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Abstract
A time-domain test for the assumption of second-order stationarity of a functional time
series is proposed. The test is based on combining individual cumulative sum tests
which are designed to be sensitive to changes in themean, variance and autocovariance
operators, respectively. The combination of their dependent p values relies on a joint-
dependent block multiplier bootstrap of the individual test statistics. Conditions under
which the proposed combined testing procedure is asymptotically valid under station-
arity are provided. A procedure is proposed to automatically choose the block length
parameter needed for the construction of the bootstrap. The finite-sample behavior of
the proposed test is investigated in Monte Carlo experiments, and an illustration on a
real data set is provided.

Keywords Alpha mixing · CUSUM test · Autocovariance operator · Block multiplier
bootstrap · Change points

1 Introduction

Within the last decades, statistical analysis for functional time series has become
a very active area of research [see the monographs Bosq (2000), Ferraty and Vieu
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(2006), Horváth and Kokoszka (2012) and Hsing and Eubank (2015), among others].
Many authors impose the assumption of stationarity, which allows for developing
advanced statistical theory. For instance,Bosq (2002) andDehling andSharipov (2005)
investigate stationary functional processes with a linear representation and Hörmann
and Kokoszka (2010) provide a general framework to model functional observations
from stationary processes. Frequency domain analysis of stationary functional time
series has been considered by Panaretos and Tavakoli (2013), while van Delft and
Eichler (2018) propose a new concept of local stationarity for functional data. The
assumption of second-order stationarity is also of particular importance for prediction
problems [seeAntoniadis andSapatinas (2003),Aue et al. (2015),Hyndman andShang
(2009) among others] and for dynamic principal component analysis (Hörmann et al.
2015).

Ideally, the assumption of stationarity should be checked before applying any statis-
tical methodology. Several authors have considered this problem, in particular within
the context of change point analysis where the null hypothesis of stationarity is tested
against the alternative of a structural change in certain parameters of the process; see
Aue et al. (2009), Berkes et al. (2009), Horvath et al. (2010), Aston and Kirch (2012)
among others. Tests that are designed to be powerful against more general alternatives
are often based on an analysis in the frequency domain. For example, Aue and van
Delft (2017) generalize the approach of Dwivedi and Subba Rao (2011) and Jentsch
and Subba Rao (2015) to functional time series.More precisely, they begin by showing
that the functional discrete Fourier transform (fDFT) is asymptotically uncorrelated at
distinct Fourier frequencies if and only if the process is weakly stationary. The corre-
sponding test is then based on a quadratic formbased on afinite-dimensional projection
of the empirical covariance operator of the fDFT’s. Consequently, the properties of
the test depend on the number of lagged fDFT’s included. As an alternative, van Delft
et al. (2017) construct a test using an estimate of a minimal distance between the
spectral density operator of a non-stationary process and its best approximation by a
spectral density operator corresponding to a stationary process (see also Dette et al.
2011 for a discussion of this approach in the univariate context). The test statistic con-
sists of sums of Hilbert–Schmidt inner products of periodogram operators (evaluated
at different frequencies) and is asymptotically normal distributed.

In the present paper, we propose an alternative time-domain test for second-order
stationarity of a functional time series. More precisely, we suggest to address the
problem of detecting non-stationarity by individually checking the hypothesis that the
mean and the autocovariance operators at a given lag, say h, of a collection (indexed by
time) of approximating stationary functional time series are in fact time independent.
As explained in the next paragraph, the individual tests are then combined to yield a
joint test including autocovariances up to a given maximal lag H . Thus, the approach
investigated here is similar in spirit to the classical Portmanteau tests for serial cor-
relation of a univariate time series, where the hypothesis of white noise is checked
by investigating whether correlations up to a given lag vanish (see Box and Pierce
1970; Ljung and Box 1978). For the problem of checking stationarity in real-valued
time series, similar approaches have been taken by Jin et al. (2015) and Bücher et al.
(2018).
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Detecting non-stationarities in functional time series 1057

To combine the individual tests for stationarity of the mean and the autocovariance
operators at a given lag h, we use appropriate extensions of well-known p value
combination methods dating back to Fisher (1932). Each individual test is relying
on a block multiplier approach making necessary the choice of a joint block length
parameter m. Following ideas put forward in Politis and White (2004), a procedure
is proposed to automatically select that parameter data adaptively in such a way that,
asymptotically, a certain MSE criterion is optimized.

The remaining part of this article is organized as follows: In Sect. 2, we collect nec-
essary mathematical preliminaries. In Sect. 3, we first propose individual tests for the
hypothesis of second-order stationarity which are particularly sensitive to deviations
in the mean, variance and a given lag h autocovariance, respectively. The tests are
then combined to a joint test for second-order stationarity which is sensitive to devi-
ations in the mean, variance and the first H autocovariances. In Sect. 4, we discuss
an exemplary locally stationary time series model in great theoretical detail, while
finite-sample results and a case study are presented in Sect. 5. The central proofs are
collected in Sect. 6, while less central proofs and auxiliary results are provided in a
supplementary material.

2 Mathematical preliminaries

2.1 Random elements in Lp-spaces

For some separable measurable space (S,S, ν) with a σ -finite measure ν and
p > 1, let Lp(S, ν) denote the set of measurable functions f : S → R such that
‖ f ‖p = (

∫ | f |p dν)1/p < ∞. For f ∈ Lp(S, ν), let [ f ] be the set of all functions
g such that f = g, ν-almost surely. The space L p(S, ν) of all equivalence classes
[ f ] then becomes a separable Banach space, and standard weak convergence theory
is applicable. If S is a subset of Rd and ν is the Lebesgue measure, we occasionally
write Lp(S) and L p(S).

Let (�,A,P) denote a probability space and let X : S × � → R be (S ⊗ A)-
measurable such that X(·, ω) ∈ Lp(S, μ) for P-almost every ω. It follows from
Lemma 6.1 in Janson and Kaijser (2015) that ω �→ [X(·, ω)] is a random variable
in L p(S, μ) (equipped with the Borel σ -field). Conversely, note that for any random
variable [Y ] in L p(S, μ), we can choose a (μ ⊗ P)-a.s. unique (S ⊗ A)-measurable
mapping Y ′ : S × � → R such that Y ′(·, ω) ∈ [Y ](ω) for P-almost every ω. We
can hence (a.s.) identify random variables in L p(S, μ) with measurable functions on
S × � which are p-integrable in the first argument (P-a.s.); slightly abusing notation,
we also write X for the equivalence class [X ].

A random variable X in L2([0, 1]d) is called integrable ifE‖X‖2 < ∞. In that case,
it follows from the Riesz representation theorem that there exists a unique element
μX = EX ∈ L2([0, 1]d) such that E〈X , f 〉 = 〈μX , f 〉 for all f ∈ L2([0, 1]d),
where 〈 f , g〉 = ∫[0,1]d f g dλd . If X is even square integrable, that is,E‖X‖22 < ∞, the

covariance operator of X is defined as the operator CX : L2([0, 1]d) → L2([0, 1]d)

given by CX ( f ) = E[〈 f , X − μX 〉(X − μX )]. CX is nuclear and hence a Hilbert–
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1058 A. Bücher et al.

Schmidt operator (Bosq 2000, Sect. 1.5), whence, by Theorem 6.11 in Weidmann
(1980), there exists a kernel cX ∈ L2([0, 1]d × [0, 1]d) such that

CX ( f )(τ ) =
∫

[0,1]d
cX (τ, σ ) f (σ ) dσ

for almost every τ ∈ [0, 1]d and every f ∈ L2([0, 1]d). Similarly, for square inte-
grable random elements X , Y ∈ L2([0, 1]d) we define the cross-covariance operator
CX ,Y : L2([0, 1]d) → L2([0, 1]d) by CX ,Y ( f ) = E[〈X − μX , f 〉(Y − μY )]. By
the same reasoning as above, there exists a kernel cX ,Y ∈ L2([0, 1]d × [0, 1]d) such
that

CX ,Y ( f )(τ ) =
∫

[0,1]d
cX ,Y (τ, σ ) f (σ ) dσ.

If X is in fact a (B([0, 1]d) ⊗ A)-measurable function from [0, 1]d × � to R with
X(·, ω) ∈ L2([0, 1]d) a.s., then it can be shown that, in the respective L2-spaces,

μ(τ) = E[X(τ )],
cX (τ, σ ) = Cov{X(τ ), X(σ )}, cX ,Y (τ, σ ) = Cov{X(τ ), Y (σ )}.

By the preceding paragraph, this notation also makes sense for equivalence classes
X , Y ∈ L2([0, 1]d).

2.2 Functional time series in L2([0, 1])

For each t ∈ Z, let Xt : [0, 1] × � → R denote a (B|[0,1] ⊗ A)-measurable function
with Xt (·, ω) ∈ L2([0, 1]). By the preceding section, we can regard [Xt ] as a random
variable in L2([0, 1]), whichwe alsowrite as Xt . The sequence (Xt )t∈Zwill be referred
to as a functional time series in L2([0, 1]).

The functional time series will be called stationary if, for all q ∈ Z and all
h, t1, . . . , tq ∈ Z

(Xt1+h, . . . , Xtq+h)
d= (Xt1 , . . . , Xtq )

in L2([0, 1])q .
Let ρ > 0. A sequence of functional time series (Xt,T )t∈Z, indexed by T ∈ N,

is called locally stationary (of order ρ) if, for any u ∈ [0, 1], there exists a strictly
stationary functional time series {X (u)

t | t ∈ Z} in L2([0, 1]) and an array of real-
valued random variables {P (u)

t,T | t = 1, . . . , T }T ∈N with E|P (u)

t,T |ρ < ∞, uniformly in
1 ≤ t ≤ T , T ∈ N and u ∈ [0, 1], such that

‖Xt,T − X (u)
t ‖2 ≤

(∣∣
∣
∣

t

T
− u

∣
∣
∣
∣+

1

T

)

P(u)
t,T (1)
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Detecting non-stationarities in functional time series 1059

for all t = 1, . . . , T , T ∈ N and u ∈ [0, 1]. This concept of local stationarity was first
introduced byVogt (2012) for p-dimensional time series (p ∈ N). By the arguments in
the preceding section, wemay assume that X (u)

t is in fact a (B([0, 1])×A)-measurable
function from [0, 1]×� toR such that X (u)

t (·, ω) ∈ L2([0, 1]) forP-almost everyω. In
the subsequent sections, we will usually assume that ρ ≥ 2 and that E[‖X (u)

t ‖22] < ∞
for all u ∈ [0, 1]. Despite the fact that {(Xt,T )t∈Z : T ∈ N} is a sequence of time
series, we will occasionally simply call (Xt,T )t∈Z a locally stationary time series.

2.3 Further notation

In the following, we will deal with different norms on the spaces L p([0, 1]d), for
p ≥ 1, d ∈ N. To avoid confusion, we denote the corresponding norms by ‖ · ‖p,d .
As a special case, we will write ‖ · ‖p instead of ‖ · ‖p,1. Further, we introduce the
notation ‖ · ‖p,�×[0,1]d for the p-norm on the space L p(� × [0, 1]d ,P⊗ λd). Finally,
we define ( f ⊗ g)(x, y) = f (x)g(y) for functions f , g ∈ L p([0, 1]).

3 Detecting deviations from second-order stationarity

3.1 Second-order stationarity in locally stationary time series

Before we can propose suitable test statistics for detecting deviations from second-
order stationarity in a locally stationary functional time series, we need to clarify
what is meant by second-order stationarity. Loosely speaking, we want to test the null
hypothesis that the mean and/or the (auto)covariances do not vary too much over time.
Meaningful asymptotic results will be obtained by formulating these null hypotheses
in terms of the approximating sequences {X (u)

t : t ∈ Z} defined in Sect. 2.2. More
precisely, we will subsequently assume that E[‖X (u)

t ‖22] < ∞ for all u ∈ [0, 1] and
consider the hypotheses

H (m)
0 : ‖E[X (u)

0 ] − E[X (v)
0 ]‖2 = 0 for all u, v ∈ [0, 1] (2)

and, for some lag h ≥ 0,

H (c,h)
0 : ‖E[X (u)

0 ⊗ X (u)
h ] − E[X (v)

0 ⊗ X (v)
h ]‖2,2 = 0 for all u, v ∈ [0, 1]. (3)

Note that the intersection

H0 = H (m)
0 ∩ H (c,0)

0 ∩ H (c,1)
0 ∩ . . .

corresponds to the case where the approximating sequences {X (u)

t : t ∈ Z}, indexed by
u ∈ [0, 1], all share the same first- and second-order characteristics. We will therefore
call the sequence of time series (Xt,T )t∈Z, indexed by T ∈ N, second-order stationary
if the global hypothesis H0 is met. The test statistics we are going to propose will be
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1060 A. Bücher et al.

particularly sensitive to deviations from (weak) stationarity in the mean, the variance,
and the first H autocovariances, which leads us to define

H (H)
0 = H (m)

0 ∩ H (c,0)
0 ∩ H (c,1)

0 ∩ · · · ∩ H (c,H)
0 , (4)

where H ∈ N0 is fixed and denotes the maximum number of lags under consideration.

Remark 1 The hypotheses H (m)

0 and H (c,h)

0 are independent of the choice of the approx-
imating family {X (u)

t : t ∈ Z}u∈[0,1]. Indeed, suppose there were two approximating
families {X (u)

t : t ∈ Z}u∈[0,1] and {Y (u)

t : t ∈ Z}u∈[0,1] satisfying (1). By stationarity
and the triangle inequality, we have, for any t, T ∈ N,

E‖X (u)
t − Y (u)

t ‖2 = E‖X (u)
�uT � − Y (u)

�uT �‖2
≤ E‖X (u)

�uT � − X�uT �,T ‖2 + E‖X�uT �,T − Y (u)
�uT �‖2 ≤ C

T
.

This implies E‖X (u)

t − Y (u)

t ‖2 = 0 and hence ‖X (u)

t − Y (u)

t ‖2 = 0 almost surely. ��
The following lemma provides two interesting equivalent formulations of each of

the above hypotheses. Introduce the notations M : [0, 1]2 → R, Mh : [0, 1]3 → R,
where

M(u, τ ) =
∫ u

0
E[X (w)

0 (τ )] dw − u
∫ 1

0
E[X (w)

0 (τ )] dw, (5)

Mh(u, τ1, τ2) =
∫ u

0
E[X (w)

0 (τ1)X (w)
h (τ2)] dw − u

∫ 1

0
E[X (w)

0 (τ1)X (w)
h (τ2)] dw.

(6)

Lemma 1 Let {(Xt,T )t∈Z : T ∈ N} denote a locally stationary functional time series
of order ρ ≥ 4 with approximating sequences (X (u)

t )t∈Z satisfying E[‖X (u)

0 ‖42] < ∞
for all u ∈ [0, 1]. Then, the hypothesis H (m)

0 in (2) is met if and only if

‖M‖2,2 = 0. (7)

Likewise, for any h ∈ N0, H (c,h)

0 in (3) is met if and only if

‖Mh‖2,3 = 0. (8)

Moreover, the hypothesis H (m)

0 is equivalent to

∃ C > 0 : ‖E[X�uT �,T ] − E[X0,T ]‖2 ≤ C

T
for all u ∈ [0, 1], T ∈ N, (9)

and H (c,h)

0 is equivalent to

∃ C > 0 : ‖E[X�uT �,T ⊗ X�uT �+h,T − X0,T ⊗ Xh,T ]‖2,2 ≤ C

T
for all u ∈ [0, 1], T ∈ N. (10)
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Detecting non-stationarities in functional time series 1061

The lemma is proven in Sect. 6.2. We will heavily rely on conditions (7) and (8)
when constructing the test statistics in the next section. Assertions (9) and (10) are
interesting in their own rights, as they provide a sub-asymptotic formulation of the
hypothesis of second-order stationarity. They are used in the next section for showing
that the tests are consistent and will also be crucial when extending consistency results
to the case of piecewise locally stationary processes in Sect. 3.5.

3.2 Test statistics

In the subsequent sections, we assume to observe, for some T ∈ N, an excerpt
X1,T , . . . , XT ,T from a locally stationary time series {(Xt,T )t∈Z : T ∈ N}. We are
interested in testing the hypotheses H (m)

0 and H (c,h)

0 formulated in the preceding sec-
tion, which can be done individually by a CUSUM-type procedure. More precisely,
for u, τ ∈ [0, 1], let

UT (u, τ ) = 1√
T

⎛

⎝
�uT �∑

t=1

Xt,T (τ ) − u
T∑

t=1

Xt,T (τ )

⎞

⎠ (11)

denote the CUSUM process for the mean, and, for u, τ1, τ2 ∈ [0, 1] and h ∈ N0, let

UT ,h(u, τ1, τ2)

= 1√
T

⎛

⎝
�uT �∧(T −h)∑

t=1

Xt,T (τ1)Xt+h,T (τ2) − u
T −h∑

t=1

Xt,T (τ1)Xt+h,T (τ2)

⎞

⎠ (12)

denote the CUSUM process for the (auto)cross-moments at lag h. Under the null
hypothesis H (m)

0 , T −1/2UT (u, τ ) can be regarded as an estimator of the quantity
M(u, τ ) defined in (5), and a similar statement holds for T −1/2UT ,h , which esti-
mates the Mh in (6). Hence, by Lemma 1, it seems reasonable to reject H (m)

0 or H (c,h)

0
for large values of

S(m)
T = ‖UT ‖2,2 or S(c,h)

T = ‖UT ,h‖2,3, (13)

respectively.
Alternatively, one could use the L2-norm in τ and (τ1, τ2), respectively, and the

supremum in u, as proposed in Sharipov et al. (2016).However, preliminary simulation
results suggested that a test based on the L2-norm in u performs better in applications
with small sample sizes.

In Sect. 3.4, we will propose a procedure that allows to combine the previous tests
statistics to obtain a joint test for the combined hypothesis H (H)

0 , with maximal lag
H ∈ N0 fixed. For that purpose, we will first need (asymptotic) critical values for the
individual test statistics S(m)

T and S(c,h)
T , which in turn can be deduced from the joint

asymptotic distribution of the CUSUM processes in (11) and (12). The basic tools are
the following partial sum processes
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1062 A. Bücher et al.

B̃T (u, τ ) = 1√
T

�uT �∑

t=1

Xt,T (τ ) − E[Xt,T (τ )],

B̃T ,h(u, τ1, τ2) = 1√
T

�uT �∧(T −h)∑

t=1

Xt,T (τ1)Xt+h,T (τ2) − E[Xt,T (τ1)Xt+h,T (τ2)],

where u, τ, τ1, τ2 ∈ [0, 1] and h ∈ N0. The expected values within the sums will be
denoted by

μt,T (τ ) = E[Xt,T (τ )] and μt,T ,h(τ1, τ2) = E[Xt,T (τ1)Xt+h,T (τ2)].

The following assumptions are sufficient to guarantee weak convergence of these
processes.

Condition 1 (Assumptions on the functional time series)

(A1) Local stationarityTheobservations X1,T , . . . XT ,T are an excerpt froma locally
stationary functional time series {(Xt,T )t∈Z : T ∈ N} of order ρ = 4 in
L2([0, 1],R).

(A2) Moment condition For any k ∈ N, there exists a constant Ck < ∞ such that
E‖Xt,T ‖k

2 ≤ Ck and E‖X (u)

0 ‖k
2 ≤ Ck uniformly in t ∈ Z, T ∈ N and u ∈ [0, 1].

(A3) Cumulant condition For any j ∈ N, there is a constant C j < ∞ such that

∞∑

t1,...,t j−1=−∞

∥
∥ cum(Xt1,T , . . . , Xt j ,T )

∥
∥
2, j ≤ C j < ∞, (14)

for any t j ∈ Z (for j = 1, the condition is to be interpreted as ‖EXt1,T ‖2 ≤ C1
for all t1 ∈ Z). Further, for k ∈ {2, 3, 4}, there exist functions ηk : Zk−1 → R

satisfying

∞∑

t1,...,tk−1=−∞
(1 + |t1| + · · · + |tk−1|)ηk(t1, . . . , tk−1) < ∞

such that, for any T ∈ N, 1 ≤ t1, . . . , tk ≤ T , v, u1, . . . , uk ∈ [0, 1], h1, h2 ∈
Z, Z (u)

t,T ∈ {Xt,T , X (u)

t }, and anyYt,h,T (τ1, τ2) ∈ {Xt,T (τ1), Xt,T (τ1)Xt+h,T (τ2)},
we have

(i) ‖ cum(Xt1,T − X
(t1/T )
t1

, Z
(u2)
t2,T

, . . . , Z
(uk )

tk ,T )‖2,k ≤ 1
T ηk (t2 − t1, . . . , tk − t1),

(ii) ‖ cum(X
(u1)
t1

− X (v)
t1

, Z
(u2)
t2,T

, . . . , Z
(uk )

tk ,T )‖2,k ≤ |u1 − v|ηk (t2 − t1, . . . , tk − t1),

(iii) ‖ cum(Xt1,T , . . . , Xtk ,T )‖2,k ≤ ηk (t2 − t1, . . . , tk − t1),

(iv)
∫
[0,1]2 | cum (Yt1,h1,T (τ ), Yt2,h2,T (τ )

)| dτ ≤ η2(t2 − t1).

Assumption (A2) is needed to ensure existence of all cumulants. The cumulant
condition (A3) is a (partially) weakened version of the assumptions made by Lee
and Subba Rao (2017) and Aue and van Delft (2017) and has its origins in classical
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Detecting non-stationarities in functional time series 1063

multivariate time series analysis (see Brillinger (1981), Assumption 2.6.2). Lemma
2 shows that the cumulant conditions in (A3) hold, provided (A1), (A2), a further
moment condition and a strong mixing condition are satisfied. In particular, they are
met for the models employed in Sect. 5 within our simulation study (see in particular
Lemma 4).

The following theorem, proven inSect. 6.2, shows that B̃T and B̃T ,h jointly converge
weakly with respect to the L2-metric. For H ∈ N0, let the Cartesian product

HH+2 = L2([0, 1]2) × {L2([0, 1]3)}H+1

be equippedwith the sum of the individual scalar products, such thatHH+2 is a Hilbert
space itself.

Theorem 1 Suppose that Assumptions (A1)–(A3) are met. Then, the vector BT =
(B̃T , B̃T ,0, . . . , B̃T ,H ) converges weakly to a centered Gaussian variable B =
(B̃, B̃0, . . . , B̃H ) in HH+2 with covariance operator CB : HH+2 → HH+2 defined
as

CB

⎛

⎜
⎜
⎜
⎝

g
f0
...

fH

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

(u, τ )

(u0, τ01, τ02)
...

(u H , τH1, τH2)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

〈r (m)((u, τ ), ·), g〉 +∑H
h=0〈r (m,c)

h ((u, τ ), ·), fh〉
〈r (m,c)
0 (·, (u0, τ01, τ02)), g〉 +∑H

h=0〈r (c)
0,h((u0, τ01, τ02), ·), fh〉

...

〈r (m,c)
H (·, (u H , τH1, τH2)), g〉 +∑H

h=0〈r (c)
H ,h((u H , τH1, τH2), ·), fh〉

⎞

⎟
⎟
⎟
⎟
⎠

.

Here, the kernel functions r (m), r (c)
h,h′ and r (m,c)

h are given by

r (m)((u, τ ), (v, ϕ)) = Cov
(
B̃(u, τ ), B̃(v, ϕ)

)

=
∞∑

k=−∞

∫ u∧v

0
ck,1(w) dw,

r (c)
h,h′((u, τ1, τ2), (v, ϕ1, ϕ2)) = Cov

(
B̃h(u, τ1, τ2), B̃h′(v, ϕ1, ϕ2)

)

=
∞∑

k=−∞

∫ u∧v

0
ck,2(w) dw,

r (m,c)
h ((u, τ1, τ2), (v, ϕ1, ϕ2)) = Cov

(
B̃(u, τ ), B̃h(v, ϕ1, ϕ2)

)

=
∞∑

k=−∞

∫ u∧v

0
ck,3(w) dw,
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with

ck,1(w) = ck,1(w, τ, ϕ) = Cov
(
X (w)
0 (τ ), X (w)

k (ϕ)
)
,

ck,2(w) = ck,2(w, h, h′, τ1, τ2, ϕ1, ϕ2)

= Cov
(
X (w)
0 (τ1)X (w)

h (τ2), X (w)
k (ϕ1)X (w)

k+h′(ϕ2)
)
,

ck,3(w) = ck,3(w, h, τ, ϕ1, ϕ2) = Cov
(
X (w)
0 (τ ), X (w)

k (ϕ1)X (w)
k+h(ϕ2)

)
,

for any 0 ≤ h, h′ ≤ H. In particular, the infinite sums and integrals converge.

The following corollary on joint weak convergence of the CUSUM processes
defined in (11) and (12) is essentially a mere consequence of the continuous map-
ping theorem. Let

G̃T (u, τ ) = B̃T (u, τ ) − u B̃T (1, τ )

G̃T ,h(u, τ1, τ2) = B̃T ,h(u, τ1, τ2) − u B̃T ,h(1, τ1, τ2)

GT = (G̃T , G̃T ,1, . . . , G̃T ,H )

and, similarly,

G̃(u, τ ) = B̃(u, τ ) − u B̃(1, τ )

G̃h(u, τ1, τ2) = B̃h(u, τ1, τ2) − u B̃h(1, τ1, τ2)

G = (G̃, G̃1, . . . , G̃ H ). (15)

Corollary 1 Suppose that Assumptions (A1)–(A3) are satisfied. If H (m)

0 holds, then

‖UT − G̃T ‖2,2 = oP(1).

If H (c,h)

0 holds, then

‖UT ,h − G̃T ,h‖2,3 = oP(1).

As a consequence, if the hypothesis H (H)

0 in (4) holds, then,

UT = (UT , UT ,1, . . . , UT ,H ) = GT + oP(1) � G.

On the other hand, if H (m)

0 or H (c,h)

0 does not hold, then S(m)
T → ∞ or S(c,h)

T → ∞ in
probability, respectively.

The corollary suggests to reject H (m)

0 or H (c,h)

0 for large values of S(m)
T or S(c,h)

T ,
respectively. However, the corresponding null-limiting distributions ‖G̃‖2,2 and
‖G̃h‖2,3 depend in a complicated way on the functions ck, j defined in Theorem 1
and cannot be easily transformed into a pivotal distribution. We therefore propose to
derive critical values by a suitable block multiplier bootstrap approximation worked
out in detail in Sect. 3.4.
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3.3 Strongmixing and cumulants

In this section, we will demonstrate that under the assumption of a strong mixing
locally stationary functional time series, Assumption (A3) is met. To be precise, let F
and G be σ -fields in (�,A) and define

α(F ,G) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ F , B ∈ G}.

A functional time series {(Xt,T )t∈Z : T ∈ N} in L2([0, 1]) is called α- or strongly
mixing if the mixing coefficients

α′(k) = sup
T ∈N

sup
t∈Z

α
(
σ
({Xs,T (τ )|τ ∈ [0, 1]}t

s=−∞
)
, σ
({Xs,T (τ )|τ ∈ [0, 1]}∞s=t+k

))

vanish as k tends to infinity. Analogously, we define

α′′(k) = sup
u∈[0,1]

sup
t∈Z

α
(
σ
({X (u)

s (τ )|u, τ ∈ [0, 1]}t
s=−∞

)
, σ
({X (u)

s (τ )|u, τ ∈ [0, 1]}∞s=t+k

))

as mixing coefficients of the family of approximating stationary processes. Further,
we define α(k) = max{α′(k), α′′(k)}. A locally stationary, functional time series
is called strongly mixing, if α(k) vanishes, as k tends to infinity and exponentially
strongly mixing if α(k) ≤ cak for some constants c > 0 and a ∈ (0, 1). Note that we
can define the mixing coefficients in terms of a function in L2([0, 1]) rather than an
element of the space L2([0, 1]) of equivalence classes by Lemma 6.1 in Janson and
Kaijser (2015). The main result of this section provides sufficient conditions for the
theory developed so far for strong mixing processes.

Lemma 2 Let {(Xt,T )t∈Z : T ∈ N} be a strongly mixing locally stationary functional
time series in L2([0, 1],R) such that Assumptions (A1), (A2) and the condition

sup
t,T

‖Xt,T ‖r ,�×[0,1] < Cr < ∞

are satisfied for any integer r > 2. If {(Xt,T )t∈Z : T ∈ N} is exponentially strongly
mixing, then it also satisfies the summability conditions for the cumulants in Assump-
tion (A3).

3.4 Bootstrap approximation

The bootstrap approximation will be based on two smoothing parameters: a block
length sequence m = mT needed to asymptotically catch the serial dependence within
the time series, and a bandwidth sequence n = nT needed to estimate expected values
locally in time. We will impose the following condition.
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Condition 2 (Assumptions on the bootstrap scheme)

(B1) Letm = m(T ) ≤ T be an integer-valued sequence, to be understood as the block
length within a block bootstrap procedure. Assume that m tends to infinity and
m/T vanishes, as T → ∞.

(B2) Let n = n(T ) ≤ T /2 be an integer-valued sequence such that both m/n and
mn2/T 2 converge to zero, as T tends to infinity.

(B3) Let {R(k)

i }i,k∈N denote independent standard normally distributed random vari-
ables, independent of the stochastic process {(Xt,T )t∈Z : T ∈ N}.

Under this set of notations, we define

B̂(k)
T (u, τ ) = 1√

T

�uT �∑

i=1

R(k)
i√
m

(i+m−1)∧T∑

t=i

{
Xt,T (τ ) − μ̂t,T (τ )

}

as a bootstrap approximation for B̃T (u, τ ), where

μ̂t,T (τ ) = 1

ñt,0

n̄t,0∑

j=¯nt

Xt+ j,T (τ )

denotes an estimator for μt,T (τ ) relying on the bandwidth sequence n via

n̄t,h = n ∧ (T − t − h), ¯nt = −n ∨ (1 − t), ñt,h = n̄t,h − ¯nt + 1, (16)

for 0 ≤ h ≤ H . Similarly, for any 0 ≤ h ≤ H , bootstrap approximations for
B̃T ,h(u, τ1, τ2) are defined as

B̂(k)
T ,h(u, τ1, τ2) = 1√

T

�uT �∧(T −h)∑

i=1

R(k)
i√
m

(i+m−1)∧(T −h)∑

t=i

{
Xt,T (τ1)Xt+h,T (τ2) − μ̂t,T ,h(τ1, τ2)

}
,

where

μ̂t,T ,h(τ1, τ2) = 1

ñt,h

n̄t,h∑

j=¯nt

Xt+ j,T (τ1)Xt+ j+h,T (τ2).

Finally, for fixed k ∈ N, collect the bootstrap approximations in the vector

B̂
(k)
T = (B̂(k)

T , B̂(k)
T ,0, . . . , B̂(k)

T ,H ).

The following theorem shows that the bootstrap replicates can be regarded as asymp-
totically independent copies of the original process BT from Theorem 1.
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Theorem 2 Suppose that Assumptions (A1)–(A3) and (B1)–(B3) are met. Then, for
any fixed K ∈ N and as T → ∞,

(
BT , B̂

(1)
T , . . . , B̂

(K )
T

)
�
(
B,B(1), . . . ,B(K )

)

in {L2([0, 1]2) × (L2([0, 1]3))H+1}K+1, where B
(k) (k = 1, . . . , K ) are independent

copies of the centered Gaussian variable B from Theorem 1. Equivalently (Bücher and
Kojadinovic 2017, Lemma 2.2),

dBL(PB̂
(1)
T |X1,T ,...,XT ,T ,PBT ) = oP(1), T → ∞,

where dBL denotes the bounded Lipschitz metric between probability distributions on
L2([0, 1]2) × (L2([0, 1]3))H+1.

The proof is given in Sect. 6.2. The preceding theorem, together with Corollary 1,
suggests to define the following bootstrap approximation for the CUSUM processes
defined in (11) and (12):

Ĝ(k)
T (u, τ ) = B̂(k)

T (u, τ ) − u B̂(k)
T (1, τ ),

Ĝ(k)
T ,h(u, τ1, τ2) = B̂(k)

T ,h(u, τ1, τ2) − u B̂(k)
T ,h(1, τ1, τ2),

Ĝ
(k)
T = (Ĝ(k)

T , Ĝ(k)
T ,0, . . . , Ĝ(k)

T ,H ).

Theorem 2, Corollary 1 and the continuous mapping theorem then imply that, under
the hypothesis H (H)

0 in (4),

(ST , S(1)
T , . . . , S(K )

T ) ≡ (�(UT ),�(Ĝ
(1)
T ), . . . , �(Ĝ

(K )

T ))

= (�(GT ),�(Ĝ
(1)
T ), . . . , �(Ĝ

(K )

T )) + oP(1)

� (�(G),�(G(1)), . . . , �(G(K ))) ≡ (S, S(1), . . . , S(K )),

where �(G−1, G0, . . . , G H ) = (‖G−1‖2,2, ‖G0‖2,3, . . . , ‖G H ‖2,3) and where
G

(1), . . . ,G(K ) are independent copies of G. Individual bootstrap-based tests for, e.g.,
H (c,h)

0 are then naturally defined by the p value

pT ,K (ST ,h) = 1

K

K∑

j=1

1(S(k)
T ,h ≥ ST ,h),

where S(k)

T ,h and ST ,h denote the (h + 2)nd coordinate of S(k)

T and ST , respectively; in

particular, ST ,−1 = S (m)

T and ST ,h = S (c,h)

T as defined in (13). Indeed, we can show the
following result for each individual test.

123



1068 A. Bücher et al.

Proposition 1 Suppose that Assumptions (A1)–(A3) and (B1)–(B3) are met. Then, for
all h ∈ Z≥−1, provided K = KT → ∞, and with H (c,−1)

0 = H (m)
0 , we have

pT ,KT (ST ,h) �
{
Uniform(0, 1) if H (c,h)

0 is met

0 else.

Moreover, we can rely on an extension of Fisher’s p value combination method
(Fisher 1932) as described in Sect. 2 in Bücher et al. (2018) to obtain a combined
test for the joint hypothesis H (H)

0 in (4). More precisely, let ψ : (0, 1)H+2 → R be a
continuous function that is decreasing in each argument (throughout the simulations,
we employ ψ(p−1, . . . , pH ) = ∑H

i=−1 wi�
−1(1 − pi ) with weights w−1 = w0 =

1/3 and w1 = · · · = wH = (3H)−1.) The combined test is defined by its p value
calculated based on the following algorithm.

Algorithm 1 (Combined Bootstrap test for H (H)

0 )

(1) Let S(0)
T = ST .

(2) Given a large integer K , compute the sample of K bootstrap replicates
S(1)

T , . . . , S(K )

T of the vector S(0)
T .

(3) Then, for all i ∈ {0, 1, . . . , K } and h ∈ {−1, . . . , H}, compute

pT ,K (S(i)
T ,h) = 1

K + 1

{
1

2
+

K∑

k=1

1
(

S(k)
T ,h ≥ S(i)

T ,h

)}

.

(4) Next, for all i ∈ {0, 1, . . . , K }, compute

W (i)
T ,K = ψ{pT ,K (S(i)

T ,0), . . . , pT ,K (S(i)
T ,H )}.

(5) The global statistic is W (0)
T ,K , and the corresponding p value is given by

pT ,K (W (0)
T ,K ) = 1

K

K∑

k=1

1
(

W (k)
T ,K ≥ W (0)

T ,K

)
.

Consistency of this procedure is a mere consequence of Proposition 2.1 in Bücher
et al. (2018); details are omitted for the sake of brevity.

3.5 Consistency against AMOC-piecewise locally stationary alternatives

In the previous section, the proposed tests were shown to be consistent against locally
stationary alternatives. In classical change point settings, the underlyingCUSUMprin-
ciple is also known to be consistent against piecewise (locally) stationary alternatives,
notably against those that involve a single change in the signal of interest (AMOC =
at most one change). We are going to derive such results within the present setting.
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For the sake of brevity, we only consider AMOC alternatives in the mean. More
precisely, we assume that {(Xt,T )t∈Z : T ∈ N} follows the data-generating process

Xt,T =
{

μ1 + Yt,T for t ≤ λT �
μ2 + Yt,T for t ≥ �λT � + 1.

(17)

for some λ ∈ (0, 1), μ1, μ2 ∈ L2([0, 1]) and {(Yt,T )t∈Z : T ∈ N} a locally stationary
time series satisfying Condition 1. In the literature on classic change point detection,
one would be interested in testing for the null hypothesis that ‖μ1−μ2‖2 = 0, against
the alternative that this L2-norm is positive.

Now, if ‖μ1 − μ2‖2 = 0, we are back in the situation of the preceding sections.
However, one can show (by contradiction) that if ‖μ1 − μ2‖2 > 0, {(Xt,T )t∈Z :
T ∈ N} is not locally stationary, whence additional theory must be developed to show
consistency of the test statistic S (H)

T . Note that even the formulation of H (H)

0 relying
on (2) and (3) is not possible anymore, so that we need to rely on their equivalent
sub-asymptotic counterparts (9) and (10) in Lemma 1.

Proposition 2 Let {(Xt,T )t∈Z : T ∈ N} be a sequence of functional time series as
defined in (17), with μ1 �= μ2 in L2([0, 1]) and with {(Yt,T )t∈Z : T ∈ N} satisfying
Conditions (A1)–(A3). Then, the test statistic S (m)

T = ST ,−1 based on observations
X1,T , . . . , XT ,T diverges to infinity, in probability. If, additionally, (B1)–(B3) are met,
then the bootstrap variables Ŝ(k)

T ,−1 are stochastically bounded. As a consequence, the
proposed test is consistent.

Remark 2 A careful inspection of the proof of Proposition 2 shows that the testing
procedure is also consistent against local alternatives of the form μ2 = μ1 + dT , for
any sequence dT with dT

√
T → ∞.

3.6 Data-driven choice of the block length parameterm

Thebootstrap procedure depends on the choice of thewidth of the localmean estimator,
n, and the length of the bootstrap blocks, m. Preliminary simulation studies suggested
that the performance of the procedure crucially depends on the choice of m, while it is
less sensitive to the choice of n (which may also be chosen by other standard criteria in
specific applications, like adaptations of Silverman’s rule of thumb, cross-validation
or visual investigation of respective plots). In this section, we propose a data-driven
procedure for choosing the block length m based on a certain optimality criterion.

Recall that the limiting null distributions of the proposed test statistics depend
in a complicated way on the covariances Cov{B̃(u, τ ), B̃(v, ϕ)},Cov{B̃h(u, τ1, τ2),

B̃h′(v, ϕ1, ϕ2)} and Cov{B̃(u, τ ), B̃h(v, ϕ1, ϕ2)}. Following Sect. 5 in Bücher and
Kojadinovic (2016), the procedure we propose essentially chooses m in such a way
that the bootstrap approximation for σc(τ, ϕ) = Cov{B̃(1, τ ), B̃(1, ϕ)} is optimal,
with respect to m, in a certain asymptotic sense. More precisely, we propose to first
minimize the integrated mean squared of the “bootstrap estimator”

σ̃T (τ, ϕ) = Cov
(
B̃(1)

T (1, τ ), B̃(1)
T (1, ϕ)|X1,T , . . . , XT ,T

)
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considered as an estimator for σc(τ, ϕ), with respect tom theoretically (see Lemma 3),
and then use a simple plug-in approach to obtain a formula that solely depends on
observable quantities. Observe that σ̃T (τ, ϕ) can be rewritten as

σ̃T (τ, ϕ) = E[B̃(1)
T (1, τ ), B̃(1)

T (1, ϕ)|X1,T , . . . , XT ,T ]

= 1

T

T∑

i=1

1

m

⎛

⎝
(i+m−1)∧T∑

t=i

Xt,T (τ ) − μt,T (τ )

⎞

⎠

⎛

⎝
(i+m−1)∧T∑

t=i

Xt,T (ϕ) − μt,T (ϕ)

⎞

⎠

whence σ̃T (τ, ϕ) is not a proper estimator as it depends on the unknown expectation
μt,T . The asymptotic integrated bias and integrated variance satisfy the following
expansions. For simplicity, we replace Condition (A3) by a strong mixing condition
as in Sect. 3.3.

Lemma 3 Let m = m(T ) be an integer-valued sequence, such that m tends to infinity
and m2/T vanishes, as T tends to infinity. If conditions (A1) and (A2) are met and
{(Xt,T )t∈Z : T ∈ N} is exponentially strongly mixing, then, as T → ∞,

∫

[0,1]2
(
E[σ̃T (τ, ϕ)] − σc(τ, ϕ)

)2 d(τ, ϕ) = 1

m2� + o(m−2),

∫

[0,1]2
Var
(
σ̃T (τ, ϕ)

)
d(τ, ϕ) = m

T
� + o(m/T ),

where

� =
∥
∥
∥
∥

∞∑

k=−∞
|k|
∫ 1

0
Cov(X (w)

0 , X (w)
k ) dw

∥
∥
∥
∥

2

2,2

and

� = 2

3

∫ 1

0

( ∞∑

k=−∞

∫ 1

0
Cov

(
X (w)
0 (τ ), X (w)

k (τ )
)
dτ

)2

+
∥
∥
∥
∥

∞∑

k=−∞
Cov(X (w)

0 , X (w)
k )

∥
∥
∥
∥

2

2,2
dw.

As a consequence of this lemma, we obtain the expansion

IMSET (m) =
∫

[0,1]2
MSE(σ̃T (τ, ϕ)) d(τ, ϕ)

=
∫

[0,1]2
Var
(
σ̃T (τ, ϕ)

)+ (E[σ̃T (τ, ϕ)] − σc(τ, ϕ)
)2 d(τ, ϕ)

= m

T
� + 1

m2� + o(m−2) + o(m/T ),
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which can next be minimized with respect to m to get a natural choice for the block
length. More precisely, the dominating function �(m) = m

T � + 1
m2 � is differentiable

in m with �′(m) = �
T − 2�

m3 and �′′(m) = 6�
m4 , whence m = ( 2�T

�

)1/3 is the unique
minimizer of �. In practice, both � and � are unknown and must be estimated in
terms of the observed data. This leads us to define

m̂ = (2�̂T T /�̂T
)1/3

where, for some constant L ∈ N specified below,

�̂T =
∫

[0,1]2

(
1

T − 2L

T −L∑

i=L+1

L∑

k=−L

|k|γ̂i,k,T (τ, ϕ)

)2

d(τ, ϕ)

and

�̂T = 2

3

1

T − 2L

T −L∑

i=L+1

(
L∑

k=−L

∫ 1

0
γ̂i,k,T (τ, τ ) dτ

)2

+
∫

[0,1]2

(
L∑

k=−L

γ̂i,k,T (τ, ϕ)

)2

d(τ, ϕ).

Here γ̂i,k,T is defined by

γ̂i,k,T (τ, ϕ) = 1

n̄i+k,0 − ¯ni + 1

n̄i+k,0∑

j=¯ni

⎛

⎝Xi+ j,T (τ ) − 1

ñi+ j,0

n̄i+ j,0∑

t=¯ni+ j

Xi+ j+t,T (τ )

⎞

⎠

×
⎛

⎝Xi+ j+k,T (ϕ) − 1

ñi+ j+k,0

n̄i+ j+k,0∑

t=¯ni+ j+k

Xi+ j+k+t,T (ϕ)

⎞

⎠

and n̄t,h, ¯nt and ñt,h are given in (16). Note that the above estimators depend on the
choice of the integer L . Following Bücher and Kojadinovic (2016) and Politis and
White (2004), we select L to be the smallest integer, such that

ρ̂k,T =

∥
∥
∥ 1

T −k

∑T −k
i=1 γ̂i,k,T

∥
∥
∥
2,2∥

∥
∥ 1

T

∑T
i=1 γ̂i,0,T

∥
∥
∥
2,2

is negligible for any k > L; more precisely, L is chosen as the smallest integer such
that ρ̂L+k,T ≤ 2

√
log(T )/T , for any k = 1, . . . , KT , with KT = max{5,√log T }.
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4 Time-varying random operator functional AR processes

We consider an exemplary class of functional locally stationary processes and specify
the approximating family of stationary processes. The results in this section are similar
to Theorem 3.1 of Bosq (2000).

Let L = L(L2([0, 1]), L2([0, 1])) be the space of bounded linear operators on
L2([0, 1]). Further, denote by ‖ · ‖L and ‖ · ‖S the standard operator norm and the
Hilbert–Schmidt norm, respectively, i. e.,

‖�‖L = sup
‖x‖2≤1

‖�(x)‖2, ‖�‖S =
⎛

⎝
∞∑

j=1

λ2j

⎞

⎠

1/2

for � ∈ L with eigenvalues λ1 ≥ λ2 ≥ . . . . By Eq. (1.55) in Bosq (2000), we have
‖ · ‖L ≤ ‖ · ‖S . For any T ∈ N, consider the recursive functional equation

Xt,T = Yt,T + μ(t/T ), Yt,T = At/T (Yt−1,T ) + εt,T , t ∈ Z, (18)

where (εt,T )t∈Z is a sequence of independent zero mean innovations in L2([0, 1]) and
where At,T : L2([0, 1]) → L2([0, 1]) denotes a possibly random and time-varying
bounded linear operator. The equation defines what might be called a (time-varying)
randomoperator functional autoregressive process of order one, denoted by tvrFAR(1)
(see also van Delft et al. (2017), Sect. 4.1) for the non-random case with εt,T not
depending on T .

In the following, we will only consider the case where μ is the null function.
In the more general case of μ being Lipschitz, if there exists a locally stationary
solution Yt,T of the equation on the right-hand side of (18) with approximating family
{Y (u)

t |t ∈ Z}u∈[0,1], then Xt,T = Yt,T + μ(t/T ) is obviously locally stationary with
approximating family X (u)

t = Yt + μ(u).
To be precise, we restrict ourselves to the following specific parameterization

μ ≡ 0, At/T = a(t/T ) Ã, εt,T = σ(t/T )ε̃t ,

where a and σ > 0 are measurable functions on [0, 1]. The following lemma pro-
vides sufficient conditions for ensuring local stationarity of the model and provides an
explicit expression for the approximating family of stationary processes. For a related
result in the case where At/T is non-random and εt,T does not depend on T , see
Theorem 3.1 in van Delft and Eichler (2018).

For a sequence of operators (Bi )i in L, we will write
∏n

i=0 Bi = B0 ◦ · · · ◦ Bn for
n ∈ N. The empty product will be identified with the identity on L2([0, 1]), that is,∏−1

i=0 Bi = idL2([0,1]).

Lemma 4 Let (ε̃t )t∈Z be strong white noise in L2([0, 1]). Further, let a and σ be
measurable functions on (−∞, 1] such that σ > 0, a(u) = a(0) and σ(u) = σ(0)
for all u ≤ 0. Finally, let εt,T = σ(t/T )ε̃t , ε

(u)
t = σ(u)ε̃t and Au = a(u) Ã, where
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Ã denotes a random operator in L that is independent from (ε̃t )t∈Z and satisfies
supu∈[0,1] ‖Au‖S ≤ q < 1 with probability one. Then:

(i) For any u ∈ [0, 1], there exists a unique stationary solution (Y (u)

t )t∈Z of the
recursive equation

Y (u)
t = Au(Y (u)

t−1) + ε
(u)
t , t ∈ Z,

namely

Y (u)
t =

∞∑

j=0

A j
u(εu,t− j ),

where the latter series converges in L2(� × [0, 1],P ⊗ λ) and almost surely in
L2([0, 1]).

(ii) If σ and a are Lipschitz continuous, then there exists a unique locally stationary
solution (Yt,T ) of order ρ = 2 satisfying supt∈Z,T ∈N E[‖Yt,T ‖22] < ∞ of the
recursive equation

Yt,T = At/T (Yt−1,T ) + εt,T , t ∈ Z, T ∈ N,

namely

Yt,T =
∞∑

j=0

⎛

⎝
j−1∏

i=0

A t−i
T

⎞

⎠ (εt− j,T ),

the series again being convergent in L2(� × [0, 1],P ⊗ λ) and almost surely in
L2([0, 1]). The locally stationary process has approximating family {(Y (u)

t )t∈Z :
u ∈ [0, 1]}.

Remark 3 The previous lemma provides sufficient conditions for local stationarity of
the random operator FAR model. In the simulation study of the following section, we
use specific models for the parameter curves and the functional white noise and show
that those models satisfy the cumulant condition in Assumption (A3) as well.

5 Finite-sample results

5.1 Monte Carlo simulations

A large-scale Monte Carlo simulation study was performed to analyze the finite-
sample behavior of the proposed tests. The major goals of the study were to analyze
the level approximation and the power of the various tests, with a particular view on
investigating various different forms of alternatives, notably models from H (m)

1 , H (c,0)
1

and H (c,1)
1 . All stated results related to testing the joint hypothesis H (H)

0 are for the
combined test described in Algorithm 1, withψ(p−1, . . . , pH ) =∑H

i=−1 wi�
−1(1−
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pi ) with weights w1 = w0 = 1/2 for H = 0 and w−1 = w0 = 1/3 and w1 = · · · =
wH = (3H)−1 for H ≥ 1.

For the data-generating processes, we employed 10 different choices for the param-
eters in (18), which will be described next. Let (ψi )i∈N0 denote the Fourier basis of
L2([0, 1]), that is, for n ∈ N,

ψ0 ≡ 1, ψ2n−1(τ ) = √
2 sin(2πnτ), ψ2n(τ ) = √

2 cos(2πnτ).

Let (ε̃t )t∈Z denote an i.i.d. sequence of mean zero random variables in L2([0, 1]),
defined by ε̃t = ∑16

i=0 ut,iψi , where ut,i are independent and normally distributed
with mean zero and variance Var(ui,t ) = exp(−i/10). Independent of (ε̃t )t∈Z, let
G = (Gi, j )i, j=0,...,16 denote a matrix with independent normally distributed entries
with Var(Gi, j ) = exp(−i − j). Let Ã : L2([0, 1]) → L2([0, 1]) denote the (random)
integral operator defined by

Ã( f )(t) = 1
3|||G|||F

16∑

i, j=0

Gi, j 〈 f , ψi 〉ψ j (t)

=
∫ 1

0

⎛

⎝ 1
3|||G|||F

16∑

i, j=0

Gi, jψi (s)ψ j (t)

⎞

⎠ f (s) ds,

where |||G|||F denotes the Frobenius norm (note that the Hilbert–Schmidt norm of Ã
is equal to 1/3, see Horváth and Kokoszka 2012, Sect. 2.2). Finally, let

a0(u) = 1, a1(u) = 1
2 + u,

a2(u) = 1 − 1
2 cos(2πu), a3(u) = 1

2 + 1(u ≥ 1/2),

for u ∈ [0, 1] and let a j (u) = a j (0) for u ≤ 0 and a j (u) = a j (1) for u ≥ 1. The
following ten data-generating processes are considered:

• Stationary case. Let

μ ≡ 0, At/T = Ã, εt,T = ε̃t . (19)

• Models deviating from H (m)

0 . For j = 1, . . . , 3, consider the choices

μ(τ) = a j (τ ), At/T = Ã, εt,T = ε̃t . (20)

• Models deviating from H (c,0)
0 . For j = 1, . . . , 3, consider the choices

μ ≡ 0, At/T = Ã, εt,T = a j (t/T )ε̃t . (21)

• Models deviating from H (c,1)
0 . For j = 1, . . . , 3, consider the choices

μ ≡ 0, At/T = a j (t/T ) Ã, εt,T = ε̃t . (22)
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Remark 4 The models defined in (19)–(22) satisfy condition (A3) if the functions a
and σ are Lipschitz continuous. To see this, we exemplarily derive (14), as the other
parts follow by similar arguments. Observe that in all models, the mean function μ

is in L2; thus, (14) is trivial for j = 1. For j ≥ 2, consider first the case that Ã is
non-random first. Then, by Lemma 4 (ii), the definition of At/T and εt,T , and linearity
of both (powers of) the operator Ã and the cumulants,

‖ cum(Xt1,T , . . . , Xt j ,T )‖2, j

= ‖ cum(Yt1,T , . . . , Yt j ,T )‖2, j

=
∥
∥
∥
∥
∥
cum

( ∞∑

k=0

(
k−1∏

i=0

A t1−i
T

)

(εt1−k,T ), . . . ,

∞∑

k=0

(
k−1∏

i=0

A t j −i
T

)

(εt j −k,T )

)∥∥
∥
∥
∥
2, j

=
∥
∥
∥
∥
∥
cum

( ∞∑

k=0

(
k−1∏

i=0

a
(

t1−i
T

)
)

Ãk

(

σ
(

t1−k
T

) 16∑

�=0

ut1−k,�ψ�

)

, . . .

. . . ,

∞∑

k=0

(
k−1∏

i=0

a
(

t j −i
T

)
)

Ãk

(

σ
(

t j −k
T

) 16∑

�=0

ut j −k,�ψ�

))∥∥
∥
∥
∥
2, j

=
∥
∥
∥
∥
∥
∥

∞∑

k1,...,k j =0

16∑

�1,...,� j =0

⎛

⎝
j∏

ν=1

⎧
⎨

⎩

⎛

⎝
k j −1∏

i=0

a
(

tν−i
T

)
⎞

⎠ σ
(

tν−kν

T

)
Ãkν (ψ�ν )

⎫
⎬

⎭

⎞

⎠

× cum(ut1−k1,�1 , . . . , ut j −k j ,� j )

∥
∥
∥
∥
∥
∥
2, j

.

By independence of the random variables ut,�, the cumulants on the right-hand side of
the previous display are zero if there is an index ν ∈ {2, . . . , j} such that �1 �= �ν or
t1 − k1 �= tν − kν . Further, the random variables ut,� are normally distributed and the
higher cumulants, for j > 2, are zero. Thus, (14) is trivial for j > 2. Now, let j = 2
and consider t2 ≥ t1 without loss of generality. Then, by the previous considerations,

‖ Cov(Xt1,T , Xt2,T )‖2,2

=
∥
∥
∥
∥
∥

∞∑

k=0

16∑

�=0

(
k−1∏

i=0

a
(

t1−i
T

)
)

σ
(

t1−k
T

)
Ãk(ψ�)

(
t2−t1+k−1∏

i=0

a
(

t2−i
T

)
)

×σ
(

t2−(t2−t1+k)
T

)
Ãt2−t1+k(ψ�)Var(ut1−k,�)

∥
∥
∥
∥
∥
2,2

,

which can be bounded by

9

4

∞∑

k=0

(
1

2

)t2−t1+2k 16∑

�=0

exp

(

− �

10

)

≤ C
(1

2

)t2−t1
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since ‖ Ã‖S = 1
3 , Var(ut,�) = exp(−�/10), and both a and σ can be bounded from

above by 3/2. Thus,

∞∑

t1=−∞
‖Cov(Xt1,T , Xt2,T )‖2,2 ≤ C

⎛

⎝
t2∑

t1=−∞

(
1

2

)t2−t1
+

∞∑

t1=t2+1

(
1

2

)t1−t2
⎞

⎠ ≤ C,

which proves (14) in case Ã is non-random. The random case follows since the upper
bound does not depend on Ã and since Ã is assumed to be independent of ε̃t .

Subsequently, the respectivemodels will be denoted by (M0) and (Mm, j ), (Mv, j )

and (Ma, j ) for j = 1, . . . , 3. Note that the model descriptions are non-exclusive:
For instance, the models in (20) exhibiting deviations from H (m)

0 also deviate from
H (c,0)
0 .
Preliminary simulation studies showed that the data-driven choice of m, as intro-

duced in Sect. 3.6, yields similar results as a manual choice of m and should be
favored. Further parameters of the simulation design are as follows: The number of
bootstrap replicates is set to K = 200. Two sample sizes were considered, namely
T = 256 and T = 512. Observe though that, unlike many frequency domain-
based methods for functional time series, the proposed testing procedure does not
require the sample sizes to be a power of two to work effectively. The hyperpa-
rameter n for estimating local means is set to n = 45, 60, 75, 90, T . Finally, the
maximum number of lags considered was set to H = 4. Empirical rejection rates
are based on N = 500 simulation runs each and are summarized in Tables 1
and 2.

From the previous results, it can be seen that different choices of n do not
lead to crucially different results. For T = 256, the tests for the hypotheses H (m)

0
and H (c,0)

0 already have good power against the alternatives (Mm,1), (Mm,3) and
(Mv,1), (Mv,2), (Mv,3), respectively. When combining H (m)

0 and H (c,0)
0 and taking

even more autocovariances into account, the test does not loose significant power.
For T = 512, the power further increases such that all tests have good power
against the alternatives (Mm,i ) and (Mv,i ), i = 1, 2, 3. Detecting non-stationarities
in models (Ma,i ), i = 1, 2, 3 turns out to be more difficult. Even though the
power increases with T , for small values of T , the results are not too convincing.
These findings can be explained by the fact that the measures of non-stationarity
‖M‖2,2 and ‖Mh‖2,3, as introduced in (5) and (6), are comparably small for models
(Ma,i ), i = 1, 2, 3. This can be deduced from Table 3, where these measures of non-
stationarity are approximated by their natural estimators ‖MT ‖2,2 = ‖UT ‖2,2/

√
T

and ‖MT ,h‖2,3 = ‖UT ,h‖2,3/
√

T , based on 2000 Monte Carlo repetitions and for
various choices of T . It is noticeable that the values for models (Ma,1) and (Ma,2)

are close to those for (M0), which perfectly explains the results of the simulation
study.

As pointed out by a reviewer, it is of interest to investigate the sensitivity of the
test with respect to the number of components included in the procedure. For this
purpose, we highlight in Table 4 the rejection probabilities of the tests for the different
hypotheses in the models (Mm,1) and (Mv,1), which correspond to a change in the

123



Detecting non-stationarities in functional time series 1077

Table 1 Empirical rejection rates for various combined tests, based on a sample size of T = 256 and a
block length parameter m calculated as proposed in Sect. 3.6

Model n H (m)
0 H (c,0)

0 H (0)
0 H (1)

0 H (2)
0 H (3)

0 H (4)
0 m̄ sd(m)

(M0) 45 7.2 0.4 3.0 1.0 0.8 0.8 1.0 5.77 0.41

60 7.0 0.2 2.6 0.4 0.4 0.4 0.4 5.78 0.41

75 5.4 0.8 2.2 0.2 0.2 0.4 0.4 5.80 0.40

90 5.2 0.2 1.8 0.2 0.2 0.2 0.2 5.80 0.41

256 4.0 0.2 1.8 0.0 0.0 0.0 0.0 5.81 0.38

(Mm,1) 45 92.8 64.4 89.6 89.8 90.8 90.6 91.2 5.82 0.41

60 91.8 61.2 88.8 87.8 88.6 89.4 89.0 5.81 0.41

75 90.2 59.2 87.8 86.4 87.2 87.6 87.6 5.82 0.41

90 89.8 58.2 86.4 85.2 86.4 86.2 86.8 5.83 0.40

256 88.2 50.4 81.8 79.4 81.8 82.8 83.2 5.82 0.42

(Mm,2) 45 57.6 31.2 55.8 53.8 55.0 55.0 56.0 5.79 0.41

60 53.0 26.2 49.2 48.2 48.6 48.4 49.4 5.78 0.42

75 49.0 20.8 45.0 42.8 43.4 42.8 43.0 5.78 0.42

90 41.8 16.0 38.8 33.8 35.8 35.8 36.4 5.78 0.42

256 31.0 9.0 24.8 21.4 23.4 22.4 22.0 5.89 0.60

(Mm,3) 45 99.8 97.0 99.8 99.8 99.8 99.8 100.0 5.78 0.43

60 99.6 96.6 99.8 99.8 99.8 99.8 99.8 5.78 0.44

75 99.6 96.2 99.8 99.8 99.8 99.8 99.8 5.78 0.44

90 99.8 95.8 99.8 99.8 99.8 99.8 99.8 5.80 0.44

256 99.6 94.8 99.4 99.0 99.2 99.2 99.2 6.15 1.42

(Mv,1) 45 8.0 100.0 99.6 84.8 81.2 79.4 79.0 5.50 0.59

60 8.0 100.0 99.8 82.4 77.6 76.8 75.4 5.53 0.59

75 7.4 100.0 99.8 78.8 74.4 72.8 74.2 5.60 0.58

90 7.2 100.0 99.6 75.4 73.2 72.4 73.0 5.69 0.53

256 3.6 100.0 96.6 63.0 56.6 56.0 53.4 6.00 0.45

(Mv,2) 45 6.2 100.0 99.4 76.2 71.4 70.4 70.4 6.34 2.84

60 5.0 100.0 98.2 64.8 60.2 59.0 60.0 6.81 3.70

75 4.6 99.0 90.8 51.8 48.6 47.2 45.6 7.86 5.38

90 3.4 87.4 69.8 31.4 27.2 26.2 26.8 9.75 7.40

256 3.6 96.6 65.6 22.4 20.2 21.0 20.6 6.60 2.28

(Mv,3) 45 20.2 100.0 100.0 95.8 93.6 92.4 91.8 14.15 10.14

60 13.6 100.0 100.0 93.8 89.2 88.4 87.8 13.85 9.65

75 10.2 100.0 100.0 90.6 88.2 85.0 84.6 14.05 9.47

90 8.6 100.0 100.0 87.6 86.2 82.0 80.8 13.63 8.96

256 3.4 100.0 96.4 78.0 71.2 67.6 67.0 11.43 7.25

(Ma,1) 45 6.6 4.8 5.6 5.0 4.6 4.2 3.6 5.82 0.41

60 5.8 3.8 5.2 4.0 3.2 3.4 2.6 5.83 0.40

75 5.2 2.6 4.2 3.2 3.0 2.8 2.0 5.85 0.39
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Table 1 continued

Model n H (m)
0 H (c,0)

0 H (0)
0 H (1)

0 H (2)
0 H (3)

0 H (4)
0 m̄ sd(m)

90 4.8 2.2 3.8 2.8 2.4 2.0 1.6 5.85 0.39

256 3.0 1.0 1.2 0.6 0.6 0.4 0.6 5.83 0.43

(Ma,2) 45 7.8 2.4 4.8 3.4 2.8 2.4 2.8 5.82 0.42

60 7.0 1.6 3.6 2.0 1.2 1.2 1.4 5.84 0.42

75 6.4 1.0 3.2 1.2 1.0 0.8 0.8 5.87 0.44

90 6.4 0.8 2.6 0.6 0.6 0.6 0.6 5.90 0.44

256 5.4 0.2 1.2 0.2 0.2 0.2 0.2 5.84 0.52

(Ma,3) 45 10.2 16.4 13.2 20.6 16.8 13.0 11.6 5.93 0.57

60 8.6 14.4 11.2 17.0 13.6 10.2 9.2 5.94 0.55

75 7.6 12.6 9.2 15.0 11.6 9.0 8.2 5.96 0.59

90 7.2 11.8 9.2 14.6 10.8 8.2 7.6 5.96 0.61

256 5.4 5.6 5.6 6.6 5.4 4.2 4.0 5.93 0.56

The last two columns provide the mean and standard deviation of the selected value of m

mean (and as a consequence in all second-order moments) and changes in all second-
order moments (with no change in the mean), respectively.

We observe that the impact of the number of components on the power of the
tests shows no clear pattern. For example, the power is almost constant under model
(Mm,1) if additional components are included in the test statistic. Conversely, under
model (Mv,1), the power decreases with the number of components.

We also list results for the functional moving average model

Xt,T = ε̃t + σ(t/T )ε̃t−2, (MMA)

with σ(u) = 1(u ≤ 0.5) − 1(u > 0.5) and ε̃t as for the autoregressive model.
This model has constant mean and covariances, except of the covariance with lag 2,
and consequently only the tests for hypotheses H (H)

0 (H ≥ 2) should reject the null
since all moments besides E[Xt,T Xt+2,T ] are constant. This effect is clearly visible
in the last rows of Table 4, where we observe the largest rejection probabilities by
the test constructed for the hypotheses H (2)

0 . The power decreases for the hypothe-

ses H (3)
0 and H (4)

0 , which can be explained by the fact that in this case the statistics
combines stationary and non-stationary parts of the serial dependence. Compared to
the other cases, the test has less power in model MMA. An intuitive explanation for
this observation consists of the fact that the weights of the p values, as introduced
in Sect. 3.4, favor changes in the mean and the second moment (the correspond-
ing weights in the test statistic are larger), which makes it more difficult to detect
changes in models that are only non-stationary in the second-order moments at higher
lags. On the other hand, it is worthwhile to mention that the null hypothesis H (c,2)

0
is rejected in nearly 100% of the cases in the MMA model (these results are not
displayed).
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Table 2 Empirical rejection rates for various combined tests, based on a sample size of T = 512 and a
block length parameter m calculated as proposed in Sect. 3.6

Model n H (m)
0 H (c,0)

0 H (0)
0 H (1)

0 H (2)
0 H (3)

0 H (4)
0 m̄ sd(m)

(M0) 45 10.6 5.2 7.8 4.4 4.0 3.8 3.4 7.24 0.43

60 10.0 3.8 6.6 3.0 2.2 2.4 2.6 7.25 0.44

75 8.4 2.0 3.8 1.4 1.0 1.6 1.4 7.28 0.46

90 7.6 1.8 3.4 1.2 1.2 1.0 1.0 7.28 0.46

512 4.6 1.0 2.6 0.8 0.8 0.8 0.8 7.30 0.46

(Mm,1) 45 100.0 97.4 100.0 99.8 99.8 100.0 100.0 7.23 0.43

60 99.8 97.0 100.0 99.6 99.6 99.8 100.0 7.23 0.42

75 100.0 96.8 99.8 99.6 99.8 99.8 99.8 7.25 0.44

90 100.0 96.6 99.8 99.4 99.6 99.8 99.8 7.27 0.45

512 99.0 91.2 98.8 98.4 98.4 98.6 98.6 7.35 0.54

(Mm,2) 45 95.6 82.4 95.6 95.2 95.6 96.4 96.0 7.23 0.42

60 94.2 78.8 94.6 94.2 94.6 94.6 95.0 7.25 0.43

75 94.0 75.2 94.0 93.2 93.4 94.2 94.0 7.26 0.45

90 93.2 73.4 93.4 93.2 93.0 93.6 93.6 7.27 0.44

512 83.4 51.8 79.2 79.6 81.6 82.0 83.4 7.40 0.55

(Mm,3) 45 100.0 100.0 100.0 100.0 100.0 100.0 100.0 7.24 0.43

60 100.0 100.0 100.0 100.0 100.0 100.0 100.0 7.27 0.45

75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 7.28 0.46

90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 7.29 0.46

512 100.0 99.6 100.0 100.0 100.0 100.0 100.0 8.47 3.45

(Mv,1) 45 9.2 100.0 100.0 97.8 95.6 95.4 95.0 6.85 0.44

60 8.4 100.0 100.0 95.8 93.2 91.0 89.2 6.88 0.46

75 7.2 100.0 100.0 94.8 92.6 89.6 87.6 6.89 0.44

90 6.0 100.0 100.0 94.4 90.6 89.6 85.8 6.91 0.43

512 4.0 100.0 100.0 90.4 84.0 80.8 79.2 7.43 0.54

(Mv,2) 45 7.2 100.0 100.0 96.6 94.0 93.6 92.4 6.79 0.60

60 6.6 100.0 100.0 94.2 90.4 88.2 87.6 6.86 0.57

75 6.2 100.0 100.0 93.2 88.6 85.4 82.4 6.96 0.63

90 5.6 100.0 100.0 90.8 86.8 84.2 81.0 7.05 0.66

512 3.8 100.0 99.8 87.2 82.4 80.0 78.2 7.50 0.75

(Mv,3) 45 8.2 100.0 100.0 99.4 97.8 96.0 96.4 7.89 3.41

60 7.2 100.0 100.0 98.6 96.4 95.0 93.4 7.79 3.08

75 6.4 100.0 99.8 98.6 94.8 92.0 91.2 7.87 3.12

90 6.0 100.0 100.0 98.4 95.4 92.0 90.4 7.98 3.14

512 4.6 100.0 100.0 98.0 95.8 93.4 90.2 8.58 2.58
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Table 2 continued

Model n H (m)
0 H (c,0)

0 H (0)
0 H (1)

0 H (2)
0 H (3)

0 H (4)
0 m̄ sd(m)

(Ma,1) 45 11.0 23.8 19.8 31.0 26.2 23.0 21.4 7.26 0.46

60 10.2 20.2 16.6 24.4 20.4 18.0 15.4 7.30 0.49

75 9.8 18.0 13.4 22.0 18.8 16.4 13.2 7.30 0.47

90 9.6 17.2 13.2 20.0 16.8 15.2 13.0 7.31 0.48

512 5.6 7.4 5.2 7.0 4.8 4.2 4.0 7.35 0.50

(Ma,2) 45 8.8 9.2 9.2 10.8 8.8 8.4 7.4 7.29 0.50

60 7.4 6.0 5.8 6.4 5.2 4.2 3.4 7.31 0.51

75 6.8 4.2 5.6 5.0 4.0 3.0 2.4 7.33 0.53

90 6.4 3.4 5.2 4.4 3.0 1.6 2.2 7.35 0.55

512 4.8 1.6 1.6 1.0 0.6 0.6 0.4 7.39 0.59

(Ma,3) 45 10.4 42.4 32.0 59.2 47.6 40.6 37.6 7.38 0.59

60 10.3 37.8 27.8 53.2 42.6 35.6 30.8 7.40 0.60

75 8.2 35.2 25.4 51.2 40.2 33.2 28.2 7.43 0.64

90 7.8 33.4 24.2 47.4 37.0 31.4 25.0 7.43 0.65

512 7.0 26.8 16.2 35.4 25.4 20.6 16.4 7.52 0.68

The last two columns provide the mean and standard deviation of the selected value of m

5.2 Case study

Functional time series naturally arise in the field of meteorology. For instance, the
daily minimal temperature at one place over time can be naturally divided into yearly
functional data.

To illustrate the proposed methodology, we consider the daily minimum tempera-
ture recorded at eight different locations across Australia. Exemplary, the temperature
curves of Melbourne and Sydney are displayed in Fig. 1. The results of our testing
procedure can be found in Table 5, where we employed K = 1000 bootstrap repli-
cates, considered up to H = 4 lags and chose n = 25, based on visual exploration
of the respective plots. The null hypotheses of stationarity can be rejected, at level
α = 0.05, for all measuring stations except of Gunnedah Pool, for which the p values
exceed α by a small amount.

6 Proofs

Throughout the proofs, C denotes a generic constant whose value may change from
line to line. If not specified otherwise, all convergences are for T → ∞.
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Table 3 ‖MT ‖2,2 and ‖MT ,h‖2,3, h = 0, . . . , 4, calculated by 2000 Monte Carlo repetitions

T Model ‖MT ‖2,2 ‖MT ,0‖2,3 ‖MT ,1‖2,3 ‖MT ,2‖2,3 ‖MT ,3‖2,3 ‖MT ,4‖2,3
256 (M0) 0.0759 0.2344 0.2273 0.2272 0.2274 0.2277

(Mm,1) 0.1180 0.3208 0.3152 0.3145 0.3146 0.3138

(Mm,2) 0.0952 0.2812 0.2754 0.2754 0.2758 0.2760

(Mv,1) 0.0803 0.5394 0.3124 0.2989 0.2979 0.2977

(Mv,2) 0.0698 0.3681 0.2471 0.2412 0.2412 0.2422

(Ma,1) 0.0764 0.2426 0.2389 0.2328 0.2306 0.2301

(Ma,2) 0.0758 0.2358 0.2304 0.2277 0.2273 0.2273

512 (M0) 0.0540 0.1659 0.1607 0.1603 0.1604 0.1604

(Mm,1) 0.1049 0.2590 0.2562 0.2556 0.2547 0.2549

(Mm,2) 0.0781 0.2144 0.2097 0.2095 0.2097 0.2100

(Mv,1) 0.0572 0.4939 0.2313 0.2121 0.2105 0.2099

(Mv,2) 0.0494 0.3241 0.1791 0.1702 0.1695 0.1697

(Ma,1) 0.0542 0.1743 0.1743 0.1665 0.1632 0.1624

(Ma,2) 0.0537 0.1683 0.1652 0.1620 0.1606 0.1602

1024 (M0) 0.0383 0.1172 0.1134 0.1132 0.1131 0.1133

(Mm,1) 0.0987 0.2250 0.2233 0.2229 0.2230 0.2223

(Mm,2) 0.0681 0.1710 0.1685 0.1685 0.1684 0.1684

(Mv,1) 0.0403 0.4696 0.1776 0.1518 0.1489 0.1486

(Mv,2) 0.0349 0.3000 0.1336 0.1210 0.1196 0.1198

(Ma,1) 0.0386 0.1289 0.1321 0.1215 0.1169 0.1152

(Ma,2) 0.0381 0.1212 0.1206 0.1162 0.1141 0.1134

2048 (M0) 0.0270 0.0831 0.0802 0.0801 0.0800 0.0801

(Mm,1) 0.0949 0.2047 0.2041 0.2038 0.2035 0.2036

(Mm,2) 0.0624 0.1449 0.1431 0.1431 0.1431 0.1431

(Mv,1) 0.0283 0.4568 0.1430 0.1097 0.1055 0.1049

(Mv,2) 0.0245 0.2869 0.1035 0.0866 0.0846 0.0844

(Ma,1) 0.0272 0.0973 0.1040 0.0906 0.0845 0.0821

(Ma,2) 0.0269 0.0884 0.0898 0.0839 0.0814 0.0804

Table 4 Empirical rejection rates for various combined tests, based on sample sizes of T = 256, 512, the
bandwidth of the local mean estimator n = 60 (for T = 256), n = 90 (for T = 512), and a block length
parameter selected automatically

T Model H (m)
0 H (c,0)

0 H (0)
0 H (1)

0 H (2)
0 H (3)

0 H (4)
0

256 (Mm,1) 91.8 61.2 88.8 87.8 88.6 89.4 89.0

(Mv,1) 8.0 100.0 99.8 82.4 77.6 76.8 75.4

(MMA) 4.2 8.0 5.0 3.2 23.8 12.6 8.4

512 (Mm,1) 100.0 96.6 99.8 99.4 99.6 99.8 99.8

(Mv,1) 6.0 100.0 100.0 94.4 90.6 89.6 85.8

(MMA) 6.2 7.4 5.2 3.4 28.2 15.2 11.8
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Fig. 1 Temperature curves of Melbourne (T = 161 years) and Sydney (T = 160 years), where the x axis
corresponds to a year in rescaled time and the y axis denotes temperature in degree Celsius

Table 5 p values of the (combined) tests for the respective null hypotheses in percent, and selected value
of m

Location T H (m)
0 H (c,0)

0 H (0)
0 H (1)

0 H (2)
0 H (3)

0 H (4)
0 m

Boulia Airport 131 0.3 0.0 0.0 0.0 0.0 0.0 0.0 5

Gayndah Post Office 117 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4

Gunnedah Pool 136 6.4 5.8 5.8 5.9 5.8 5.3 5.1 6

Hobart 137 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8

Melbourne 161 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5

Cape Otway Lighthouse 155 0.5 0.4 0.4 0.1 0.0 0.0 0.0 7

Robe 135 4.5 1.0 1.9 1.0 1.0 0.6 0.5 6

Sydney 160 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5

6.1 A fundamental approximation lemma in Hilbert spaces

Lemma 5 Fix p ∈ N. For i = 1, . . . , p and T ∈ N, let Xi,T and Xi denote ran-
dom variables in a separable Hilbert space (Hi , 〈·, ·〉i ). Futher, let (ψ

(i)
k )k∈N be an

orthonormal basis of Hi and for brevity write 〈·, ·〉 = 〈·, ·〉i . Suppose that

(1) Y n
T := ((〈X1,T , ψ

(1)
k 〉)n

k=1, . . . , (〈X p,T , ψ
(p)
k 〉)n

k=1

)

�
(
(〈X1, ψ

(1)
k 〉)n

k=1, . . . , (〈X p, ψ
(p)
k 〉)n

k=1

) =: Y n as T → ∞, for any n ∈ N,

(2) lim
n→∞ lim sup

T →∞
P

( ∞∑

k=n+1

p∑

i=1

〈Xi,T , ψ
(i)
k 〉2 > ε

)
= 0 for all ε > 0.

Then, using the notation ‖(xk)k∈N‖2 =∑∞
k=1 x2k ,

Y ∞
T := (

(〈X1,T , ψ
(1)
k 〉)∞k=1, . . . , (〈X p,T , ψ

(p)
k 〉)∞k=1

)
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�
(
(〈X1, ψ

(1)
k 〉)∞k=1, . . . , (〈X p, ψ

(p)
k 〉)∞k=1

) =: Y ∞ in (�2(N), ‖ · ‖2)p

and, as a consequence,

(X1,T , . . . , X p,T ) � (X1, . . . , X p) in H1 × · · · × Hp.

Proof of Lemma 1 To prove the first part, we employ Theorem 2 of Dehling et al.
(2009). Expand the random variables Y n

T and Yn in Rpn to

Ỹ ∞
T ,n = ((a(1)

T ,k)k∈N, . . . (a(p)
T ,k)k∈N

)
and Ỹ ∞

n = ((a(1)
k )k∈N, . . . , (a(p)

k )k∈N
)

in (�2(N), ‖·‖2)p, where a(i)
T ,k = 〈Xi,T , ψ

(i)
k 〉 and a(i)

k = 〈Xi , ψ
(i)
k 〉, for any 1 ≤ k ≤ n,

anda(i)
T ,k = a(i)

k = 0, for any k > n, i = 1, . . . , p. By the continuousmapping theorem,

Ỹ ∞
T ,n converges weakly to Ỹ ∞

n in (�2(N), ‖ · ‖2)p, for any n ∈ N and as T tends to
infinity.

By assumption (2) and since the space (�2(N), ‖ · ‖2)p is separable and complete,
there is a random variable Ỹ ∞ ∈ (�2(N), ‖ · ‖2)p such that Y ∞

T � Ỹ ∞, as T tends to
infinity, and Ỹ ∞

n � Ỹ ∞, as n tends to infinity, by Theorem 2 of Dehling et al. (2009).
Due to the latter convergence, the finite-dimensional distributions of Ỹ ∞ and Y ∞ are
the same. Thus, by Theorem 1.3 of Billingsley (1999) and Lemma 1.5.3 of van der
Vaart and Wellner (1996), Ỹ ∞ and Y ∞ have the same distribution in (�2(N), ‖ · ‖2)p.

Next, observe that, for an arbitrary Hilbert space H , the function

� :=
{

�2(N) → H
(yk)k∈N �→ ∑∞

k=1 ykψk

is continuous, provided (ψk)k∈N is an orthonormal basis of H . Indeed,

∥
∥�
(
(yk)k

)− �
(
(zk)k

)∥
∥2 =∑∞

k=1(yk − zk)
2 = ‖y − z‖22.

Thus, the mapping

�′ :=
{

(�2(N), ‖ · ‖2)p → H1 × · · · × Hp(
(yk,1)k∈N, . . . , (yk,p)k∈N

) �→ (∑∞
k=1 yk,1ψ

(1)
k , . . . ,

∑∞
k=1 yk,pψ

(p)
k

)

is continuous too, and the continuous mapping theorem implies that

(X1,T , . . . , X p,T ) =
(∑∞

k=1〈X1,T , ψ
(1)
k 〉ψ(1)

k , · · ·∑∞
k=1〈X p,T , ψ

(p)
k 〉ψ(p)

k

)

�
(∑∞

k=1〈X1, ψ
(1)
k 〉ψ(1)

k , . . . ,
∑∞

k=1〈X p, ψ
(p)
k 〉ψ(p)

k

)

= (X1, . . . , X p),

as T tends to infinity. ��
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6.2 Proofs for Sects. 3.1, 3.2, 3.3 and 3.4

Proof of Lemma 2 We only prove the equivalence concerning H (h)

0 ; the equivalences
regarding H (m)

0 follow along similar lines.
Step 1: Equivalence between (3) and (8). Suppose that (8) is met. To prove (3), it

is sufficient to show that
∥
∥
∥E[X (u)

0 ⊗ X (u)
h ] −

∫ 1

0
E[X (w)

0 ⊗ X (w)
h ] dw

∥
∥
∥
2,2

= 0 (23)

for any u ∈ [0, 1].
Fix u ∈ [0, 1) and let δ > 0 be sufficiently small such that u + δ < 1. By the

reverse triangle inequality, we obtain that

0 ≤
∣
∣
∣
∣

∥
∥
∥
∥
1

δ

∫ u+δ

u
E
[
X (w)
0 ⊗ X (w)

h − X (u)
0 ⊗ X (u)

h

]
dw

∥
∥
∥
∥
2,2

−
∥
∥
∥
∥

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h − X (u)
0 ⊗ X (u)

h

]
dw

∥
∥
∥
∥
2,2

∣
∣
∣
∣

≤1

δ

∥
∥
∥
∥

∫ u+δ

u
E
[
X (w)
0 ⊗ X (w)

h

]
dw − δ

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw

∥
∥
∥
∥
2,2

=1

δ

∥
∥
∥
∥

∫ u+δ

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw − (u + δ)

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw

−
∫ u

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw + u

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw

∥
∥
∥
∥
2,2

≤1

δ

∥
∥
∥
∥

∫ u+δ

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw − (u + δ)

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw

∥
∥
∥
∥
2,2

+ 1

δ

∥
∥
∥
∥

∫ u

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw − u

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw

∥
∥
∥
∥
2,2

.

By continuity of integrals in the upper integration limit, it follows from (8) that both
summands on the right-hand side of this display are equal to zero. As a consequence,

∥
∥
∥
∥

∫ 1

0
E[X (w)

0 ⊗ X (w)
h ] dw − E[X (u)

0 ⊗ X (u)
h ]
∥
∥
∥
∥
2,2

=
∥
∥
∥
∥
1

δ

∫ u+δ

u
E[X (w)

0 ⊗ X (w)
h − X (u)

0 ⊗ X (u)
h ] dw

∥
∥
∥
∥
2,2

. (24)

By Jensen’s inequality, we can bound the right-hand side of this display from above
by

(∫

[0,1]2
1

δ2

∫ u+δ

u

(
E[X (w)

0 (τ1)X (w)
h (τ2) − X (u)

0 (τ1)X (u)
h (τ2)]

)2 dw d(τ1, τ2)

)1/2

.

(25)
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By employing Jensen’s inequality again, we can bound the integrand by

E
[(

X (w)
0 (τ1)X (w)

h (τ2) − X (u)
0 (τ1)X (u)

h (τ2)
)2]

.

Thus, by Fubini’s theorem, (25) is less than or equal to

(
1

δ2

∫ u+δ

u
E[‖X (w)

0 ⊗ X (w)
h − X (u)

0 ⊗ X (u)
h ‖22,2] dw

)1/2

.

This term is of the order O(δ1/2) due to the inequality

E‖X (w)
0 ⊗ X (w)

h − X (u)
0 ⊗ X (u)

h ‖22,2
= E‖X (w)

0 ⊗ X (w)
h − X (u)

0 ⊗ X (w)
h + X (u)

0 ⊗ X (w)
h − X (u)

0 ⊗ X (u)
h ‖22,2

≤ 2
{
E‖(X (w)

0 − X (u)
0 ) ⊗ X (w)

h ‖22,2 + E‖X (u)
0 ⊗ (X (w)

h − X (u)
h )‖22,2

}

≤ 2
{
E[‖X (w)

0 − X (u)
0 ‖42]1/2 E[‖X (w)

h ‖42]1/2 + E[‖X (u)
0 ‖42]1/2 E[‖X (w)

h − X (u)
h ‖42]1/2

}

≤ C |u − w|2, (26)

where the final bound follows from Lemma C.2 in the supplementary material. Since
δ was chosen arbitrarily, we obtain that the right-hand side of (24) is equal to zero.
This proves (23) for u ∈ [0, 1), and the case u = 1 follows from (26), which is also
valid for u = 1.

Conversely, if (3) holds true, we have by a change of variables, linearity of the
integral, Jensen’s inequality and Fubini’s theorem,

∥
∥
∥
∥

∫ u

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw − u

∫ 1

0
E
[
X (w)
0 ⊗ X (w)

h

]
dw

∥
∥
∥
∥

2

2,3

=
∥
∥
∥
∥u
∫ 1

0
E
[
X (uw)
0 ⊗ X (uw)

h

]− E
[
X (w)
0 ⊗ X (w)

h

]
dw

∥
∥
∥
∥

2

2,3

≤
∫ 1

0

∫ 1

0
u2
∥
∥E[X (uw)

0 ⊗ X (uw)
h ] − E[X (w)

0 ⊗ X (w)
h ]∥∥22,2 dw du = 0.

Step 2: Equivalence between (3) and (10). Note that, irrespective of whether (3) or
(10) is met, local stationarity of Xt,T of order ρ ≥ 4 and stationarity of (X (u)

t )t∈Z with
E‖X (u)

t ‖42 < ∞ implies that

‖E[X�uT �,T ⊗ X�uT �+h,T − X (u)
�uT � ⊗ X (u)

�uT �+h]‖22,2
≤ E[‖X�uT �,T ⊗ X�uT �+h,T − X (u)

�uT � ⊗ X (u)
�uT �+h‖22,2]

≤ 2
{
E[‖(X�uT �,T − X (u)

�uT �) ⊗ X�uT �+h,T ‖22,2]
+ E[‖X (u)

�uT � ⊗ (X�uT �+h,T − X (u)
�uT �+h)‖22,2]

}

≤ 2
{
E[‖X�uT �,T − X (u)

�uT �‖22‖X�uT �+h,T ‖22]
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+ E[‖X (u)
�uT �‖22‖X�uT �+h,T − X (u)

�uT �+h‖22]
}

≤ (C/T 2)
{
E[(P(u)

�uT �,T )4]1/2E‖X�uT �+h,T ‖42]1/2
+ E[‖X (u)

�uT �‖42]1/2E[(P(u)
�uT �+h,T )4]1/2}

≤ C/T 2, (27)

for any u ∈ [0, 1] and T ∈ N and for some universal constant C > 0.
Now, suppose that (3) is met. Then, the previous display implies that

‖E[X�uT �,T ⊗ X�uT �+h,T ] − E[X0,T ⊗ Xh,T ]‖2,2
≤ ‖E[X�uT �,T ⊗ X�uT �+h,T ] − E[X (u)

�uT � ⊗ X (u)
�uT �+h]‖2,2

+ ‖E[X (u)
0 ⊗ X (u)

h ] − E[X (0)
0 ⊗ X (0)

h ]‖2,2 + ‖E[X (0)
0 ⊗ X (0)

h ]
− E[X0,T ⊗ Xh,T ]‖2,2

≤ C/T + 0 + C/T = 2C/T ,

for any u ∈ [0, 1] and T ∈ N, that is, (10) is met.
Conversely, if (10) is met, then, by (27) and (1), for any u, v ∈ [0, 1] and T ∈ N,

‖E[X (u)
0 ⊗ X (u)

h − X (v)
0 ⊗ X (v)

h ]‖2
= ‖E[X (u)

�uT � ⊗ X (u)
�uT �+h − X (v)

�vT � ⊗ X (v)
�vT �+h]‖2

≤ ‖E[X (u)
�uT � ⊗ X (u)

�uT �+h − X�uT �,T ⊗ X�uT �+h,T ]‖2
+ ‖E[X�uT �,T ⊗ X�uT �+h,T − X0,T ⊗ Xh,T ]‖2
+ ‖E[X0,T ⊗ Xh,T − X�vT �,T ⊗ X�vT �+h,T ‖2
+ ‖E[X�vT �,T ⊗ X�vT �+h,T − X (v)

�vT � ⊗ X (v)
�vT �+h]‖2

≤ 4C/T .

Since T was arbitrary, the left-hand side of this display must be zero, whence (3). ��
Proof of Theorem 1 This theorem is an immediate consequence of Theorem C.3 of the
supplementary material. ��
Proof of Corollary 1 Suppose that H (c,h)

0 is met. Then, by the triangle inequality and a
slight abuse of notation (note that u is a variable of integration in the norm ‖ · ‖2,3),
for h ≤ T ,

‖UT ,h − GT ,h‖2,�×[0,1]3

=
∥
∥
∥
∥

1√
T

( �uT �∧(T −h)∑

t=1

E[Xt,T ⊗ Xt+h,T ] − u
T −h∑

t ′=1

E[Xt ′,T ⊗ Xt ′+h,T ]
)∥∥
∥
∥
2,3

= 1√
T

∥
∥
∥
∥

1

T − h

�uT �∧(T −h)∑

t=1

T −h∑

t ′=1

E[Xt,T ⊗ Xt+h,T ] − E[Xt ′,T ⊗ Xt ′+h,T ]
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+
(

1

T − h
− u

�uT � ∧ (T − h)

) �uT �∧(T −h)∑

t=1

T −h∑

t ′=1

E[Xt ′,T ⊗ Xt ′+h,T ]
∥
∥
∥
∥
2,3

≤ C

T 3/2

T −h∑

t,t ′=1

‖E[Xt,T ⊗ Xt+h,T ] − E[Xt ′,T ⊗ Xt ′+h,T ]‖2,2 + C

T 3/2

T −h∑

t=1

‖E[Xt,T ⊗ Xt+h,T ]‖2,2.

This expression is of the order O(T −1/2) by (10) and Assumption (A2). Hence,
‖UT ,h − G̃T ,h‖2,3 = oP(1), and the assertion for UT follows along similar lines.

Now, consider the assertion regarding the alternative H (H)

1 = H (m)

1 ∪ H (c,0)
1 ∪ · · · ∪

H (c,H)

1 . We only treat the case where H (c,h)

1 is met for some h ∈ {0, . . . , H} and the
case H (m)

1 is similar. It is to be shown that ‖UT ,h‖2,3 → ∞ in probability.
By the reverse triangle inequality, we have

‖UT ,h‖2,3 = ‖G̃T ,h + EUT ,h‖2,3 ≥ ∣∣‖G̃T ,h‖2,3 − ‖EUT ,h‖2,3
∣
∣.

The term ‖G̃T ,h‖2,3 converges weakly to ‖G̃h‖2,3. Thus, it suffices to show that
the second term ‖EUT ,h‖2,3 diverges to infinity. For that purpose, note that another
application of the reverse triangle inequality implies that

‖EUT ,h‖2,3 =
∥
∥
∥
∥
∥
∥

1√
T

⎛

⎝
�uT �∧(T −h)∑

t=1

E[Xt,T ⊗ Xt+h,T ] − u
T −h∑

t=1

E[Xt,T ⊗ Xt+h,T ]
⎞

⎠

∥
∥
∥
∥
∥
∥
2,3

≥ |S1,T − S2,T |,

where

S1,T =
∥
∥
∥
∥
∥
∥

1√
T

⎛

⎝
�uT �∧(T −h)∑

t=1

{
E[Xt,T ⊗ Xt+h,T ] − E[X (t/T )

t ⊗ X (t/T )
t+h ]

}

−u
T −h∑

t=1

{
E[Xt,T ⊗ Xt+h,T ] − E[X (t/T )

t ⊗ X (t/T )
t+h ]

}
)∥∥
∥
∥
∥
2,3

and

S2,T =
∥
∥
∥
∥
∥
∥

1√
T

⎛

⎝
�uT �∧(T −h)∑

t=1

E

[
X (t/T )

t ⊗ X (t/T )
t+h

]
− u

T −h∑

t=1

E

[
X (t/T )

t ⊗ X (t/T )
t+h

]
⎞

⎠

∥
∥
∥
∥
∥
∥
2,3

.

In the following, we will show that S1,T vanishes as T increases and that S2,T diverges
to infinity. We have
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S1,T ≤
⎧
⎨

⎩

∫ 1

0

⎛

⎝ 1√
T

�uT �∧(T −h)∑

t=1

∥
∥
∥E[Xt,T ⊗ Xt+h,T ] − E[X (t/T )

t ⊗ X (t/T )
t+h ]

∥
∥
∥
2,2

+ u√
T

T −h∑

t=1

∥
∥
∥E[Xt,T ⊗ Xt+h,T ] − E[X (t/T )

t ⊗ X (t/T )
t+h ]

∥
∥
∥
2,2

)2

du

⎫
⎬

⎭

1/2

,

which is of order O(T −1/2) since ‖E[Xt,T ⊗ Xt+h,T ]−E[X (t/T )

t ⊗ X (t/T )

t+h ]‖2,2 ≤ C/T
by (1). For the second term S2,T , we have, by stationarity

S2,T = √
T

∥
∥
∥
∥
∥
∥

1

T

⎛

⎝
�uT �∧(T −h)∑

t=1

E[X (t/T )
0 ⊗ X (t/T )

h ] − u
T −h∑

t=1

E[X (t/T )
0 ⊗ X (t/T )

h ]
⎞

⎠

∥
∥
∥
∥
∥
∥
2,3

,

where the norm converges to

∥
∥
∥
∥

∫ u

0
E[X (w)

0 ⊗ X (w)
h ] dw − u

∫ 1

0
E[X (w)

0 ⊗ X (w)
h ] dw

∥
∥
∥
∥
2,3

,

by the dominated convergence theorem and the moment condition (A2). The expres-
sion in the latter display is strictly positive since (8) is not satisfied and by the continuity
of

∥
∥
∥
∥

∫ u

0
E[X (w)

0 ⊗ X (w)
h ] dw − u

∫ 1

0
E[X (w)

0 ⊗ X (w)
h ] dw

∥
∥
∥
∥
2,2

in u ∈ [0, 1]. Thus, S2,T → ∞, which implies the assertion. ��
Proof of Lemma 3 We will only give a proof of (14). Parts (i)–(iv) of the cumulant
condition (A3) follow by similar arguments, which are omitted for the sake of brevity.
According to Theorem 3 in Statulevicius and Jakimavicius (1988), we have

| cum(Xt1,T (τ1), . . . , Xtk ,T (τk ))| ≤ 3(k − 1)!2k−1αδ/(1+δ)(ti+1 − ti )
k∏

j=1

(
E|Xt j ,T (τ j )|(1+δ)k) 1

(1+δ)k ,

for any increasing sequence t1 ≤ t2 ≤ · · · ≤ tk . Straightforward calculations com-
bined with Hölder’s and Jensen’s inequality lead to

∥
∥
∥
∥
∥
∥

k∏

j=1

E[|Xt j ,T |(1+δ)k] 1
(1+δ)k

∥
∥
∥
∥
∥
∥
2,k

=
k∏

j=1

∥
∥E[|Xt j ,T |(1+δ)k] 1

(1+δ)k
∥
∥
2

=
k∏

j=1

(∫

[0,1]
E[|Xt j ,T (τ )|(1+δ)k] 2

(1+δ)k dτ

)1/2

123



Detecting non-stationarities in functional time series 1089

≤
k∏

j=1

(∫

[0,1]
E[|Xt j ,T (τ )|(1+δ)k]dτ

) 1
(1+δ)k

=
k∏

j=1

E

[∥
∥Xt j ,T

∥
∥(1+δ)k

(1+δ)k

] 1
(1+δ)k

≤ sup
t,T

E

[∥
∥Xt,T

∥
∥(1+δ)k

(1+δ)k

]1/(1+δ)

≤ Ck,1.

Thus, combining the previous results leads to

‖ cum(Xt1,T , . . . , Xtk ,T )‖2,k ≤ 3(k − 1)!2k−1Ck,1α
δ/(1+δ)(ti+1 − ti )

≤ Ck,4α
δ/(1+δ)(ti+1 − ti ),

for any i = 1, . . . , k − 1, where the constant Ck,4 > 0 depends on k only. Hence,

‖ cum(Xt1,T , . . . , Xtk ,T )‖2,k ≤ Ck,4

k−1∏

i=1

α
δ

(1+δ)(k−1) (ti+1 − ti ).

Analogously, for arbitrary, not necessarily increasing t1, . . . , tk , we may obtain that

‖ cum(Xt1,T , . . . , Xtk ,T )‖2,k ≤ Ck,4

k−1∏

i=1

α
δ

(1+δ)(k−1)
(
t(i+1) − t(i)

)
,

where
(
t(1), . . . , t(k)

)
denotes the order statistic of (t1, . . . , tk). The latter expression

is symmetric in its arguments, and thus, we have, for any tk ∈ Z,

∞∑

t1,...,tk−1=−∞

∥
∥ cum(Xt1,T , . . . , Xtk ,T )

∥
∥
2,k

≤ Ck,4

∞∑

t1,...,tk−1=−∞

k−1∏

i=1

α
δ

(1+δ)(k−1)
(
t(i+1) − t(i)

)

≤ Ck,4(k − 1)!
∑

−∞<t1≤···≤tk−1<∞

k−1∏

i=1

α
δ

(1+δ)(k−1) (ti+1 − ti )

≤ Ck,4(k − 1)!
∑

−∞<t2≤···≤tk−1<∞

∞∑

s1=−∞
α

δ
(1+δ)(k−1) (s1)

k−1∏

i=2

α
δ

(1+δ)(k−1) (ti+1 − ti ).
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By assumption, {(Xt,T )t∈Z : T ∈ N} is exponentially strong mixing, and the inner
sum is finite and can be bounded by some constant Ck,2. Thus,

∞∑

t1,...,tk−1=−∞

∥
∥ cum(Xt1,T , . . . , Xtk ,T )

∥
∥
2,k

≤ Ck,4(k − 1)!Ck,2

∑

−∞<t2≤...≤tk−1<∞

k−1∏

i=1

α
δ

(1+δ)(k−1) (ti+1 − ti ).

Repeating this argument successively, we obtain finally (14) as asserted. ��

Proof of Theorem 2 By Slutsky’s lemma and Theorem C.3 of the supplementary mate-
rial, it is sufficient to prove that

(
B̂

(1)
T − B

(1)
T , . . . , B̂

(K )
T − B

(K )
T

) = oP(1)

in {L2([0, 1]2)×{L2([0, 1]3)}H+1}K , as T tends to infinity. This in turn is equivalent
to

(‖B̂(k)
T − B̃(k)

T ‖2,3, ‖B̂(k)
T ,0 − B̃(k)

T ,0‖2,3 . . . , ‖B̂(k)
T − B̃(k)

T ,h‖2,3
)

k=1,...,K = oP(1)

in R
K (H+2). The last convergence holds true if and only if the coordinates converge,

i.e., if ‖B̂(k)

T − B̃(k)

T ‖2,3 = oP(1) and ‖B̂(k)

T ,h − B̃(k)

T ,h‖2,3 = oP(1), for all k = 1, . . . , K
and h = 0, . . . , H . We only consider the latter assertion (the former can be treated
similarly), and in fact, we will show convergence in L2(�,P), which is even stronger.
For this purpose, observe that by Fubini’s theorem and the independence of the family
(R(k)

i )i∈N

E‖B̂(k)
T ,h − B̃(k)

T ,h‖22,3

= E

[ ∫

[0,1]3
1

mT

{ �uT �∧(T −h)∑

i=1

R(k)
i

(i+m−1)∧(T −h)∑

t=i

μt,T ,h(τ1, τ2) − μ̂t,T ,h(τ1, τ2)

}2
d(u, τ1, τ2)

]

= 1

mT

∫

[0,1]3

�uT �∧(T −h)∑

i=1

E

[{ (i+m−1)∧(T −h)∑

t=i

At,1 + At,2

}2]

d(u, τ1, τ2),

where

At,1(τ1, τ2) = 1
ñt,h

∑n̄t,h
k=¯nt

E[Xt,T (τ1)Xt+h,T (τ2)] − E[Xt+k,T (τ1)Xt+k+h,T (τ2)]

and

At,2(τ1, τ2) = 1
ñt,h

∑n̄t,h
k=¯nt

Xt+k,T (τ1)Xt+k+h,T (τ2) − E[Xt+k,T (τ1)Xt+k+h,T (τ2)].
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Since At,1 is deterministic and since At,2 is centered, we can rewrite the expectation
in the previous integral as

E

⎡

⎢
⎣

⎧
⎨

⎩

(i+m−1)∧(T −h)∑

t=i

At,1(τ1, τ2) + At,2(τ1, τ2)

⎫
⎬

⎭

2
⎤

⎥
⎦

=
⎛

⎝
(i+m−1)∧(T −h)∑

t=i

At,1(τ1, τ2)

⎞

⎠

2

+ E

⎡

⎢
⎣

⎛

⎝
(i+m−1)∧(T −h)∑

t=i

At,2(τ1, τ2)

⎞

⎠

2
⎤

⎥
⎦ .

In the following, we bound both parts separately. For the term At,1, first note that, by
stationarity of (X (u)

t )t∈Z,

E[Xt,T (τ1)Xt+h,T (τ2)] − E[Xt+k,T (τ1)Xt+k+h,T (τ2)]
= E[Xt,T (τ1)Xt+h,T (τ2) − X (t/T )

t (τ1)X (t/T )
t+h (τ2)]

− E[Xt+k,T (τ1)Xt+k+h,T (τ2) − X (t/T )
t+k (τ1)X (t/T )

t+k+h(τ2)]

in L2([0, 1]2). Thus, by Jensen’s inequality and Fubini’s theorem, we have

1

mT

∫

[0,1]3

�uT �∧(T −h)∑

i=1

⎛

⎝
(i+m−1)∧(T −h)∑

t=i

At,1

⎞

⎠

2

d(u, τ1, τ2)

≤ 1

mT

∫

[0,1]3

�uT �∧(T −h)∑

i=1

E

⎡

⎣

⎧
⎨

⎩

(i+m−1)∧(T −h)∑

t=i

1

ñt,h

n̄t,h∑

k=¯nt

Xt,T (τ1)Xt+h,T (τ2)−X (t/T )
t (τ1)X (t/T )

t+h (τ2)

−Xt+k,T (τ1)Xt+k+h,T (τ2) + X (t/T )
t+k (τ1)X (t/T )

t+k+h(τ2)

⎫
⎬

⎭

2
⎤

⎥
⎦ d(u, τ1, τ2)

≤ 1

mT

T −h∑

i=1

E

∥
∥
∥
∥
∥
∥

(i+m−1)∧(T −h)∑

t=i

1

ñt,h

n̄t,h∑

k=¯nt

Xt,T ⊗ Xt+h,T − X (t/T )
t ⊗ X (t/T )

t+h

−Xt+k,T ⊗ Xt+k+h,T + X (t/T )
t+k ⊗ X (t/T )

t+k+h

∥
∥
∥
∥
∥
∥

2

2,2

.

The norm on the right-hand side of the previous inequality be bounded by the triangle
inequality by

(i+m−1)∧(T −h)∑

t=i

1

ñt,h

n̄t,h∑

k=¯nt

‖Xt,T ⊗ Xt+h,T − X (t/T )
t ⊗ X (t/T )

t+h ‖2,2

+‖Xt+k,T ⊗ Xt+k+h,T − X (t/T )
t+k ⊗ X (t/T )

t+k+h‖2,2
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and the inner summands can be bounded due to the local stationarity of (Xt,T ): first,

‖Xt,T ⊗ Xt+h,T − X (t/T )
t ⊗ X (t/T )

t+h ‖2,2
≤ ‖Xt,T ⊗ (Xt+h,T − X (t/T )

t+h )‖2,2 + ‖X (t/T )
t+h ⊗ (Xt,T − X (t/T )

t )‖2,2
= ‖Xt,T ‖2‖Xt+h,T − X (t/T )

t+h ‖2 + ‖X (t/T )
t+h ‖2‖Xt,T − X (t/T )

t ‖2
≤ T −1{(h + 1)‖Xt,T ‖2 + ‖X (t/T )

t+h ‖2
}

P(t/T )
t,T

and similarly

‖Xt+k,T ⊗ Xt+k+h,T − X (t/T )
t+k ⊗ X (t/T )

t+k+h‖2,2
≤ T −1{(|k + h| + 1)‖Xt+k,T ‖2 + (|k| + 1)‖X (t/T )

t+k+h‖2
}

P(t/T )
t,T .

Assembling bounds, we obtain that

1

mT

∫

[0,1]3

�uT �∧(T −h)∑

i=1

⎛

⎝
(i+m−1)∧(T −h)∑

t=i

At,1(τ1, τ2)

⎞

⎠

2

d(u, τ1, τ2)

≤ 1

mT

T −h∑

i=1

(i+m−1)∧(T −h)∑

t,t ′=i

1

ñt,h ñt ′,h

n̄t,h∑

k=¯nt

n̄t ′,h∑

k′=¯nt ′

1

T 2 E
[
(|k| + h + 1)(|k′| + h + 1)P(t/T )

t,T P(t ′/T )

t ′,T

× (‖Xt,T ‖2 + ‖X (t/T )
t+h ‖2 + ‖Xt+k,T ‖2 + ‖X (t/T )

t+k+h‖2
)

× (‖Xt ′,T ‖2 + ‖X (t ′/T )

t ′+h ‖2 + ‖Xt ′+k′,T ‖2 + ‖X (t ′/T )

t ′+k′+h‖2
)]

≤ C

mT 3

T −h∑

i=1

(i+m−1)∧(T −h)∑

t,t ′=i

1

ñt,h ñt ′,h

n̄t,h∑

k=¯nt

n̄t ′,h∑

k′=¯nt ′
(|k| + h + 1)(|k′| + h + 1) = O

(mn2

T 2

)
,

which converges to zero by Assumption (B2).
For the term At,2, first observe that, by Jensen’s inequality for convex functions,

E

[( (i+m−1)∧(T −h)∑

t=i

At,2(τ1, τ2)

)2]

≤ m
(i+m−1)∧(T −h)∑

t=i

1

ñ2t,h

n̄t,h∑

k,k′=¯nt

Cov
{

Xt+k,T (τ1)Xt+k+h,T (τ2), Xt+k′,T (τ1)Xt+k′+h,T (τ2)
}
.

By the same arguments as in the proof of PropositionC.7 of the supplementarymaterial
and Assumption (A3), one can see that the right-hand side of the inequality

1

mT

T −h∑

i=1

∫

[0,1]2
E

[( (i+m−1)∧(T −h)∑

t=i

At,2(τ1, τ2)

)2]

d(τ1, τ2)

≤ 1

T

T −h∑

i=1

(i+m−1)∧(T −h)∑

t=i

1

ñ2t,h

n̄t,h∑

k,k′=¯nt

‖Cov(Xt+k,T ⊗ Xt+k+h,T , Xt+k′,T ⊗ Xt+k′+h,T )‖1,2
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is of order O(m/n). The assertion follows since m/n = o(1) by Assumption (B2).
��

Proof of Proposition 1 The cumulative distribution function of the (h+2)nd coordinate
of S is continuous byTheorem7.5 ofDavydov andLifshits (1985). The assertion under
the null hypothesis follows from Lemma 4.1 in Bücher and Kojadinovic (2017). Con-
sistency follows from the fact that the bootstrap quantiles are stochastically bounded
by Theorem 2, whereas the test statistic diverges by Corollary 1. ��
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