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Abstract
Functional data analysis is ubiquitous in most areas of sciences and engineering.
Several paradigms are proposed to deal with the dimensionality problem which is
inherent to this type of data. Sparseness, penalization, thresholding, among other
principles, have been used to tackle this issue. We discuss here a solution based on a
finite-dimensional functional subspace. We employ wavelet representation of random
functions to estimate this finite dimension and successfully model a time series of
curves. The proposed method is shown to have nice asymptotic properties. Moreover,
thewavelet representation permits the use of several bootstrap procedures, and it results
in faster computing algorithms. Besides the theoretical and computational properties,
some simulation studies and an application to real data are provided.

Keywords Aggregate data · Bootstrap testing · Finite dimension · Functional data
analysis

1 Introduction

Many phenomena, natural or anthropogenic, can be appropriately modeled by
a function on a suitable domain. The underlying stochastic structure of these
high-dimensional data can be understood as a technical tool toward reproducibil-
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ity/repeatability or inherent to the problem under study. Either way, a precise
apportionment of deterministic and random components is paramount. Examples of
relevant data sets and areas aswell as paradigms for the statistical analysis of functional
data can be found in Ramsay and Silverman (2005) and Morettin et al. (2017).

Some features are found in specific problems and should be dealt with accordingly.
For instance, intraday and/or inter-daydependences are common infinancial functional
series (Aue et al. 2017; Abadir et al. 2013; Pakoš 2011). Aggregate data may be
useful for energy (Dias et al. 2013, 2015), market shares (Berry and Haile 2014),
demand/supply studies (Canale and Ruggiero 2016), and many others (Shang 2016;
Amighini et al. 2014; Cholaquidis et al. 2014). Anymodel in this frameworkmust deal
with a very common and basic property: the dimension of the functional space and its
impact on the proposed solution. Functional data analysis poses serious hindrances
to parametric models. Some Bayesian proposals that deal with these dimensionality
issues can be found in Schillings and Schwab (2016), Suarez and Ghosal (2017), and
Canale and Ruggiero (2016).

Successful nonparametric solutions are found through sparseness (Yan et al. 2018;
Aneiros and Vieu 2016; Li et al. 2016; Yao et al. 2016; Devijver 2017; Qu et al. 2018;
Sienkiewicz et al. 2017; Voronin and Daubechies 2017), principal component analysis
(Mousavi and Sørensen 2018; Li et al. 2016; Imaizumi and Kato 2018; Mirafzal 2018;
Lakraj and Ruymgaart 2017; Hooker and Roberts 2016; Shang 2016), thresholding
(Mousavi and Sørensen 2018; Breunig and Johannes 2016; Amato et al. 2017; Yang
et al. 2017; Ivanescu 2017; Røislien and Winje 2013; Salvatore et al. 2016; Johnstone
and Lu 2009), penalizing procedures (Mousavi and Sørensen 2018; Comte et al. 2017;
Amato et al. 2017; Fan et al. 2015; Sienkiewicz et al. 2017; Lorenz and Resmerita
2017), sufficiency (Zhang et al. 2018; Li and Song 2017), and others (Zhang et al.
2017; Belloni et al. 2017).

Here we follow the setup studied by Bathia et al. (2010). Their idea is to model
observable curves that are driven by a finite-dimensional process plus a noise term.
This can be applied to a time series composed of curves. The methodology proposed
by Bathia et al. (2010) does not need the assumption of negligible noise as sample size
increases (Hall andVial 2006), exploring instead the dynamic structure of the observed
curves. Eigenfunctions are used to represent the curves, and bootstrap resampling is
proposed to sequentially estimate the finite functional dimension. The methods of
the latter were used, for instance, by Horta and Ziegelmann (2018) to compute the
dimension of time series of density functions of stock indexes for prediction purposes.
Additionally, the problem addressed by Bathia et al. (2010) was generalized by Horta
and Ziegelmann (2016) for time series of Hilbertian random elements.

In this work we consider models in which the curves lie on a finite-dimensional
subspace, and we propose to use wavelets to estimate this unknown dimension. This
novelty on the basis allows us to propose a series of bootstrapping procedures besides
the original one introduced by Bathia et al. (2010). Similar asymptotic properties are
attained. Moreover, computational and mathematical advantages are discussed. We
also prove that the estimation procedure may be used for aggregate data.

The text is organized as follows. In Sect. 2 we discuss the idea of finite functional
dimension. In Sect. 3 we present the proposed wavelet solution for the estimation of
the functional dimension. Two cases of particular interest are discussed in Sect. 4. We
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Wavelet dimensionality estimation of curve time series 1177

then present the theoretical results for the proposed algorithms in Sect. 5. Simulation
studies and an application to real data are presented in Sects. 6 and 7, respectively. A
discussion and final remarks can be found in Sect. 8.

2 Functional dimension estimation

In what follows, we shall describe the problem of estimating the finite dimension
of curve time series (Bathia et al. 2010). Consider random functions Y1,Y2, . . . in a
Hilbert space L2 = L2(I ) of square integrable functions defined in a compact I ⊂ IR,
with inner product 〈Y , X〉 = ∫

I Y (x)X(x)dx , ∀Y , X ∈ L2. These curves usually are
not perfectly observed, being subject to errors of numerical or experimental nature,
for example, or due to its nature, as is the case of conditional density functions. This
means that in practice we do not know the curves of interest Xt , t = 1, . . . , n, but we
might have a sample of estimates Y1, . . . ,Yn obtained after applying some smoothing
method to the data at hand. The observed curves Yt are taken as satisfying

Yt (x) = Xt (x) + εt (x), x ∈ I , t = 1, . . . , n, (1)

where Xt and εt are not observed and εt is supposed to be a noise, in the sense that

1. IE[εt (x)] = 0, ∀t and ∀x ∈ I ,
2. Cov(εt (x), εt+k(y)) = 0, ∀x, y ∈ I when k �= 0,
3. Cov(Xt (x), εs(y)) = 0, ∀x, y ∈ I and ∀t, s.
With these conditions, the error in estimating Xt is intrinsic to time t and exogenous
with respect to Xt . We assume that X1, X2, . . . are stationary, such that

μ(x) = IE[Xt (x)] and Mk(x, y) = Cov(Xt (x), Xt+k(y))

do not depend on t . Using the same notation of Bathia et al. (2010), we shall denote an
operator with the kernelMk(x, y) asMk , such that for any f ∈ L2 we haveMk f (x) =∫
I Mk(x, y) f (y)dy. Since the process Xt lies in L2, it admits the Karhunen–Loève
expansion (Bosq 2000), i.e., it can be represented on the basis {ϕ1, ϕ2, . . .} formed
by eigenfunctions of the zero-lag covariance operator M0 (cf. Corollary 1 of Horta
and Ziegelmann (2016)). Our interest is to identify the cardinality of this basis, which
we assume to have a finite number d of elements. In that case, the curve Xt can be
represented as

Xt (x) = μ(x) +
d∑

j=1

ξt jϕ j (x), ∀t (2)

where ξt j = 〈Xt − μ, ϕ j 〉 is a zero-mean random variable. However, estimation of
M0 from the observed curves {Yt } is not straightforward because Cov(Yt (x),Yt (y)) =
M0(x, y) + Cov(εt (x), εt (y)), unless further assumptions over the errors are made
(Hall andVial 2006). Nevertheless, Bathia et al. (2010) proposed to tackle this problem
considering lagged operatorsMk , k ≥ 1, since Cov(Yt (x),Yt (y)) = Mk(x, y). Hence,
we consider to identify d using the positive kernel
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1178 R. V. Fonseca, A. Pinheiro

K (x, y) =
p∑

k=1

∫
Mk(x, z)Mk(y, z)dz,

for some p ≥ 1. The range of the operator K is contained in the range ofM0. However,
we need also to consider that an equality holds for these ranges (cf. assumption (A1)
of Horta and Ziegelmann (2016)). Therefore, we shall consider throughout the paper
that the following assumption is true:
(Assumption K) The range of the zero-lag covariance operator M0 is finite-
dimensional and coincides with the range of the operator K .
This condition allows us to use the idea of Bathia et al. (2010) to estimate d when the
data are linear functional time series, but the methodology is not appropriate when
the data are composed of independent data and might not be adequate when they are
composed of curve times series with nonlinear dynamics.

The operator K belongs to S, the space of Hilbert–Schmidt operators (Bosq 2000),
whose norm we shall denote by ‖·‖S . Under the representation (2) and assumptions
1, 2 and 3 above, the linear part of the dynamics of Y1,Y2, . . . is captured by the
d-dimensional time series ξξξ t = (ξt1, . . . , ξtd)


. We consider the observed kernel

K̂ (x, y) =
p∑

k=1

∫
M̂k(x, z)M̂k(y, z)dz,

where p is fixed and

M̂k(x, y) = 1

n − p

n−p∑

t=1

(Yt (x) − Ȳ (x))(Yt+k(y) − Ȳ (y)),

with Ȳ (x) =∑n
t=1 Yt (x)/n. These kernels also belong to S.

Themaximum lag p in practice can be taken as a small positive integer value (Bathia
et al. 2010). The authors’ idea in identifying d is to obtain eigenfunctions of K̂ (x, y)
through eigenvectors and eigenvalues of a matrix of dimension (n − p) × (n − p)
whose elements are computed from inner products involving Yt and Ȳ . We employ in
this paper a wavelet representation to perform the eigenanalysis of K̂ (x, y). Although
in our methodology below we are expanding K using an alternative basis, we are still
interested in identifying the dimension d through the number of nonzero eigenvalues of
K , which does not depend on the chosen basis. The alternative basis is not considered
in the previous definitions, but we shall make use of it in order to improve empirical
aspects of the methodology. In Sect. 3 we briefly introduce wavelet methods and
present the proposed wavelet procedure for dimension estimation.

3 Wavelet-based functional dimension

We discuss here wavelets as forming orthonormal bases for L2(R). This is done for
notational simplification only, with no lack of generality. Wavelet orthonormal bases
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Wavelet dimensionality estimation of curve time series 1179

can be constructed for L2(I ) for compact I as well. See, for instance, (Mallat 1998, p.
289) for a detailed presentation on Daubechies basis for L2([0, 1]). An orthonormal
wavelet basis can be constructed by means of a multiresolution analysis (MRA),
which is a tool presented by Mallat (1989) that consists of a nested sequence of closed
subspaces {Vn, n ∈ Z} in L2(IR) satisfying:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ;
2. ∩nVn = {0} and ∪nVn = L2(IR);
3. the subspaces Vn are self-similar, in the sense that the map x → f (2 j x) lies in Vj

if and only if the map x → f (x) lies in V0;
4. V0 is the closed span of the set formed by integer translations of φ.

In the literature, φ is known as a scale function and the subspaces Vj can be seen
as resolution levels of approximation for a L2(IR) function. Mallat (1989) shows that
any function f ∈ L2(IR) can be approximated in Vj by

Pj f (x) =
∑

k∈Z
〈 f , φ j,k〉φ j,k(x),

where Pj f here denotes the orthogonal projection of f in Vj . Based on properties 1
and 2 of the MRA, we have lim j→∞ Pj f = f and lim j→−∞ Pj f = 0, i.e., higher
resolutions provide better approximations to f (x)whereas, the lower the resolution is,
the closer to zero is the approximation. The rate of this approximation can be precisely
evaluated when f belongs to certain functional spaces, like Sobolev and Besov spaces
(Härdle et al. 1998).

The detail obtained after passing from a resolution j to j + 1 can be analyzed
considering the orthogonal complement of Vj in Vj+1, which is denoted by Wj .
Hence, Vj+1 = Vj ⊕ Wj , so that Vj = ⊕

k< j Wk and L2(IR) = ⊕
k∈Z Wk . Mallat

(1989) shows that {ψ j,k(x)=2 j/2ψ(2 j x − k), k ∈ Z} is an orthonormal basis of Wj

and {ψ j,k(x) = 2 j/2ψ(2 j x − k); k ∈ Z, j ∈ Z} is a basis of L2(IR). From the MRA,
we have that f can be represented as

f (x) =
∑

k∈Z
〈 f , φ j0,k〉φ j0,k(x) +

∑

j≥ j0

∑

k∈Z
〈 f , ψ j,k〉ψ j,k(x),

where the first series is the projection of f in resolution j0, 〈 f , φ j0,k〉 being called as
an approximation coefficient, and the second series contains the details corresponding
to resolutions greater or equal to j0, with 〈 f , ψ j,k〉 being called a detail coefficient. A
widely used system consists in the Daubechies wavelets, which have compact support
and nice properties regarding function regularity.We denote DAUBN as a Daubechies
waveletwith N nullmoments. The case N = 1 corresponds to the famousHaarwavelet
(Vidakovic 1999). Since V0 ⊂ V1, we have

φ(x) =
∑

k∈Z
hk

√
2φ(2x − k), (3)
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where h = {hk, k ∈ Z} is square summable and is known as the wavelet filter.
Equation (3) is known as scaling equation (Vidakovic 1999). In addition, since W0 ⊂
V1, we have that

ψ(x) =
∑

k∈Z
gk

√
2φ(2x − k),

for some g = {gk, k ∈ Z}. It is possible to show that gn = (−1)nh1−n , which
is called the quadrature mirror relation. These filters play an important role on the
computation of wavelet and scale functions. For instance, they are used to compute
the discrete wavelet transformation with a cascade algorithm that uses h and g as filters
of convolution operators.

Our idea is to employ wavelet decompositions of the observed functions Yt to
estimate the dimension of the process that generates these curves. For convenience,
we follow the notation used by Pinheiro and Vidakovic (1997), considering

Yt (x) =
∑

j

atjφ j (x),

where atj represents both wavelet and approximation coefficients and φ j represents
both scale and wavelet functions. Hence,

Yt (x) − Ȳ (x) =
∑

j

(atj − ā j )φ j (x) =
∑

j

ctjφ j (x),

where ā j = n−1∑n
t=1 a

t
j and ctj is given by 〈Yt − Ȳ , φ j 〉. Therefore, we obtain

M̂k(x, y) = 1

n − p

n−p∑

t=1

∑

j

∑

j ′
ctjφ j (x)φ j ′(y)c

t+k
j ′

and using that the functions φ j (x) form an orthonormal system, we get

K̂ (x, y) = 1

(n − p)2

p∑

k=1

n−p∑

t=1

n−p∑

s=1

∑

j, j ′,l
ctj c

s
j ′c

t+k
l cs+k

l φ j (x)φ j ′(y).

Our objective is to find eigenfunctions of K̂ (x, y). Even though we are dealing with
an infinite-dimensional problem, in practice weworkwith a vector of Yt evaluated on a
grid of points selected appropriately. Applying the discrete wavelet transform to those
points, we obtain a finite number J of coefficients representing the discretized Yt on
the wavelet domain. This approach is called by Bathia et al. (2010) as approximation
via discretization and allows us to employ the wavelet methods as well as other basis
functions (splines, Hermite polynomials, etc).We opt forwavelet basis due to its sparse
representation of thresholded functions and because it allows to performdifferent types
of bootstraps on dimensionality tests. Notice also that this representation is loss free
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Wavelet dimensionality estimation of curve time series 1181

and can be inverted (Vidakovic 1999). Therefore, in what follows we consider that Yt
can be represented on a basis with cardinality J . For the infinite-dimensional case,
see Sect. 4 or Bathia et al. (2010). Considering now a candidate eigenfunction hm , its
wavelet representation is given by

hm(x) =
∑

j ′′
bmj ′′φ j ′′(x) = Φ(x)
bm, (4)

where Φ(x) = (φ1(x), . . . , φJ (x))
 and bm = (bm1 , . . . , bmJ )
. Thus, considering
that the same basis is being used in all decompositions, the indexes j , j ′ and j ′′ also
vary in {1, . . . , J }. Then

∫
K̂ (x, y)hm(y)dy =

∑

j

⎛

⎝ 1

(n − p)2

p∑

k=1

n−p∑

t=1

n−p∑

s=1

∑

j ′,l
ctj c

s
j ′c

t+k
l cs+k

l bmj ′

⎞

⎠φ j (x)

=
∑

j

(Djbm)φ j (x) = Φ(x)
(Dbm), (5)

where Dj represents a 1 × J vector which is the j-th row of the J × J matrix D,
whose ( j, j ′) element is

Dj, j ′ = 1

(n − p)2

p∑

k=1

n−p∑

t=1

n−p∑

s=1

∑

l

ctj c
s
j ′c

t+k
l cs+k

l .

This matrix can also be obtained in the following way. Consider the J × n matrix C
whose t-th column contains J coefficients ctj , then letting CJ×(k1:k2) be a submatrix
obtained selecting from the k1-th until the k2-th column of C, k1 < k2, we have

D= 1

(n − p)2
CJ×(1:n−p)

( p∑

k=1

(CJ×(k+1:n−p+k))

CJ×(k+1:n−p+k)

)

(CJ×(1:n−p))

.

Therefore, from (4) and (5), our goal is to find bm such that Φ(x)
(Dbm) =
λmΦ(x)
bm for some constant λm and ∀x ∈ I , i.e., we wish to solve for bm the
system

(Dbm) = λmbm,

i.e., taking bm as an eigenvector of D, with λm being its associated eigenvalue. Thus,

letting b1, . . . ,bd̂ be the eigenvectors of D associated with its d̂ largest eigenvalues,
we have that h1, . . . , hd̂ as in Eq. (4) are eigenfunctions of the operator K̂ . It is worth
mentioning that this procedure resembles the functional principal component analysis
(PCA) (Ramsay and Silverman 2005, p. 162), with the difference that instead of the
matrix D we would consider for the latter the J × J matrix n−1CC
.
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1182 R. V. Fonseca, A. Pinheiro

Since the hm’s are orthonormal, we have that {h1(·), . . . , hd̂(·)} forms an orthonor-
mal system in L2, the estimate of the functional of interest being thus

Ŷt (x) = Ȳ (x) +
d̂∑

l=1

η̂tl hl(x), (6)

η̂tl = 〈Yt − Ȳ , hl〉. Hence, it follows from (6) that η̂tl =∑ j c
t
j b

l
j , with the dynamics

of Yt being modeled through the multivariate time series η̂ηηt = (η̂t1, . . . , η̂t d̂)
′.

3.1 Bootstrap tests of dimensionality

We now present how the functional dimension can be estimated by means of bootstrap
tests. We compare four bootstrap procedures for the estimation of d. The first is
described by Bathia et al. (2010). Given the eigenvalues as above λ1 ≥ λ2 ≥ · · · ≥ 0,
tests of the null hypothesis λd0+1 = 0 are performed sequentially until the first λd0+1
which significantly equals zero is found. In this case, the estimated dimension is taken
asd0. For instance, suppose thatwewant to test H0 : λd0+1 = 0 against H1 : λd0+1 > 0
for some positive integer d0. We construct a function imposing the restriction of H0:

Ỹt (x) = Ȳ (x) +
d0∑

l=1

η̂tl hl(x) =
∑

j

{

ā j +
d0∑

l=1

η̂tlb
l
j

}

φ j (x),

for which we already have the wavelet decomposition of Ỹt (x). Then we obtain the
residuals ε̂t (x) = Yt (x) − Ỹt (x) and perform the following steps:

1. for each t = 1, . . . , n, randomly select (with replacement) a residual εbt (x) from
{ε̂1(x), . . . , ε̂n(x)} and take Y b

t (x) = Ỹt (x) + εbt (x);
2. obtain for the bootstrap sample Y b

1 (x), . . . ,Y b
n (x) the matrix D, and compute its

(d0 + 1)-th largest eigenvalue λbd0+1;
3. repeat steps 1 and 2 a large number of times, say B, then compute the bootstrap

p value pboot = #{λ̂d0+1 < λbd0+1}/(B + 1), where λ̂d0+1 is the (d0 + 1)-th

largest eigenvalue obtained for Ŷ . Reject H0 if pboot is lower than some previously
specified significance value.

From the wavelet decompositions of Ȳ and hl , l = 1, . . . , d0, we have

Y b
t (x) = Ỹt (x) + (Yt (x) − Ỹt (x))

b =
∑

j

{

atbj +
d0∑

l=1

(η̂tl − η̂btl)b
l
j

}

φ j (x),

where the superscript b indicates the bootstrapped terms. Hence, the resampling of
step 1 can be performed directly on the coefficients atj and η̂tl , which reduces the
computation time of the bootstrap procedure.

Three other bootstrap resampling schemes follow the same algorithm with some
modifications that provide alternative methods to the previous procedure by exploring
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the wavelet decomposition. Since wavelet thresholding leads to optimal minimax rates
(Vidakovic 1999), it is natural to pursue bootstrapping based on thresholding rules.
We propose three different bootstraps which make use of thresholding. The first one
applies thresholding to the curves’ estimation. The second one adds to the former
residual thresholding as well. Finally, a third bootstrap proposed employs the idea of
wavestrapping (Percival et al. 2000), which resamples on the wavelet domain.

Initially, note that in the previous bootstrap test the wavelet decomposition of the
observed curves is obtained without thresholding and then we apply the bootstrap
procedure to test the eigenvalues of the corresponding matrices D. Taking this into
account, in the second bootstrap procedurewe perform the same steps as abovewith the
only difference that a hard thresholding is applied for the observed curves’ coefficients
before computing D. In this case, coefficients greater than a certain threshold value
are kept unchanged, whereas the remaining are shrunk to zero. For different ways of
choosing the threshold value, the reader is referred to Vidakovic (1999). In the third
procedure, we apply a hard thresholding (indicated by the index thr ) to Ȳ and hl in
Eq. (6), such that

Yt (x) = Ȳ (x) +
d̂∑

l=1

η̂tl hl(x) + ε̂t (x) = Ȳ thr(x) +
d̂∑

l=1

η̂tl h
thr
l (x) + ε̂thrt (x),

where

ε̂thrt (x) = ε̂t (x) + (Ȳ (x) − Ȳ thr(x)) +
d̂∑

l=1

η̂tl(hl(x) − hthrl (x)).

Then, we apply the bootstrap procedure with ε̂thrt (x) instead of ε̂t (x) and Ỹt (x) formed
of Ȳ thr and hthrl . Hence, we have that the bootstrap curve in this case is

Y b
t (x) =

∑

j

{

atbj +
d0∑

l=1

[η̂tl − η̂btl ](blj )thr
}

φ j (x),

which is similar to the previous bootstrap method, using the thresholded wavelet
coefficient (blj )

thr and atbj instead of blj and atj . The last procedure we consider is
based on the wavestrapping technique proposed by Percival et al. (2000), where for
each t , a residual εbt (x) is randomly selected from {ε̂1(x), . . . , ε̂n(x)}, then its wavelet
coefficients are resampled (with replacement) inside each detail level to obtain the
coefficients of a new bootstrap residual, which is used to form the bootstrap curve
Ỹt (x). An advantage of the wavestrapping over the first three bootstrap methods is
that it has a much larger number of possible residuals, since it is based not only on
random selection from n elements, but also considers resampling from their wavelet
coefficients to obtain random samples.
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4 Two cases of practical interest

The proposed wavelet method of functional dimension estimation can be applied on
a variety of time series curves. In this section we highlight two such cases.

4.1 Functional data aggregation

There is a considerable attention on the literature to investigate situations where ana-
lyzing curves individually is not possible or very costly, requiring an analysis based
on aggregate curves, as described in the references from Sect. 1. Moreover, aggre-
gate time series are also well described in the literature, as can be seen in (Wei 2006,
Chapter 20), since this kind of data is often found, as happens with economic data
(Abraham 1982), for example. In this paper we consider aggregate data to identify the
dimension of a functional time series.

Suppose that the observed curves as defined by (1) are not originally aggregates, but
the number of observations for each time is not large.We then take linear combinations
of Yt (·) for a fixed number of successive t’s as observed functions before applying
the methods of dimensionality identification. Each Yt (·) is multiplied by a weight that
controls its contribution to time t . Hence, a model where a number δ of functions like
model (1) are aggregated can be represented as

Yt (x) = Xt (x) + Et (x), x ∈ I ,

where Yt (x) = ∑t
s=t−δ+1 ωt−sYs(x), Xt (x) = ∑t

s=t−δ+1 ωt−s Xs(x) and Et (x) =
∑t

s=t−δ+1 ωt−sεs(x), for a positive integer δ and some coefficients ωδ−1, . . . , ω0

so that the problem is similar to a moving average process. Denoting σ 2
ε (x, y) =

Cov(εt (x), εt (y)), we have for k ∈ IN

Cov(Et (x), Et+k(y))=

⎧
⎪⎨

⎪⎩

0 if δ − 1 < k,

σ 2
ε (x, y)

t∑

s=t−δ+1

t+k∑

v=t+k−δ+1

ωt−sωt+k−v if δ − 1 ≥ k.
(7)

Considering assumption K on Sect. 2, using the decomposition of Xt (·) given by
(2), we have

Yt (x) = μ(x) +
d∑

j=1

ξt jϕ j (x) + εt (x). (8)

The aggregate observed function has the following decomposition:

Yt (x) = μ(x)
t∑

s=t−δ+1

ωt−s +
d∑

j=1

ϕ j (x)Gt j (x) + Et (x),
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Wavelet dimensionality estimation of curve time series 1185

where Gt j (x) =∑t
s=t−δ+1 ωt−sξs j . It follows that

Cov{Yt (u),Yt+k(v)}

=
t∑

s=t−δ+1

t+k∑

l=t+k−δ+1

ωt−sωt+k−l M|l−s|(u, v) + Cov{Et (u), Et+k(v)}.

If k > δ − 1, using Eq. (7) we have

Cov{Yt (u),Yt+k(v)} =
t∑

s=t−δ+1

t+k∑

l=t+k−δ+1

ωt−sωt+k−l Ml−s(u, v) = Mk(u, v).

Let λ1 ≥ · · · ≥ λd be eigenvalues of the operator M0, with correspond-
ing eigenfunctions ϕ1, . . . , ϕd . The serial dependence of Yt (·) is determined by
ξξξ t = (ξt1, . . . , ξtd)


, with IE(ξξξ t ) = 0 and Var(ξξξ t ) = diag{λ1, . . . , λd}. Addition-
ally, under assumption K, we can use the approach of Bathia et al. (2010) to estimate
the number of nonzero eigenvalues of the operator M0 through lagged covariance
operators. We define

Nk(u, v) =
∫

I
Mk(u, z)Mk(v, z)dz

=
∑

s

∑

l

∑

s′

∑

l ′
ωt−sωt+k−lωt−s′ωt+k−l ′

∫

I
Ml−s(u, z)Ml ′−s′(v, z)dz,

where t − δ +1 ≤ s, s′ ≤ t and t + k− δ +1 ≤ l, l ′ ≤ t + k. Here and throughout this
section, we shall write such summation this way, the summation limits being implicit.

We have that Mk(u, v) = ∑d
i, j=1 σ

(k)
i j ϕi (u)ϕ j (v), where Σk = IE(ξξξ tξξξ



t+k) =

{σ (k)
i j }. Therefore,

Mk(u, v) =
d∑

i, j=1

αk
i jϕi (u)ϕ j (v),

where

αk
i j =

t∑

s=t−δ+1

t+k∑

l=t+k−δ+1

ωt−sωt+k−lσ
(l−s)
i j =

δ−1∑

s=0

δ−1∑

l=0

ωsωlσ
(l−s+k)
i j . (9)

123



1186 R. V. Fonseca, A. Pinheiro

Since 1 ≤ l − s + k ≤ p, we have that 1 ≤ −δ + 1 + k and δ − 1 + k ≤ p, and
δ ≤ k ≤ p − δ + 1. Moreover,

Nk(u, v) =
d∑

i, j=1

(
d∑

l=1

αk
ilα

k
jl

)

ϕi (u)ϕ j (v).

Then, we shall considerK(u, v) =∑p−δ+1
k=δ Nk(u, v) to estimate the process’ dimen-

sion, with fixed integers δ and p, p ≥ 2δ −1. For the aggregate data case, we consider
as estimator of the covariance kernel

M̂k(u, v) = 1

n − δ − p + 1

n−p−δ+1∑

j=1

{Y j (u) − Ȳ (u)}{Y j+k(v) − Ȳ (v)},

its aggregate version being given by

M̂k(u, v) =
t∑

s=t−δ+1

t+k∑

l=t+k−δ+1

ωt−sωt+k−l M̂l−s(u, v).

Therefore,

K̂(u, v) =
p−δ+1∑

k=δ

∫

I
M̂k(u, z)M̂k(v, z)dz

=
p−δ+1∑

k=δ

∑

s,l,s′,l ′

ωt−sωt+k−lωt−s′ωt+k−l ′

(n − p − δ + 1)2

n−p−δ+1∑

i, j=1

{Yi (u) − Ȳ (u)}

× {Y j (v) − Ȳ (v)}〈Yi+l−s − Ȳ ,Y j+l ′−s′ − Ȳ 〉.

In Sect. 5, it is shown in Proposition 2 that K̂ shares the same nonzero eigenvalues
as a (n − p − δ + 1) × (n − p − δ + 1) matrix, say K∗. Moreover, letting γγγ j =
(γ1 j , . . . , γn−p−δ+1, j )


, j = 1, . . . , d̂ , be eigenvectors ofK∗ corresponding to the d̂
largest eigenvalues, we have that

n−p−δ+1∑

i=1

γi j {Yi (·) − Ȳ (·)}, j = 1, . . . , d̂

are eigenfunctions of K̂. These eigenfunctions can be transformed into an orthonormal
system ψ̂1(·), . . . , ψ̂d̂(·) using a Gram–Schmidt algorithm.
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Wavelet dimensionality estimation of curve time series 1187

Wavelets can be applied to aggregate data analogously to what was done in Sect. 3.
Taking the wavelet decomposition of Yt (·) on the expression for K̂(·, ·), we have

K̂(u, v) =
p−δ+1∑

k=δ

∑

s,l,s′,l ′

ωt−sωt+k−lωt−s′ωt+k−l ′

(n − p − δ + 1)2

×
n−p−δ+1∑

i, j=1

∑

r ′,r ′′,r ′′′
cir ′c

j
r ′′c

i+l−s
r ′′′ c j+l ′−s′

r ′′′ φr ′(u)φr ′′(v),

and considering hm(y) =∑q b
m
q φq(y) thewavelet decomposition of an eigenfunction

of K̂(·, ·), we have that
∫

K̂(x, y)hm(y)dy = Φ(x)

(
Dbm

)

where in this case, the element (r ′, r ′′) of D is given by

Dr ′,r ′′ =
p−δ+1∑

k=δ

∑

s,l,s′,l ′

ωt−sωt+k−lωt−s′ωt+k−l ′

(n − p − δ + 1)2

n−p−δ+1∑

i, j=1

∑

r ′′′
cir ′c

j
r ′′c

i+l−s
r ′′′ c j+l ′−s′

r ′′′ .

Hence, we can estimate the eigenvalues of K(·, ·) computing the eigenvalues of this
matrix D, and the corresponding eigenvectors b1,b2, . . . contain the wavelet coeffi-
cients of the eigenfunctions of that operator.

4.2 Density time series

A common random curve analyzed in applications is the density function of some ran-
dom variable of interest. The problem of estimating the dimension of density functions
was investigated by Horta and Ziegelmann (2018), which apply the method of Bathia
et al. (2010) to financial data. The former considered as curves of interest density
functions ft taking values on L2(I ), I ⊂ IR. The observed densities can be taken as
curves gt obtained after applying some density estimation method to the data at hand.
Therefore, the assumption on the model is like Eq. (1), say

gt (x) = ft (x) + εt (x), x ∈ I ,

with εt being a noise satisfying the same assumptions made for model (1), but with
the additional condition that

∫
εt (x)dx = 0, since both ft and gt must integrate one.

Nevertheless, according to Horta and Ziegelmann (2018), this last assumption is not
easily satisfied since estimated density functions are usually biased, but they do discuss
a workaround.

Wavelet-based estimators for dependent time series density functions have some
results established in the literature regarding its performance and consistency, like
the contributions of Masry (1994, 1997) and Chacón and Rodríguez-Casal (2005).
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1188 R. V. Fonseca, A. Pinheiro

Another approach to analyze the dimension of the density functions follows from
the idea of Pinheiro and Vidakovic (1997), where, instead of estimating the density
directly, we estimate its square root, with a wavelet estimator ǧt say. This change
has two main advantages. First, the density can be estimated taking the square of
ǧt , which ensures that we obtain only nonnegative values for the estimated density;
second, letting ǧt (x) =∑ j ǎ jφ j (x), x ∈ I , be the estimator’swavelet decomposition,

by normalizing these coefficients such that
∑

j ǎ
2
j = 1, it follows from Parseval’s

identity that

∥
∥ǧt
∥
∥2
L2(I ) =

∫

I
ǧt (x)

2dx = 1,

which guarantees that ǧ2t is a bona fide estimator of the density function and that
ǧt belongs to L2(I ). Hence, by shifting attention to

√
ft and applying the method

of Pinheiro and Vidakovic (1997), one can evaluate the dimension of
√

ft , with the
benefits of having automatically integral equal to one and nonnegative estimates for
the observed densities.

5 Theoretical results

We prove in this section that the dimension estimators for both aggregate and non-
aggregate data have the same asymptotic properties proven by Bathia et al. (2010) for
non-aggregate data. Proposition 1 states that the eigenfunctions of K span the space
that generates the curve time series. Proposition 2 shows how to obtain eigenvalues of
K̂(·, ·) as presented with the previous heuristic. The last result is a theorem showing
convergence for the covariance operators and eigenvalues.

Proposition 1 LetM be the space of dimension d that generates the curve time series.

Also, supposeΣk =
{
σ

(k)
i j

}
has full rank for some k ∈ IN. Then,Nk andK (for p ≥ k)

have exactly d nonzero eigenvalues andM is spanned by the corresponding functions.

Proof Let us denote the adjoint operator ofMk byM∗
k . Since for any f ∈ L2(I ) we

have

(Nk f )(u) =
∫

I
Nk(u, v) f (v)dv = (MkM∗

k f )(u),

it follows that Nk = MkM∗
k . In this case, K̂ = ∑p−δ+1

k=δ MkM∗
k . We also have

range(Nk) = range(MkM∗
k) = range(Mk), where range(·) is the operator’s range.

We can also represent Mk as
∑d

i, j=1 α
(k)
ik ϕi ⊗ ϕ j , where the symbol ⊗ indicates

thatMk f =∑d
i, j=1 α

(k)
ik 〈ϕi , f 〉ϕ j for f ∈ L2, and α

(k)
ik is given in Equation 9. Then
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Wavelet dimensionality estimation of curve time series 1189

(Mk f )(u) =
d∑

i=1

λ
(k)
i 〈ϕi , f 〉ρ(k)

i (u),

where

ρ
(k)
i (u) =

d∑

j=1

α
(k)
i j

λ
(k)
i

ϕ j (u) and λ
(k)
i =

∥
∥
∥
∥
∥
∥

d∑

j=1

α
(k)
i j ϕ j

∥
∥
∥
∥
∥
∥
.

Let now βββ be an arbitrary vector in IRd , ϕϕϕ = (ϕ1, . . . , ϕd)

, ρρρk = (ρ

(k)
1 , . . . , ρ

(k)
d )


and Ak = {α(k)
i j }. Since {ϕ j , 1 ≤ j ≤ d} is an orthonormal system, the equation

βββ
ρρρk = βββ
Akϕϕϕ = 0

has a nontrivial solution iff βββ
Ak = 0
, i.e., for all j it holds that

d∑

r=1

βrα
(k)
r j =

d∑

r=1

βr

⎛

⎝
∑

s,l

ωt−sωt+k−lσ
(l−s)
r j

⎞

⎠ =
∑

s,l

ωt−sωt+k−l

(
d∑

r=1

βrσ
(l−s)
r j

)

=0,

or in matrix form

⎡

⎢
⎢
⎣

ωδ−1
.
.
.

ω0

⎤

⎥
⎥
⎦




⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑d
r=1 βrσ

(k)
r j

∑d
r=1 βrσ

(k+1)
r j · · · ∑d

r=1 βrσ
(k+δ−1)
r j

∑d
r=1 βrσ

(k−1)
r j

∑d
r=1 βrσ

(k)
r j · · · ∑d

r=1 βrσ
(k+δ−2)
r j

.

.

.
.
.
.

. . .
.
.
.

∑d
r=1 βrσ

(k−δ+1)
r j

∑d
r=1 βrσ

(k−δ+2)
r j · · · ∑d

r=1 βrσ
(k)
r j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ωδ−1
.
.
.

ω0

⎤

⎥
⎥
⎦ = 0.

(10)

It is known that some quadratic form satisfies x
Ax = 0 for all x iff A is skew-
symmetric, i.e., A + A
 exists and equals the zero matrix. Since the coefficients
ωωω = (ωδ−1, . . . , ω0) are arbitrary, this holds for allωωω ∈ IRd and for all j ∈ {1, . . . , d}.
Therefore, the matrix in (10) must be skew-symmetric, which leads to

d∑

r=1

βrσ
(k)
r j = 0, ∀ j = 1, . . . , d.

Since Σk = {σ (k)
i j } is of full rank by assumption, the only solution is βββ = 0, which

implies that {ρ(k)
j } is linearly independent. Applying the same arguments of Lemma

2 of Bathia et al. (2010), the result follows. ��
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Proposition 2 The operator K̂(·, ·) has the same nonzero eigenvalues of the finite
matrixK∗ of dimension (n− p− δ +1)× (n− p− δ +1), whose (m, i)-th element is

n−p−δ+1∑

r=1

p−δ+1∑

k=δ

∑

s,l,s′,l ′

ωt−sωt+k−lωt−s′ωt+k−l ′

(n − p − δ + 1)2
〈Ym+l−s − Ȳ ,Yr+l ′−s′ − Ȳ 〉

× 〈Yr − Ȳ ,Yi − Ȳ 〉.

Proof Let θ̂ j > 0 be an eigenvalue of K∗ and γγγ j = (γ1 j , . . . , γn−p−δ+1, j )

 its

corresponding eigenvector. The m-th element of K∗γγγ j = θ̂ jγγγ j is

1

(n − p − δ + 1)2

n−p−δ+1∑

i,r=1

p−δ+1∑

k=δ

∑

s,l,s′,l ′
ωt−sωt+k−lωt−s′ωt+k−l ′

× 〈Ym+l−s − Ȳ ,Yr+l ′−s′ − Ȳ 〉〈Yr − Ȳ ,Yi − Ȳ 〉γi j = θ̂ jγmj .

Consider the function ψ̃ j (·) =∑n−p−δ+1
i=1 γi j {Yi (·) − Ȳ (·)}. Then

(K̂ψ̃ j )(u) =
∫

I
K̂(u, v)ψ̃ j (v)dv

=
p−δ+1∑

k=δ

∑

s,l,s′,l ′

ωt−sωt+k−lωt−s′ωt+k−l ′

(n − p − δ + 1)2

n−p−δ+1∑

m,r=1

{Ym(u) − Ȳ (u)}

× 〈Yr − Ȳ , ψ̂ j 〉〈Ym+l−s − Ȳ ,Yr+l ′−s′ − Ȳ 〉

=
n−p−δ+1∑

m=1

{Ym(u) − Ȳ (u)}γmj θ̂ j = θ̂ j ψ̃ j (u).

Therefore, ψ̂ j is an eigenfunction of K̂, with corresponding eigenvalue θ̂ j . ��
Theorem 1 Suppose the following conditions are satisfied:

C1. {Yt (·)} is strictly stationary and ψ-mixing with the mixing coefficient defined as

ψ(l) = supA∈F0−∞,B∈F∞
l ,P(A)P(B)>0|1 − P(B|A)/P(B)|,

where F j
i is the σ -algebra generated by Yi (·), . . . ,Y j (·) for any j ≥ i . In

addition, it holds that
∑∞

l=1 lψ
1/2(l) < ∞.

C2. IE{∫I Yt (u)2du}2 < ∞.
C3. θ1 > · · · > θd > 0 = θd+1 = · · · , i.e., all the nonzero eigenvalues of K are

different.
C4. Cov{Xs(u), εt (v)} = 0 for all s, t and u, v ∈ I .
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Then it holds that

(i)
∥
∥
∥K̂ − K

∥
∥
∥S = Op(n−1/2).

(ii) For j = 1, . . . , d, |θ̂ j − θ j | = Op(n−1/2) and

(∫

I
{ψ̂ j (u) − ψ(u)}2du

)1/2

= Op(n
−1/2).

(iii) For j ≥ d + 1, θ̂ j = Op(n−1).
(iv) Let {ψ j : j ≥ d + 1} be a complete orthonormal basis of M⊥, and put

f j (·) =
∞∑

i=d+1

〈ψi , ψ̂ j 〉ψi (·).

Then for any j ≥ d + 1,

⎛

⎜
⎝

∫

I

⎧
⎨

⎩

d∑

i=1

〈ψi , ψ̂ j 〉ψi (u)

⎫
⎬

⎭

2

du

⎞

⎟
⎠

1/2

=
(∫

I

{
ψ̂ j (u) − f j (u)

}2
du

)1/2
= Op(n

−1/2).

Proof Initially, we want to show that Theorem 1(i) of Bathia et al. (2010) holds also
for the aggregate case. Let S denote the space of operators with a finite Hilbert–
Schmidt norm. Since p and δ are fixed and finite, we set n ≡ n − p − δ + 1. Let now
Ztk = (Yt − μ) ⊗ (Yt+k − μ) ∈ S and consider the kernel ρ : S × S → S given by
ρ(A, B) = AB∗, with A, B ∈ S. We have that

M̂k M̂
∗
k = 1

n2

n∑

i=1

n∑

j=1

ρ(Zik, Zik) = 1

n2

n∑

i=1

n∑

j=1

Zik Z
∗
ik .

Therefore,

M̂kM̂∗
k =

⎛

⎝
∑

s,l

ωt−sωt+k−l M̂l−s

⎞

⎠

⎛

⎝
∑

s′,l ′
ωt−s′ωt+k−l ′ M̂l ′−s′

⎞

⎠

∗

=
∑

s,l

∑

s′,l ′
ωt−sωt+k−lωt−s′ωt+k−l ′ M̂l−s M̂

∗
l ′−s′ ,

and similarly

MkM∗
k =

∑

s,l

∑

s′,l ′
ωt−sωt+k−lωt−s′ωt+k−l ′Ml−sM

∗
l ′−s′ .
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Hence,

∥
∥
∥M̂kM̂∗

k−MkM∗
k

∥
∥
∥S ≤

∑

s,l

∑

s′,l ′
ωt−sωt+k−lωt−s′ωt+k−l ′

∥
∥
∥M̂l−s M̂

∗
l ′−s′ −Ml−sM

∗
l ′−s′

∥
∥
∥S .

On the other hand, we note that

M̂l−s M̂
∗
l ′−s′ = 1

n2

n∑

i=1

n∑

j=1

ρ(Zi,l−s, Zi,l ′−s′)

is a S−valued von Mises functional, just as M̂k M̂∗
k , which enables us to use Lemma

3 of Bathia et al. (2010) to get

IE
∥
∥
∥M̂l−s M̂

∗
l ′−s′ − Ml−sM

∗
l ′−s′

∥
∥
∥
2

S = O(n−1).

Moreover, for some distinct indexes a, b, s and l, from Schwarz inequality we obtain

IE
(∥
∥
∥M̂a M̂

∗
b − MaM

∗
b

∥
∥
∥S

∥
∥
∥M̂s M̂

∗
l − MsM

∗
l

∥
∥
∥S

)

≤
{

IE
∥
∥
∥M̂a M̂

∗
b − MaM

∗
b

∥
∥
∥
2

S IE
∥
∥
∥M̂s M̂

∗
l − MsM

∗
l

∥
∥
∥
2

S

}1/2
= O(n−1).

Then, since the ω’s, δ, p and k are fixed, we have that

IE
∥
∥
∥M̂kM̂∗

k − MkM∗
k

∥
∥
∥
2

S

≤ IE

⎛

⎝
∑

s,l

∑

s′,l ′
ωt−sωt+k−lωt−s′ωt+k−l ′

∥
∥
∥M̂l−s M̂

∗
l ′−s′ − Ml−sM

∗
l ′−s′

∥
∥
∥S

⎞

⎠

2

=O(n−1).

Thus, there exist n0, n1 such that nIE
∥
∥
∥M̂kM̂∗

k − MkM∗
k

∥
∥
∥
2

S ≤ n1, ∀n > n0. Then,

for some k ≥ 1 and Chebyshev inequality, it follows that for all ε > 0,

P
(
n1/2

∥
∥
∥M̂kM̂∗

k−MkM∗
k

∥
∥
∥S > nk1

)
≤
IE

{

n
∥
∥
∥M̂kM̂∗

k−MkM∗
k

∥
∥
∥
2

S

}

n2k1
<

1

n2k−1
1

<ε,

by choosing k sufficiently large. This means that
∥
∥
∥M̂kM̂∗

k − MkM∗
k

∥
∥
∥S =

Op(n−1/2), and as consequence

∥
∥
∥K̂ − K

∥
∥
∥S ≤

p−δ+1∑

k=δ

∥
∥
∥M̂kM̂∗

k − MkM∗
k

∥
∥
∥S = Op(n

−1/2).
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Applying the same arguments of Theorem 1(ii) of Bathia et al. (2010), we observe
that it also holds for the aggregate case

|θ̂ j − θ j | = Op(n
−1/2) and

∥
∥
∥ψ̂ j − ψ j

∥
∥
∥ = Op(n

−1/2), j = 1, . . . , d.

Additionally, we have that

IE
∥
∥
∥M̂l−s M̂

∗
l ′−s′ − M̂l−sM

∗
l ′−s′

∥
∥
∥
2

S = O(n−2),

which gives

IE
∥
∥
∥M̂kM̂∗

k − MkM∗
k

∥
∥
∥
2

S = O(n−2).

Therefore, using the same arguments of Bathia et al. (2010) for M̂k andMk instead of
M̂k and Mk , we can conclude that Theorem 1(iii) and 1(iv) also hold for the aggregate
case. ��

6 Simulations

In this section we present a simulation study to evaluate the performance of themethod
described in Sect. 3, to estimate the dimension of a functional generating subspace via
wavelets. We used the same settings employed by Bathia et al. (2010), considering as
true function and noise, respectively

Xt (x) =
d∑

l=1

ξtlϕl(x) and εt (x) =
10∑

i=1

Zti

2i−1 ζi (x), x ∈ [0, 1],

where {ξtl , t ≥ 1} are mutually independent AR(1) processes with coefficients
(−1)l(0.9 − 0.5l/d), the coefficients Zti are independent random variables, inde-
pendent from the ξtl ’s, following standard normal distribution and the eigenfunctions
used are

ϕl(x) = √
2 cos(πlx) and ζi (x) = √

2 sin(π i x).

The sample sizes considered are n ∈ {100, 300, 600} and the dimensions are d ∈
{2, 4, 6}, while the maximum lag used is p = 5. The wavelet basis is the Daubechies
with four null moments. We perform a discretization of the problem, evaluating Xt (x)
and εt (x) on a grid of 256 equally spaced points x ∈ [0, 1], and then, we obtain a
vector of the observed curve Yt (x) evaluated at these points. For each t = 1, . . . , n the
decomposition for the 28 points is performed using aminimum resolution level of 5 and
maximum resolution level 7. The simulation described is based on 1000 replications,
and we consider the four bootstrap procedures described in Sect. 3. The threshold
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Table 1 Proportion (%) that
each value d̂ is selected as
dimension of the process when
the true dimension is d for each
sample size n

d 2 4 6

n d̂

1 2 3 3 4 5 5 6 7

Ordinary bootstrap

100 46.1 51.8 2 41.7 27.9 1.7 23.6 8.9 0.4

300 0.3 93.5 5.9 2.3 92.9 4.6 9.2 84.3 6

600 0 93.3 6.5 0 93.2 6.5 0 95 4.9

Applying thresholding before bootstrap

100 45.4 51.6 3 41.6 28 1.5 24.3 11 0.4

300 1.2 92.8 5.5 2.6 91.7 5.5 8 86.7 4.6

600 0 94.2 5.8 0 94.2 5.4 0 95.2 4.7

Bootstrap with the residual ε̂thrt

100 43.1 53.3 3.6 42.2 27.7 1.9 24.9 8.7 0.1

300 0.7 93.2 5.8 2.4 91 6.4 7.2 86.7 5.6

600 0 94.6 5.2 0 94.3 5.6 0 94.9 5

Wavestrap

100 45.3 51.8 2.8 43.4 26.9 1.4 24.9 10.5 0.3

300 0.9 93.2 5.6 2.3 91.4 6.1 7.5 88.8 3.4

600 0 93.6 6.1 0 93.5 6.2 0 93.8 6.1

value used in the second and third bootstrap procedures presented in this section is
chosen according to the universal threshold of Donoho and Johnstone (1994).

Table 1 contains the proportions of the dimension estimates for different true dimen-
sions and sample sizes when we apply the bootstrap tests with 5% significance level.
All bootstrap procedures tend to select the true value d as the sample sizes increases.
When the sample size is 300 or larger, the four methods perform well, but have poor
performance when n = 100, especially when the true dimension has a large value.
The results of the four bootstrap procedures are very close, but slight advantages can
be noted for the procedures where thresholding is applied or when the residual ε̂thrt is
used. For instance, when d = 2 these two procedures have lower rates of dimension
overestimation for sample sizes 300 and 600. Figure 1 displays boxplots of the boot-
strap p values corresponding to the first method. Results for the other three methods
were similar, and corresponding figures are included in a supplementary material. We
can observe that for samples of size n = 100, the tests select lower dimensions with
considerable frequency (not rejecting that the d-th largest eigenvalue is zero), but for
larger sample sizes the tests present a better performance, selecting the correct dimen-
sion more often (rejecting that the d-th largest eigenvalue is null and not rejecting that
the (d + 1)-th largest eigenvalue is zero).

123



Wavelet dimensionality estimation of curve time series 1195

Fig. 1 Boxplots of the p values of the tests for the d-th and (d + 1)-th largest eigenvalues, for each sample
size and true value of d using the ordinary bootstrap, which corresponds to the bootstrap proposed by Bathia
et al. (2010) applied in the wavelet coefficients. The segmented line represents the significance level used
(5%)

6.1 Numerical evaluation of aggregate data

In this subsection we report a simulation study performed to evaluate the method
of data aggregation considering the same functions used in the previous numerical
evaluation. A comparison with the eigenvalues obtained without data aggregation is
also presented. For both methods we analyze the estimated eigenvalues and the testing
performances in correctly selecting the functional dimension.

We begin with the analysis of the estimated eigenvalues obtained using the covari-
ance operator. The functions {ϕi , i = 1, . . . , d} of the previous simulation study form
an orthonormal system in L2([0, 1]), and the AR(1) processes {ξtl , t ≥ 1} have coeffi-
cients ϑl = (−1)l(0.9−0.5l/d) and are independent for different l’s. The white noise
in the AR processes is random variables with distribution N (0, σ 2

w), where σ 2
w = 1.5

was used during simulations. Therefore, the covariance kernel can be written as

Mk(u, v) = Cov{Xt (u), Xt+k(v)} = Cov

⎧
⎨

⎩

d∑

j=1

ξt, jϕ j (u),

d∑

i=1

ξt+k,iϕi (v)

⎫
⎬

⎭

=
d∑

j=1

ϕ j (u)ϕ j (v)σ
(k)
j j ,

where σ
(k)
j j = σ 2

wϑk
j /(1 − ϑ2

j ), j = 1, . . . , d, are eigenvalues of Mk . Knowing that

Mk = ∑d
i, j=1 σ

(k)
i j ϕiϕ j with Σk = {σ (k)

i j } = diag{σ (k)
11 , . . . , σ

(k)
dd }, let us denote
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Nk = ∑d
i, j=1 w

(k)
i j ϕiϕ j and Wk = {w(k)

i j } = ΣkΣ


k = diag{(σ (k)

11 )2, . . . , (σ
(k)
dd )2}

= diag{w(k)
11 , . . . , w

(k)
dd }. Thus,

∫ 1

0
K (u, v)ϕ j (v)dv =

∫ 1

0

( p∑

k=1

Nk(u, v)

)

ϕ j (v)dv =
( p∑

k=1

(σ
(k)
j j )2

)

ϕ j (u),

giving the eigenvalues of the operator K for the non-aggregate case. Applying
data aggregation, the term in Eq. (9) is α

(k)
i j = 0 if i �= j . Then Nk(u, v) =

∑d
i=1(α

(k)
i i )2ϕi (u)ϕi (v), and

∫ 1

0
K(u, v)ϕ j (v)dv =

⎛

⎝
p−δ+1∑

k=δ

(α
(k)
j j )2

⎞

⎠ϕ j (u),

which gives the eigenvalues ofK. With these results, we can compare the eigenvalues
obtained with and without data aggregation with their respective true eigenvalues of
the random function Xt .

The sample sizes considered in this simulation are n ∈ {100, 300, 600}, and the
dimensions are d ∈ {2, 4, 6}, while the maximum lag used is p = 5. The numerical
study is based on 1000 replications, and Table 2 presents the average of the largest
eigenvalues obtained for each n and d, as well as the true eigenvalues for each dimen-
sion. For each replication we used δ = 3, with weights ω2 = 0.1, ω1 = 0.3 and
ω0 = 0.5. For means of comparison, Table 2 also presents the analogous results
applying the method of Bathia et al. (2010) directly, without data aggregation, which
corresponds to using a single weight ω0 = 1. Results of Table 2 are summarized in
Figure 2, which shows the estimate’s averages of nonzero eigenvalues obtained for
each sample size. To make it easier to discriminate between different curves, we con-
sidered the logarithm of these averages in Figure 2. Overall, we note that estimates
tend to get closer to their corresponding true values as the sample size increases.

We now present a simulation study to compare the method’s performance under
data aggregation. Different weights are used as follows: case 1, withweightsω2 = 0.1,
ω1 = 0.1 and ω0 = 0.8; case 2, with weights ω2 = 1/3, ω1 = 1/3 and ω0 = 1/3;
case 3, with weights ω2 = 0.1, ω1 = 0.3 and ω0 = 0.5; and case 4, with only ω0 = 1.
Table 3 summarizes the results. The proportions of dimension selection for d = 2, 4
and 6 for each of the four cases are displayed. As expected, case 4 (no aggregation)
presents the best overall performances notwithstanding the method. Moreover, case 1
(which is the aggregate closest to case 4) has the second best overall performances.
Figure 3 presents the boxplots for the fourth and fifth largest eigenvalues when d = 4.
As n increases, the proposed procedures correctly lead to a dimension equal to 4 with
high empirical frequency.

Two important observations are due. The estimates for the eigenvalues are close to
their true theoretical counterparts for the aggregate case. This means that the apparent
poorer performance for aggregate data versus non-aggregate data can be interpreted
as a good performance for a harder problem. The second issue is that we should only

123



Wavelet dimensionality estimation of curve time series 1197

Ta
bl
e
2

Si
m
ul
at
io
n
st
ud

y
fo
r
ag
gr
eg
at
e
an
d
no

n-
ag
gr
eg
at
e
da
ta

d
n

θ̂ 1
θ̂ 2

θ̂ 3
θ̂ 4

θ̂ 5
θ̂ 6

θ̂ 7
θ̂ 8

θ̂ 9
θ̂ 1

0

U
si
ng

m
et
ho

d
w
it
h
da

ta
ag
gr
eg
at
io
n

2
10

0
0.
05

91
0.
00

93
0.
00

13
0.
00

01
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
30

0
0.
03

3
0.
00

55
0.
00

05
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
60

0
0.
02

6
0.
00

5
0.
00

03
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
T
ru
e

0.
01

86
0.
00

46
0

0
0

0
0

0
0

0
4

10
0

0.
53

83
0.
06

72
0.
02

2
0.
00

56
0.
00

07
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
30

0
0.
43

54
0.
04

34
0.
01

56
0.
00

24
0.
00

03
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
60

0
0.
42

29
0.
03

74
0.
01

61
0.
00

18
0.
00

02
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
T
ru
e

0.
39

71
0.
02

56
0.
01

86
0.
00

10
0

0
0

0
0

0
6

10
0

1.
57

02
0.
22

65
0.
07

67
0.
03

06
0.
01

14
0.
00

37
0.
00

05
0.
00

00
0.
00

00
0.
00

00
30

0
1.
31

7
0.
17

89
0.
06

09
0.
02

17
0.
00

63
0.
00

17
0.
00

02
0.
00

00
0.
00

00
0.
00

00
60

0
1.
21

34
0.
15

49
0.
05

44
0.
02

0.
00

53
0.
00

12
0.
00

02
0.
00

00
0.
00

00
0.
00

00
T
ru
e

1.
17

59
0.
14

33
0.
04

97
0.
01

86
0.
00

46
0.
00

07
0

0
0

0
U
si
ng

m
et
ho

d
w
it
ho

ut
da

ta
ag
gr
eg
at
io
n

2
10

0
6.
60

03
0.
99

31
0.
15

15
0.
01

43
0.
00

32
0.
00

11
0.
00

03
0.
00

01
0.
00

00
0.
00

00
30

0
5.
34

12
0.
75

16
0.
05

53
0.
00

46
0.
00

1
0.
00

04
0.
00

01
0.
00

00
0.
00

00
0.
00

00
60

0
5.
18

87
0.
68

61
0.
02

8
0.
00

24
0.
00

06
0.
00

02
0.
00

00
0.
00

00
0.
00

00
0.
00

00
T
ru
e

4.
86

93
0.
60

73
0

0
0

0
0

0
0

0
4

10
0

26
.1
22

5.
83

27
2.
18

84
0.
94

3
0.
24

96
0.
00

34
0.
00

08
0.
00

02
0.
00

01
0.
00

00
30

0
21

.2
12

5.
36

4
1.
86

62
0.
73

05
0.
08

82
0.
00

11
0.
00

03
0.
00

01
0.
00

00
0.
00

00
60

0
20

.9
21

5.
09

98
1.
77

07
0.
68

55
0.
04

44
0.
00

06
0.
00

01
0.
00

00
0.
00

00
0.
00

00
T
ru
e

19
.5
56

7
4.
86

93
1.
62

90
0.
60

73
0

0
0

0
0

0
6

10
0

52
.1
88

14
.4
54

5.
97

76
2.
99

13
1.
66

45
0.
94

01
0.
33

4
0.
00

1
0.
00

03
0.
00

00
30

0
40

.0
75

12
.7
57

5.
29

98
2.
54

3
1.
37

97
0.
73

22
0.
12

35
0.
00

03
0.
00

01
0.
00

00
60

0
37

.8
57

12
.4
1

5.
17

7
2.
44

72
1.
28

12
0.
68

05
0.
06

26
0.
00

02
0.
00

00
0.
00

00
T
ru
e

35
.2
58

3
11

.7
01

6
4.
86

93
2.
30

12
1.
16

69
0.
60

73
0

0
0

0

A
ve
ra
ge

of
th
e
te
n
la
rg
es
te
ig
en
va
lu
es

es
tim

at
ed

fo
r
di
ff
er
en
ts
am

pl
e
si
ze
s
n
an
d
tr
ue

di
m
en
si
on

s
d
an
d
tr
ue

va
lu
es

of
th
e
ei
ge
nv
al
ue
s
fo
r
ea
ch

di
m
en
si
on
,p

re
se
nt
in
g
re
su
lts

w
ith

an
d
w
ith

ou
td

at
a
ag
gr
eg
at
io
n

123



1198 R. V. Fonseca, A. Pinheiro

Fig. 2 Simulation study for aggregate and non-aggregate data. Logarithm of averages of the estimated
nonzero eigenvalues (vertical axis) for different sample sizes n (horizontal axis) for the methods with
and without data aggregation. The number of curves in each plot corresponds to the true dimensions, and
horizontal solid lines correspond to the true values of the estimated eigenvalues of same color

proceed with the aggregate data when small sample sizes hinder good estimates for
some curves, while the non-aggregate data are employed. Moreover, since the weights
may be chosen by the analyst, we can do it in such away as tominimize the aggregation
burden.

7 Application

In this sectionwe present an application of the proposedwavelet methods in dimension
estimation of functional time series. We analyze the data set of Australian fertil-
ity rates since the year 1921 until 2010. The data are in the Australian Bureau
of Statistics available at http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/
3105.0.65.0012014?OpenDocument and consist of the numbers of births per 1000
women during each year according to the age-group of the mother (15–19, 20–24,
25–29, 30–34, 35–39, 40–44, 45–49). This data set was analyzed by Hyndman and
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Table 3 Proportion (%) that each value d̂ is selected as dimension of the process when the true dimension
is d for each sample size n when we use aggregation with different weights

d 2 4 6

n d̂
1 2 3 3 4 5 5 6 7

Weights ω2 = 0.1, ω1 = 0.1, ω0 = 0.8

100 77.5 19.0 3.5 18.5 12.5 4.0 14.5 6.5 1.5

300 41.5 55.0 3.5 31.0 47.0 6.5 38.0 38.5 5.0

600 17.5 76.0 6.0 14.0 70.0 14.0 14.0 73.5 11.5

Weights ω2 = 1/3, ω1 = 1/3, ω0 = 1/3

100 94.5 3.5 2.0 6.0 0.5 0 0 0 0

300 57.5 37.0 5.5 37.0 16.5 2.0 22.5 10.0 1.5

600 9.0 80.5 10.5 22.0 60.0 11.0 31.0 51.0 9.0

Weights ω2 = 0.1, ω1 = 0.3, ω0 = 0.5

100 98.5 1.5 0 0.5 0 0 0 0 0

300 83.0 15.5 1.5 28.0 2.0 1.0 3.0 1.0 0

600 56.0 39.0 5.0 59.0 13.0 1.0 32.5 8.0 0.5

Weight ω0 = 1 (method without aggregation)

100 38.0 57.0 5.0 33.0 39.5 1.5 28.0 24.0 2.5

300 1.5 91.0 7.5 1.5 94.0 4.5 2.0 95.5 2.5

600 0 95.0 5.0 0 92.5 7.5 0 98.0 2.0

Ullah (2007) in the context of functional time series for the years of 1921 until 2000,
where the authors considered the center of each age-group as the age for which the
corresponding fertility rate was observed and also assigned the value 0.005 for the ages
13 and 52 for all years. Following this procedure, we fitted a curve for the logarithm of
the fertility rate of each year using smoothing splines and considered these functions
as our observed curves. Figure 4 displays the observed curves for some years. It is
noteworthy from this figure that the lower log rate for women under 25 is observed in
the year 2010, which might be associated with the tendency of women in developed
countries to bear less children and later than in previous years. We also performed a
stationarity test (Horváth et al. 2014) and obtained a p value of 2.4%. Although we
have an indication that the process is not stationary, we shall still employ the methods
discussed in paper to estimate the process’ dimension and compare the conclusion
with the results obtained by Hyndman and Ullah (2007).

To estimate the dimension of the process that generates these random functions
using the wavelet-based method, we evaluated the observed curves in an equally
spaced grid of 64 points between the ages of 13 and 52, which gives J = 84 wavelet
coefficients for each curve. Next, we performed the procedures of Sect. 3 using the
Daubechies wavelet basis with four null moments with minimum and maximum res-
olution levels of 3 and 5, respectively. The value of maximum lag used was the same
as in the simulation experiments, i.e., p = 5. The application of hard thresholding on
the wavelet coefficients for the Australian fertility curves results in the shrinkage of
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Fig. 3 Boxplots of the p values of the tests for the fourth and fifth largest eigenvalues of cases 1 ( ω2 = 0.1,
ω1 = 0.1, ω0 = 0.8) and 4 (ω0 = 1) of weights used in the aggregated method, for each sample size and
true dimension d = 4 fixed. The segmented line represents the significance level used (5%)

Fig. 4 Australian fertility rates on 1921–2010 (Hyndman and Ullah 2007). The curves are logarithms of
the Australian fertility rate: 1921; 1950; 1980; 2010
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Table 4 Australian fertility rates on 1921–2010 (Hyndman and Ullah 2007)

Method Eigenvalues

λ1 λ2 λ3 λ4 λ5

Wavelet-based 99.8677 5.1413 0.0603 0.0021 < 0.0001

Aggregate 99.9678 2.5363 0.0522 0.0003 < 0.0001

Non-aggregate 99.9531 3.0614 0.0573 0.0006 < 0.0001

Five largest eigenvalues divided by the norm of all eigenvalues when applied the wavelet-based method and
the methods with and without data aggregation for the fertility data

56% of the estimated coefficients to zero. This means that a sparse representation of
the functions is attained, and that prediction variance and bias will diminish as well.
Table 4 contains the five largest eigenvalues computed from thematrix D obtained after
the wavelet decomposition of the log rate curves. Table 4 also contains eigenvalues
obtained with the dimension estimation methods with and without data aggregation.
For ease of comparison, all valueswere divided by the norm of all eigenvalues obtained
with the same method. The values in Table 4 are close for the three methods and indi-
cate that the time series might be generated from a four- or five-dimensional process.
Performing the bootstrap test for dimensionality in the wavelet-based method (using
the residual ε̂thrt ) with 301 replications and significance level of 5%, the result also
indicates that the process has dimension 5. (We reject that λ5 = 0 and fail to reject
that λ6 = 0.)

Fig. 5 Australian fertility rates on 1921–2010 (Hyndman and Ullah 2007). Mean function and selected
eigenfunctions after estimating the dimension of the process (d̂ = 5)
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Figure 5 presents the mean function and the eigenfunctions corresponding to the
five largest eigenvalues. These eigenfunctions are similar (apart from sign) to the
eigenfunctions presented by Hyndman and Ullah (2007) for the years of 1921 until
2000. Additionally, similar functions are obtained if we apply the method of Bathia
et al. (2010). The first eigenfunction has a marked impact on ages greater than 30
years; this impact is negative whenever the latent coefficient is positive, and vice
versa. For ages below 30, h1 seems to have little influence, fluctuating around some
value close to zero. The second eigenfunction seems to oscillate around zero at the
age of 30 years; for instance, for positive latent coefficients, it has a negative influence
on ages below 30 and a positive influence on ages greater than 30. With respect to the
third eigenfunction, it has a direct impact on ages around 30, with a positive impact
for positive latent coefficients and vice versa. The remaining eigenfunctions can be
analyzed similarly.

In their analysis, Hyndman and Ullah (2007) employ a PCA with three basis func-
tions by applying procedures similar to the ones presented by Ramsay and Silverman
(2005). The former authors mention that only 0.8% of the variation is left unexplained,
and from our results, this amount could still account for part (maybe not essential for
their practical purposes) of the process that generates the curves. These extra infor-
mation may be quite nonlinear in nature.

8 Discussion

We study in this manuscript the problem of estimating the dimension of finite-
dimensional random functions, which can be used for modeling time series of curves.
This problem has been discussed by Hall and Vial (2006) and Bathia et al. (2010).
The latter have used the underlying temporal stochastic structure to propose a statis-
tical procedure which has nice asymptotic properties. We use wavelet representation
in this setup, and have attained the same asymptotic results. Moreover, besides the
original bootstrap procedures, wavelets allow us to employ three additional bootstrap
schemes. The wavelet method is loss free, can be inverted and has some computational
advantages as well. We also show that such method may be employed for aggregate
data and that the resulting statistical methodology has similar theoretical properties.
The proposed method is illustrated in simulation studies and on a real data set.
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