasized that the selection model methods proposed by Konev and
Pergameshchikov for model (4) provide the adaptive efficient estimation only for the
case when the Lévy measure is finite. This condition considerably reduces their appli-
cations in practical problems. So, the main goal of this paper is to develop a new
model selection method for the adaptive efficient signal estimation problem in model
(1) with general Lévy noiseswithout limitations on the jumps. First, we construct some
model selection procedures and we show sharp non-asymptotic oracle inequalities for
risks (2) and (3). To do this in Proposition 2, we develop a special analytical tool
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1208 S. Beltaief et al.

to study the non-asymptotic behavior of jumps in model (1) with infinite (or finite)
Lévy measure. Moreover, to study the efficiency, we develop the Van Trees method
for general Lévy processes and we obtain in Proposition 4 a new lower bound for
quadratic risks. Then, by making use of this lower bound, we find the Pinsker con-
stant. As to the upper bound, similarly to Konev and Pergamenshchikov (2009b), we
use the obtained sharp oracle inequality for weight least square estimators containing
the efficient Pinsker procedure. Therefore, through oracle inequalities, we estimate
from above the risk for the constructed model selection procedure by the efficient risk
up to some coefficient which goes to one. As a result, we provide the robust efficiency
property for the constructed procedure in the adaptive setting. As an application of
the developed model selection method, in this paper, we consider the signal number
detection problem in the observations model (1). Inmany areas of science and technol-
ogy, the problem arises how to select the number of freedom degrees for a statistical
model that most adequately describes phenomena under studies (see, for example,
Akaike 1974). An important class of such problems is the detection problem of signal
number with unknown parameters observed in multi-path information transmission
with noises. For example, in the signal multi-path information transmission, there is
a detection problem for the number of rays in the multi-path channel. This problem
is often reduced to the detection of the number of signals. As a result, the effective
detection algorithms can significantly improve the noise immunity in data transmission
over a multi-path channel (see, for example, the papers of Flaksman 2002; Manelis
2007; El-Behery and Macphie 1978; Trifonov and Kharin 2013; Trifonov and Shi-
nakov 1986; Trifonov et al. 2015; Trifonov and Kharin 2015a, b). Such problems for
signals with unknown amplitudes are discussed in Trifonov and Kharin (2013). The
signal amplitude is an energy parameter because it affects the signal energy. At the
same time, quite often, such as in radars studied by El-Behery and Macphie (1978),
it is necessary to detect the number of signals, which besides unknown amplitudes
contain non-energy parameters such as frequencies and initial phases. Trifonov et al.
(2015) considered this problem with unknown initial phases, in Trifonov and Kharin
(2015a) with unknown amplitudes and phases and in Trifonov and Kharin (2015b)
the detection signal number problem is studied for orthogonal signals with arbitrary
non-energy parameters. In all these papers, the detection problems are considered only
for observations with the Gaussian white nose. In this paper, we consider this problem
for non-Gaussian impulse noises.

The rest of the paper is organized as follows. In Sect. 2, we give the main conditions
which will be assumed for model (1). In Sect. 3, we transform the observation model
to delete large jumps and we develop an analytical tool, which provides to study non-
asymptotic concentration properties for the squares of stochastic integrals with respect
to non-Gaussian Lévy processes. In Sect. 4, we construct a model selection procedure.
In Sect. 5, we state our main results on sharp oracle inequalities and the adaptive
efficiency. In Sect. 6, we obtain the van Trees inequality for general Lévy processes.
In Sect. 7, we study a signal number detection problem through the developed model
selection method. In Sect. 8, we give simulations results. Section 9 contains the main
proofs. In Appendix (Supplementary Material), we bring all auxiliary results.
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Model selection for the robust efficient signal processing 1209

2 Main conditions

In this section, we assume that the noise process (ξt )0≤t≤1 is defined as

ξt = �1wt + �2zt and zt = x ∗ (μ − μ̃)t , (7)

where �1 and �2 are some unknown constants, (wt )0≤t≤ 1 is a standard Brownian
motion, “*” denotes the stochastic integral with respect to the compensated jump
measure (see, for example, in Jacod and Shiryaev 2002 or Cont and Tankov 2004
for details), μ(ds dx) is a jump measure with deterministic compensator μ̃(ds dx) =
dsΠ(dx), Π(·) is the unknown Lévy measure, i.e., some nonnegative measure on
R∗ = R \ {0} for which

∫

R∗
(z2 ∧ 1)Π(dz) < ∞,

where a ∧ b = min(a, b). In addition, we impose the following condition.
(A1) The Lévy measure Π(·) is assumed to satisfy the following moment conditions

Π(x2) = 1 and Π(x4) < ∞, (8)

where Π(|x |m) = ∫

R∗
|z|m Π(dz).

Note that themeasureΠ(R∗) could be equal to+∞. In the sequel, wewill denote by
Q the distribution of the process (ξt )0≤t≤1 and byQ∗

ε
the family of such distributions

in the Skorokhod space D[0, 1] for which
0 < ς∗ ≤ �21 and κQ = �21 + �22 ≤ ς∗, (9)

where 0 < ς∗ ≤ ς∗ are unknown parameters which can be represented as functions
of ε satisfying the following additional condition.
(A2) The bounds ς∗ and ς∗ are functions of ε, i.e., ς∗ = ς∗(ε) and ς∗ = ς∗(ε), such
that for any b > 0

lim inf
ε→0

ε−b ς∗(ε) > 0 and lim
ε→0

εb ς∗(ε) = 0. (10)

It is clear that in condition (A2) the bounds ς∗ ≤ ς∗ may be any positive constants.

3 Transformation of the observations

First of all, we need to eliminate the large jumps in the observations (1), i.e., we
transform this model as

y̌t = yt −
∑

0≤s≤t

Δys 1{|Δys |>a}. (11)

The parameter a = aε > 0 will be chosen later. So, we obtain that

d y̌t = S(t)dt + εdξ̌t − ε �2 Π(hε) dt, (12)
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1210 S. Beltaief et al.

where ξ̌t = �1wt + �2 žt and žt = hε ∗ (μ − μ̃)t . The functions hε(x) = x1{|x |≤υ̌ε}
and hε(x) = x1{|x |>υ̌ε} with the truncation threshold υ̌ε = a/|�2|ε.
Remark 1 It should be noted that the sum in the transformation (11) is finite since the
cadlag process has only finite number of jumps more than some positive threshold in
absolute value.

Let (φ j ) j≥ 1 be an orthonormal basis in L2[0, 1] with φ1 ≡ 1. We assume that this
basis is uniformly bounded, i.e., for some constant φ∗ > 0, which may be dependent
on ε > 0,

sup
0≤ j≤n

sup
0≤t≤1

|φ j (t)| ≤ φ∗ < ∞, (13)

where n = nε = [1/ε2] and [x] denotes integer part of x . For example, we can take
the trigonometric basis defined as Tr1 ≡ 1 and for j ≥ 2

Tr j (x) = √
2

{

cos(2π [ j/2]x) for even j ;
sin(2π [ j/2]x) for odd j .

(14)

Moreover, note that for any [0, 1] → R function f fromL2[0, 1] and for any 0 ≤ t ≤ 1
the integrals

It ( f ) =
∫ t

0
f (s)dξs and Ǐt ( f ) =

∫ t

0
f (s)dξ̌s (15)

are well defined with E It ( f ) = 0, E Ǐt ( f ) = 0,

E I 2t ( f ) = κQ ‖ f ‖2t and E Ǐ 2t ( f ) = κ̌Q ‖ f ‖2t , (16)

where ‖ f ‖2t = ∫ t
0

f 2(s)ds and κ̌Q = �21 + �22Π(h2
ε
). In the sequel, we denote by

( f , g)t =
∫ t

0
f (s)g(s) ds and ( f , g) =

∫ 1

0
f (s)g(s) ds.

To estimate the function S, we use the following Fourier series

S(t) =
∑

j≥1

θ j φ j (t) and θ j = (S, φ j ). (17)

These coefficients can be estimated by the following way. First we estimate as

̂θ1,ε =
∫ 1

0
φ1(t)d yt = θ1 + εξ1

and for j ≥ 2

̂θ j,ε =
∫ 1

0
φ j (t)d y̌t . (18)
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Taking into account here that for j ≥ 2 the integral
∫ 1
0
φ j (t)dt = 0, we obtain from

(12) that these Fourier coefficients can be represented as

̂θ j,ε = θ j + ε ξ j and ξ j = Ǐ1(φ j ).

Setting ξ1 = ξ1, we obtain that for any j ≥ 1

̂θ j,ε = θ j + ε ξ j . (19)

Now, according to the model selection approach developed by Konev and Pergamen-
shchikov (2009a, b) we need to study for any u ∈ R

n the following functions

B1,ε(u) =
n

∑

j=1

u j (EQ ξ
2
j − κ̌Q) and B2,ε(u) =

n
∑

j=1

u j
˜ξ j , (20)

where˜ξ j = ξ
2
j − EQ ξ

2
j .

Proposition 1 Assume that condition (A1) holds. Then

sup
u∈[0,1]n

∣

∣B1,ε(u)
∣

∣ ≤ κQ . (21)

Proof Note that |EQ ξ
2
1 − κ̌Q | = |EQ ξ21 − κ̌Q | = κQ − κ̌Q ≤ κQ and EQ ξ

2
j = κ̌Q

for j ≥ 2. So, from this we immediately obtain the upper bound (21). �

Now, for any u ∈ R

n we set

|u|2 =
n

∑

j=1

u2j and #(u) =
n

∑

j=1

1{u j �=0}. (22)

Now we study the concentration term B2,ε(u).

Proposition 2 Assume that condition (A1) holds. Then for any fixed truncation param-
eter a > 0 and for any vector u ∈ R

n with |u| ≤ 1

EQ B2
2,ε(u) ≤ UQ + 4κQ

(

a

ε

)2

#(u) (φ∗)4, (23)

where UQ = 2(25 + 16E z41)κ
2
Q.

Remark 2 It should be noted that the last term in the concentration inequality (23) is
related to the influence of jumps in the observations (1). We will use the upper bounds
(21) and (23) to obtain non-asymptotic sharp oracle inequalities.
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4 Model selection

We estimate the function S(x) for x ∈ [0, 1] by the weighted least squares
estimator

̂Sλ(x) =
n

∑

j=1

λ( j)̂θ j,εφ j (x), (24)

where n = [1/ε2], the weights λ = (λ( j))1≤ j≤n belong to some finite set Λ from
[0, 1]n , ̂θ j,ε is defined in (18) and φ j in (14). Now we set

ι = card(Λ) and |Λ|∗ = max
λ∈Λ

n
∑

j=1

1{λ j>0}, (25)

where card(Λ) is the number of the vectors in Λ. In the sequel, we assume that ι is a
function of ε > 0, i.e., ι = ι(ε), such that for any b > 0

lim
ε→0

εbι(ε) = 0. (26)

Now we chose the truncation parameter in (11) a as

a = aε = ε
√|Λ|∗

. (27)

To choose a weight sequence λ in the set Λ, we use the empirical quadratic risk,
defined as

Errε(λ) =‖ ̂Sλ − S ‖2,
which in our case is equal to

Errε(λ) =
n

∑

j=1

λ2( j)̂θ2j,ε − 2
n

∑

j=1

λ( j)̂θ j,εθ j +
∞
∑

j=1

θ2j . (28)

Since the Fourier coefficients (θ j ) j≥ 1 are unknown, we replace the termŝθ j,εθ j by

˜θ j,ε = ̂θ2j,ε − ε2κ̂ε, (29)

where κ̂ε is an estimate for the variance parameter κ̌Q from (16). If it is known, we
set κ̂ε = κ̌Q ; otherwise, this estimator will be prescribed later.

Remark 3 To understand estimate (29), note that the natural way is to replace in the
production ̂θ jθ j the unknown coefficient θ j with its estimator ̂θ j , so we obtain ̂θ2j .
But this is not a good estimator for the production since in view of (19) we obtain

EQ
̂θ jθ j = θ2j , but EQ

̂θ2j = θ2j + ε2EQξ
2
j . Therefore, to obtain unbiased estimator

for the production ̂θ jθ j for j ≥ 2 one needs to subtract the variance ε2κ̌Q if κ̌Q is
known and its estimate if it is not known. This gives the (29). It should be noted also
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Model selection for the robust efficient signal processing 1213

that we do not take into account the first term, i.e., the case j = 1. But only one term
has not sufficient influence in the total sum, i.e., it is negligible in the empiric risk (28).

Finally, to choose the weights we will minimize the following cost function

Jε(λ) =
n

∑

j=1

λ2( j)̂θ2j,ε − 2
n

∑

j=1

λ( j)˜θ j,ε + δ ̂Pε(λ), (30)

where δ > 0 is some threshold which will be specified later and the penalty term

̂Pε(λ) = ε2κ̂ε|λ|2 and |λ|2 =
n

∑

j=1

λ2j . (31)

Note that if the κ̌Q is known then the penalty term is defined as

Pε(λ) = ε2 κ̌Q |λ|2. (32)

As to the penalty term, we can show the following upper bound.

Lemma 1 Assume that condition (A1) holds. Then for any 0 < ε < 1 and λ ∈ Λ,

Pε(λ) ≤ R(̂Sλ, S) + ε2 κQ .

We define the model selection procedure as

̂S∗ = ̂S
λ̂

and ̂λ = argmin
λ∈Λ Jε(λ). (33)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique, we take
one of them.

Now we estimate the variance parameter κ̌Q defined in (16). To this end for any

0 < ε ≤ 1/
√
3, we set

κ̂ε =
n

∑

j=[1/ε]+1

τ̂ 2j,ε, n = [1/ε2], (34)

where τ̂ j,ε are the estimators for the Fourier coefficients τ j with respect to the trigono-
metric basis (14), i.e.,

τ̂ j,ε =
∫ 1

0
Tr j (t)d y̌t and τ j =

∫ 1

0
S(t)Tr j (t)dt . (35)

We study this estimator.

Proposition 3 Assume that in model (1) the unknown function S(·) is continuously
differentiable. Then, for any 0 < ε ≤ 1/

√
3

EQ |κ̂ε − κ̌Q | ≤ εΥQ(S), (36)
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1214 S. Beltaief et al.

where ΥQ(S) = 4(‖Ṡ‖ + 1)2
(

1 + 2√κQ + κQ + √

UQ

)

and Ṡ is the derivative of

the function S.

Remark 4 It should be noted that to estimate the parameter κ̌Q we use equality (19)
for the Fourier coefficients (τ j ) j≥1 with respect to the trigonometric basis (14). More-
over, as is shown in Lemma A.6 in Konev and Pergamenshchikov (2009a) for any
continuously differentiable function S and for any m ≥ 1 the sum

∑

j≥m τ 2j can be
estimated from above explicitly. So, taking this into account and properties (23) we
obtain the upper bound (36).

Now, we specify the weight coefficients (λ( j))1≤ j≤n . Consider a numerical grid of
the form

A = {1, . . . , k∗} × {r1, . . . , rm}, (37)

where ri = i � and m = [1/� 2]. We assume that both the parameters k∗ ≥ 1 and
0 < � < 1 are functions of ε, i.e., k∗ = k∗

ε
and � = �ε such that

lim
ε→0

(

1

k∗
ε

+ k∗
ε

| ln ε|

)

= 0 and lim
ε→0

(

�ε + εb

�ε

)

= 0 (38)

for any b > 0. One can take, for example, for 0 < ε < 1

�ε = | ln ε|−1 and k∗
ε

= k∗
0 + √| ln ε|, (39)

where k∗
0 ≥ 0 is some fixed constant. For each α = (β, r) ∈ A, we introduce the

weights λα = (λα( j))1≤ j≤n from R
n as

λα( j) = 1{1≤ j< j∗} + (

1 − ( j/ωα)
β
)

1{ j∗≤ j≤ωα}, (40)

where j∗ = j∗(α) = [

ωα/| ln ε|
]

, ωα = dβ (r υε)
1/(2β+1),

dβ =
(

(β + 1)(2β + 1)

π2ββ

)1/(2β+1)

, υε = 1

ε2 ς∗ , (41)

and the threshold ς∗ is introduced in (9). Now we define the set Λ as

Λ = {λα, α ∈ A}. (42)

Note that in this case ι = k∗m and conditions (38) imply directly property (26).
Moreover, from (40) we find that for any α ∈ A

n
∑

j=1

λα( j) ≤ ωα ≤ d∗ r1/3m υ1/3
ε

and d∗ = sup
β≥1

dβ.
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Therefore, conditions (38) imply that for any b > 0

lim
ε→0

ε2/3+b|Λ|∗ = 0. (43)

Remark 5 The parameters β and r are defined by the regularity of the unknown
function S (see, for details, Remark 8). It should be emphasized that the weight coef-
ficients defined by set (42) are used by Konev and Pergamenshchikov (2012, 2015)
for continuous-time regression models to show the asymptotic efficiency.

5 Main results

5.1 Oracle inequalities

First we set the following constant which will be used to describe the rest term in the
oracle inequalities. We set

ΨQ,ε = (1 + (φ∗)4)
(

1 + κ
2
Q + 1

κ̌Q

)

ι. (44)

We start with the sharp oracle inequalities.

Theorem 1 Assume that condition (A1) holds. Then there exists a constant l∗ > 0
such that for any ε > 0 and 0 < δ < 1/6, the model selection procedure (33) with
the truncation parameter (27) satisfies the following oracle inequality

RQ(
̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈Λ

RQ(
̂Sλ, S) + ε2 l∗

ΨQ,ε + |Λ|∗ ES|κ̂ε − κ̌Q |
δ

. (45)

If the parameter κ̌Q is known, we can simplify this inequality.

Corollary 1 If the variance parameter κ̌Q is known and condition (A1) holds, then
there exists a constant l∗ > 0 such that for any ε > 0 and for any 0 < δ < 1/6,
the model selection procedure (33) with the truncation parameter (27) satisfies the
following oracle inequality

RQ(
̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈Λ

RQ(
̂Sλ, S) + ε2 l∗

ΨQ,ε

δ
. (46)

Remark 6 It should be noted that in the classical “signal+white noise” model, i.e.,
when in the process (7) the parameter �1 = 1 and the Lévy measureΠ = 0, we obtain
κ̌Q = 1. Therefore, we can use inequality (46).

Using Proposition 3, we can obtain the following inequality.

Theorem 2 Assume that condition (A1) holds and the unknown signal S(·) is contin-
uously differentiable [0, 1] → R function. Then there exists a constant l∗ > 0 such
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that for any 0 < δ < 1/6 and for any 0 < ε ≤ 1/
√
3, for which |Λ|∗ ≤ 1/ε, the

estimation procedure (33) with the truncation parameter (27) satisfies the following
oracle inequality

RQ(
̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈Λ

RQ(
̂Sλ, S) + ε2 l∗

ΨQ,ε(‖Ṡ‖ + 1)2

δ
. (47)

Now we study the robust risks defined in (2) for procedure (33). To do this, we will
use the following condition on the basis functions (φ j ) j≥1.
(A3) The upper bound for the basis functions in (13) is a function of ε > 0, i.e.,
φ∗ = φ∗(ε), such that for any b > 0

lim
n→∞

εb φ∗(ε) = 0. (48)

Theorem 3 Assume that conditions (A1)–(A3) hold and the unknown function S(·) is
continuously differentiable. Then for any 0 < δ < 1/6 and for any 0 < ε ≤ 1/

√
3

for which |Λ|∗ ≤ 1/ε, the robust risks for the estimation procedure (33) with the
truncation parameter (27) satisfies the following oracle inequality

R∗
ε
(̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈Λ

R∗
ε
(̂Sλ, S) + ε2

U∗
ε
(S)

δ
, (49)

where the term U∗
ε
(S) > 0 is such that under conditions (26) and (48) for any r > 0

and b > 0

lim
ε→0

εb sup
‖Ṡ‖≤r

U∗
ε
(S) = 0. (50)

Now taking into account property (43), we can deduce the following theorem for
procedure (33) with the weight coefficients (42).

Theorem 4 Assume that conditions (A1)–(A3) hold and the unknown function S(·)
is continuously differentiable. Then the model selection procedure (33) constructed
through the weight coefficients (42) satisfies the oracle inequality (49) with property
(50).

Remark 7 Note that the similar sharp oracle inequalities were obtained by Galtchouk
and Pergamenshchikov (2009a) and Konev and Pergamenshchikov (2012) for the
model selection procedures based on the trigonometric basis functions (14). In this
paper, we obtain these inequalities for the model selection procedures based on any
arbitrary orthogonal basic function in L2[0, 1]. We use the trigonometric functions
only to estimate the noise parameter κ̌Q .

5.2 Adaptive robust efficiency

Now we study the asymptotically efficiency properties for procedure (33), (40) with
respect to the robust risks (2) defined by the distribution family (9)–(10). To this end,
we assume that the unknown function (17) belongs to the following ellipsoid in l2
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Wk
r = {S ∈ L2[0, 1] :

∞
∑

j=1

a j θ
2
j ≤ r}, (51)

where a j = ∑k
i=0 (2π [ j/2])2i .

It is easy to see that in the case when the functions (φ j ) j≥1 are trigonometric (14),
then this set coincides with the Sobolev ball

Wk
r = { f ∈ Ck

per [0, 1] :
k

∑

j=0

‖ f ( j)‖2 ≤ r}, (52)

where r > 0 and k ≥ 1 are some parameters, Ck
per [0, 1] is the set of k times contin-

uously differentiable f : [0, 1] → R functions such that f (i)(0) = f (i)(1) for all
0 ≤ i ≤ k. Similarly to Konev and Pergamenshchikov (2012, 2015), we will show
here that the asymptotic sharp lower bound for the robust risk (2) is given by

l∗(r) = ((2k + 1)r)1/(2k+1)
(

k

(k + 1)π

)2k/(2k+1)

. (53)

Note that this is the well-known Pinsker constant obtained for the non-adaptive filtra-
tion problem in “signal + small white noise” model (see, for example, Pinsker 1981).
Let Sε be the set of all estimators ̂Sε measurable with respect to the sigma algebra
σ {yt , 0 ≤ t ≤ 1} generated by the process (1).

Theorem 5 Assume that conditions (A1)–(A2) hold. Then the robust risk (2) admits
the following lower bound

lim inf
ε→0

υ2k/(2k+1)
ε

inf
̂Sε∈Sε

sup
S∈Wk

r

R∗
ε
(̂Sε, S) ≥ l∗(r), (54)

where the rate υε is given in (41), i.e., υε = (

ε2 ς∗)−1
.

To study the upper bound for the model selection procedure (33), we need to assume
the following condition on the penalization parameter δ in (30).
(A4) The parameter δ in (30) is a function of ε, i.e., δ = δε is such that

lim
ε→0

δε = 0 and lim
ε→0

ε−b δε = +∞ (55)

for any b > 0.
For example, we can take δε = (6 + | ln ε|)−1.

Theorem 6 Assume that conditions (A1)–(A4) hold. Then the model selection pro-
cedure (33) constructed through the weight coefficients (42) admits the following
asymptotic upper bound

lim sup
ε→0

υ2k/(2k+1)
ε

sup
S∈Wk

r

R∗
ε
(̂S∗, S) ≤ l∗(r). (56)
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Moreover, Theorems 5 and 6 imply the following result.

Corollary 2 Under the conditions Theorem 6

lim
ε→0

υ2k/(2k+1)
ε

inf
̂Sε∈Sε

sup
S∈Wk

r

R∗
ε
(̂Sε, S) = l∗(r). (57)

Remark 8 It should be noted (see, for example, Pinsker 1981). that if the parameters
k and r of the Sobolev ball (51) are known, then to obtain the efficient estimation
it suffice to chose the weight least square estimator (24) with the weights (40) and
α = (k, r). In the adaptive estimation case, i.e.,when these parameters are unknownwe
propose to use the selection model procedure for the family (̂Sλ)λ∈Λ which contains
the efficient estimator. Then, the efficiency property is provided through the sharp
oracle inequalities. Moreover, note also that the optimal (minimax) risk convergence
rate for the Sobolev ballWk

r is ε−4k/(2k+1). We see here that the efficient robust rate is
υ2k/(2k+1)
ε

, i.e., if the distribution upper bound ς∗ → 0 as n → ∞we obtain the more
rapid rate with respect to ε−4k/(2k+1), and if ς∗ → ∞ as ε → 0 we obtain the more
slow rate. In the case when ς∗ is constant, the robust rate is the same as the classical
non-robust convergence rate.

6 The van Trees inequality for Lévy processes

In this section,we consider the following continuous-timeparametric regressionmodel

dyt = S(t, θ)dt + dξt , 0 ≤ t ≤ 1, (58)

where S(t, θ) = ∑d
i=1 θi φi (t) with the unknown parameters θ = (θ1, . . . , θd)

′ and
the process (ξt )0≤t≤1 is defined in (7). Note now that according to Proposition A1
from Appendix the distribution Pθ of the process (58) is absolutely continuous with
respect to the Pξ on D[0, 1] and the corresponding Radon–Nikodym derivative is

f (x, θ) = dPθ

dPξ

(x) = exp

{

∫ 1

0

S(t, θ)

�21
dxct −

∫ 1

0

S2(t, θ)

2�21
dt

}

, (59)

where (xct )0≤t≤T is the continuous part of the process (xt )0≤t≤T in D[0, T ], i.e.,

xct = xt −
∫ t

0

∫

R∗
v

(

μx (ds, dv) − Π(dv)ds
)

and for any t > 0 and any measurable Γ from R∗

μx ([0, t], Γ ) =
∑

0≤s≤t

1{Δxs∈�2Γ }.
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Let Φ be a prior density on R
d having the following form:

Φ(θ) = Φ(θ1, . . . , θd) =
d

∏

j=1

ϕ j (θ j ),

where ϕ j is some continuously differentiable density in R. Moreover, let g(θ) be a
continuously differentiable R

d → R function such that, for each 1 ≤ j ≤ d,

lim
|θ j |→∞

g(θ) ϕ j (θ j ) = 0 and
∫

R
d

|g′
j (θ)|Φ(θ) dθ < ∞, (60)

where

g′
j (θ) = ∂g(θ)

∂θ j
.

For any B(X ) × B(Rd) measurable integrable function H = H(x, θ), we denote

˜E =
∫

Rd

∫

X
H(x, θ) dPθ Φ(θ)dθ =

∫

Rd

∫

X
H(x, θ) f (x, θ)Φ(θ)dPξ (x) dθ,

where X = D[0, 1].
Proposition 4 For any F y = σ {yt 0 ≤ t ≤ 1} measurable square integrable function
ĝ and for any 1 ≤ j ≤ d, the following inequality holds

˜E(ĝ − g(θ))2 ≥
Λ2

j

‖φ j‖2�−2
1 + I j

, (61)

where

λ j =
∫

R
d
g′
j (θ)Φ(θ) dθ and I j =

∫

R

ϕ̇2
j (z)

ϕ j (z)
dz.

Remark 9 Note that the lower bound (61) is an extension for the van Trees inequality
used for the “signal+white noise” model (see, for example, inequality (A.5) in Konev
and Pergamenshchikov 2009b).

7 Signal number detection

In this section, we consider the estimation problem for the signal number in the multi-
path connection channel. In the framework of the statistical radio-physics models, we
study the telecommunication system in which we observe the summarized signal in
the multi-path channel with noise on the time interval [0, 1]:
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yt =
q

∑

j=1

θ jφ j (t) + νt , 0 ≤ t ≤ 1,

where (νt )t≥0 is the Gaussian white noise. The energetic parameters (θ j ) j≥1 and the
number of signals q are unknown, and the signals (φ j ) j≥1 are known orthonormal

functions, i.e.,
∫ 1
0
φi (t) φ j (t) dt = 1{i �= j}. The problem is to estimate q when sig-

nal/noise ratio goes to infinity. To describe this problem in a mathematical framework,
one has to use the following stochastic differential equation

dyt =
⎛

⎝

q
∑

j=1

θ jφ j (t)

⎞

⎠ dt + εdwt , (62)

where (wt )t≥0 is the standard Brownian motion and the parameter ε > 0 is the noise
intensity. We study this model when the signal/noise ratio goes to infinity, i.e., ε → 0.
The logarithm of the likelihood ratio for model (62) can be represented as

ln Lε = 1

ε2

q
∑

j=1

θ j

∫ 1

0
φ j (t)dyt − 1

2ε2

q
∑

j=1

θ2j .

If we try to construct the maximum likelihood estimators for (θ j )1≤ j≤q and q, then
we obtain that

max
1≤q≤q∗

max
θ j

ln Lε = 1

2ε2

q∗
∑

j=1

(∫ 1

0
φ j (t)dyt

)2

.

Therefore, the maximum likelihood estimation for q̂ = q∗. So, if q∗ = ∞ we obtain
that q̂ = ∞. Thus, this estimator gives nothing, i.e., it does not work. For these
reasons, we propose to study the estimation problem for q for the process (62) in a
nonparametric setting and to apply the model selection procedure (33). To this end,
we consider model (1) with the unknown function S defined as

S(t) =
q

∑

j=1

θ j φ j (t). (63)

For this problem, we use the LSE family (̂Sd)1≤d≤m defined as

̂Sd(x) =
d

∑

j=1

̂θ j,εφ j (x). (64)

This estimate can be obtained from (12) with the weights λd( j) = χ{ j ≤ d}. The
number of estimators ι satisfies condition (26). As a risk for the signal number, we
use

Dε(d, q) = R∗
ε
(̂Sd , S), (65)
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where the riskR∗
ε
(̂S, S) is defined in (2) and d is an integer number (maybe random)

from the set {1, . . . , ι}. In this case, the cost function (30) has the following form.

Jε(d) =
d

∑

j=1

̂θ2j,ε − 2
d

∑

j=1

˜θ j,ε + δ ̂Pε(λ). (66)

So, for this problem the LSE model selection procedure is defined as

q̂ε = argmin1≤d≤ι
Jε(d). (67)

Note that Theorem 3 implies that the robust risks of procedure (33) with |Λ|∗ ≤ 1/ε,
for any 0 < δ < 1/6, satisfy the following oracle inequality

Dε(q̂ε, q) ≤ 1 + 3δ

1 − 3δ
min
1≤d≤ι

Dε(d, q) + ε2
U∗
ε
(S)

δ
, (68)

where the last term satisfies property (50).

8 Simulations

In this section, we report the results of a Monte Carlo experiment to assess the perfor-
mance of the proposed model selection procedure (33). In (1), we chose

S(t) =
10
∑

j=1

j

j + 1
φ j (t), (69)

with φ j (t) = √
2 sin(2πl j t), l j = [√ j] j . We simulate the model

dyt = S(t)dt + εdwt .

The frequency of observations per period equals p = 100000. We use the weight
sequence as proposed by Galtchouk and Pergamenshchikov (2009a) for a discrete-
time model: k∗ = 100 + √| ln ε| and m = [| ln ε|2]. We calculated the empirical
quadratic risk defined as

R = 1

p

p
∑

j=1

̂E
(

˜Sε(u j ) − S(u j )
)2

, u j = j/p,

and the relative quadratic risk

R∗ = R/‖S‖2p and ‖S‖2p = 1

p

p
∑

j=1

S2(u j ).
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The expectations was taken as an average over N = 10000 replications, i.e.,

̂E
(

˜Sε(·) − S(·))2 = 1

N

N
∑

l=1

(

˜Sl
ε
(·) − S(·)

)2
.

We used the cost function with δ = (3 + | ln ε|)−2.
In the following graphics, the dashed line is the model selection procedure (33), the
continuous line is the function (69) and the bold line is the corresponding observa-
tions (1).

ε = 1/
√
20

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5

ε = 1/
√
100

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5
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ε = 1/
√
200

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5

ε = 1/
√
1000

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5

Empirical risks.

ε R R∗

1/
√
20 0.0158 0.307

1/
√
100 0.0113 0.059

1/
√
200 0.0076 0.04

1/
√
1000 0.0035 0.0185

Estimation of the number signals.
To estimate the signal number q, we use two procedures. The first q̂1 is (68) with
ι = [ln ε−2]. The second q̂2 is defined through the shrinkage approach for the model
selection procedure (69).

q̂2 = inf{ j ≥ 1 : |̂θ j | ≤ c∗
ε
}, c∗

ε
= ε

√| log ε|.

123



1224 S. Beltaief et al.

ε q̂1 q̂2

1/
√
20 6 5

1/
√
100 8 7

1/
√
200 9 7

1/
√
1000 10 9

Remark 10 From the simulation, we can conclude that the LSE procedure (68) is more
appropriate than shrinkage method for such number detection problem.

9 Proofs

First we recall the Novikov inequalities (see Novikov 1975) also referred to as the
Bichteler–Jacod inequalities (see Bichteler and Jacod 1983, Marinelli and Röckner
2014), providing upper bounds for the moments of the order p ≥ 2 of the supremum
of purely discontinuous local martingales

E sup
0≤t≤1

|g ∗ (μ − μ̃)t |p ≤ C∗
p

(

E
(|g|2 ∗ μ̃1

)p/2 + E
(|g|p ∗ μ̃1

)

)

, (70)

where C∗
p is some positive constant.

9.1 Proof of Proposition 2

First note that

B2
2,ε(u) ≤ 2˜ξ21 + 2B2

2,ε(u
′), (71)

where u′ = (0, u2, . . . , un) ∈ R
n . It should be noted that

E˜ξ21 ≤ E ξ41 ≤ 8
(

�41Ew4
1 + �42E z41

)

= 8
(

3�41 + �42E z41

)

≤ 8(3 + E z41)κ
2
Q .

Note that from (70) and conditions (8) we obtain that

E z41 ≤ C∗(1 + Π(x4)) < ∞.

To study the last term in the right-hand side of inequality (71), we set for any function
f from L2[0, 1]

Ǐt ( f ) =
∫ t

0
f (s)dξ̌s and ˜It ( f ) = Ǐ 2t ( f ) − E Ǐ 2t ( f ).
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Moreover, we set

Dt =
n

∑

j=2

u j
˜It (φ j ).

Taking into account that˜ξ j = ˜I1(φ j ) for j ≥ 2, we obtain

B2,ε(u
′) =

n
∑

j=2

u j
˜I1(φ j ) = D1.

By the Itô formula, we can write that for any function f from L2[0, 1]

d˜It ( f ) = 2 Ǐt−( f ) f (t)dξt + �22 f 2(t) dm̌t , (72)

where m̌t = h2
ε
∗ (μ − μ̃)t . So, setting

Vt =
n

∑

j=2

u j Ǐt (φ j )φ j (t) and Ψt =
n

∑

j=2

u j φ
2
j (t),

we obtain that

dDt = 2 Vt− dξt + �22 Ψt dm̌t ,

and therefore,

D2
1 ≤ 2M2

1 + 2�42 M̌
2
t , (73)

where Mt = ∫ t
0
Vs− dξs and M̌t = ∫ t

0
Ψs dm̌s . Moreover, taking into account that for

any f and g from L2[0, 1]

E Ǐt ( f ) Ǐt (g) = κ̌Q

∫ t

0
f (s)g(s) ds,

we get

∫ 1

0
E V 2

t dt =
n

∑

i, j=2

ui u j

∫ 1

0
φi (t)φ j (t)E Ǐt (φi ) Ǐt (φ j ) dt

= κ̌Q

2

n
∑

i, j=2

ui u j

(

∫ 1

0
φi (t)φ j (t) dt

)2

= κ̌Q

2

n
∑

i=2

u2i = κ̌Q |u′|2
2

≤ κ̌Q

2
,

i.e.,

E
(∫ 1

0
Vt dwt

)2

≤ κ̌Q/2.
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Now, we estimate the second term in inequality (73). To this end, we show that

sup
0≤t≤1

E Ǐ 4t ( f ) < ∞. (74)

Indeed, taking into account that for any non-random bounded function f the stochastic

integral
∫ t
0

f (s)dws is
(

0,
∫ 1
0

f 2(t)dt
)

Gaussian random variable, we obtain through

inequality (70) for some constant C∗ > 0

E Ǐ 4t ( f ) ≤ 8�41 E
(∫ t

0
f (s)dws

)4

+ 8�42 E
(∫ t

0
f (s)džs

)4

≤ 24�41

∫ 1

0
f 2(t)dt + 8C∗ �42

⎛

⎝

(

Π(h2
ε
)

∫ 1

0
f 2(t)dt

)2

+ Π(h4
ε
)

∫ 1

0
f 4(t)dt

⎞

⎠ .

Therefore, we obtain inequality (74), fromwhich using theHölder inequality it follows
that

sup
0≤t≤1

E V 4
t < ∞.

From here using the properties of the stochastic integrals with respect to the Wiener
process (see, for example, Lemma4.12, p.125 in Liptser and Shiryaev 1977), we obtain
that

E
(∫ t

0
Vs dws

)4

≤ 36t3
∫ t

0
E V 4

s ds < ∞.

Moreover, from (70) we get

sup
0≤t≤1

E
(∫ t

0
Vs− džs

)4

≤ C∗
(

(

Π(h2
ε
)
)2 + Π(h4

ε
)

) ∫ 1

0
E V 4

t dt < ∞.

Therefore, sup0≤t≤1 EM4
t < ∞ and

∫ 1

0
EM2

t V
2
t dt ≤ sup

0≤t≤1

(

EM4
t

)1/2 (

E V 4
t

)1/2
< ∞.

This implies that E
∫ 1
0

Mt− dMt = 0. So, by the Itô formula

EM2
1 = �21

∫ 1

0
E V 2

t dt + E
∑

0≤t≤1

(ΔMt )
2

= (�21 + �22 Π(h2
ε
) )

∫ 1

0
E V 2

t dt ≤ κ̌
2
Q/2 ≤ κ

2
Q/2.
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To estimate the last term in the right side of inequality (73), note that M̌t is a square
integrated martingale with the quadratic characteristic

<M̌>t = Π(h4
ε
)t,

i.e., E
∫ 1
0

M̌t− dM̌t = 0, and therefore, the Itô formula yields

E M̌2
1 = E

∑

0≤t≤1

(

ΨtΔm̌t

)2 = Π(h4
ε
)

∫ 1

0
Ψ 2
t dt ≤ �−2

2 Π(x2)(a/ε)2
(

φ∗)4 #(u).

Taking into account that Π(x2) = 1, we obtain that

E D2
1 ≤ κ

2
Q + 2�22 (φ

∗)4(a/ε)2#(u) ≤ κ
2
Q + 2κQ (a/ε)2

(

φ∗)4 #(u).

This implies the upper bound (23). �


9.2 Proof of Theorem 1

First note that we can rewrite the empirical squared error in (28) as follows

Errε(λ) = Jε(λ) + 2
n

∑

j=1

λ( j)θ̌ j,ε + ‖S‖2 − δ̂Pε(λ), (75)

where θ̌ j,ε = ˜θ j,ε − θ j
̂θ j,ε. Now using the definition of ˜θ j,ε in (29), we obtain that

θ̌ j,ε = εθ jξ j + ε2˜ξ j + ε2(EQ ξ
2
j,ε − κ̌Q) + ε2(κ̌Q − κ̂ε),

where˜ξ j = ξ
2
j − EQ ξ

2
j and ξ j = Ǐ1(φ j ). Setting

Mε(λ) = ε

n
∑

j=1

λ( j)θ jξ j and L(λ) =
n

∑

j=1

λ( j), (76)

we can rewrite (75) as

Erε(λ) = Jε(λ) + 2ε2(κ̌Q − κ̂ε) L(λ) + 2Mε(λ) + 2ε2B1,ε(λ)

+ 2ε
√

Pε(λ)
B2,ε(uλ)
√

κ̌Q

+ ‖S‖2 − δ̂Pε(λ), (77)

where uλ = λ/|λ|, the exact penalization is defined in (32) and the functions B1,ε(·)
and B2,ε(·) are defined in (20). It should be noted that for the truncation parameter
(27) bound (23) implies

sup
λ∈Λ

EQ

∣

∣

∣B2
2,ε(uλ)

∣

∣

∣ ≤ UQ + 4κQ

(

a

ε

)2

|Λ|∗ (φ∗)4:=U1,Q . (78)
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Using here the definition of the threshold a = aε in(27), we obtain that this upper
bound can be represented as U1,Q = UQ + 4κQ (φ∗)4. Let λ0 = (λ0( j))1≤ j≤ n be a
fixed sequence in Λ and̂λ be as in (33). Substituting λ0 and̂λ in equation (77), we
obtain

Errε(̂λ) − Errε(λ0) = J (̂λ) − J (λ0) + 2ε2(κ̌Q − κ̂ε) L(�) + 2ε2B1,ε(�)

+ 2Mε(�) + 2ε
√

Pε(̂λ)
B2,ε (̂u)
√

κ̌Q

− 2ε
√

Pε(λ0)
B2,ε(u0)
√

κ̌Q

− δ̂Pε(̂λ) + δ̂Pε(λ0), (79)

where � =̂λ − λ0, û = u
̂λ and u0 = uλ0 . Note that by (25)

|L(�)| ≤ L(λ̂) + L(λ) ≤ 2|Λ|∗.

The inequality

2|ab| ≤ δa2 + δ−1b2 (80)

implies that for any λ ∈ Λ

2ε
√

Pε(λ)
|B2,ε(uλ)|

√

κ̌Q

≤ δPε(λ) + ε2
B2
2,ε(uλ)

δκ̌Q
.

From bound (21), it follows that for 0 < δ < 1

Errε(λ̂) ≤ Errε(λ0) + 2Mε(�) + 2ε2
B∗
2,ε

δκ̌Q
+ 2ε2 κ̌Q

+ε2|κ̂ − κ̌Q |(|̂λ|2 + |λ0|2 + 4|Λ|∗) + 2δPε(λ0),

where B∗
2,ε = sup

λ∈Λ B2
2,ε(uλ). It should be noted that through (78) we can estimate

this term as

EQ B∗
2,ε ≤

∑

λ∈Λ
EQ B2

2,ε(uλ) ≤ ιU1,Q . (81)

Taking into account that sup
λ∈Λ |λ|2 ≤ |Λ|∗, we can rewrite the previous bound as

Errε(̂λ) ≤ Errε(λ0) + 2Mε(�) + 2ε2
B∗
2,ε

δκ̌Q
+ 2ε2 κ̌Q

+ 6ε2|Λ|∗
n

|κ̂ − κ̌Q | + 2δPε(λ0). (82)
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To estimate the second term in the right-hand side of this inequality, we introduce

Sυ =
n

∑

j=1

υ( j)θ jφ j , υ = (υ( j))1≤ j≤n ∈ R
n .

Moreover, note that

M2
ε
(υ) ≤ 2ε2

(

υ2(1) θ21 ξ
2
1 + Ǐ1(Φ)

)

,

where Φ(t) = ∑n
j=2 υ( j)θ jφ j (t). Therefore, thanks to (16) we obtain that for any

non-random υ ∈ R
n

EM2
ε
(υ) ≤ 2κQε

2υ2(1)θ21 + 2κ̌Qε
2

n
∑

j=2

υ2( j)θ2j ≤ 2κQε
2||Sυ ||2. (83)

To estimate this function for a random vector, we set

M∗
ε

= sup
υ∈Λ1

M2(υ)

ε2||Sυ ||2 and Λ1 = Λ − λ0.

So, through inequality (80)

2|Mε(υ)| ≤ δ||Sυ ||2 + ε2
M∗

ε

δ
. (84)

It is clear that the last term here can be estimated as

EM∗
ε

≤
∑

υ∈Λ1

EM2
ε
(υ)

ε2||Sυ ||2 ≤ 2
∑

υ∈Λ1

κQ = 2κQ ι, (85)

where ι = #(Λ). Moreover, note that, for any υ ∈ Λ1,

||Sυ ||2 − ||̂Sυ ||2 =
n

∑

j=1

υ2( j)(θ2j − ̂θ2j ) ≤ 2|Mε(υ
2)|,

where υ2 = (υ2( j))1≤ j≤n . Taking into account now that for any x ∈ Λ1 the compo-
nents |υ( j)| ≤ 1, we can estimate the last term as in (83), i.e.,

EM2
ε
(υ2) ≤ 2ε2κQ ||Sυ ||2.

Similarly, setting

M∗
1,ε = sup

υεΛ1

M2
ε
(υ2)

ε2||Sυ ||2
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we obtain

EQ M∗
1,ε ≤ 2κQ ι. (86)

By the same way, we find that

2|Mε(υ
2)| ≤ δ||Sυ ||2 + M∗

1,ε

nδ
,

and for any 0 < δ < 1,

||Sυ ||2 ≤ ||̂Sυ ||2
1 − δ

+ ε2M∗
1,ε

δ(1 − δ)
.

So, from (84) we get

2M(υ) ≤ δ||̂Sυ ||2
1 − δ

+ ε2(M∗
ε

+ M∗
1,ε)

δ(1 − δ)
.

Therefore, taking into account that ‖̂S�‖2 ≤ 2 (Errε(̂λ)+Errε(λ0)), the term Mε(�)

can be estimated as

2Mε(�) ≤ 2δ(Errε(̂λ) + Errε(λ0))

1 − δ
+ ε2(M∗

ε
+ M∗

1,ε)

δ(1 − δ)
.

Using this bound in (82), we obtain

Errn(̂λ) ≤ 1 + δ

1 − 3δ
Errε(λ0) + ε2(M∗

ε
+ M∗

1,ε)

δ(1 − 3δ)
+ 2ε2B∗

2,ε

δ(1 − 3δ)κ̌Q

+2ε2 κQ

1 − 3δ
+ 6ε2 |Λ|∗

(1 − 3δ)
|κ̂ − κ̌Q | + 2δ

(1 − 3δ)
Pε(λ0).

Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Errn(̂λ) ≤ 1 + δ

1 − 3δ
Errε(λ0) + 2ε2(M∗

ε
+ M∗

1,ε)

δ
+ 4ε2B∗

2,ε

δκ̌Q

+ 4ε2 κQ + 12ε2 |Λ|∗|κ̂ − κ̌Q | + 4δ Pε(λ0).

Using here bounds (81), (85), (86) and taking into account that κ̌Q ≤ κQ , we obtain

R(̂S∗, S) ≤ 1 + δ

1 − 3δ
R(̂Sλ0 , S) + 4ε2 κQ(2ι + δ)

δ
+ 4ε2U1,Q ι

δκ̌Q

+ 12ε2 |Λ|∗EQ |κ̂ − κ̌Q | + 2δ

1 − 3δ
Pε(λ0).
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Now, from Lemma 1 it follows that

R(̂S∗, S) ≤ 1 + 3δ

1 − 3δ
R(̂Sλ0 , S) + 4ε2κQ(2ι + δ)

δ
+ 4ε2U1,Q ι

δκ̌Q

+ 12ε2 |Λ|∗EQ |κ̂ − κ̌Q | + ε2
2δ

1 − 3δ
κQ .

Taking into account here that 2δ/(1 − 3δ) ≤ 1 for 0 < δ < 1/6 and using the
function (44), we obtain inequality (45) for some constant l∗ > 0 which depends on
Π(x4). Hence Theorem 1 is shown. �


9.3 Proof of Theorem 5

Firstly, note that for any fixed Q ∈ Q∗
ε

sup
S∈Wk

r

R∗
ε
(̂Sε, S) ≥ sup

S∈Wk
r

RQ(
̂Sε, S). (87)

Now for any fixed 0 < γ̌ < 1, we set

d = dε =
[

k + 1

k
υ1/(2k+1)
ε

l∗(r0)
]

and r0 = (1 − γ̌ )r. (88)

Using this definition, we introduce the parametric family (Sz)z∈Rd as

Sz(x) =
d

∑

j=1

z j φ j (x). (89)

To define the Bayesian risk, we choose a prior distribution on R
d as

κ = (κ j )1≤ j≤d and κ j = s j η j , (90)

where η j are i.i.d. Gaussian N (0, 1) random variables and the coefficients

s j =
√

s∗
j

vε
and s∗

j =
(

d

j

)k

− 1.

Denoting byμκ the distribution of the randomvariables (κ j )1≤ j≤d onR
d , we introduce

the Bayesian risk as

˜RQ(
̂S) =

∫

R
d
RQ(

̂S, Sz) μκ(dz). (91)
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Furthermore, for any function f ∈ L2[0, 1], we denote by p( f ) its projection in
L2[0, 1] onto Wk,r , i.e., ‖ f − p( f )‖ = infh∈Wk

r
‖ f − h‖. Since Wk

r is a convex and

closed set inL2[0, 1], this projector exists and is unique for any function f ∈ L2[0, 1],
and moreover, ‖ f − h‖2 ≥ ‖p( f ) − h‖2 for any h ∈ Wk

r . So, setting p̂ = p(̂S), we
obtain that

sup
S∈Wk

r

R(̂S, S) ≥
∫

{z∈Rd : Sz∈Wk
r }

ESz
‖̂p − Sz‖2 μκ(dz).

Taking into account now that ‖̂p‖2 ≤ r, we obtain

sup
S∈Wk

r

RQ(
̂S, S) ≥ ˜RQ (̂p) − 2Δε (92)

and Δε = ∫

{z∈Rd : Sz /∈Wk,r} (r + ‖Sz‖2) μκ(dz). Therefore, in view of (87),

sup
S∈Wk,r

R∗
ε
(̂Sε, S) ≥ sup

Q∈Q∗
ε

˜RQ (̂p) − 2Δε. (93)

As to the last term in this inequality, in Appendix we show that for any b > 0

lim
ε→0

ε−bΔε = 0. (94)

Now it is easy to see that ‖̂p− Sz‖2 ≥ ∑d
j=1 (̂z j − z j )

2, where ẑ j = ∫ 1
0
p̂(t) φ j (t)dt .

So, in view of Proposition 4 and reminding that υε = ε−2/ς∗ we obtain

sup
Q∈Q∗

ε

˜RQ (̂p) ≥ sup
0<�21≤ς∗

d
∑

j=1

1

ε−2 �−2
1 + vε (s

∗
j )

−1

= 1

vε

d
∑

j=1

s∗
j

s∗
j + 1

= 1

vε

d
∑

j=1

(

1 − j k

dk
ε

)

.

Therefore, using now definition (88), inequality (93) and limit (94), we obtain that

lim inf
n→∞

inf
̂S∈Πε

v
2k

2k+1
ε sup

S∈Wk,r

R∗
ε
(̂Sε, S) ≥ (1 − γ̌ )

1
2k+1 l∗(r).

Taking here limit as γ̌ → 0 implies Theorem 5. �


9.4 Proof of Theorem 6

First we suppose that the parameters k ≥ 1, r > 0 in (52) and ς∗ in (9) are known.
Let the family of admissible weighted least squares estimates (̂Sλ)λ∈Λ given by (42).
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Consider the pair α̌ = (k, ř) and ř = � [r/� ]. Denote the corresponding estimate
as

Š = ̂S
λ̌

and λ̌ = λα̌. (95)

Note that for sufficiently small ε the pair α̌ belongs to set (37).

Proposition 5 Assume that conditions (A1)–(A2) hold. Then the estimator Š admits
the following asymptotic upper bound

lim sup
ε→0

υ2k/(2k+1)
ε

sup
S∈Wk

r

R∗
ε
(Š, S) ≤ l∗(r). (96)

Combining Theorem 4 and Proposition 5 yields Theorem 6. �
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