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Abstract
This work is devoted to the problem of estimation of the localization of Poisson source.
The observations are inhomogeneous Poisson processes registered by more than three
detectors on the plane.We study the behavior of the Bayes estimators in the asymptotic
of large intensities. It is supposed that the intensity functions of the signals arriving in
the detectors have cusp-type singularity. We show the consistency, limit distributions,
the convergence of moments and asymptotic efficiency of these estimators.

Keywords Inhomogeneous Poisson process · Poisson source · Sensors · Bayes
estimators · Cusp-type singularity

1 Introduction

Suppose that we have k ≥ 3 detectors at the points Dj , j = 1, . . . , k with the coordi-
nates ϑ j = (

x j , y j
)
, j = 1, . . . , k on the plane and a source of emission of Poisson

signals at the point D0 with coordinates ϑ0 = (x0, y0). We consider the problem of
estimation of the position ϑ0 = (x0, y0) by the observations X = (X1, . . . , Xk) of
independent Poisson signals X j = (

X j (t) , 0 ≤ t ≤ T
)
received by detectors (see

Knoll 2010).
An example of such model is given in Fig. 1.
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Fig. 1 Model of observations
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This is our second work devoted to this problem of identification of localization of
the source (see the Introduction of Farinetto et al. (2018), where we give the review
of the engineering literature on this subject).

The intensity function λ j,n (ϑ0, t) of the Poisson process received by the j-th detec-
tor taken in this work, in Chernoyarov and Kutoyants (2019) and in Farinetto et al.
(2018), is of the form

λ j,n (ϑ0, t) = nμ j
(
t − τ j

)
1I{t≥τ j} + nλ0, 0 ≤ t ≤ T . (1)

Here, τ j = τ j (ϑ0) is the instant of arrival of the Poisson signal at the j-th detector,
which is calculated by the formula τ j (ϑ0) = ν−1

∥∥ϑ j − ϑ0
∥∥, where ν > 0 is the

known rate of propagation of the signal and ‖·‖ is Euclidean norm on the plane. The
Poisson signals are received in the presence of Poisson noise of the intensity nλ0 > 0.
We suppose that λ0 is known because, as usual, the level of noise can be estimated
with much higher precision before the experiment and the contribution of the error
of its estimation can be negligible with respect to the other errors of estimation. We
discuss in the last section the possibility of the joint estimation of ϑ and λ0. Therefore,
we have observations of k independent Poisson processes of intensity functions (1)
and have to estimate the position ϑ0 of the source. The exact calculation of the error of
estimation Eϑ0‖ϑ̄ −ϑ0‖2 (ϑ̄ is some estimator) in this essentially nonlinear statistical
problem is a very difficult problem. Moreover, the most interesting are the situations
where the errors of estimation are small. To obtain small errors and have possibility
to calculate it, we have to consider one or another type of asymptotics. That is why
we introduce the large parameter n in the intensity function (1) and study the errors
of estimation in the asymptotics n → ∞. This means that the signal and noise are
sufficiently large and the estimators ϑ̄ = ϑ̄n take values not too far from the true
value: Eϑ0‖ϑ̄ −ϑ0‖2 = o (1). Recall that the similar mathematical model can be used
in the problem of GPS localization on the plane. In this case, we have k emitters of
the Poisson signals and an object which receives these signals. The positions of the
emitters are known and the problem is in the estimation of the position of the object by
the observations of the signals. The intensity functions of the received Poisson signals
depend on the distance between the emitters and the object and the receiver has to
define its position by these observations (see, e.g., Luo 2013).

The goal of Chernoyarov and Kutoyants (2019), Farinetto et al. (2018) and of this
work is to evaluate the error Eϑ0‖ϑ̃ − ϑ0‖2, where ϑ̃n is the Bayes estimator (BE)
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Poisson source localization on the plane: cusp case 1139

with the quadratic loss function. The difference between these three works is in the
conditions of regularity of the functions λ j (·) and as a consequence of it, the rates of
convergence of the errors are different.

Let us remind this class of models and errors of estimation with the help of the
Poisson process with intensity function

λn (ϑ, t) = 2n

∣∣∣
∣
t − ϑ

δ

∣∣∣
∣

κ

1I{0≤t−ϑ≤δ} + 2n1I{t>ϑ+δ} + n, 0 ≤ t ≤ T .

Here, the unknown parameter ϑ is one-dimensional, ϑ ∈ (α, β) ⊂ [0, T ]. Choosing
the different values of κ , we obtain statistical problems of different regularity. The
examples of such intensities are given in Fig. 2, where we put n = 1.

The cases (a) and (b) correspond to the regular (smooth, LAN) case. In the case
(c), we have cusp-type singularity. The case (d) corresponds to change-pointmodel of
observations and the case (e) is explosion-type singularity. The rates of convergence
of errors in these cases are

(a) Eϑ0‖ϑ̃n − ϑ0‖2 ≈ C
n , (b) Eϑ0‖ϑ̃n − ϑ0‖2 ≈ C

n ln n ,

(c) Eϑ0‖ϑ̃n − ϑ0‖2 ≈ C

n
2

2κ+1
, (d) Eϑ0‖ϑ̃n − ϑ0‖2 ≈ C

n2
,

(e) Eϑ0‖ϑ̃n − ϑ0‖2 ≈ C

n
2

2κ+1
.
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Fig. 2 Intensity functions of different regularity: a κ = 5
8 , b κ = 1

2 , c κ = 1
8 , d κ = 0, e κ = − 3

8
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For the case (a), seeKutoyants (1979); the case (b) was considered in Chernoyarov and
Kutoyants (2019); for the case (c), see Dachian (2003); for the case (d), see Kutoyants
(1984), while a situation similar to the case (e) was studied in Dachian (2011).

Our work is devoted to the problem of source localization in the situation close to
the case (c) with κ ∈ (0, 1/2). As we explain below, this type of singularity can be an
alternative to the well-known change-point-type models with discontinuous intensity
functions.

We have to note that the study of MLE and BE in all these cases was done with
the help of some general results developed in Ibragimov and Khasminskii (1981) con-
cerning behavior of estimators. Their method is based on the study of the normalized
likelihood ratio random fields, which we remind below in the next section.

We have k independent observations of inhomogeneous Poisson processes Xn =
(X1, . . . , Xk) with intensities (1) depending on τ j (ϑ0). We suppose that the position
of the source ϑ0 ∈ Θ is unknown and we have to estimate ϑ0 by the observations Xn .
Here, Θ ⊂ R2 is a convex bounded and open set.

It seems that the mathematical study of this class of models was not yet sufficiently
developed. The statistical models of inhomogeneous Poisson process with intensity
functions having discontinuities along some curves depending on unknownparameters
were considered in Sections 5.2 and 5.3 of Kutoyants (1998). Statistical inference for
point processes can be found, for example, in Karr (1991), in Snyder andMiller (1991)
and in Streit (2010). Our interest to this class of models has the following motivation.
There are two large classes of models: regular, where the characteristics of the models
are sufficiently smooth with respect to unknown parameter and change-point-type
models, where the functions describing the models are discontinuous. The properties
of estimators and especially the rate of convergence in these two classes are essentially
different. If we consider the problem of detection by a physical device (detector) of the
timeof positive signals arriving, then the data have strongly increasing at themoment of
signal arriving characteristic function. The electrical current of the detector according
to physical law cannot have jumps and the pure jumpmodel does not fit to the real data.
Oneway to describe such data can be cusp-typemodels. Therefore, the statistical study
of suchmodels correspondswell to certain real data.What happens if the continuous or
change-point-type models used in the situations, where the true signal is of cusp-type
were described in Kutoyants (2017) and in Chernoyarov et al. (2018). That is why
by our mind, the cusp-type models have to be studied as much as the change-point
models. For diffusion processes, such models were studied in Dachian and Kutoyants
(2003) and in Kutoyants (2019).

Let us recall the definitions of the MLE and BE. The functions μ j (·) are bounded
and the constant λ0 > 0; therefore, the measures induced by the processes X j in
the space of their realizations are equivalent (see Liptser and Shiryayev 2001). The
likelihood ratio function L (ϑ, Xn) is

ln L
(
ϑ, Xn) =

k∑

j=1

∫ T

τ j

ln

(

1 + μ j
(
t − τ j

)

λ0

)

dX j (t) − n
k∑

j=1

∫ T

τ j

μ j
(
t − τ j

)
dt .

123



Poisson source localization on the plane: cusp case 1141

Of course, τ j = τ j (ϑ) and the observations Xn = (X1, . . . , Xk), where Xn
j =

(
X j (t) , 0 ≤ t ≤ T

)
, j = 1, . . . , k are counting processes from k detectors. The

intensity functions μ j (·) is given below in (5).
The maximum likelihood estimator (MLE) ϑ̂n and Bayesian estimator (BE) ϑ̃n for

the quadratic loss function are defined by the “usual” relations

L
(
ϑ̂n, X

n
)

= sup
ϑ∈Θ

L
(
ϑ, Xn) (2)

and

ϑ̃n =
∫
Θ

ϑ p (ϑ) L (ϑ, Xn) dϑ
∫
Θ
p (ϑ) L (ϑ, Xn) dϑ

. (3)

Here, p (ϑ) , ϑ ∈ Θ is the prior density. We suppose that it is positive, continuous
function onΘ . In thiswork,we study theBEonly.We do not describe here the behavior
of the maximum likelihood estimator (MLE) ϑ̂ for two reasons. First, this estimator is
not asymptotically efficient and second, its study requires additional technical lemma
which we suppose to prove later.We give some details in the section Discussion below.

2 Main result

Suppose that there exists a source of Poisson signals at some point ϑ0 = (x0, y0) ∈
Θ ⊂ R2 and k ≥ 3 sensors (detectors) on the same plane located at the points
ϑ j = (

x j , y j
)
, j = 1, . . . , k. The source was activated at the (known) instant t = 0

and the signals from the source (independent inhomogeneous Poisson processes) are
registered by all k detectors. The signal arrives at the j-th detector at the instant τ j . Of
course, τ j = τ j (ϑ0) is the time necessary for the signal to arrive in the j-th detector
defined by the relation

τ j (ϑ0) = ν−1
∥
∥ϑ j − ϑ0

∥
∥,

where ν > 0 is the known speed of propagation of the signal and ‖·‖ is the Euclidean
norm (distance) inR2.

The intensity function of the Poisson process Xn
j = (

X j (t) , 0 ≤ t ≤ T
)
registered

by the j-th detector is

λ j,n (ϑ0, t) = nS j
(
t − τ j (ϑ0)

)+ nλ0, 0 ≤ t ≤ T , (4)

where nS j
(
t − τ j (ϑ0)

)
is the intensity function of the signal and nλ0 > 0 is intensity

of the noise. We suppose that the function S j (·) of the signal can be presented as
follows:

S j
(
t − τ j

) = λ j
(
t − τ j

)
∣∣
∣∣
t − τ j

δ

∣∣
∣∣

κ

1I{0≤t−τ j≤δ} + λ j
(
t − τ j

)
1I{t−τ j>δ}. (5)
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1142 O. V. Chernoyarov et al.

Here, δ > 0 is some known (small) parameter. This work is devoted to the problem
of parameter estimation in the model with cusp-type singularity. This singularity is
provided by the choice of the parameter κ ∈ (0, 1/2). Recall that we consider cusp-
type models as smoothed version of the change-point models.

The log-likelihood ratio formula in our case is

ln L
(
ϑ, Xn) =

n∑

j=1

∫ τ j+δ

τ j

ln

(

1 + λ j
(
t − τ j

)

λ0

∣∣
∣∣
t − τ j

δ

∣∣
∣∣

κ
)

dX j (t)

+
n∑

j=1

∫ T

τ j+δ

ln

(

1 + λ j
(
t − τ j

)

λ0

)

dX j (t)

− n
∫ τ j+δ

τ j

λ j
(
t − τ j

)
∣∣∣∣
t − τ j

δ

∣∣∣∣

κ

dt − n
∫ T

τ j+δ

λ j
(
t − τ j

)
dt,

where for simplicity of expression, we omitted in τ j (ϑ) the dependence on ϑ .

Introduce the notations: ϕn = n− 1
2κ+1 and for j = 1, . . . , k

τ j (ϑ0 + νϕnu) = τ j (ϑ0) − ϕn〈m j , u〉 + ‖u‖2 O
(
ϕ2
n

)
,

m j =
(
x j − x0

ρ j
,
y j − y0

ρ j

)
, ρ j = ∥∥ϑ j − ϑ0

∥∥,
∥∥m j

∥∥ = 1,

α j = inf
ϑ∈Θ

τ j (ϑ), β j = sup
ϑ∈Θ

τ j (ϑ), T j = [
α j , β j

]
. (6)

Conditions C .

C1. The set Θ is open, convex, bounded and such that 0 < α j < β j < T for all
j = 1, . . . , k.
C2. There exists ε > 0 such that

∥
∥ϑ j − ϑ0

∥
∥ ≥ ε for all ϑ0 ∈ Θ and for all

j = 1, . . . , k.
C3. The parameters κ ∈ (0, 1

2

)
and δ ∈ (0, T ).

C4. The functions λ j (t) > 0 have continuous derivatives λ′
j (·) for all j =

1, . . . , k.
C5. There are at least three detectors which are not on the same line.

By the condition C2, we have min j ρ j > 0. This condition is quite restrictive
because if we take as Θ the region including ϑ0 and all ϑ j , we have to suppose that
there exists ε > 0 such that the disks C j = {

ϑ0 : ∥∥ϑ j − ϑ0
∥∥ ≤ ε

}
are excluded

from Θ , but in this case, the set Θ is no more convex. Note that it is possible to
modify the proof in such a way that the consistency and convergence to the limit
distribution are uniform on compacts K ⊂ Θ which do not include the positions of
the detectors ϑ j . Another point, when we do the re-normalization ϑ = ϑ0+νϕnu with
u ∈ Un = {u : ϑ0 + νϕnu ∈ Θ}, we have to exclude the values u which correspond to
ϑ ∈ C j . To avoid such problems, we extend the normalized likelihood ratio random
field to include these values u, but the true value ϑ0 is always separated from ϑ j .
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Poisson source localization on the plane: cusp case 1143

Introduce the notations: λ j = λ j (0),

B j = {
u : 〈m j , u〉 < 0

}
, B

c
j = {

u : 〈m j , u〉 ≥ 0
}
, γ j = λ j

δκ
√

λ0
,

J j (u) = J j,− (u) 1I{u∈B j} + J j,+ (u) 1I{
u∈Bc

j

}, u ∈ R2,

J j,− (u) = γ j

∫ ∞

0

[∣
∣s + 〈m j , u〉∣∣κ 1I{s>−〈m j ,u〉} − |s|κ

]
dWj (s) ,

J j,+ (u) = γ j

∫ ∞

−〈m j ,u〉
[∣∣s + 〈m j , u〉∣∣κ − |s|κ 1I{s>0}

]
dWj (s) ,

R j (u) = R j,−1I{u∈B j} + R j,+1I{u∈Bc
j

}, u ∈ R2,

R j,− = γ 2
j

∫ ∞

0

[|s − 1|κ 1I{s>1} − |s|κ]2 ds,

R j,+ = γ 2
j

∫ ∞

−1

[|s + 1|κ − |s|κ 1I{s>0}
]2 ds.

Here, Wj (·) , j = 1, . . . , k are independent Wiener processes. The limit likelihood
ratio field is

Z (u) = exp

⎧
⎨

⎩

k∑

j=1

[

J j (u) −
∣∣〈m j , u〉∣∣2κ+1

2
R j (u)

]⎫⎬

⎭
, u ∈ R2.

Note that this is a product of k independent random fields

Z (u) =
k∏

j=1

Z j (u) , Z j (u) = exp

{

J j (u) −
∣∣〈m j , u〉∣∣2κ+1

2
R j (u)

}

.

Introduce as well the random vector ζ̃ , which has the same distribution as the limit of
the normalized BE

ζ̃ = ν

∫
R2 uZ (u) du
∫
R2 Z (u) du

.

Remark that if all detectors are on the same line, then the consistent identification
is impossible because the same signals come from the symmetric with respect to this
line possible locations of the source.

We have the following minimax lower bound on the mean square errors of all
estimators ϑ̄n : Let the conditions C be fulfilled; then, for any ϑ0 ∈ Θ

lim
δ→0

lim
n→∞

sup
‖ϑ−ϑ0‖≤δ

n
2

2κ+1Eϑ

∥∥ϑ̄n − ϑ
∥∥2 ≥ Eϑ0

∥∥∥ζ̃
∥∥∥
2
.
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1144 O. V. Chernoyarov et al.

For proof see, for example, Theorem 2.12.1 of Ibragimov and Khasminskii (1981).
The simple explication of the construction of such bounds can be given as follows. Let
us introduce a prior density pδ (ϑ) on the set Θδ = {ϑ : ‖ϑ − ϑ0‖ < δ} and denote
ϑ̃δ,n , the corresponding Bayes estimators. Suppose as well that we have the uniform
convergence of the second moments of this estimator. Then for any estimator ϑ̄n , we
can write

sup
‖ϑ−ϑ0‖≤δ

n
2

2κ+1Eϑ

∥∥ϑ̄n − ϑ
∥∥2 ≥ n

2
2κ+1

∫

Θδ

Eϑ

∥∥ϑ̄n − ϑ
∥∥2 pδ (ϑ) dϑ

≥ n
2

2κ+1

∫

Θδ

Eϑ‖ϑ̃δ,n − ϑ‖2 pδ (ϑ) dϑ −→
∫

Θδ

Eϑ‖ζ̃‖2 pδ (ϑ) dϑ −→ Eϑ0‖ζ̃‖2

as n → ∞ and then δ → 0.
The numerical calculations of the limit variances of MLE and BE for the cusp-type

models can be found in Kordzakhia et al. (2018) and in Dachian et al. (2018).
We call the estimator ϑ̄n asymptotically efficient, if for all ϑ0 ∈ Θ , we have the

equality

lim
δ→0

lim
n→∞ sup

‖ϑ−ϑ0‖≤δ

n
2

2κ+1Eϑ

∥∥ϑ̄n − ϑ
∥∥2 = Eϑ0‖ζ̃‖2.

Theorem 1 Let the conditions C be fulfilled; then, the BE ϑ̃n is uniformly consistent,
converges in distribution

n
1

2κ+1

(
ϑ̃n − ϑ0

)
�⇒ ζ̃ ,

for any p > 0

lim
n→∞ n

p
2κ+1 Eϑ0‖ϑ̃n − ϑ0‖p = Eϑ0

∥∥∥ζ̃
∥∥∥
p
,

and BE is asymptotically efficient.

Proof The properties of estimators mentioned in this theorem will be verified with
the help of the approach developed in Ibragimov and Khasminskii (1981). Let us note
that we already used a similar method in Chernoyarov and Kutoyants (2019) and in
Farinetto et al. (2018). For the convenience of understanding, we remind it here once
more. Introduce the normalized likelihood ratio random field

Zn (u) = L (ϑ0 + νϕnu, Xn)

L (ϑ0, Xn)
, u ∈ Un = {u : ϑ0 + νϕnu ∈ Θ}

where the normalizing function ϕn = n− 1
2κ+1 .

Suppose that we already proved the convergence

Zn (·) �⇒ Z (·) .
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Poisson source localization on the plane: cusp case 1145

Then, the limit distribution of the BE can be obtained as follows (see Ibragimov and
Khasminskii 1981). Below, we change the variables ϑ = ϑu = ϑ0 + νϕnu.

ϑ̃n =
∫
Θ

θ p (θ) L (θ, Xn) dθ
∫
Θ
p (θ) L (θ, Xn) dθ

= ϑ0 + νϕn

∫
Un

up (θu) L (θu, Xn) du
∫
Un

p (θu) L (θu, Xn) du

= ϑ0 + νϕn

∫
Un

up (θu) Zn (u) du
∫
Un

p (θu) Zn (u) du
.

Hence,

ϕ−1
n

(
ϑ̃n − ϑ0

)
= ν

∫
Un

up (θu) Zn (u) du
∫
Un

p (θu) Zn (u) du
�⇒ ν

∫
R2 uZ (u) du
∫
R2 Z (u) du

= ζ̃ .

Recall that p (θu) → p (ϑ0) > 0.
The properties of Zn (u) required in Theorem 1.10.2 of Ibragimov and Khasminskii

(1981) are checked in three lemmas below. Remind that this approach to the study of
the properties of these estimators was applied in Kutoyants (1979, 1998). Here, we
use some there obtained inequalities. ��

Lemma 1 Let the conditions C be fulfilled; then, the finite-dimensional distributions
of the random field Zn (u) , u ∈ Un converge to the finite-dimensional distributions
of the limit random field Z (u) , u ∈ R2 and this convergence is uniform on compacts
K ∈ Θ .

Proof Let us denote dπ j,n (t) = dX j (t) − n
[
S j
(
t − τ j (ϑ0)

)+ λ0
]
dt and put ϑu =

ϑ0 + νϕnu, τ j = τ j (ϑ0). Then, we can write

ln Zn (u) =
k∑

j=1

∫ T

0
ln

(
S j
(
t − τ j (ϑu)

)+ λ0

S j
(
t − τ j

)+ λ0

)

dπ j,n (t)

− n
k∑

j=1

∫ T

0

[
S j
(
t − τ j (ϑu)

)+ λ0

S j
(
t − τ j

)+ λ0
− 1

− ln

(
S j
(
t − τ j (ϑu)

)+ λ0

S j
(
t − τ j

)+ λ0

)]
[
S j
(
t − τ j

)+ λ0
]
dt

=
k∑

j=1

∫ T

0
Fj (t, ϑu) dπ j,n (t) − n

k∑

j=1

∫ T

0
G j (t, ϑu) dt

with obvious notation.
Let u ∈ B j . Then, τ j (ϑu) > τ j . Following the same arguments as those given in

Dachian (2003), we obtain the asymptotic (n → ∞) relations:
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1146 O. V. Chernoyarov et al.

J j,n (u) =
∫ T

0
Fj (t, ϑu) dπ j,n (t) =

∫ τ j+δ

τ j

Fj (t, ϑu) dπ j,n (t) (1 + o (1))

I j,n (u) = n
∫ T

0
G j (t, ϑu) dt = n

∫ τ j+δ

τ j

G j (t, ϑu) dt (1 + o (1)) .

For t ∈ [τ j , τ j − ϕn〈m j , u〉] as ϕn → 0, we obtain the expansions

λ j (t − τ j (ϑu)) = λ j (0) + (
t − τ j (ϑu)

)
λ′
j (0) (1 + o (1)) = λ j + o (1)

λ j (t − τ j (ϑu)) = λ j (t − τ j ) + ϕn〈m j , u〉λ′
j (t − τ j ) + O

(
ϕ2
n

)
‖u‖2 ,

∣
∣∣∣
t − τ j (ϑu)

δ

∣
∣∣∣

κ

= δ−κ
∣
∣∣t − τ j + ϕn〈m j , u〉 + O

(
ϕ2
n

)∣∣∣
κ

= δ−κ
∣∣t − τ j + ϕn〈m j , u〉∣∣κ + O

(
ϕ2
n

)
.

Here, we used the inequality |a + b|κ ≤ |a|κ + |b|κ .
Further, for τ j ≤ t ≤ τ j − ϕn〈m j , u〉 and ‖u‖ < L for any L >, we can write

ln

(
S j (t − τ j (ϑu)) + λ0

S j
(
t − τ j

)+ λ0

)

= ln

⎛

⎜
⎝

λ0

λ j
(
t − τ j

) ∣∣
∣
t−τ j

δ

∣∣
∣
κ + λ0

⎞

⎟
⎠

= − ln

(
1 + λ j

λ0

∣
∣∣∣
t − τ j

δ

∣
∣∣∣

κ)
(1 + O (ϕn))

= −λ j

λ0

∣
∣∣∣
t − τ j

δ

∣
∣∣∣

κ (
1 + O

(
ϕ2κ
n

))
.

For t ∈ [τ j − ϕn〈m j , u〉, δ], the similar relations are

ln

(
S j (t − τ j (ϑu)) + λ0

S j
(
t − τ j

)+ λ0

)

= ln

⎛

⎜
⎝

λ j
(
t − τ j (ϑu)

) ∣∣∣
t−τ j (ϑu)

δ

∣∣∣
κ + λ0

λ j
(
t − τ j

) ∣∣∣
t−τ j

δ

∣
∣∣
κ + λ0

⎞

⎟
⎠

= ln

⎛

⎜
⎝1 +

λ j
(
t − τ j (ϑu)

) ∣∣∣
t−τ j (ϑu)

δ

∣∣∣
κ − λ j

(
t − τ j

) ∣∣∣
t−τ j

δ

∣∣∣
κ

λ j
(
t − τ j

) ∣∣∣
t−τ j

δ

∣
∣∣
κ + λ0

⎞

⎟
⎠

= λ j
(
t − τ j

)

S
(
t − τ j

)+ λ0

[∣∣∣∣
t − τ j + ϕn〈m j , u〉

δ

∣
∣∣∣

κ

−
∣
∣∣∣
t − τ j

δ

∣
∣∣∣

κ] (
1 + O

(
ϕ2κ
n

))
.

Therefore, (below τ j,u = τ j − ϕn〈m j , u〉)
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Eϑ0

(
J j,n (u)

)2 =
∫ T

0
Fj (t, ϑu)

2 λ j,n (ϑ0, t) dt

= λ2j n

λ0

∫ τ j,u

τ j

∣∣∣∣
t − τ j

δ

∣∣∣∣

2κ

dt + o (1)

+
∫ δ

τ j,u

nλ j
(
t − τ j

)2
[
S
(
t − τ j

)+ λ0
]2

[∣∣∣∣
t − τ j + ϕn〈m j , u〉

δ

∣∣∣∣

κ

−
∣∣∣∣
t − τ j

δ

∣∣∣∣

κ]2
dt

= λ2j n

λ0δ2κ
ϕ2κ+1
n

∫ −〈m j ,u〉

0
|s|2κ ds + o (1)

+ n

δ2κ
ϕ2κ+1
n

∫ δ−τ j
ϕn

−〈m j ,u〉
λ j (sϕn)

2

S j (sϕn) + λ0

[∣∣s + 〈m j , u〉∣∣κ − |s|κ]2 ds

= γ 2
j

∣
∣〈m j , u〉∣∣2κ+1

∫ 1

0
|v|2κ dv

+ γ 2
j

∣∣〈m j , u〉∣∣2κ+1
∫ − δ−τ j

〈m j ,u〉ϕn

1

[|v − 1|κ − |v|κ]2 dv + o (1)

= γ 2
j

∣∣〈m j , u〉∣∣2κ+1
∫ − δ−τ j

〈m j ,u〉ϕn

0

[|v − 1|κ 1I{v≥1} − |v|κ]2 dv + o (1)

= γ 2
j

∣∣〈m j , u〉∣∣2κ+1
Rn + o (1) ,

where we changed the variables t = τ j + sϕn and s = −v〈m j , u〉. Recall that
nϕ2κ+1

n = 1 and γ 2
j = λ2jλ

−1
0 δ−2κ . Note that for any L > 0, we have uniform

convergence

sup
−〈m j ,u〉≤s≤L

∣
∣∣∣∣

λ j (sϕn)
2

S j (sϕn) + λ0
− λ2j

λ0

∣
∣∣∣∣
−→ 0

and the corresponding integral above is converging.
Hence for u ∈ B−, we obtain the following limit

Rn =
∫ − δ−τ j

〈m j ,u〉ϕn

0

[|v − 1|κ 1I{v≥1} − |v|κ]2 dv

−→
∫ ∞

0

[|v − 1|κ 1I{v≥1} − |v|κ]2 dv = R j,−.

These arguments allow us to write the representation

J j,n (u) = γ j

∫ δ−τ j
ϕn

0

[∣∣s + 〈m j , u〉∣∣κ 1I{s≥−〈m j ,u〉} − |s|κ
]
dWj,n (s) + o (1) .
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1148 O. V. Chernoyarov et al.

Here,

Wj,n (s) = 1√
λ0nϕn

[

X j
(
τ j + sϕn

)− X j
(
τ j
)−

∫ τ j+sϕn

τ j

λ j,n (ϑ0, v) dv

]

,

Eϑ0Wj,n (s)2 = n

λ0nϕn

∫ τ j+sϕn

τ j

λ j,n (ϑ0, v) dv = s + o (1) ,

Eϑ0Wj,n (s) = 0, Eϑ0Wj,n (s1)Wj,n (s2) = s1 ∧ s2 + o (1) .

The standard central limit theorem provides us the corresponding convergence of
stochastic integrals. For any u1, . . . , uM ∈ B j , we have the joint asymptotic normality
of the stochastic integrals

Y j,n ≡
(
J j,n (u1) , . . . , J j,n (uM )

)
�⇒ Y j ≡

(
J j (u1) , . . . , J j (uM )

)
,

where

J j (u) = γ j

∫ ∞

0

[∣∣s + 〈m j , u〉∣∣κ 1I{s≥−〈m j ,u〉} − |s|κ
]
dWj (s) .

Moreover, the similar arguments give us the convergence

Yn ≡
(
Y1,n, . . . ,Yk,n

)
�⇒ Y ≡

(
Y1, . . . ,Yk

)
. (7)

Consider now the values u ∈ B
c
j . Then, τ j (ϑu) ≤ τ j (ϑ0) or asymptotically

τ j (ϑ0) − ϕn〈m j , u〉 + O
(
ϕ2
n

) ≤ τ j (ϑ0). The similar arguments allow us to ver-
ify the convergence (7) with the limit process

J j (u) = γ j

∫ ∞

−〈m j ,u〉
[∣∣s + 〈m j , u〉∣∣κ 1I{s≤0} + [∣∣s + 〈m j , u〉∣∣κ − |s|κ]] dW (s).

Therefore, we have the convergence of finite-dimensional distributions of the
stochastic integrals.

For the ordinary integral I j,n (u), we have the similar representation (u ∈ B,G j,t =
G j (t, u))

I j,n (u) = n
∫ τ j

0
G j,t dt + n

∫ τ j (ϑu)

τ j

G j,t dt + n
∫ τ j+δ

τ j (ϑu)

G j,t dt

+ n
∫ τ j (ϑu)+δ

τ j+δ

G j,t dt + n
∫ T

τ j (ϑu)+δ

G j,t dt

= n
∫ τ j (ϑu)

τ j

G j,t dt + n
∫ τ j+δ

τ j (ϑu)

G j,t dt + n
∫ τ j (ϑu)+δ

τ j+δ

G j,t dt + o (1) .
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For t ∈ [0, τ j
]
, we have G j (t, u) = 0 and for t ∈ [τ j + δ, T

]
, the function G j (t, u)

has continuous bounded derivative and we can write

n
∫ T

τ j (ϑu)+δ

G j,t dt ≤ Cnϕ2
n ‖u‖2 = o (1) .

Consider the case t ∈ [τ j , τ j (ϑu)
]
. Using expansion ln (1 + x) = x − x2

2 + O
(
x3
)
,

we can write

λ j,n (ϑu, t)

λ j,n (ϑ0, t)
− 1 − ln

(
λ j,n (ϑu, t)

λ j,n (ϑ0, t)

)
= λ0

λ j
(
t − τ j

) ∣∣∣
t−τ j

δ

∣∣∣
κ + λ0

− 1 − ln

⎛

⎜
⎝

λ0

λ j
(
t − τ j

) ∣∣∣
t−τ j

δ

∣
∣∣
κ + λ0

⎞

⎟
⎠ = λ2j

2λ20δ
2κ

∣∣t − τ j
∣∣2κ (1 + o (1)) .

For t ∈ [τ j (ϑu) , τ j + δ
]
, we have

λ j,n (ϑu, t)

λ j,n (ϑ0, t)
− 1 − ln

(
λ j,n (ϑu, t)

λ j,n (ϑ0, t)

)
=

λ j
(
t − τ j (ϑu)

) ∣∣∣
t−τ j (ϑu)

δ

∣∣∣
κ + λ0

λ j
(
t − τ j

) ∣∣
∣
t−τ j

δ

∣∣
∣
κ + λ0

− 1 − ln

⎛

⎜
⎝

λ j
(
t − τ j (ϑu)

) ∣∣∣
t−τ j (ϑu)

δ

∣
∣∣
κ + λ0

λ j
(
t − τ j

) ∣∣∣
t−τ j

δ

∣∣∣
κ + λ0

⎞

⎟
⎠

= λ2j

2λ20δ
2κ

( ∣∣t − τ j (ϑu)
∣∣κ − ∣∣t − τ j

∣∣κ
)2

(1 + o (1)) .

These relations allow us to write

I j,n = nλ2j

2λ0δ2κ

∫ τ j (ϑu)

τ j

∣∣t − τ j
∣∣2κ dt

+ nλ2j

2λ0δ2κ

∫ τ j+δ

τ j (ϑu)

( ∣∣t − τ j (ϑu)
∣∣2κ − ∣∣t − τ j

∣∣2κ
)
dt + o (1)

= nϕ2κ+1
n λ2j

2λ0δ2κ

∫ −〈m j ,u〉

0
|s|2κ ds

+ nλ2jϕ
2κ+1
n

2λ0δ2κ

∫ δ
ϕn

−〈m j ,u〉

( ∣∣s + 〈m j , u〉∣∣κ − |s|κ
)2
ds + o (1)

= λ2j

∣∣〈m j , u〉∣∣2κ+1

2λ0δ2κ

∫ 1

0
|s|2κ ds
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1150 O. V. Chernoyarov et al.

+ nλ2jϕ
2κ+1
n

2λ0δ2κ

∫ τ j−τ j (ϑu)
δ

ϕn

1

(
|v − 1|κ − |v|κ

)2
ds + o (1)

→ γ 2
j

2

∫ ∞

0

[
|s|2κ 1I{s<−〈m j ,u〉}+

( ∣
∣s + 〈m j , u〉∣∣κ − |s|κ

)2
1I{s≥−〈m j ,u〉}

]
ds.

Note that all convergences mentioned above are uniform on compacts K ⊂ Θ . ��
Lemma 2 Let the conditions C2 be fulfilled, then there exists a constant C > 0, which
does not depend on n such that for any R > 0

sup
ϑ0∈Θ

sup
‖u1‖+‖u2‖≤R

‖u1 − u2‖−2κ−1 Eϑ0

∣∣∣∣Z
1
2
n (u1) − Z

1
2
n (u2)

∣∣∣∣

2

≤ C (1 + R).

Proof We have the estimate (see, e.g., Kutoyants 1998)

Eϑ0

∣∣∣∣Z
1
2
n (u1) − Z

1
2
n (u2)

∣∣∣∣

2

≤
k∑

j=1

∫ T

0

[√
λ j,n

(
ϑu2 , t

)−
√

λ j,n
(
ϑu1 , t

)]2
dt

=
k∑

j=1

∫ T

0

n2
[
S j
(
t − τ j

(
ϑu2

))− S j
(
t − τ j

(
ϑu1

))]2

[√
λ j,n

(
ϑu2 , t

)+
√

λ j,n
(
ϑu1 , t

)]2 dt

≤ n

4λ0

k∑

j=1

∫ T

0

[
S j
(
t − τ j

(
ϑu2

))− S j
(
t − τ j

(
ϑu1

))]2dt,

where we used the estimate λ j,n (ϑu, t) ≥ nλ0. Suppose that τ j (ϑu1) < τ j (ϑu2) and
denote Δt = √

n
[
S j
(
t − τ j

(
ϑu2

))− S j
(
t − τ j

(
ϑu1

))]
. Then,

∫ T

0
Δ2

t dt =
∫ τ j (ϑu1 )

0
Δ2

t dt +
∫ τ j (ϑu2 )

τ j (ϑu1 )

Δ2
t dt +

∫ T

τ j (ϑu2 )

Δ2
t dt

=
∫ τ j (ϑu2 )

τ j (ϑu1 )

Δ2
t dt +

∫ T

τ j (ϑu2 )

Δ2
t dt .

Remark that the function Δt = 0 on the interval
[
0, τ j (ϑu1)

]
and Δt = nS j

(
ϑu1 , t

)

on the interval
[
τ j (ϑu1), τ j (ϑu2)

]
. Therefore,

∫ τ j (ϑu2 )

τ j (ϑu1 )

Δ2
t dt = n

∫ τ j (ϑu2 )

τ j (ϑu1 )

λ j
(
t − τ j (ϑu1)

)2
∣∣
∣∣
t − τ j (ϑu1)

δ

∣∣
∣∣

2κ

dt

≤ Cn
∫ τ j (ϑu2 )

τ j (ϑu1 )

∣∣∣∣
t − τ j (ϑu1)

δ

∣∣∣∣

2κ

dt ≤ Cn

∣∣∣∣
τ j (ϑu2) − τ j (ϑu1)

δ

∣∣∣∣

2κ+1

≤ Cnϕ2κ+1
n ‖u2 − u1‖2κ+1 = C ‖u2 − u1‖2κ+1 .
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Further,

∫ T

τ j (ϑu2 )

Δ2
t dt =

∫ τ j (ϑu1 )+δ

τ j (ϑu2 )

Δ2
t dt +

∫ τ j (ϑu2 )+δ

τ j (ϑu1 )+δ

Δ2
t dt +

∫ T

τ j (ϑu2 )+δ

Δ2
t dt . (8)

Using the estimate

∣∣λ j
(
t − τ j (ϑu2)

)− λ j
(
t − τ j (ϑu1)

)∣∣2 ≤ Cϕ2
n ‖u2 − u1‖2

we obtain for the first integral

∫ τ j (ϑu1 )+δ

τ j (ϑu2 )

Δ2
t dt = n

∫ τ j (ϑu1 )+δ

τ j (ϑu2 )

[
λ j
(
t − τ j (ϑu2)

)
∣∣∣∣
t − τ j (ϑu2)

δ

∣∣∣∣

κ

−λ j
(
t − τ j (ϑu1)

)
∣∣∣
∣
t − τ j (ϑu1)

δ

∣∣∣
∣

κ]2
dt

≤ Cnϕ2
n ‖u2 − u1‖2 + Cn

∫ τ j (ϑu1 )+δ

τ j (ϑu2 )

[∣∣t − τ j (ϑu2)
∣
∣κ − ∣

∣t − τ j (ϑu1)
∣
∣κ]2 dt

≤ Cϕ1−2κ
n ‖u2 − u1‖2

+ Cnϕ2κ+1
n

∫ τ j (ϑu1 )−τ j (ϑu2 )+δ

ϕn

0

[
|s|κ −

∣∣
∣∣s − τ j (ϑu1) − τ j (ϑu2)

ϕn

∣∣
∣∣

κ]2
ds

≤ Cϕ1−2κ
n ‖u2 − u1‖2 + C ‖u2 − u1‖2κ+1 ,

where we used the relations

∣∣∣
∣
τ j (ϑu1) − τ j (ϑu2)

ϕn
+ 〈m j , u1〉 − 〈m j , u2〉

∣∣∣
∣ ≤ Cϕn ‖u2 − u1‖2 ,

∫ ∞

0

[|s|κ − ∣∣s − 〈m j , u1 − u2〉
∣∣κ]2 ds

≤ ‖u2 − u1‖2κ+1
∫ ∞

0

[|v|κ − ∣∣v − 〈m j , e〉
∣∣κ]2 dv ≤ C ‖u2 − u1‖2κ+1 .

Here, we set s = v ‖u2 − u1‖ and e = ‖u2 − u1‖−1 (u2 − u1).
As on the interval

[
τ j (ϑu2) + δ, T

]
, the function S (t) has a bounded derivative

S′ (t), we can write

∫ T

τ j (ϑu2 )+δ

Δ2
t dt ≤ Cnϕ2

n ‖u2 − u1‖2 ≤ C (1 + R) ‖u2 − u1‖2κ+1 .

The other cases can be estimated by a similar way. ��
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1152 O. V. Chernoyarov et al.

Lemma 3 Let the conditions C be fulfilled, then there exists a constant κ > 0, which
does not depend on n such that

sup
ϑ0∈Θ

Eϑ0 Z
1
2
n (u) ≤ e−κ‖u‖ 2

2κ+1
. (9)

Proof Let us denote θu = ϑ0 + νϕnu and put

Z j,n (u) = exp

{∫ T

0
ln

(
λ j,n (θu, t)

λ j,n (ϑ0, t)

)
dX j (t)

−
∫ T

0

[
λ j,n (θu, t) − λ j,n (ϑ0, t)

]
dt

}
.

By Lemma 2.2 of Kutoyants (1998), we can write

Eϑ0 Z
1
2
j,n (u) = exp

{
−1

2

∫ T

0

[√
λ j,n (θu, t) −√

λ j,n (ϑ0, t)
]2

dt

}
.

Hence,

Eϑ0 Z
1
2
n (u) =

k∏

j=1

Eϑ0 Z
1
2
j,n (u)

= exp

⎧
⎨

⎩
−1

2

k∑

j=1

∫ T

0

[√
λ j,n (θu, t) −√

λ j,n (ϑ0, t)
]2

dt

⎫
⎬

⎭
. (10)

First for simplicity of calculation, we write

∫ T

0

[√
λ j,n (ϑ, t) −√

λ j,n (ϑ0, t)
]2

dt

=
∫ T

0

[
λ j,n (ϑ, t) − λ j,n (ϑ0, t)

]2

[√
λ j,n (ϑ, t) +√

λ j,n (ϑ0, t)
]2 dt

≥ c j n
∫ T

0

[
S j
(
t − τ j (ϑ)

)− S j
(
t − τ j

)]2 dt, (11)

where c j = (4λM )−1 > 0 and λM = λ0 + maxt∈T j S j (t). Therefore, it is sufficient
to study the integral

I j (ϑ) =
∫ T

0

[
S j
(
t − τ j (ϑ)

)− S j
(
t − τ j

)]2 dt

=
∫ T

τ j (ϑ)∧τ j

[
S j
(
t − τ j (ϑ)

)− S j
(
t − τ j

)]2 dt .
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We evaluate these integrals on two sets A = {ϑ : ‖ϑ − ϑ0‖ ≤ h} and A
c. Here,

h > 0 is some small number. Recall that we denoted τ j = τ j (ϑ0).
Let ϑ ∈ A ∩ B, where B = {

ϑ ∈ A : τ j (ϑ) > τ j (ϑ0)
}
. Moreover, τ j (ϑ) −

τ j (ϑ0) < δ. Then,

I j (ϑ) ≥
∫ τ j (ϑ)

τ j

S j
(
t − τ j

)2dt +
∫ τ j+δ

τ j (ϑ)

[
S j
(
t − τ j (ϑ)

)− S j
(
t − τ j

)]2 dt

=
∫ τ j (ϑ)−τ j

0
S j (s)

2ds +
∫ τ j−τ j (ϑ)+δ

0

[
S j (s) − S j

(
s − Δτ j

)]2 ds,

where Δ
(
τ j
) = τ j − τ j (ϑ). Further, (below λm = mint∈T j λ j (t) > 0)

∫ τ j (ϑ)−τ j

0
λ j (s)

2
( s
δ

)2κ
ds ≥ λ2m

δ2κ

∫ τ j (ϑ)−τ j

0
s2κds = λ2m

∣
∣τ j (ϑ) − τ j

∣
∣2κ+1

δ2κ (2κ + 1)
.

Recall that

τ j (ϑ) − τ j = 〈m j , ϑ − ϑ0〉 + O
(
h2
)

= 〈m j , e〉 ‖ϑ − ϑ0‖ + O
(
h2
)

,

where the unit vector e = (ϑ − ϑ0) ‖ϑ − ϑ0‖−1. Therefore,

∫ τ j (ϑ)−τ j

0
λ j (s)

2
( s
δ

)2κ
ds

≥ λ2m

∣∣〈m j , e〉
∣∣2κ+1

δ2κ (2κ + 1)
‖ϑ − ϑ0‖2κ+1 (1 + o (‖ϑ − ϑ0‖))

and we can take such h that

∫ τ j (ϑ)−τ j

0
λ j (s)

2
( s
δ

)2κ
ds ≥ λ2m

∣∣〈m j , e〉
∣∣2κ+1

2δ2κ (2κ + 1)
‖ϑ − ϑ0‖2κ+1 .

For the second integral, we have (δ∗ = τ j − τ j (ϑ) + δ > 0)

∫ δ∗

0

[
S j (s) − S j

(
s − Δ

(
τ j
))]2 ds

= 1

δ2κ

∫ δ∗

0

[
λ j (s)s

κ − λ j
(
s − Δ

(
τ j
)) ∣∣s − Δ

(
τ j
)∣∣κ]2 ds

≥ λ2m

δ2κ

∫ δ∗

0

[
sκ − ∣∣s − Δ

(
τ j
)∣∣κ]2 ds − C ‖ϑ − ϑ0‖2

≥ λ2m

δ2κ

∫ δ∗
Δ(τ j )

0

[
vκ − |v − 1|κ]2 dvΔ

(
τ j
)2κ+1 − C ‖ϑ − ϑ0‖2
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≥ λ2m

δ2κ

∫ δ∗
ch

0

[
vκ − |v − 1|κ]2 dv ∣∣〈m j , e〉

∣
∣2κ+1 ‖ϑ − ϑ0‖2κ+1

− C ‖ϑ − ϑ0‖2 ,

where we used the relation λ j
(
s − Δ

(
τ j
)) = λ j (s) + O

(
Δ
(
τ j
))

and set s =
vΔ

(
τ j
)
.

These estimates from below of the integral allow us to write

k∑

j=1

I j (ϑ) ≥ γ

k∑

j=1

∣
∣〈m j , e〉

∣
∣2κ+1 ‖ϑ − ϑ0‖2κ+1 − C ‖ϑ − ϑ0‖2 .

As k ≥ 3, we have

Q (e) =
k∑

j=1

∣∣〈m j , e〉
∣∣2κ+1

, inf‖e‖=1
Q (e) = q1 > 0.

Indeed, if q1 = 0, then there exists a vector e∗ such that Q (e∗) = 0 and this vector is
orthogonal to all m j , j = 1, . . . , k. Of course, this is impossible. Therefore, we can
take such sufficiently small h that for ϑ ∈ A ∩ B, we obtain the estimate

k∑

j=1

∫ T

0

[
S j
(
t − τ j (ϑ)

)− S j
(
t − τ j (ϑ0)

)]2 dt ≥ γ1 ‖ϑ − ϑ0‖2κ+1 (12)

with some positive γ1. For the other values of ϑ ∈ A, we have the similar estimates.
Let us consider these integrals for the values ϑ ∈ A

c. According to (11), we have
to study the function

g (h) = inf
ϑ0∈Θ

inf‖ϑ−ϑ0‖>h

k∑

j=1

∫ T

0

[
S j
(
t − τ j (ϑ)

)− S j
(
t − τ j (ϑ0)

)]2 dt,

and show that g (h) > 0.
Suppose that g (h) = 0, then this implies that there exists at least one point ϑ∗ ∈ Θ

such that ‖ϑ∗ − ϑ0‖ ≥ h and for all j = 1, . . . , k, we have

∫ T

0

[
S j
(
t − τ j

(
ϑ∗))− S j

(
t − τ j (ϑ0)

)]2dt = 0.

Let τ j (ϑ∗) > τ j . Then for all t ∈ [τ j , τ j (ϑ∗)
]
, we have

λ j
(
t − τ j

) ∣∣t − τ j
∣∣κ = 0
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and for t ∈ [τ j (ϑ∗) , τ j + δ
]

λ j
(
t − τ j

(
ϑ∗)) ∣∣t − τ j

(
ϑ∗)∣∣κ = λ j

(
t − τ j

) ∣∣t − τ j
∣∣κ .

Of course, we can have these two equalities if and only if τ j (ϑ
∗) = τ j (ϑ0) for all

j = 1, . . . , k. Recall that λ j (t) are strictly positive functions. From the geometry of
the model, it follows that it is impossible to have two different points such that the
distances from these points and k ≥ 3 detectors coincide.

Therefore, for ϑ ∈ A
c

k∑

j=1

∫ T

0

[
S j (t − τ j (ϑ)) − S j (t − τ j (ϑ0))

]2 dt ≥ g (h)

≥ g (h) ‖ϑ − ϑ0‖2κ+1

D2κ+1 ≥ γ2 ‖ϑ − ϑ0‖2κ+1 , (13)

where D = supϑ1,ϑ2∈Θ ‖ϑ1 − ϑ2‖.
From estimates (12) and (13), it follows that if we put ϑ = ϑ0 + νϕnu, then

k∑

j=1

∫ T

0

[√
λ j,n (θu, t) −√

λ j,n (ϑ0, t)
]2

dt ≥ γ n ‖ϑ − ϑ0‖2κ+1

= γ ν2κ+1 ‖u‖2κ+1 .

This estimates and (10) proves (9).
The properties of the likelihood ratio field Zn (·) established in Lemmas 1–3 are

sufficient conditions for Theorem1.10.2 of Ibragimov andKhasminskii (1981). There-
fore, Theorem 1 is proved. ��

3 Discussion

There are several problems which naturally arise for this model of observations. Note
that the properties of the MLE ϑ̂n can be studied too. This requires a special modifi-
cation of Lemma 2 to verify the tightness of the corresponding family of measures. If
this modification is proved, then we obtain the convergence

n
1

2κ+1

(
ϑ̂n − ϑ0

)
�⇒ û, Z

(
û
) = sup

u∈R2
Z (u)

and convergence of moments.
If the position ϑ0 is known and we have to estimate unknown κ ∈ (0, 1/2), then we

have regular statistical experiment, and the MLE and BE are asymptotically normal
and asymptotically efficient with regular rate

√
n.

The joint estimation of ϑ0 and κ ∈ (0, 1/2) is essentially much more difficult
problem because the rate of convergence of one estimator (ϑ) depends on another
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unknown parameter κ . The general method applied in this article does not work in
such cases.

For simplicity of the exposition, we supposed that the noise level in all detectors is
known and is the same. It is possible to consider the problem of the joint estimation
of ϑ and λ0. To do it, we have to add one variable else in the normalized likelihood
ratio process

Zn (u, v) = L
(
ϑ0 + νϕnu, λ0 + n−1/2v, Xn

)

L (ϑ0, λ0, Xn)
, u ∈ Un, v ∈ Vn

and verify the convergence of this random function to the limit random process

Z (u, v) = Z (u) Zλ (v) , Zλ (v) = exp

{
uη − v2

2
Iλ

}
, v ∈ R.

Here, Z (·) is the same random function as in Sect. 2, η is Gaussian random variable
independent of Z (·) and Iλ is the correspondingFisher information.As a result, wewill

obtain the joint convergence of ϑ̃n (see Theorem1) and
√
n
(
λ̃n − λ0

)
⇒ N

(
0, I−1

λ

)
.

In this work, we supposed that the source starts emission at the instant t = 0. It is
interesting to consider the more general statement with unknown start of the emission.

The limit distribution of the BE is described in this work with the help of the
random field Z (u) , u ∈ R2 and it will be interesting to have some pictures obtained
by numerical simulations for the densities of ζ̃ . In one-dimensional models with cusp-
type singularity, suchdensitieswere numerically calculated inKordzakhia et al. (2018).

Note that it is possible to construct a consistent estimator of ϑ0 in two steps as it
was proposed in Chernoyarov and Kutoyants (2019). First, we estimate k moments
τ = (τ1, . . . , τk) of arriving signals in detectors, say, τ̃1,n, . . . , τ̃k,n . Recall that

ξ̃ j,n = n
1

2κ+1
(
τ̃ j,n − τ j

) �⇒ ξ̃ j , j = 1, . . . , k

where ξ̃ j are independent random variables (see Dachian 2003). Hence, we have

ν2τ̃ j,n = ν2τ 2j + 2ϕnτ j ξ̃ j,n + ϕ2
n ξ̃

2
j,n = ρ2

j + 2νρ j ξ̃ j,nϕn + O
(
ϕ2
n

)
.

Then, we write the equations

(
x j − x∗

0

)2 + (
y j − y∗

0

)2 = ν2τ̃ j,n = ρ2
j + 2νρ j ξ̃ j,nϕn + O

(
ϕ2
n

)
, j = 1, . . . , k,

and obtain the least squares estimator ϑ∗
n , which is consistent and has the same rate of

convergence as the BE ϑ̃n studied in this work. See details in Section 3 of Chernoyarov
and Kutoyants (2019).
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