Supplementary Material for “Bartlett Correction of Frequency Domain
Empirical Likelihood for Time Series with Unknown Innovation Variance”

Kun Chen®, Ngai Hang Chan® and Chun Yip Yau’

@ Southwestern University of Finance and Economics

b The Chinese University of Hong Kong

In this supplementary material, we give proofs of to the Lemmas 1-2 and Theorems 1-2.
First, we begin by deriving the stochastic expansion of the profiled frequency domain empirical
likelihood (FDEL).

Stochastic Expansion

To prove Lemma 2 and Theorems 1-2, we need the stochastic expansion of the profiled

FDEL firstly. Based on the Lagrange multiplier argument, the profiled FDEL is

In(Bo) = 4> log(1 + £(Bo)rin; (o)) , (1)

Jj=1

where £ is the solution of the nonlinear equation
fz—mﬂ Bo) ___y. (2)
1+ t(Bo)m;(Bo)

To establish the stochastic expansion of the profiled FDEL [([30), we first prove that the mag-
nitude #(Bo) = Op(n™Y2). As w; = n™ (1 + £(8o)m; (B0)) ™}, we have 1 4 £(Bo)m;(Bo) > 0
and

1+ 2(Bo)r; (Bo)| ™" = (1 + [£(Bo)| max 72 (Bo)) " - 3)

Substituting 1/(1 + £(80)m;(B0)) = 1 — £(Bo)1;(Bo)/ (1 + £(Bo)11;(Bo)) into the (2) gives
1 & E(/Bo)ﬁl?(ﬁo) 1<
0 = |= 2 ——
n A= 1+ t(Bo)m;(Bo) n ;my(ﬁo)
1 3 (Bo) 1o~
> — — J J :
2 Ol i ey o~ | 2™
using the (3). Therefore, we have
- 1 < - _
(60) (n 3 (Bo) gagnm(ﬂow) < .
=1 ==
Under RC, the standard argument in Owen (2001) gives maxi<;<y [, (80)| = 0p(n'/?). Ap-

plying the results of Lemma 1, we have m = O,(n~/?) and %Z] m3(Bo) = Op(1). Hence,

(Bo) = Op(n™/?).
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Applying Taylor’s expansion to the (2), we get the stochastic expansion of #(8o),

= =92 = A2 =2 2=3 =2 =3
7mA2+/\3m +mA273/\3m A2+2)\3m +mA37/\4m +Op(n72). (@)

(o) =
(Bo) 22 X3 X3 bV X3 X3 M

S"Sn

Substituting the (4) into the (1) leads to the stochastic expansion of (o),

7 n? 2 7,3 =2 A2 =3 =3
Lin(Bo) = 2T _oMCha AN | RAS | ARy Aei A,
n A2 A3 3 A3 A3 3 A3 Y
)\2:4 A = 4 -
+2555 — ST 4 0, (n ). )
2 2

By equating the terms in the (5) to the terms of SR® of the same orders, we obtain the (12).

Proofs of Lemmas 1-2 and Theorems 1-2

In this section, we give the proofs of our lemmas and theorems.

Proof of Lemma 1: From the definition,

Moo= cum(in (Bo). iy (Bo). v (Bo), o (Bo)

257 cumns (o) yewm( (o), i (5o), s (o)

j=1

23 cum® (075 (o) s (o)) + 3 cum® i (o) eum(in (o), i (5o))

23 cum (17 (50)) + On ). (6)

Note that this expansion for A4 is not the same as the one with known variance o2 given in
Chen et al. (2016) because the extra terms with cum(7m;(8o)) cannot be ignored. Based on a

calculation similar to that given in Lemma 2 of Chen et al. (2016), we have

cum(1i; (Bo), 1125 (Bo), M5 (Bo), 11 (o)) = 605p;(Bo)* + O(n™ ), (7)
cum(1i; (Bo), 11, (Bo), M (Bo)) = 20¢p; (Bo)® + O(n™ "), (8)

and
cum (1 (Bo), 15 (Bo)) = oep;(Bo)” + O(n™ ). 9)

Substituting the equations (9) and (7)—(9) into the (6), we have

n

= 2263y (B0) + 0.
=1

n °
J
Applying similar arguments to those used to derive A4, it can be shown that

2 i _
A = aaf;m(%f +0(n™),
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70‘5 ij 50 +O( 71)

Next, we consider the orders of Var(Ak). By Chebyshev’s inequality, for any § > 0,
P(|Ak| > §) < E(A})/6%, and as E(Ag) = 0, the orders of Ay can be directly obtained by

computing the orders of Var(Ag). The case k = 1 is omitted because it is simpler. For k = 2,

ar (iij(ﬂ()f) = ZZ[cum m;(Bo), M (Bo), Mx(Bo), Mx(6o))

)
+2cum® (1 (Bo), M (Bo))] + O (n™1) . (10)
For the double summation in the (10), the terms corresponding to j = k can be collected as
1o . 20 s 4 —2
3 > Var(m; (o)) = —30e > pi(Bo) +0(n7?), (11)
j=1 j=1
using the equations (9) and (7)—(9).

By applying an argument similar to that used in the second equality of Lemma 2 in Chen
et al. (2016), for j # k, we have

cum(i (Bo), 7k (B0) = 1-5e.aps (Bo)pu (o) + O(n ™) (12

cum(ia (B0), 25 (Bo), e (50)) = 2029, (60) e (Bo) + O(n ™), (13)

cum (i1 (Bo), e (B0), o (Bo)) = = reao2ps (Bo)pe(Bo)? + O(n~2), (14)

. cum(i (B0), 7t (Bo), i (50), 72k (o)) = sty (Bo)p(B)? + 0%, (1)

where the O(n™?) terms are uniform in j, k.
Substituting the equations (9) and (11)—(15) into the (10) yields

Var(Ag) = i—oae pi(Bo)* + 6#55 102> pi(B0)’pr(Bo)” + O(n~?).

Jj=1 J#k

By applying similar but more tedious calculations to Az and A4, we have

Var(Ag)f—aé Zp (Bo) —s——fieweZZ)J B0)*pi(B0)* + O(n™?),
J#k

K -
Var(Ay) = = ol E pi(Bo)® n3 — ka0 E pi(Bo) ' pr(Bo)* +O(n™?),
J#k
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where K3, K4, Ké and K:l are some constants. This completes the proof of Lemma 1.

Proof of Lemma 2: To derive r1(y/nSR), first note that

cum (i —RQZ”’ B0y, () + O(n~2). (16)
cam (i) = cum(ii, ) + (cam()* = 22 +O(n?), (17)
and
cum(mAz) = cum(m,As)

= 5> P feun (7). 1), 1)

+20um(1n(wj)7 I (wj)eum(In (w;))] + O(n”?)

_ 2
= ZPJ ﬂO )" +0(Mn7) = 3 n

+0(n?). (18)
By using the equations (16)—(18), we have

Iil(\/ﬁSR) = Cum(\/ﬁ(ﬁq + R2 + R3 + R )

\/>A37TL \/QﬁIAQ —2
= fcum{f)\l/2+3)\g/2 —7)\3/2 —|—O(n )

nb;wj)_ 1\/5)\3

— _ i —3/2
= n3/2)\§/2 pa gj(ﬁo)pg 0 "2 6 )\S/2+O(Tl )

Hence, the (13) is established. For ko(y/nSR), consider
k2(vnSR) =cum(v/nSR, /nSR)
=n {cum(ﬁh, R1) + 2cum(Ry1, R2) 4 2cum(Ry, R3) + cum(Ra, Rg)}
+0(n7?). (19)

Using the equations (7)—(9) and (12)—(15), we have

cum(Ri,R1) = cum (f V2 1/2>_1 407 1 pJ (@)

1/2° n Ao n3
_,_li Z Mcum(h(a}j),h(wk» +0(n7?),
(20)

cum(Ry, R2) = %%cum(ﬁm m?) — by

_ L2 LA pkes -8
= {9>\3 2% 2 ?}+O(n ), (21)

— cum(7n, mA2)
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cum(Ry, R3) = Z)\igcum(n:@, mA3) + g)\igcum(n:l, m?Asz) — g/\—%cum(ﬁl, m°As)
8 )\% ~ =3 1 )\4 =~ =3
+ 5 )\gcum(m,m ) — 5 Agcum(m,m )
BN STOVIRE DY S VOV S
- &6V 33 2 g}*Om ): (22)
and
2
cum(Rz, R2) = %i—gcum(ﬁf,ﬁzg) — %i—;cum(ﬁlA%ﬁzz) + %)\igcum(ﬁlAg,ﬁlAz)
1 1M 5 M Kea _3
7?{_§)\73+ﬂ)\7§+ U§}+O(n ) (23)
Substituting the equations (20)—(23) into the (19) yields
~ _ 1 1 )2 7T M 4021 pj _
K2(\/ESR) = 1+n{ §E+E)\2 )\2 7’L )
+ Z p] cum(fnwj), Ln(wi)) p +0(n7%).

J#k
For k3(y/nSR), note that

k3(vnSR) = cum(yv/nSR,v/nSR,/nSR)
n3/2{cum(l'~%17 R1, R1) 4 3cum(Ry, Ri, Ra)} + O(n*3/2) ‘
(24)

Using the equations (7)—(9) and (12)—(15), we have

- o~ - A _
cum(Ri, R1, R1) = *\[ 332 +0(n?%). (25)

For the second term on the right-hand side of the (24), it can be shown that

3cum (R, Ry, Ro) = 2\[ NG _cum (i, M, m?) — 3v2—— 5/2 cum(m, m, mAs) .
Ay

Again using the equations (7)-(9) and (12)—(15), we have

Thus, we have
V2 _
2ﬁ2+om3y (26)

SCUHI(Fh7 Rl, Rg)
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Substituting the equations (25) and (26) into the (24), we have k3(v/nSR) = O(n™>/?).
For k4(v/nSR), we have

cum(v/nSR, vnSR,/nSR,/nSR)

= cum(v/nRy, ViR, VR, vnR1) + 4cum(v/nRy, vnRi, v/nR1, v/nRs)
+4cum(y/nRy,v/nR1, vV/nRi,v/nRs) + 6cum(y/nRy, v/nR1, vV/nRa, /nRo)
+0(n™?). (27)

H4(\/ESR)

Using the equations (7)—(9) and (12)—(15), it can be shown that

cum(v/nRy, ViR, vaky, vaRy) = {i‘; 41984 o } +0(n7?), (28)
cum(ﬁél,ﬁél,ﬁél,ﬁm):%{—%%—6 iy }+o< 2), (29)

cum (Vi Vi, Vi, Vi) = 938+ 0 ™). (30)

" cum(yn Ry, iRy, Vi Re, Vi) = - {%% 27 } +om?). (31)

Substituting the equations (28)—(31) into the (27), we have k4(y/nSR) = O(n~2). This com-
pletes the proof of Lemma 2.

Proof of Theorem 1: The proof is standard and can be found in Chan et al. (2014). g

Proof of Theorem 2: Based on the cumulant expansions in Lemma 2,

- T 2 ki + koo
b 2

1+ —-40(n"").
n

E(I(f0)) = E(nSR) +0(n™?)

Next, we derive the coverage error of the Bartlett-corrected confidence interval based on the
Edgeworth expansion of v/nSR" := /nSR(1 — b/2n). Specifically,

P(I(Bo) < (1 +b/n)xT1-a) = P(VnSR)* + 0p(n™?) < x1.1-a)

_ /JT /Jii {Ti/ﬁ +f;T(L:c)+§§Z)}¢(x)dx+o(n—z)
— 1—o¢+0a(n 2y, (32)

where
) = Vi{m RS )+ fa(VasR 6" -39 |
{@(\/ﬁsﬁ*) 14 m(\/HSR*)} (z* — 1).

pun n
Pa(z) = b)
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The last equality in the (32) holds because the integral of 75 (z) equals O(n™!) based on the
equations (13) and (14). Moreover, the integrals of terms with order n~*/2 and n~%/? are equal
to zero because of the oddness of polynomials 77 (x) and 75(z). This completes the proof of
Theorem 2.

Proof of Lemma 3: It is sufficient to show that ]261,1 = /~€1,1 + Op(nfl/Q) and 1262,2 = 152,2 +
Op (nfl/ 2). Note that the convergences hold point-wise on the interior of the compact parameter
space ©. Under RC, the y/n-consistency of 3 implies A\x = A + Op(n™'/?), k = 2,3,4. Thus,
2272 = /52,2 + Op(n71/2). For /?:1,1, we argue that Bf(w) =br(w) + Op(n71/2), where the error is
uniform in w € II. We consider the decomposition |by(w) — br(w)| < Th(w) + Ta(w), where

oo

1
Ti(w) = |br(w) + 5 > lulvg(w) expuuw)|
L= | IAn
To(w) = —5- Z |ulvs(u) exp(ruw) + o Z |ulvs(u) exp(ruw)
U=—00 u=—[n/2]+1

Next, we prove that sup,c T1(w) = Op(nfl/g). By applying the Taylor expansion, we have

[e o)
i) < goemp 3 fulli) =m0 exples)

well

1 o0

< 3 Z [ul v (w) — v, (w)]
— . r 9

= gu;oolull((?*%) %w(u)l
1 4 > 9

< gl\ﬁfHollu;mlu\llwve*(wll

= 0,(n"'?),

where [|0* — 6| < ||@ — 6o and the last equality follows from Regularity Condition (a) and
16 — 60| = Op(n="/?). As sup,cyy To(w) < (2m)7" weiny2)+1 [ullvg ()] = 0p(n"1?), it follows
that br(w) = br(w) + Op(n~1/?), where the error term is uniform in w. Hence, 12171 =Fki1+
O,(n~Y/?). Under Condition (b), by using the similar arguments as above, we can show that
G (w5)s In (i) = cum(In (o)), In(wr)) + Op(n~"/2) and thus ka.o = ka2 + Op(n="/2).

References

Chan, N.H., Chen, K. and Yau, C.Y. (2014). On the Bartlett correction of empirical likelihood

for Gaussian long-memory time series. Electronic Journal of Statistics, 8, 1460-1490.

Chen, K., Chan, N.H. and Yau, C.Y. (2016). Bartlett correction of empirical likelihood for

non-Gaussian short-memory time series. Journal of Time Seires Analysis, 37, 624—649.



8 Kun Chen, Ngai Hang Chan, Chun Yip Yau

Owen, A.B. (2001). Empirical Likelihood. New York: Chapman & Hall.



