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Abstract
The Bartlett correction is a desirable feature of the likelihood inference, which
yields the confidence region for parameters with improved coverage probability. This
study examines the Bartlett correction for the frequency domain empirical likelihood
(FDEL), based on the Whittle likelihood of linear time series models. Nordman and
Lahiri (AnnStat 34:3019–3050, 2006) showed that theFDELdoes not have anordinary
Chi-squared limit when the innovation is non-Gaussian with unknown variance, which
restricts the use of the FDEL inference in time series. We show that, by profiling the
innovation variance out of the Whittle likelihood function, the FDEL is Chi-squared-
distributed and Bartlett correctable. In particular, the order of the coverage error of the
confidence region can be reduced from O(n−1) to O(n−2).
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1 Introduction

Empirical likelihood (EL) is a widely used nonparametric likelihood, introduced by
Owen (1988, 1990). It has two main features that are analogous to the ordinary para-
metric likelihood. First, the EL is asymptotically Chi-squared-distributed, which is
a nonparametric version of Wilks’ theorem of the ordinary log-likelihood ratio test
statistic. Second, the Bartlett correction can be applied to improve the approximation
to the asymptotic distribution. Recent surveys and discussions of the EL and related
methods can be found in Kitamura (2007), Smith (2007) and Nordman and Lahiri
(2014).

The EL has been extended to accommodate a particular dependent structure. Monti
(1997) used the score function of the Whittle likelihood to derive the limiting Chi-
squared distribution of the EL for a Gaussian short-memory time series. Nordman
and Lahiri (2006) formulated the frequency domain empirical likelihood (FDEL) for
a general framework that includes Monti (1997) as a special case (see also Ogata
and Taniguchi 2009; Kakizawa 2013). In particular, their method can be applied to
both short- and long-memory time series with possible non-Gaussian distributions.
However, Nordman and Lahiri (2006) showed that the Chi-squared approximation
is valid only when the innovation is Gaussian or when the innovation variance is
known. In other words, when the innovation of the time series is non-Gaussian and the
innovation variance is unknown, the FDEL does not have a Chi-squared limit. Hence,
the FDEL inference is not directly applicable.

The Bartlett correction has been well studied in the independent setting. For exam-
ple, Chen and Cui (2006, 2007) proved that the EL with moment restrictions is
Bartlett correctable even in the presence of a nuisance parameter. See Cribari-Neto and
Cordeiro (1996) for a review of Bartlett-type correction methods under the indepen-
dent setting. However, the Bartlett correction is relatively less explored for a dependent
data. In the time series context, Chan and Liu (2010) proved that the FDEL is Bartlett
correctable for Gaussian short-memory time series. Chan et al. (2014) extended Chan
and Liu (2010) to Gaussian long-memory time series. More recently, Chen et al.
(2016) showed that the FDEL is Bartlett correctable if the process is a non-Gaussian
short-memory time series, and the innovation variance is known. However, the case
of a non-Gaussian time series with unknown variance remains unresolved because
Nordman and Lahiri (2006) showed that the FDEL does not have a Chi-squared limit
when the innovation variance is unknown. For a detailed discussion of the Bartlett
correctability of other test statistics in a time series, see Taniguchi and Kakizawa
(2000).

Although the EL (or FDEL) is Bartlett correctable under the aforementioned set-
tings, the implementation of the Bartlett correction is computationally challenging.
To apply the Bartlett correction to a dataset of size n, the statistic is rescaled by an
adjustment factor (1+ b/n). The constant b depends on the higher-order moments of
the underlying process and is, in general, difficult to estimate. Except for some simple
situations, e.g., the statistical inference for the population mean in the independent
and identically distributed (i.i.d.) settings (e.g., DiCiccio et al. 1991), the constant b
typically has to be estimated by a bootstrap procedure (see Hall and La Scala 1990
for i.i.d. data and Monti 1997 for time series), which significantly increases the com-
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Bartlett correction of empirical likelihood 1161

putational burden. Moreover, to the best of our knowledge, there is little theoretical
evidence to support the validity of the bootstrap procedure.

In this study, we address Wilks’ phenomenon and the Bartlett correctability of the
FDEL for a non-Gaussian, linear short-memory time series. By profiling the unknown
variance out of the FDEL, we show that the FDEL is Chi-squared-distributed. Thus,
the inference for the parameters can be performed based on the profiled FDEL. Fur-
thermore, we show that this statistic is Bartlett correctable. In particular, the coverage
errors of the resulting confidence intervals can be reduced from O(n−1) to O(n−2).
By deriving a closed form expression of the Bartlett correction factor b, an estimator
of b can be constructed. We show the consistency of the estimator and, using a Monte
Carlo simulation, demonstrate that the performance is comparable with the bootstrap
procedure.

The rest of this paper is organized as follows. Section 2 reviews the Bartlett correc-
tion of the Whittle-type FDEL for short-memory time series. In Sect. 3, we show that
the FDEL is Bartlett correctable for both Gaussian and non-Gaussian short-memory
time series with unknown innovation variances. Finally, Sect. 4 presents simulation
studies that demonstrate thefinite sample performanceof theBartlett correction. Proofs
are given in the Supplementary Material.

Throughout the paper, the following notations are adopted: O(1)(Op(1)) denotes
a term (a random variable) that is bounded (in probability); o(1)(op(1)) denotes a
term (a random variable) converging to zero (in probability); for two real sequences

an and bn , “an ∼ bn” means that an/bn
n→∞−→ 1; and R

k is the Euclidean space with
dimension k. The r th cumulant of a random variable X is denoted by κr (X). For
x = (x1, . . . , xd)

′ ∈ R
d , ‖x‖ = (x21 + · · · + x2d )

1/2 denotes the l2-norm of x.

2 Background: Bartlett correction of FDEL

Consider a stationary real-valued linear process {Xt ; t ∈ Z} that satisfies

Xt =
∞∑

j=0

a j (β)εt− j ,

where {εt } is an i.i.d. innovation process with a zero mean and unknown variance
σ 2

ε < ∞, and β ∈ R
d is the parameter of interest. The unknown parameters are

collected as θ ≡ (σ 2
ε , β

′
)
′
, with the true value denoted by θ0. We assume that θ0

is an interior point of a compact parameter space Θ ⊂ (0,∞) × R
d . When σ 2

ε is
known, the parameter space reduces to Θ = {θ : θ = β ∈ R

d}. Let κε,r = κr (ε1)

represent the r th-order cumulant of ε1. Also, denote the autocovariance function of
Xt by γθ (k) = Cov(Xt , Xt+k) and the spectral density function (if it exists) by

f (ω, θ) = 1

2π

∞∑

k=−∞
γθ (k)e

−ıkω, ω ∈ Π ≡ [−π, π ],
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1162 K. Chen et al.

where ı = √−1. We call {Xt } a short-memory time series if the autocovariance
function is absolutely summable, that is,

∑∞
k=−∞ |γθ (k)| < ∞ (Priestley 1981).

Let J j = Jn(ω j ) ≡ 1√
2πn

∑n
t=1 Xt exp(−ı tω j ) be the normalized discrete Fourier

transform (DFT) of Xt at the Fourier frequencies ω j = 2π j/n for j = 1, . . . , n. The
periodogram, defined by In(ω j ) = J j J− j , is an asymptotically unbiased estimator of
the spectral density function. Specifically, it was shown in Brillinger (1981) that at the
true value θ = θ0,

E(In(ω j )) = f (ω j , θ0) + bI (ω j )

n
+ o(n−2),

where

bI (ω) = − 1

2π

∞∑

u=−∞
|u|γθ0(u) exp(−ıuω). (1)

Given a sample X = {X1, . . . , Xn}, the Whittle likelihood in the frequency domain,
which is an analog to the ordinary parametric likelihood in the time domain, is defined,
up to a constant, by

LW (X, θ) = −
n∑

j=1

{
log f (ω j , θ) + In(ω j )

f (ω j , θ)

}
. (2)

The Whittle estimator θ̂w of θ is defined as the solution of
∑n

j=1m j (θ̂w) = 0, where

m j (θ) = ∂

∂θ
log f (ω j , θ)

{
In(ω j )

f (ω j , θ)
− 1

}

is the first derivative of the summand (2). The FDEL is then defined as

ln(θ) = −2 logRn(θ), (3)

where Rn(θ) =maxw j

{∏n
j=1 nw j | w j ≥0,

∑n
j=1 w j = 1,

∑n
j=1 w jm j (θ)=0

}
.

Monti (1997) showed that ln(θ0) is asymptotically Chi-squared-distributed when {Xt }
is a Gaussian short-memory time series. Nordman and Lahiri (2006) indicated that the
same asymptotic result holds for non-Gaussian linear time series when σ 2

ε is known,
whereas ln(θ0) is not asymptotically Chi-squared-distributed if σ 2

ε is unknown and
{εt } is not Gaussian.

Formally, the Bartlett correction is to multiply ln(θ0) by a factor 1 + b/n (say)
and conduct the statistical inference based on the Bartlett-corrected FDEL, l∗n (θ0) =
ln(θ0)(1+b/n)−1. In particular, the (1−α)-level Bartlett-corrected FDEL confidence
interval with a known σ 2

ε is given by

I∗n,α =
{
θ | ln(θ) ≤

(
1 + b

n

)
χ2
d,1−α

}
,
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where χ2
d,1−α is the 1 − α quantile of a Chi-squared distribution with d degrees of

freedom. Compared with the ordinary FDEL confidence region, In,α = {
θ | ln(θ)

≤ χ2
d,1−α

}
, it is important to consider whether the coverage error of I∗n,α is of a

lower order. In particular, the coverage errors of In,α and I∗n,α , defined by |P(ln(θ) ≤
χ2
d,1−α) − (1 − α)| and |P(ln(θ) ≤ (1 + b/n)χ2

d,1−α) − (1 − α)|, respectively, are
O(n−1) and o(n−1) for Gaussian short-memory time series (Chan and Liu 2010),
O(log6 n/n) and O(log3 n/n) for Gaussian long-memory time series (Chan et al.
2014), and O(n−1) and O(n−2) for non-Gaussian short-memory time series (Chen
et al. 2016).

The classic approach (e.g., DiCiccio et al. 1991 for the i.i.d. case) for establishing
the Bartlett correctability of the FDEL considers the signed root statistic (SR), which
is defined as ln(θ0) = W ′

nWn , where Wn ≡ √
nSR ∈ R

d . Note that, under some
regularity conditions,

√
nSR is asymptotically normal and, in addition, the density

function π(x) admits the Edgeworth expansion,

π(x) = φ(x) + r1(x)φ(x)√
n

+ r2(x)φ(x)

n
+ r3(x)φ(x)

n3/2
+ O(n−2),

where φ(x) is the probability density function (p.d.f.) of the standard normal distribu-
tion and r j (x) is a polynomial of a degree of at most 3 j and is an odd or even function
according to whether j is odd or even (e.g., Hall 1992; Taniguchi and Kakizawa 2000).
If r2(x), which is a degree of at most 6, is actually a degree of 2, then ln(θ0) = W

′
nWn is

the Bartlett correctable. A sufficient condition for the terms with degrees of 4 and 6 in
r2(x) to vanish is that the third- and fourth-order cumulants κ3(

√
nSR) and κ4(

√
nSR)

decay to zero with rates O(n−3/2) and O(n−2), respectively (see Chen et al. 2016).

3 Main results

Before defining the profiled FDEL and establishing its Bartlett correctability, we
impose some assumptions on the time series under consideration.

3.1 Regularity conditions (RC)

(a) The real-valued process {Xt } has a linear representation Xt = ∑∞
j=0 a j (β)εt− j ,

where {εt } is an i.i.d. innovation process with an unknown variance σ 2
ε . In addition,

εt has a finite 16th-order cumulant, i.e., κε,16 < ∞, and there exists a constant
ρ ∈ (0, 1) such that, for large j , |a j (β)| < ρ| j |, where θ = (σ 2

ε , β)
′ ∈ Θ ⊂ R

2,
and Θ is a compact set. Furthermore,

∑∞
k=−∞ |k|‖ ∂

∂θ
γθ (k)‖ < ∞ for all θ lies in

the interior of Θ .
(b) The spectral density function for the process {Xt }, defined by

f (ω, θ) = σ 2
ε

2π

∣∣∣∣∣∣

∞∑

j=0

a j (β)eı jω

∣∣∣∣∣∣

2

for ω ∈ Π = [−π, π ], (4)
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is identifiable, i.e., θ1 �= θ2 implies f (ω, θ1) �= f (ω, θ2). Also, f (ω, θ) is four
times continuously differentiable with respect to θ in a neighborhood of θ0, say
Θ0, and is two times continuously differentiable with respect to ω ∈ Π .

(c) The innovation (ε1, ε
2
1) fulfills Cramér’s condition, that is, there exists constants δ,

C > 0, such that sup‖τ‖>C |E exp(ı(τ1ε1 + τ2ε
2
1))| ≤ 1 − δ, where τ = (τ1, τ2)

′
.

Remark In Condition (a), the existence of the 16th-order cumulant is stronger than
that in Nordman and Lahiri (2006), as, in this study, the higher-order asymptotics are
required to establish the Bartlett correctability. For simplicity and brevity in the deriva-
tion, we consider the case β ∈ R. The general case can be established similarly with
more tedious algebras. The exponential decay of the coefficient a j (β) is Assumption
(A2) of Janas (1994). The requirement of the (uniform) summability involving the
derivative of the autocovariance functions can be satisfied by stationary and invertible
ARMA processes (Brockwell and Davis 1991 Chapter 3.6). Condition (b) is Assump-
tion (A6) of Janas (1994), which is necessary to derive the higher-order cumulants of
profiled score function and establish the valid Edgeworth expansion. Finally, Condi-
tion (c) is Cramér’s condition for establishing the valid Edgeworth expansions for the
functionals of the periodogram given in Janas (1994). Note that Conditions (a)–(c)
imply Assumptions (A1)–(A5) of Janas (1994) and Janas and von Sachs (1995).

3.2 Profiled score function

Nordman and Lahiri (2006) showed that the (not profiled) FDEL does not converge
to a Chi-squared distribution when σ 2

ε is unknown and {εt } is not Gaussian. However,
as σ 2

ε can be regarded as a nuisance parameter that has no effect on the dependence
structure of the process, it may be profiled out of the likelihood function, as was
employed by Monti (1997). To profile out σ 2

ε , we use the (4) and maximize the (2)
with respect to σ 2

ε , yielding the maximizer

σ̂ 2
ε = 1

n

n∑

j=1

In(ω j )

g j (β)
, where g j (β) = 1

2π

∣∣∣∣∣∣

∞∑

j=0

a j (β)eı jω

∣∣∣∣∣∣

2

. (5)

Substituting σ 2
ε by σ̂ 2

ε , the profiled Whittle likelihood function becomes

LW̃ (X, β) = −n log

⎛

⎝1

n

n∑

j=1

In(ω j )

g j (β)

⎞

⎠ −
n∑

j=1

log g j (β) − n. (6)

Differentiating the (6) with respect to β gives the profiled score function

m̃ j (β) = In(ω j )

g j (β)

⎛

⎝ ∂

∂β
log g j (β) − 1

n

n∑

j=1

∂

∂β
log g j (β)

⎞

⎠ . (7)
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Based on m̃ j (β) in the (7), the profiled FDEL can be constructed as

l̃n(β) = −4 log R̃n(β), (8)

where

R̃n(β) = max
w j

⎧
⎨

⎩

n∏

j=1

nw j | w j ≥ 0,
n∑

j=1

w j = 1,
n∑

j=1

w j m̃ j (β) = 0

⎫
⎬

⎭ .

Note that the scale 4 in the (8) is different from the scale 2 in the (3).

3.3 Edgeworth expansion

We need the stochastic expansion of the signed root of the FDEL to establish the
asymptotic expansion for the distribution of the FDEL, which can be expressed as
functionals of the first four moments and centered moments of the Whittle-type score
functions m j (θ) (e.g., Chan and Liu 2010; Chen et al. 2016). If σ 2

ε is known, then
the first four moments are of order O(1) and the corresponding centered moments
are of order Op(n−1/2). Based on the rates of the higher-order moments and cen-
tered moments, the asymptotic expansion for the distribution of the signed root can
be obtained. In particular, the fact that E(m j (θ0)) = O(1/n) largely simplifies the
derivation of the order of the moments. On the other hand, when σ 2

ε is unknown, we
have

E(m̃ j (β0)) = σ 2
ε p j (β0) + O(n−1), (9)

where p j (β) = ∂
∂β

log g j (β)− 1
n

∑n
j=1

∂
∂β

log g j (β) and the O(n−1) term is uniform
in j . The (nonzero) constant bias in the (9) complicates the derivation. Nevertheless,
by defining ¯̃m = 1

n

∑n
j=1 m̃ j (β0), it can be shown that

E( ¯̃m) = O(n−1) and Var( ¯̃m) = O(n−1). (10)

The orders O(1/n) in the (10) indicate the possibility of establishing a valid Edgeworth
expansion as a power series expansion of order n−1/2. Let the first four moments and
centered moments for m̃ j (β0) be, respectively,

λk = E

⎛

⎝1

n

n∑

j=1

m̃k
j (β0)

⎞

⎠ and Δk = 1

n

n∑

j=1

m̃k
j (β0) − λk for k = 1, 2, 3, 4.

The following lemma evaluates the orders of λk and Δk .
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Lemma 1 Under RC, for k = 1, 2, 3, 4, we have

λk = k!(σ 2
ε )k

n

n∑

j=1

p j (β0)
k + O(n−1), (11)

and

Δk = Op

(
1√
n

)
.

In particular, λ1 = O(n−1) and λk = O(1) for k = 2, 3, 4.

Similar to the definition of
√
nSR in Sect. 2, we decompose, even for the profiled

version, l̃n(β0) = n ˜SR2
. Based onLemma 1,we can establish the stochastic expansion√

n ˜SR = √
n(R̃1 + R̃2 + R̃3 + R̃n), where R̃ j = Op(n− j/2), j = 1, 2, 3, and

R̃n = Op(n−2). In particular, by equating the order of the terms in n ˜SR2 = n(R̃1 +
R̃2 + R̃3 + R̃n)

2 to the order of the terms in the stochastic expansion of l̃n(β0), we
obtain

R̃1 = √
2

¯̃m√
λ2

,

R̃2 =
√
2

3

λ3 ¯̃m2

λ
5/2
2

−
√
2

2

¯̃mΔ2

λ
3/2
2

,

R̃3 = 3
√
2

8

¯̃mΔ2
2

λ
5/2
2

+
√
2

3

¯̃m2Δ3

λ
5/2
2

− 5
√
2

6

λ3 ¯̃m2Δ2

λ
7/2
2

+ 4
√
2

9

λ23
¯̃m3

λ
9/2
2

−
√
2

4

λ4 ¯̃m3

λ
7/2
2

, (12)

where R̃n = Op(n−2) is negligible. The technical details are given in Supplementary
Material. Based on the (12), we derive the higher-order cumulants of

√
n ˜SR, which

is crucial to establish the Edgeworth expansion.

Lemma 2 Under RC, the higher-order cumulants κ j (
√
n ˜SR), j = 1, 2, 3, 4, admit

the asymptotic expansions

κ1(
√
n ˜SR) = k̃1,1√

n
+ k̃1,2

n
+ k̃1,3

n3/2
+ O(n−2), (13)

κ2(
√
n ˜SR) = 1 + k̃2,1√

n
+ k̃2,2

n
+ k̃2,3

n3/2
+ O(n−2),

κ3(
√
n ˜SR) = O(n−3/2), κ4(

√
n ˜SR) = O(n−2),

κr (
√
n ˜SR) = O(n−2) for r ≥ 5, (14)
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Bartlett correction of empirical likelihood 1167

where

k̃1,1 = 1

n

√
2

λ
1/2
2

n∑

j=1

p j (β0)

g j (β0)
bI (ω j ) −

√
2

6

λ3

λ
3/2
2

, (15)

k̃2,2 = −1

3

λ23

λ32
+ 7

12

λ4

λ22
+ 4σ 2

ε

λ2

1

n

n∑

j=1

p j (β0)
2

g j (β0)
bI (ω j )

+ 2

λ2

∑

j �=k

p j (β0)pk(β0)

g j (β0)gk(β0)
cum(In(ω j ), In(ωk)), (16)

k̃1,3 �= 0 and k̃1,2 = k̃2,1 = k̃2,3 = 0.

For non-Gaussian time series, in k̃2,2, cum(In(ω j ), In(ωk)) = cum2(J j , Jk) +
cum2(J j , J−k) +cum(J j , J− j , Jk, J−k). Note that the coefficients k̃i, j , i = 1, 2, and
j = 1, 2, 3, are of order O(1). Also, the fourth-order cumulant κε,4, which is a
characteristic of the non-Gaussian distribution, has no effect on the leading terms of
κ j (

√
n ˜SR) for j = 3 up to order O(n−3/2) and j = 4 up to order O(n−2). This fact

makes the profiled FDEL (and the Bartlett correction) valid under both Gaussian and
non-Gaussian short-memory time series.

By Lemma 2, the Edgeworth expansion for
√
n ˜SR can be obtained using the stan-

dard argument (e.g., Hall 1992). In particular, the p.d.f. of
√
n ˜SR admits the asymptotic

expansion

π̃(x) = φ(x) + r̃1(x)φ(x)√
n

+ r̃2(x)φ(x)

n
+ r̃3(x)φ(x)

n3/2
+ O(n−2), (17)

where

r̃1(x) = √
n

{
κ1(

√
n ˜SR)x + 1

6
κ3(

√
n ˜SR)(x3 − 3x)

}
= k̃1,1x + O(n−1),

r̃2(x) = n

2
{κ2(√n ˜SR) − 1 + κ1(

√
n ˜SR)2}(x2 − 1)

= 1

2
(k̃21,1 + k̃2,2)(x

2 − 1) + O(n−1).

Here, k̃1,1 and k̃2,2 are given in Eqs. (15) and (16), respectively, and r̃3(x) is an odd
polynomial with a degree of no more than 9. For the profiled FDEL method, r̃1(x)
and r̃2(x) are different from those in the ordinary (non-profiled) FDEL counterparts
in Chen et al. (2016). However, the Edgeworth expansion of the profiled FDEL is the
same for both Gaussian and non-Gaussian short-memory time series because r2(x) is
still of degree 2 whether or not the fourth-order cumulant κε,4 exists.
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3.4 Bartlett correction

Based on the Edgeworth expansion (17), the next theorem shows that the profiled
FDEL is asymptotically Chi-squared-distributed; hence, the coverage error of the
profiled FDEL confidence interval is O(n−1).

Theorem 1 Under RC, for a sufficiently large n,

P(l̃n(β0) ≤ χ2
1,1−α) = 1 − α + O(n−1).

Recall that the key for establishing the Bartlett correctability of the profiled FDEL
is to check that κ3(

√
n ˜SR) = O(n−3/2) and κ4(

√
n ˜SR) = O(n−2) (see Lemma 2).

Therefore, the coverage error of the resulting profiled Bartlett-corrected FDEL confi-
dence interval is reduced to O(n−2).

Theorem 2 Under RC, the profiled FDEL is the Bartlett correctable, that is,

P(l̃n(β0) ≤ (1 + b̃/n)χ2
1,1−α) = 1 − α + O(n−2),

where b̃ = k̃21,1 + k̃2,2 and k̃1,1, k̃2,2 are given in (15) and (16), respectively.

3.5 Bartlett correction factor

In the profiled FDEL, the Bartlett correction factor 1 + b̃/n is, in general, difficult to
compute and is usually obtained by the bootstrap method (see Monti 1997; Chen
et al. 2016). The bootstrap resampling procedure is applied as if the set of peri-
odogram ordinates constitutes an independent sample. However, the periodogram
ordinates are only asymptotically independent, not exactly independent for general
weakly dependent processes. It is not clear whether this approximation would affect
the coverage accuracy of the bootstrapped profiled FDEL confidence intervals. To the
best of our knowledge, theoretical supports for such a bootstrap procedure have not

been established yet. However, if a
√
n-consistent estimator for b̃, say ˆ̃b, is available,

then replacing the factor (1 + b̃/n) in Theorem 2 with (1 + ˆ̃b/n) will increase the
coverage error to order Op(n−3/2). That is, let h(·) be the density function of the

χ2
1 distribution and ˆ̃b − b̃ = ξn , where ξn = Op(n−1/2). Based on the Edgeworth

expansion (17), it follows that

P

⎛

⎝l̃n(β0) ≤ χ2
1,1−α

⎛

⎝1 +
ˆ̃b
n

⎞

⎠

⎞

⎠

= P

(
n ˜SR2

0 ≤ χ2
1,1−α

(
1 + b̃

n
+ ξn

n

))

= P

(
χ2
1 ≤ χ2

1,1−α

(
1 + b̃

n
+ ξn

n

))
+

∫ √
χ2
1,1−α(1+b̃/n+ξn/n)

−
√

χ2
1,1−α(1+b̃/n+ξn/n)

b̃

2n
(x2 − 1)φ(x)dx
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Bartlett correction of empirical likelihood 1169

+
∫ √

χ2
1,1−α(1+b̃/n+ξn/n)

−
√

χ2
1,1−α(1+b̃/n+ξn/n)

{
r̃1(x)

n1/2
+ r̃3(x)

n3/2

}
φ(x)dx + O(n−2)

= P(χ2
1 ≤ χ2

1,1−α) + b̃ + ξn

n
χ2
1,1−αh(χ2

1,1−α) − b̃

2n
(1 − α)

+ b̃

2n
[−2χ2

1,1−αh(χ2
1,1−α)] + b̃

2n
(1 − α) + O(n−2)

= 1 − α + Op(n
−3/2),

noting that the integral
∫ {r̃1(x)/n1/2 + r̃3(x)/n3/2}φ(x)dx is exactly equal to zero,

due to the oddness of the polynomials r̃1(x) and r̃3(x).

As b̃ = k̃21,1 + k̃2,2, to construct
ˆ̃b, it is sufficient to derive the consistent estimators

for k̃1,1 and k̃2,2. According to Eqs. (15) and (16), we estimate k̃1,1 and k̃2,2 by

ˆ̃k1,1 =
√
2√
λ̂2

1

n

n∑

j=1

p j (β̂)

g j (β̂)
b̂I (ω j ) −

√
2

6

λ̂3

λ̂
3/2
2

, (18)

ˆ̃k2,2 = −1

3

λ̂23

λ̂32

+ 7

12

λ̂4

λ̂22

+ 4σ̂ 2
ε

λ̂2

1

n

n∑

j=1

p j (β̂)2

g j (β̂)
b̂I (ω j )

+ 2

λ̂2

∑

j �=k

p j (β̂)pk(β̂)

g j (β̂)gk(β̂)
ĉum(In(ω j ), In(ωk)), (19)

where

b̂I (ω j ) = − 1

2π

[n/2]+1∑

u=−[n/2]+1

|u|γ
θ̂
(u) exp(−ıuω j )

is the estimator for bI (ω j ) in the (1), θ̂ = (σ̂ 2
ε , β̂)

′
is any

√
n-consistent estimator

of θ0 = (σ 2
ε , β0)

′
, and λ̂k = k!(σ̂ 2

ε )k

n

∑n
j=1 p j (β̂)k . By using similar arguments in

the proof of Lemma 2 of Chen et al. (2016), the estimated cumulant of different
periodogram ordinates can be obtained from

ĉum(In(ω j ), In(ωk))

=
[∫ π

−π

kn(ω j − λ, ωk + λ) f (λ, θ̂)dλ

]2

+
[∫ π

−π

kn(ω j + λ, ωk + λ) f (λ, θ̂)dλ

]2
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1170 K. Chen et al.

+ κ̂ε,4

4π2n2

n−1∑

r1,r2=−(n−1)

cos(ω j r1) cos(ωkr2)
∑

s1∈Sr1

∑

s2∈Sr2

×
∞∑

p=max(−s1,−(s1+r1),−s2,−(s2+r2))

ap+s1+r1(β̂)ap+s1(β̂)ap+s2+r2(β̂)ap+s2(β̂),

where kn(λ, ν) = sin(nλ/2) sin(nν/2)/(2πn sin(λ/2) sin(ν/2)), a0 = 1, Sr =
{1, . . . , n − r} for r ≥ 0 and Sr = {1 − r , . . . , n} for r ≤ 0 and κ̂ε,4 is any

√
n-

consistent estimator of κε,4. In practice, one can first compute the estimates of the
linear time series model β̂ and obtain the fitted residuals by assuming Xt = 0 and
ε̂t = 0 for t < 0, i.e., ε̂t = ∑t−1

j=0 c j (β̂)Xt− j for t = 1, . . . , n, where c j are the

coefficients of the inverse of a(z) = ∑∞
j=0 a j (β̂)z j . Then κ̂ε,4 can be constructed

from using the ordinary method of moment. Let ˆ̃b = ˆ̃k21,1 + ˆ̃k2,2, where ˆ̃k21,1 and
ˆ̃k2,2 are defined in Eqs. (18) and (19), respectively. The following lemma gives an√
n-consistent estimator of b̃:

Lemma 3 Under RC,

ˆ̃b = b̃ + Op(n
−1/2).

4 Simulation studies

In this section, Monte Carlo simulations are conducted to assess the finite sample
performance of the Bartlett correction for the profiled FDEL for both Gaussian and
non-Gaussian short-memory time series. For illustration, we consider the stationary
AR(1) model

(1 − φB)Xt = εt , εt
i .i .d.∼ (0, σ 2

ε ). (20)

The parameter σ 2
ε = Var(ε21) is assumed to be unknown in the application of the

profiled FDEL.All of the simulations are carried out in R, assuming that the innovation
process {εt } follows N (0, 1), t18, Exp(1), Uniform(0, 2), andχ2

2 . The true value for the
AR parameter φ is chosen from {0.3, 0.7, 0.9}, which represents the weak dependence
and the strong dependence, respectively. Let φ0, φ̂α/2, and φ̂1−α/2 be the true value
of the AR parameter and the lower and upper endpoints of the confidence intervals,
respectively. In Table 1, we compute the empirical coverage errors under the 95%
nominal coverage level for the sample sizes n = 50 and 100. In each case, 1000
replications are drawn. To calculate the critical values of the Bartlett-corrected profiled
FDEL, theBartlett correction factor 1+b̃/n is estimated using the analytical expression
prescribed in Lemma 3 and the bootstrap method. The detailed bootstrap procedure
can be found in Monti (1997) and Chen et al. (2016). In the bootstrap method, the
consistent estimator for generating the bootstrapped samples is the maximum FDEL
estimator and the resampling replications is set to be 500. Note that, using the bootstrap
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Table 1 Empirical coverage errors of confidence intervals for AR(1) models, replications = 1000 with
nominal coverage level 0.95

AR(1) model

n N (0, 1) t18 Exp(1) Uniform(0, 2) χ2
2

φ = 0.3

50 FDEL 0.031 0.035 0.038 0.046 0.038

Bart. FDEL 0.018 0.016 0.018 0.019 0.01

Bart. FDEL* 0.01 0.01 0.007 0.013 0.012

Max.lik 0.007 0.008 0.014 0.014 0.041

Whit.lik 0.045 0.044 0.043 0.05 0.045

100 FDEL 0.015 0.024 0.025 0.031 0.027

Bart. FDEL 0.005 0.013 0.008 0.018 0.008

Bart. FDEL* 0.008 0.012 0.011 0.001 0.013

Max.lik 0.01 0.009 0.013 0.008 0.031

Whit.lik 0.038 0.042 0.042 0.045 0.04

φ = 0.7

50 FDEL 0.08 0.071 0.063 0.078 0.059

Bart. FDEL 0.021 0.027 0.03 0.01 0.029

Bart. FDEL* 0.009 0.001 0.002 0.009 0.002

Max.lik 0.01 0.015 0.009 0.011 0.009

Whit.lik 0.043 0.043 0.044 0.04 0.046

100 FDEL 0.03 0.048 0.031 0.046 0.049

Bart. FDEL 0.011 0.026 0.002 0.007 0.021

Bart. FDEL* 0.01 0.017 0.01 0.016 0.007

Max.lik 0.004 0.018 0.006 0.014 0.015

Whit.lik 0.036 0.032 0.047 0.047 0.042

φ = 0.9

50 FDEL 0.121 0.118 0.122 0.112 0.128

Bart. FDEL 0.036 0.036 0.039 0.043 0.053

Bart. FDEL* 0.031 0.017 0.006 0.015 0.023

Max.lik 0.017 0.017 0.031 0.044 0.034

Whit.lik 0.037 0.035 0.032 0.048 0.03

100 FDEL 0.105 0.099 0.092 0.097 0.101

Bart. FDEL 0.037 0.03 0.028 0.028 0.029

Bart. FDEL* 0.012 0.015 0.003 0.009 0.01

Max.lik 0.009 0.018 0.032 0.012 0.019

Whit.lik 0.049 0.036 0.043 0.038 0.039

The best performed method in each case is highlighted in bold font

123



1172 K. Chen et al.

approximation, the coverage error of the Bartlett-corrected profiled FDEL confidence
interval is generally of order Op(n−3/2), as shown in Sect. 3.4. For the AR(1) model

(20), β = φ, g j (β) = 1
2π

1
|1−φ exp(−ıω j )|2 , and γθ (u) = σ 2

ε
φ|u|
1−φ2 for u ∈ Z. The

√
n-consistent estimator for φ0 adopted here is the maximum FDEL estimator φ̂MELE .
Table 1 reports the empirical coverage errors of the confidence intervals of the

profiled FDEL and Bartlett-corrected profiled FDEL based on the bootstrap and the
analytical procedures, which are denoted as FDEL, Bart. FDEL and Bart. FDEL∗,
respectively. All of the white noise distributions have been mean corrected; for exam-
ple, Exp(1) means that the white noise is generated from Exp(1) − 1 distribution. For
comparison, we also compute the empirical coverage errors of the confidence inter-
vals based on the Gaussian maximum likelihood and the Whittle likelihood denoted
as Max.lik and Whit.lik, respectively. As shown in Table 1, except for the Gaussian
processes, the bootstrap Bartlett-corrected FDEL method based on the analytical and
bootstrap procedures performs better than the Gaussian maximum likelihood method,
theWhittle likelihood method and the profiled FDELmethod without the Bartlett cor-
rection in most cases. As the sample size increases, the empirical coverage accuracies
for both the profiled FDEL confidence intervals and the bootstrap Bartlett-corrected
confidence intervals approach the nominal coverage level. Even for the heavy-tail dis-
tribution t18 with excess kurtosis 3/7, the Bartlett correction successfully improves
the coverage accuracies. It can be seen that for small values of AR coefficient, the
analytical method, and the bootstrap method for the Bartlett correction give similar
performances. For large values of AR coefficient, the analytical method outperforms
the bootstrap counterpart.
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