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Abstract
In this paper, we first describe the generalized notion of Cramer–Rao lower bound
obtained by Naudts (J Inequal Pure Appl Math 5(4), Article 102, 2004) using two
families of probability density functions: the original model and an escort model. We
reinterpret the results in Naudts (2004) from a statistical point of view and obtain some
interesting examples in which this bound is attained. Further, we obtain information
inequalities which generalize the classical Bhattacharyya bounds in both regular and
non-regular cases.

Keywords Information inequality · Generalized Cramer–Rao bound · Escort
probability distribution · Generalized Bhattacharyya bounds · Deformed exponential
family

1 Introduction

For every unbiased estimator T , an inequality of the type

Varθ (T ) ≥ d(θ) (1)

for every θ in the parameter space Θ is called an information inequality and it plays
an important role in parameter estimation. The lower bound provided by the family
of functions {d(θ) | θ ∈ Θ} is said to be sharp if there exists an unbiased estimator T
such that

Varθ (T ) = d(θ), ∀ θ ∈ Θ. (2)
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The early works of Cramer (1946) and Rao (1945) introduced the Cramer–Rao
inequality for regular density functions. For the non-regular density functions, Ham-
mersley (1950) and Chapman and Robbins (1951) introduced an inequality which
came to be known as Hammersley–Chapman–Robbins inequality, while Fraser and
Guttman (1952) obtained the Bhattacharyya bounds without regularity conditions.
See also Lehmann and Casella (1998), page 129 and references therein. Later Vincze
(1979) and Khatri (1980) introduced information inequalities by imposing the regular-
ity assumptions on a prior distribution rather than on the model. These ideas have been
further investigated by Kshirsagar (2000), Koike (2002) and Qin and Nayak (2008).

Recently in statistical physics, a generalized notion of the Fisher information and
a corresponding Cramer–Rao lower bound are introduced by Naudts (2004) using
two families of probability density functions: the original model and an escort model.
Further, he showed that in the case of a deformed exponential family of probability
density functions, there exist an escort family and an estimator whose variance attains
the bound. Also from an information geometric point of view, he obtained a dually
flat structure of the deformed exponential family.

In this article, concentrating on the statistical aspects of the Naudts’s paper we
define several information inequalities which generalize the classical Hammersley–
Chapman–Robbins bound and Bhattacharyya bounds in both regular and non-regular
cases. This is done by imposing the regularity conditions on the escort model rather
than on the original model.

In Sect. 2, some preliminary results are stated. Section 3 describes the generalized
Cramer–Rao lower bound obtained by Naudts (2004) reinterpreted from a statistical
point of view and applied to many examples. In Sect. 4, we obtain a generalized
notion of Bhattacharyya bounds in both regular and non-regular cases. We conclude
with discussions in Sect. 5.

2 Preliminaries

Let X be a random vector taking values in A ⊆ R
n , and for θ¯ = (θ1, . . . , θp)

ᵀ ∈ Θ ⊆
R

p, let Pfθ¯
denote its probability measure. Assume that Pfθ¯

has density f (x, θ¯ ) with
respect to some σ -finite measure μ. To estimate a real-valued function ϕ of θ¯ , define
a class of estimators as

Cϕ = {δ(X) | E fθ¯
(δ(X)) = ϕ(θ¯ ); E fθ¯

(δ2) < ∞, ∀ θ¯ ∈ Θ}. (3)

Define

U f = {U (X) | E fθ¯
(U ) = 0; E fθ¯

(U 2) < ∞, ∀ θ¯ ∈ Θ}. (4)

Note that for any T1, T2 ∈ Cϕ , T1 − T2 ∈ U f .
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Some information inequalities for statistical inference 1239

Consider a class of functions

Ψ = {S(x, θ¯ ) | E fθ¯
(S) = 0; 0 < E fθ¯

(S2) < ∞; Cov fθ¯
(U , S) = 0,

∀ U ∈ U f , ∀ θ¯ ∈ Θ}. (5)

For a fixed S ∈ Ψ and for any T ∈ Cϕ , Cov fθ¯
(T , S) depends on T only through ϕ(θ¯ ).

That is for any estimators T1, T2 ∈ Cϕ ,

Cov fθ¯
(T1, S) = Cov fθ¯

(T2, S) since T1 − T2 ∈ U f . (6)

Let S1(x, θ¯ ), . . . , Sm(x, θ¯ ) ∈ Ψ . For each α = (α1, . . . , αm)ᵀ ∈ R
m , define

ψ(x, θ¯ ) =
m∑

i=1

αi Si (x, θ¯ ). (7)

Clearly ψ ∈ Ψ . Although ψ depends on α, we avoid the index α for the convenience
of writing.

Since ψ, S1(x, θ¯ ), . . . , Sm(x, θ¯ ) ∈ Ψ , from (6), for all T ∈ Cϕ , let

Cov fθ¯
(T , ψ) = γ (θ¯ ) and Cov fθ¯

(T , Si ) = E fθ¯
(T Si ) = λi (θ¯ ); i = 1, . . . ,m (8)

where γ, λi are real-valued functions of θ¯ .
Therefore, ∀ T ∈ Cϕ , the Cauchy–Schwarz inequality

Var fθ¯
(T (x)) ≥

(Cov fθ¯
(T , ψ))2

Var fθ¯
(ψ)

=
(γ (θ¯ ))

2

Var fθ¯
(ψ)

(9)

gives a lower bound for the variance of all unbiased estimators of ϕ(θ¯ ).
Now consider

Var fθ¯
(ψ) = Var fθ¯

(
m∑

i=1

αi Si

)
= αᵀΣα (10)

(Cov fθ¯
(T , ψ))2 =

(
m∑

i=1

αiλi (θ¯ )
)2

= αᵀMMᵀα (11)

where Σ = (Σi j ) = (Cov f (Si , S j )) is the covariance matrix of S = (S1, . . . , Sm)ᵀ
and M = (λ1(θ¯ ), . . . , λm(θ¯ ))

ᵀ.

Here, both M and Σ depend on θ¯ . But for the convenience of writing, we suppress
the index θ¯ .
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1240 K. V. Harsha, A. Subramanyam

Equation (9) becomes

Var fθ¯
(T (x)) ≥ αᵀMMᵀα

αᵀΣα
∀ α ∈ R

m (12)

which implies

Var fθ¯
(T (x)) ≥ sup

α

αᵀMMᵀα

αᵀΣα
= MᵀΣ−1M (13)

where Σ−1 is the inverse of the covariance matrix Σ .
For later use, we state the following well known theorem (refer Lehmann and

Casella 1998) as

Proposition 1 (Information inequality) Let X be a random vector with probability
density function (pdf) f (x, θ¯ ), where θ¯ = (θ1, . . . , θp)

ᵀ ∈ Θ ⊆ R
p. Consider an

estimator T (X) ∈ Cϕ , S1(x, θ¯ ), . . . , Sm(x, θ¯ ) ∈ Ψ and the functions λi : Θ →
R; i = 1, . . . ,m with

E fθ¯
(T Si ) = λi (θ¯ ); i = 1, . . . ,m. (14)

Then the variance of T satisfies the inequality

Var fθ¯
(T (x)) ≥ MᵀΣ−1M (15)

where M = (λ1(θ¯ ), . . . , λm(θ¯ ))
ᵀ and Σ−1 is the inverse of the covariance matrix

Σ = (Σi j ) = (Cov fθ¯
(Si , S j )). The equality in Eq. (15) holds iff

SᵀΣ−1M = a(θ¯ )(T (x) − ϕ(θ¯ )) (16)

for some function a(θ¯ ) and, S = (S1, . . . , Sm)ᵀ.

3 Generalized Cramer–Rao type lower bound

Naudts (2004) introduced a generalized notion of the Fisher information by replacing
the original model by an escort model at suitable places. Using this, he obtained a
generalized Cramer–Rao lower bound. To study the statistical implications of this
generalization, first we reinterpret Naudts’s generalized bound as follows.

For each θ¯ = (θ1, . . . , θp)
ᵀ ∈ Θ , let Pgθ¯

be a probability measure with density

g(x, θ¯ ) with respect to the σ -finite measure μ of Sect. 2. Define

Ug = {U (X) | Egθ¯
(U ) = 0, ∀ θ¯ ∈ Θ}. (17)
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Let us make the following assumptions,

(a) The probability measure Pgθ¯
is absolutely continuous with respect to the

probability measure Pfθ¯
for all θ¯ ∈ Θ. (18)

(b) U f ⊆ Ug. (19)

Remark 1 For a simple sufficient condition to check Assumption (18), consider the
following.

For each θ¯ ∈ Θ , if supp(gθ¯
) := {x | g(x, θ¯ ) > 0} ⊆ supp( fθ¯

), then taking

hθ¯
=

gθ¯
fθ¯
, one has Pgθ¯

(A) = ∫
A hθ¯

dPfθ¯
and hence Pgθ¯

is absolutely continuous with

respect to Pfθ¯
for all θ¯ ∈ Θ .

Remark 2 If X is a complete statistic for the family { fθ¯ | θ¯ ∈ Θ} and if there exists a
family {gθ¯

| θ¯ ∈ Θ} satisfying Assumption (18), then U f ⊆ Ug .

To see this, note that since X is complete for the family { fθ¯ | θ¯ ∈ Θ}, if U =
U (X) ∈ U f , then Pfθ¯

(U = 0) = 1 ∀ θ¯ . That is,

U = 0, a.e. Pfθ¯
(almost everywhere with respect to Pfθ¯

) ∀ θ¯ . (20)

From Assumption (18), it follows that

U = 0, a.e. Pgθ¯
∀ θ¯ ⇒ U ∈ Ug. (21)

Naudts (2004) defined a generalized Fisher information N (θ¯ ) = (Ni j (θ¯ )) as

Ni j (θ¯ ) =
∫

∂i g(x, θ¯ )∂ j g(x, θ¯ )
1

f (x, θ¯ )
dx, ∂i := ∂

∂θi
and i, j = 1, . . . , p. (22)

When f = g, N (θ¯ ) reduces to the Fisher information I (θ¯ ).

Theorem 1 Let X be a random vector with pdf f (x, θ¯ ). Let g(x, θ¯ ) be a pdf satisfying
Assumptions (18) and (19) with Egθ¯

[T ] = λ(θ¯ ). Assume that

(a) ∂i g(x, θ¯ ) exists and the function λ(θ¯ ) is differentiable with respect to θi for

all x ∈ A and θ¯ ∈ Θ , where i = 1, . . . , p (23)

(b) Nii (θ¯ ) > 0 and N (θ¯ ) is non-singular (24)
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1242 K. V. Harsha, A. Subramanyam

(c) Partial derivatives of functions of θ¯ expressed as integrals with respect to

g(x, θ¯ ) can be obtained by differentiating under the integral sign. (25)

Then for T (X) ∈ Cϕ , the variance of T satisfies

Var fθ¯
(T (X)) ≥ MᵀN−1(θ¯ )M (26)

where M = (∂1λ(θ¯ ), . . . , ∂pλ(θ¯ ))
ᵀ.

Proof From Proposition 1, choose m = p functions Si as

Si =
∂i g(x, θ¯ )

f (x, θ¯ )
, i = 1, . . . , p. (27)

From Assumptions (24) and (25),

E fθ¯
(Si ) =

∫
∂i g(x, θ¯ )dx = 0; Var fθ¯

(Si ) = Nii (θ) < ∞. (28)

Now from Eq. (19), it follows that for all U ∈ U f ,

Cov fθ¯
(U , Si ) =

∫
U (x)∂i g(x, θ¯ )dx = ∂i

(∫
U (x)g(x, θ¯ )dx

)
= 0. (29)

Hence, Si ∈ Ψ for i = 1, . . . , p.
From Assumption (25), it follows that

E fθ¯
(T Si ) =

∫
T ∂i g(x, θ¯ )dx = ∂i

(∫
T g(x, θ¯ )dx

)
= ∂iλ(θ¯ ) (30)

where λ(θ¯ ) = Egθ¯
[T ] and i = 1, . . . , p.

Applying Proposition 1, the bound in Eq. (26) is obtained.
The fact that U f ⊆ Ug ensures that the bound is same for all unbiased estimators

T of ϕ(θ¯ ). 	


Now we give some interesting examples in which the Naudts’s generalized Cramer–
Rao bound is sharp.

Example 1 Suppose Y1, . . . ,Yn are independent uniform random variables in [0, θ ],
where θ > 0. Then

X = max{Y1, . . . ,Yn} ∼ f (x, θ) = nxn−1

θn
, 0 < x < θ. (31)
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Some information inequalities for statistical inference 1243

Consider an unbiased estimator T (X) = (n+k)Xk

n for θk , where k is a positive integer.
Then

Var fθ (T ) = k2θ2k

n(n + 2k)
. (32)

Define a pdf g(x, θ) as

g(x, θ) =
n(n + k)

(
1 − xk

θk

)
xn−1

kθn
, 0 < x < θ. (33)

Here, X is a complete statistic for the family { fθ | θ > 0} (see Example 6.23 (ii), page
42, Lehmann and Casella 1998). Then using Remarks 1 and 2, it follows that g(x, θ)

satisfies Assumptions (18) and (19).
Then the bound in Eq. (26) is obtained as

(λ′(θ))2

N (θ)
= k2θ2k

n(n + 2k)
= Var fθ (T ). (34)

Thus, the estimator T (X) is an unbiased estimator of θk whose variance attains the
bound in Eq. (26). When n = 1, k = 1, this example reduces to Example 1 given
in Naudts (2004). In this case, Var fθ (T ) does not attain the Hammersley–Chapman–
Robbins lower bound.

Example 2 Suppose Y1, . . . ,Yn are independent random variables,

Y1, . . . ,Yn ∼ exp(−(y − θ)), y ≥ θ, θ > 0. (35)

Then the random variable X = min{Y1, . . . ,Yn} has a pdf

f (x, θ) = n exp(−n(x − θ)), x ≥ θ. (36)

Now consider an unbiased estimator T (X) = X − 1
n of θ . Then

Var fθ (T ) = 1

n2
. (37)

The pdf g(x, θ) which optimizes the bound in Eq. (26) is

g(x, θ) = n2(x − θ) exp(−n(x − θ)), x ≥ θ. (38)

Here, X is a complete statistic for the family { fθ | θ > 0}see Example 6.23 (iii), page
43, Lehmann and Casella 1998). Then using Remarks 1 and 2, it follows that g(x, θ)
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satisfies Assumptions (18) and (19). Note that Egθ [T ] = λ(θ) = 1
n + θ and the bound

in Eq. (26) is obtained as

(λ′(θ))2

N (θ)
= 1

n2
= Var fθ (T ). (39)

Example 3 Location family
Let f (x) and g(x) be two density functions on x ∈ D′ ⊆ R satisfying Assumptions
(18) and (19). Now let X be a random variable with density function f (x, θ) =
f (x − θ), θ ∈ R and x ∈ D ⊆ R. Let g(x, θ) = g(x − θ). Let T (X) be an unbiased
estimator for ϕ(θ). Let Eg(T ) = λ(θ). Then from Eq. (16), the optimality condition
for the bound in Eq. (26) is given by

∂θg(x, θ)

f (x, θ)
= a(θ)(T (x) − ϕ(θ)) (40)

for some function a(θ). In this case

∂θg(x, θ) = −g′(x − θ) (41)

where g′ denotes the derivative of g(x) with respect to x . Then Eq. (40) becomes

g′(x − θ) = a(θ)(ϕ(θ) − T (x)) f (x, θ). (42)

Let θ = 0 and x0 ∈ D′, then

g(x) = a(0)

(
ϕ(0)

∫ x

x0
f (x)dx −

∫ x

x0
T (x) f (x)dx

)
(43)

= a(0)h(x) (44)

where

h(x) = ϕ(0)
∫ x

x0
f (x)dx −

∫ x

x0
T (x) f (x)dx < ∞ (45)

can be computed since f (x), T (x), ϕ(0) are given.
Now a(0) can be solved from the normalization condition

∫
D′ g(x)dx = 1 as

a(0) = 1∫
D′ h(x)dx

if
∫

D′
h(x)dx < ∞. (46)

Thus, the optimizing family g(x, θ) = g(x − θ) is obtained.

Example 4 Scale family
Let f (x) and g(x) be two density functions on x ∈ D′ ⊆ R satisfying Assumptions
(18) and (19). Now let

X ∼ f (x, θ) = 1

θ
f
( x

θ

)
x ∈ D ⊆ R, θ > 0 (47)
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Some information inequalities for statistical inference 1245

and

g(x, θ) = 1

θ
g

( x
θ

)
. (48)

Let T (X) be an unbiased estimator for ϕ(θ). Let Eg(T ) = λ(θ). Then from Eq. (16),

∂θg(x, θ)

f (x, θ)
= a(θ)(T (x) − ϕ(θ)) (49)

for some function a(θ).

−x

θ3
g′(x/θ) − 1

θ2
g(x/θ) = a(θ)(T (x) − ϕ(θ)) f (x, θ) (50)

where g′ denotes the derivative of function g(x) with respect to x .
Let θ = 1. Then we have

xg′(x) + g(x) = a(1)(ϕ(1) − T (x)) f (x). (51)

Let x0 ∈ D′. Integrating the above equation from x0 to x , we get

xg(x) − x0g(x0) = a(1)
∫ x

x0
(ϕ(1) − T (x)) f (x) dx (52)

= a(1)(h(x) − h(x0)) (53)

where

h(x) − h(x0) =
∫ x

x0
(ϕ(1) − T (x)) f (x) dx . (54)

Thus, we get

xg(x) = a(1)h(x) ⇒ g(x) = a(1)k(x) (55)

for some function k(x).
Now a(1) can be solved from the normalization condition of the function∫

D′ g(x)dx = 1 as

a(1) = 1∫
D′ k(x)dx

if
∫

D′
k(x)dx < ∞. (56)

Thus, the optimizing family g(x, θ) = 1
θ
g( x

θ
) is obtained.

Example 5 Let X be a randomvariable distributed according to theGammadistribution
f (x, θ) with a scale parameter θ > 0 and a known shape parameter α > 0 given by

f (x, θ) = 1

Γ (α)

xα−1e−x/θ

θα
, x > 0. (57)
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Here, { fθ | θ > 0} is a one-dimensional exponential family with a canonical statistic
X . Hence, X is a complete statistic for the family { fθ | θ > 0} (see Theorem 6.22,
page 42, Lehmann and Casella 1998 for the details). Let T (X) = Γ (α)

Γ (α+k) X
k , where k

is an integer such that k = 0 and 2k + α > 0. Then T is an unbiased estimator of θk

with E fθ (T
2) < ∞.

Var fθ (T ) =
[
Γ (α)Γ (2k + α)

(Γ (α + k))2
− 1

]
θ2k . (58)

Consider a pdf g(x, θ) such that Var fθ (T ) attains the bound in Eq. (26) as follows.
For k > 0,

g(x, θ) = 1

c

e−x/θ

θ

[
k−1∑

i=0

si
( x

θ

)α+k−(i+2)
]

, c =
k−1∑

i=0

siΓ (α + k − (i + 1)) (59)

where x > 0, si = ∏i
j=1(α + k − j); i = 1, . . . , k − 1 and s0 = 1.

For k < 0 and k = −1,

g(x, θ) = 1

c

e−x/θ

θ

[
k1∑

i=1

si
( x

θ

)α−(i+1)
]

, c =
k1∑

i=0

siΓ (α − i) (60)

where x > 0, k1 = −k, si = ∏i−1
j=1(α − j); i = 2, . . . , k1 and s0 = 1.

For k = −1,

g(x, θ) = 1

Γ (α − 1)

xα−2e−x/θ

θα−1 , x > 0. (61)

This is an interesting special case as the variance of T = 1/X does not attain the
Bhattacharyya bounds of any order, while it attains the bound in Eq. (26). Note that
in all cases using Remarks 1 and 2, it follows that g(x, θ) satisfies Assumptions (18)
and (19).

Example 6 Let X be a randomvariable distributed according to theNormal distribution
N (0, θ2) given by

f (x, θ) = 1√
2πθ

e
−x2

2θ2 , x ∈ R and θ > 0. (62)

Consider an unbiased estimator T (X) = X4

3 for θ4. Then Var fθ (T ) = 32θ8
3 . Consider

a pdf

g(x, θ) = 1√
2πθ

(
3

4
+ x2

4θ2

)
e

−x2

2θ2 , x ∈ R. (63)

In this example, X is not complete for the family { fθ | θ > 0}. However, Assumptions
(18) and (19) are satisfied as shown in Lemma 1 of Appendix.
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We have

N (θ) = 6

θ2
and λ(θ) = Egθ (T ) = 2θ4. (64)

Thus, the bound in Eq. (26) is obtained as

(λ′(θ))2

N (θ)
= 32θ8

3
= Var fθ (T ). (65)

Thus, the variance of T attains Naudts’s bound with optimizing family g(x, θ). Note
that f (x, θ) belongs to exponential family and T (X) is a second-degree polynomial
in the canonical statistic X2. Hence, its variance attains the Bhattacharyya bound of
order 2. Thus, the ‘first-order’ bound obtained using g is equal to the second-order
Bhattacharyya bound.

Example 7 Poisson distribution
Let X1, . . . , Xn are i.i.d random variables from Poisson distribution

f (x, θ) = θ xe−θ

x ! , x = 0, 1, . . . and θ > 0. (66)

Consider the joint pdf

f (x1, . . . , xn, θ) = θnx̄ e−nθ

x1! . . . xn ! , where x̄ = x1 + . . . + xn
n

. (67)

Here, X̄ is a complete statistic for the family { fθ | θ > 0} (see Theorem 6.22, page
42, Lehmann and Casella 1998). Consider an unbiased estimator T (X) = X̄(X̄ − 1

n )

for θ2. The variance of T attains the bound in Eq. (26) if we choose the pdf

g(x1, . . . , xn, θ) = 1

2

θnx̄ e−nθ

x1! . . . xn ! + x̄

2

θnx̄−1e−nθ

x1! . . . xn ! . (68)

UsingRemarks 1 and 2, it follows that g(x1, . . . , xn, θ) satisfiesAssumptions (18) and
(19). Var fθ (T ) attains the Bhattacharyya bound of order 2, while it attains ‘first-order’
Naudts’s bound.

Example 8 Let X1, . . . , Xn are i.i.d uniform random variables in [0, θ ], where θ > 0.
Then the joint pdf is

f (x1, . . . , xn, θ) = 1

θn
Πn

i=11{0≤xi≤θ} (69)

where 1 denotes the indicator function.
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1248 K. V. Harsha, A. Subramanyam

The statistic T = max{X1, . . . , Xn} is a sufficient statistic with E fθ (T ) = n
n+1θ ,

and Var fθ (T ) attains the bound in Eq. (26) if we choose the pdf

g(x1, . . . , xn, θ) = n + 1

θn

(
1 − t

θ

)
; 0 ≤ t ≤ θ (70)

where t = max{x1, . . . , xn}.
The pdf g(x1, . . . , xx , θ) can be written as

g(x1, . . . , xx , θ) = Z

(
n + 1

θn
− (n + 1)t

θn+1 − 1

)
(71)

where the Z is a function defined by Z(u) = [1 + u]+, with [v]+ = max{v, 0}, and
F(u) = u − 1 is the inverse function of Z .

Such family {g(x, θ)|θ ∈ Θ} is called a deformed exponential family with a
deformed logarithm function F and deformed exponential function Z (refer Har-
sha and Subrahamanian Moosath 2015; Matsuzoe and Henmi 2013; Naudts 2004 for
more details). From Proposition 5.2, Naudts (2004), it can be easily seen that f (x, θ)

is the F-escort distribution so that the variance of the sufficient statistic T attains the
Naudts’s bound.

Remark 3 Deformed exponential family is a generalization of exponential family in
which the deformed logarithm of the density function is a linear function of the statistic
T . In an exponential family, the statistic T is sufficient and complete under some
conditions. As in exponential family, T is sufficient in deformed exponential family
also. For statistical applications, the definition of deformed exponential family should
include the requirement that T is a complete statistic.

In the above example, g is a deformed exponential family, while this is not the case
in most of the other examples. However, Var fθ (T ) attains the bound given by Naudts
(2004).

4 Generalized Bhattacharyya bounds

In this section, we obtain an information inequality which generalizes the Bhat-
tacharyya bound given by Fraser andGuttman (1952). This is defined using the divided
difference of a density function g(x, θ) satisfying the conditions (18) and (19). We
begin by recalling the definition of the divided difference formula.

4.1 One-parameter case

Definition 1 Let h(θ) be a scalar function of θ ∈ Θ ⊆ R. Let k ≥ 1 be a positive
integer. Let us define the divided difference of the function h at k+1 nodes θ0, . . . , θk .
We have k + 1 data points,

(θ0, h(θ0)), . . . , (θk, h(θk)). (72)
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Define the first divided difference of h as

Δ
θν+1

h(θν) := h(θν+1) − h(θν)

θν+1 − θν
; ν = 0, . . . k − 1. (73)

Second divided difference is given by

Δ2

θν+1,θν+2
h(θν) := Δ

θν+2
Δ

θν+1
h(θν) =

Δ
θν+2

h(θν+1) − Δ
θν+1

h(θν)

θν+2 − θν
(74)

where ν = 0, . . . k − 2.

In general, for j ≥ 2, the j th divided difference is defined as

Δ j

θν+1,...,θν+ j
h(θν) := Δ

θν+ j
. . . Δ

θν+1
h(θν) =

Δ j−1

θν+2,...,θν+ j
h(θν+1) − Δ j−1

θν+1,...,θν+ j−1
h(θν)

θν+ j − θν

where ν = 0 . . . k − j . (75)

In particular for ν = 0, the i th divided difference is given by

Δi

θ1,...,θ i
h(θ0) =

i∑

j=0

h(θ j )∏
l = j (θ

j − θ l)
, i = 1, . . . k. (76)

Choose and fix θ0 in Θ . For convenience, we write gx (θ) instead of g(x, θ). Let
T (X) be an unbiased estimator of a real-valued function ϕ(θ) of θ . Then consider i th
divided difference (for ν = 0) of the density g(x, θ) on k + 1 nodes of θ0, . . . , θk ,
where i = 1, . . . , k. Define

Si = 1

f (x, θ0)
Δi

θ1,...,θ i
gx (θ

0), i = 1, . . . k. (77)

We now give a lower bound for the variance of T using these functions.

Theorem 2 Let g(x, θ) be a density function satisfying conditions (18) and (19) with
Eg

θ0
[T ] = λ(θ0). For T (X) ∈ Cϕ , the variance of T satisfies

Var f
θ0

(T (X)) ≥ sup
θ1,...,θk

MᵀΣ−1M (78)

where M =
(

Δ
θ1

λ(θ0), . . . , Δk

θ1,...,θ i
λ(θ0)

)ᵀ
, Δi

θ1,...,θ i
λ(θ0) is the i th divided difference

of λ, i = 1, . . . , k and Σ = (Σi j ) is the covariance matrix of the column vector
S = (S1, . . . , Sk)ᵀ.
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Proof Note that

E f
θ0

[Si ] =
∫

Δi

θ1,...,θ i
gx (θ

0)dx (79)

=
∫ ⎛

⎝
i∑

j=0

gx (θ j )∏
l = j (θ

j − θ l)

⎞

⎠ dx (80)

=
i∑

j=0

1∏
l = j (θ

j − θ l)
= 0. (81)

Also we have

E f
θ0

[T Si ] =
∫

T (x) Δi

θ1,...,θ i
gx (θ

0)dx (82)

=
∫

T (x)

⎛

⎝
i∑

j=0

gx (θ j )∏
l = j (θ

j − θ l)

⎞

⎠ dx (83)

=
i∑

j=0

1∏
l = j (θ

j − θ l)

∫
T (x)gx (θ

j )dx (84)

=
i∑

j=0

λ(θ j )∏
l = j (θ

j − θ l)
= Δi

θ1,...,θ i
λ(θ0) (85)

where Δi

θ1,...,θ i
λ(θ0) is the i th divided difference of the function λ.

Hence, it follows that Si ∈ Ψ , i = 1, . . . , k.

Apply Proposition 1 for Si to obtain the bound inEq. (78)withM =
(

Δ
θ1

λ(θ0), . . . ,

Δk

θ1,...,θ i
λ(θ0)

)ᵀ
. 	


Remark 4 It follows from Eq. (77) that other choices of functions Si are possible. For
example, one can choose first differences corresponding to k + 1 distinct points in Θ .
When g = f , the bound so obtained is the one given by Kshirsagar (2000). See also
Koike (2002).

Now let us define

Si = gi (x, θ)

f (x, θ)
, i = 1, . . . k. (86)

where gi (x, θ) denotes the i th derivative of g(x, θ) with respect to θ .

Theorem 3 Let X be a random vector with pdf f (x, θ). Let g(x, θ) be a pdf satisfying
(18) and (19) with Egθ [T ] = λ(θ). Assume that
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(a) g(x, θ) and the function λ(θ) are k-times differentiable for all x ∈ A and

θ ∈ Θ. (87)

(b) Var fθ (Si ) > 0, and the covariance matrix Σ = (Σi j ) of the column vector

S = (S1, . . . , Sk)
ᵀ is non-singular. (88)

(c) Derivatives of functions of θ expressed as integrals with respect to g(x, θ)

can be obtained by differentiating under the integral sign. (89)

Then for T (X) ∈ Cϕ , the variance of T satisfies

Var fθ (T (X)) ≥ MᵀΣ−1M (90)

where M = (λ1(θ), . . . , λk(θ))ᵀ, λi (θ) is the i th derivative of λ, i = 1, . . . , k.

Proof Note that E fθ [Si ] = 0 and E fθ [T Si ] = λi (θ), where i = 1, . . . , k. Hence,
Si ∈ Ψ from the given assumptions and now apply Proposition 1 for Si to obtain the
bound in Eq. (90) with M = (λ1(θ), . . . , λk(θ))ᵀ. 	

Remark 5 Assuming appropriate regularity conditions and considering the limiting
case of the bounds in Theorem 2, a bound possibly better than the bound in Eq. (90)
results. For the case g = f , Koike (2002) gives an example to show that the bound
(obtained by these limiting arguments) is indeed sharper.

Remark 6 When g = f , Eq. (78) reduces to the Bhattacharyya bounds of order k given
by Fraser and Guttman (1952), and for k = 1, it gives the Hammersley–Chapman–
Robbins bound. When k = 1, Eq. (90) reduces to the Naudts’s generalized Cramer–
Rao bound, and when g = f , it reduces to the classical Bhattacharyya bounds of order
k in regular case.

4.2 Multiparameter case

Let X ∼ f (x, θ¯ ), where θ¯ = (θ1, . . . , θp)
ᵀ ∈ Θ ⊆ R

p. Let T (X) be an unbiased

estimator of a real-valued function ϕ(θ¯ ) of θ¯ . Let g(x, θ¯ ) be a density function param-

eterized by θ¯ satisfying Assumptions (18) and (19). Let the expectation of T (X) with

respect to g(x, θ) is λ(θ¯ ), a real-valued function of θ¯ , i.e., Egθ¯
(T ) = λ(θ¯ ).

Let k ≥ 1 be an integer. Let i = (i1, . . . , i p) such that i j ≥ 0, 0 < i1 + · · · +
i p ≤ k. Assume that the density function g(x, θ¯ ) and function λ(θ¯ ) have all partial

derivatives with respect to θ1, . . . , θp of order up to k, and kth-order partial derivatives
are continuous. Define

∂ i := ∂ |i|

∂θ i1 . . . ∂θ i p
where | i |:= i1 + . . . + i p. (91)
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Define functions

Si := 1

f (x, θ¯ )
∂ ig(x, θ¯ ); λi(θ¯ ) := ∂ iλ(θ¯ ). (92)

We have the following theorem.

Theorem 4 For T (X) ∈ Cϕ , the variance of T satisfies

Var fθ¯
(T (X)) ≥ MᵀΣ−1(θ¯ )M (93)

whereΣ is the covariancematrix of the column vector S = (Si) containing all possible
Si and M = (λi(θ¯ )) is a column vector containing all possible λi(θ¯ ).

Proof Note that

E fθ¯
(Si) =

∫
∂ ig(x, θ¯ )dx = 0 (94)

Cov fθ¯
(T , Si) =

∫
T (x) ∂ ig(x, θ) dx = λi(θ¯ ). (95)

Hence, for all i, we have Si ∈ Ψ . Now apply Proposition 1 for Si ∈ Ψ to obtain the
bound. 	


Remark 7 If | i |= 1, the bound in Eq. (93) reduces to Naudts’s bound in vector
parameter.

Note 1 If the density g(x, θ¯ ) is not regular, we can obtain an information inequality

by replacing the partial derivatives by the corresponding divided difference formula.
This is done as follows.

Consider a scalar function h(θ¯ ) of θ¯ = (θ1, . . . , θp). Let k ≥ 1 be an integer. Let

us consider k + 1 nodes of θ¯ say, θ¯
0 = (θ01 , . . . , θ0p), . . . , θ¯

k = (θk1 , . . . , θkp). Define

θ¯
ν

i
= (θν

1 , . . . , θν+1
i , . . . θν

p). (96)

Define the first divided difference of h as

Δ
θν+1
i

h(θ¯
ν) =

h(θ¯
ν

i
) − h(θ¯

ν)

θν+1
i − θν

i

(97)

where ν = 0, . . . , k − 1, j = 1, i = 1, . . . , p.
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In general, for j ≥ 2, define j th divided difference of h as

Δ j

θν+1
i ,...,θ

ν+ j
i

h(θ¯
ν) := Δ

θ
ν+ j
i

. . . Δ
θν+1
i

h(θ¯
ν) =

Δ j−1

θν+2
i ,...,θ

ν+ j
i

h(θ¯
ν+1) − Δ j−1

θν+1
i ,...,θ

ν+ j−1
i

h(θ¯
ν)

θ
ν+ j
i − θν

i

where ν = 0 . . . k − j; j = 1, . . . , k; i = 1, . . . , p. (98)

In many cases, one may be interested in estimating a vector-valued function Φ(θ¯ ) of
θ¯ . Let T = (T1, . . . , Tr )ᵀ be an unbiased estimator of Φ(θ¯ ) = (ϕ1(θ¯ ), . . . , ϕr (θ¯ ))

ᵀ,

where r ≤ p. That is E fθ¯
(Ti ) = ϕi (θ¯ ), i = 1, . . . , r . Let us consider S =

(S1, . . . , Sm)ᵀ, where functions Si ∈ Ψ , i = 1, . . . ,m. Let us assume that the covari-
ance matrix Σ of (r + m) × 1 vector (T, S) is positive definite. We have

Σ =
[

ΣT ΣTS
ΣST ΣS

]
(99)

where ΣT is the covariance matrix of r × 1 vector T, ΣS is the covariance matrix of
m × 1 vector S and ΣTS is the covariance matrix between T and S. If the covariance
matrixΣS is invertible, the Shur complement ofΣS inΣ is given byΣT−ΣTSΣ

−1
S ΣST.

It is easy to see that ΣT −ΣTSΣ
−1
S ΣST is positive definite since Σ is positive definite.

This can be written as

ΣT − ΣTSΣ
−1
S ΣST � 0. (100)

Equivalently, one can write

ΣT � ΣTSΣ
−1
S ΣST (101)

which means that ΣT − ΣTSΣ
−1
S ΣST is positive definite.

The above inequality can be interpreted as follows. Consider a linear estimator αᵀT
which is unbiased for αᵀΦ(θ¯ ). Then

Var fθ¯
(αᵀT ) ≥ αᵀ J (θ¯ )α, (102)

where J (θ) = ΣTSΣ
−1
S ΣST.

IfΣT = J (θ), then variance ofαᵀT attains this bound. That is,αᵀT is theminimum
variance unbiased estimator for αᵀΦ(θ¯ ) for any α.

Remark 8 An information bound provides insight into the statistical model as it shows
that the error in estimation cannot be made arbitrarily small. It is of interest, therefore,
to know whether a bound is sharp. The presence of a complete sufficient statistic is
useful in this context. Conversely, if a bound is sharp, the uniform minimum variance
unbiased estimator (UMVUE) is automatically identified. This fact may be useful
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even when a complete sufficient statistic exists. This is so because the Lehmann–
Scheffe theorem gives only the existence of the UMVUE. Attainment of a bound
is also relevant in the geometric interpretation of a statistical model as discussed in
Sect. 5.

5 Discussions

In Proposition 5.2, Naudts (2004), it is shown that if g is a deformed exponential
family with a statistic T , then there exists an escort family f such that the variance
of T attains the Naudts’s bound. Considering this from a statistical perspective, let
f be the original model and assume that there exists a deformed exponential family
S = {g(x; θ) | θ ∈ Θ ⊆ R} with a canonical statistic T given by

g(x; θ) = Z(θT (x) − φ(θ)) or F(g(x; θ)) = θT (x) − φ(θ) (103)

where F : (0,∞) −→ R is a smooth function satisfying F ′(x) > 0 and F ′′(x) < 0,
Z is the inverse function of F and φ(θ) is chosen such that g is a probability density
function.

Then assume that f is the F-escort distribution of g defined by

f (x, θ) = 1

F ′(g)hF (θ)
; hF (θ) =

∫
1

F ′(g(x; θ))
dx . (104)

Then it is easy to see that T is an unbiased estimator of the expectation parameter
η = E fθ (T ) and the variance of T attains the Naudts’s bound.

For the geometric interpretation, we first observe that if g is an exponential family,
then the original model f is equal to g. Then the estimator T is an unbiased estimator
of the expectation parameter, and its variance attains the Cramer–Rao lower bound.
The exponential family has a dually flat structure. The expectation parameter is the
dual coordinate in the dually flat α-geometry by Amari (1985) with α = 1. When g is
a deformed exponential family with dually flat χ -geometric structure, then E fθ (T ) is
the dual coordinate (referAmari et al. 2012;Harsha and SubrahamanianMoosath 2015
for more details). As observed above, T is an unbiased estimator for E fθ (T ) and its
variance attains the Naudts’s lower bound. In the context of statistical inference, the χ -
geometry of the deformed exponential family seems to provide a useful generalization
of 1-geometry of an exponential family. It would be an interesting problem to construct
a differential geometric framework for the parameter estimation problem in a deformed
exponential family.
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Appendix

Lemma 1 Let X be a random variable with pdf
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f (x, θ) = N (0, θ2) = 1√
2πθ

e
−x2

2θ2 , x ∈ R and θ > 0. (105)

Consider a pdf

g(x, θ) = 1√
2πθ

(
3

4
+ x2

4θ2

)
e

−x2

2θ2 , x ∈ R. (106)

Then the family {gθ | θ > 0} satisfies Assumptions (18) and (19).

Proof Since supp(gθ ) = supp( fθ ), Pgθ is absolutely continuous with respect to Pfθ
for all θ ∈ Θ . Hence, {gθ | θ > 0} satisfies Assumption (18).

To show U f ⊆ Ug , let U (X) ∈ U f . Then we have for all θ ∈ Θ ,

E fθ (U ) =
∫

x∈R
U (t) exp(−t2/2θ2) dt = 0. (107)

By differentiating (107) both sides with respect to θ , we get

∫

x∈R
U (t) t2 exp(−t2/2θ2) dt = 0. (108)

Now from Eqs. (107) and (108), it follows that

Egθ (U ) = 3

4
√
2πθ

∫

x∈R
U (t) exp(−t2/2θ2) dt (109)

+ 3

4
√
2πθ3

∫

x∈R
U (t) t2 exp(−t2/2θ2) dt (110)

= 0. (111)

Hence, {gθ | θ > 0} satisfies Assumption (19). 	
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