
SUPPLEMENTARY MATERIAL FOR : ”REGRESSION FUNCTION

ESTIMATION AS A PARTLY INVERSE PROBLEM”

F. COMTE(1) AND V. GENON-CATALOT(2)

Abstract. This paper is about nonparametric regression function estimation. Our esti-
mator is a one step projection estimator obtained by least-squares contrast minimization.
The specificity of our work is to consider a new model selection procedure including a
cutoff for the underlying matrix inversion, and to provide theoretical risk bounds that
apply to non compactly supported bases, a case which was specifically excluded of most
previous results. Upper and lower bounds for resulting rates are provided.

MSC2010 Subject classifications. 62G08 - 62M05
Key words and phrases. Hermite basis. Laguerre basis. Model selection. Non parametric
estimation. Regression function.

To ease the reading and illustrate the method, we add in this supplementary material
theoretical toolds used in the paper and simulation results.

Appendix A. Theoretical tools

A proof of the following theorem can be found in Stewart and Sun (1990).

Theorem A.1. Let A, B be (m ×m) matrices. If A is invertible and ‖A−1B‖op < 1,

then Ã := A + B is invertible and it holds

‖Ã−1 −A−1‖op ≤
‖B‖op‖A−1‖2op
1− ‖A−1B‖op

Theorem A.2 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of inde-
pendent, random matrices with common dimension d1 × d2. Assume that

ESk = 0 and ‖Sk‖op ≤ L for each index k.

Introduce the random matrix Z =
∑

k Sk. Let ν(Z) be the the variance statistic of the sum:
ν(Z) = max{λmax (E[Z′Z]), λmax (E[ZZ′])}. Then

E‖Z‖op ≤
√

2ν(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Furthermore, for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

A proof can be found in Tropp (2012) or Tropp (2015).
We recall the Talagrand concentration inequality given in Klein and Rio (2005).
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Theorem A.3. Consider n ∈ N∗, F a class at most countable of measurable functions,
and (Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F ,

νn(f) = (1/n)
∑n

i=1(f(Xi)−E[f(Xi)]), and assume that there are three positive constants
M , H and v such that sup

f∈F
‖f‖∞ ≤M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤

v. Then for all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−

√
2bC(α)

√
α

7
nH
M

)

with C(α) = (
√

1 + α− 1) ∧ 1, and b = 1
6 .

By density arguments, this result can be extended to the case where F is a unit ball of
a linear normed space, after checking that f → νn(f) is continuous and F contains a
countable dense family.
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X ∼ U([0, 1]) X ∼ N (4, 1) X ∼ f3

Figure 1. First line: beam of the proposals f̂m for m = 1 to mmax in the
Laguerre basis. Second line: the estimator as selected by the procedure,
f̂m̂. Function b(x) = 2x+1, n = 1000, density fk(x) = (k−1)/(1+x)k1x≥0.
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Appendix B. Numerical illustrations

In this section, numerical illustrations of our method are presented. The estimation
procedure is implemented for the Laguerre (Figures 1 to 4) and the Hermite basis (Figure
5). The (εi)1≤i≤n are generated as an i.i.d. sample of Gaussian N (0, σ2) with σ = 0.5.
Then, we choose different functions b(.) (bounded or not) and different types of distribution
of the design (Xi)1≤i≤n. Typically, a linear function x 7→ 2x+ 1 is experimented without
the information of its linearity, which allows to test moment conditions; on the contrary,
x 7→ 4x/(1+x2) is bounded and should be easier to reconstruct. For the design density, we
consider standard uniform or Gaussian cases, and also different heavy tailed distributions.

As usual in model selection methods, the constant κ is calibrated by preliminary simu-
lation experiments, and we took κ = 4, see comments after Theorem 4.1.

N (3, 1) fk with k = 4 fk with k = 5
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¯̂m = 7.1(0.5), m̄max= 7.3(0.5) ¯̂m = 6.4(1.1), m̄max= 7.0(0.8) ¯̂m = 5.2(0.9), m̄max= 5.8(0.9)
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¯̂m = 7.7(0.5), m̄max= 8.8(0.4) ¯̂m = 9.9(1.9), m̄max= 10.4(1.7) ¯̂m = 6.7(1.1), m̄max= 7.6(1.0)

Figure 2. 25 estimated curves in Laguerre basis (dotted -green/grey), the
true in bold (red), first line: n = 250, last line: n = 1000, b(x) = 2x + 1
and different laws for the design, fk(x) = (k − 1)/(1 + x)k1x≥0.

In Figure 1, we plot in the first line the collection of estimators in the Laguerre basis,
among which the algorithm makes the selection. The number of computed estimators is

different from one example to another, as the collection of models M̂n is random and
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depends on ‖Ψ̂−1m ‖op. In the practical implementation, the collection M̂n may be small.

Therefore, we have considered the (random) maximum value mmax such that ‖Ψ̂−1m ‖op ≤√
n, which is slightly larger than in the theory. But inversion of the matrix Ψ̂m remains

possible in such cases. Surprisingly, we can see that very few estimators are sometimes
computed (see the example of uniform distribution on the right). They are also very
different from one dimension to another. The second line presents the final estimator,
selected by the procedure. In the example of Figure 1, the curve is linear, and is perfectly
estimated, although its particular form is unknown and was not a priori easy to obtain
with the Laguerre basis.
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Figure 3. 25 estimated curves in the Laguerre basis (dotted -green/grey),
the true in bold (red), n = 1000, density fk(x) = (k − 1)/(1 + x)k1x≥0 for
k = 3, 4 and 5, b(x) = 4x/(1 + x2)1x≥0.

In Figures 2 to 5, we present beams of 25 estimators computed either in the Laguerre
basis (Figures 2, 3, 4), or in the Hemite basis (Figure 5). The beams give information
about the variability of the estimation procedure.

Below each plot, we give the density of the design and the value of ¯̂m which is the mean
of the selected dimensions for the 25 estimators represented on the figure, with standard
deviation in parenthesis. It is associated with the value of m̄max which is the mean of
the maximal dimension for which the estimator is computed, with standard deviation in
parenthesis. We can see that the maximal dimension is rather small (less than ten models
are compared for selection, in general) but an adequate choice seems always to exist in this
small collection. This means that the squared-bias variance compromise in the restricted
setMn has good performance and that the non compact Laguerre and Hermite bases are
very interesting and simple estimation tools. Indeed, the method is very fast and its low
complexity has an important practical interest.

Figure 2 is complementary of Figure 1 and considers the same linear regression function
with similar distributions for X. The interest of the linear case is also to illustrate the
sharpness of the moment conditions: indeed the condition E[b2(X1)] < +∞ for X with
density fk(x) = (k − 1)/(1 + x)k1x≥0 is satisfied for k > 3 and the condition E[b4(X1)] <
+∞ holds for k > 5. We checked, in the case of linear b(.), that the method does not
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X ∼ U([0, 2]) X ∼ E(1) X ∼ N (2, 1)
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Figure 4. 25 estimated curves in Laguerre basis (dotted -green/grey),
the true in bold (red), first line: n = 250, last line: n = 1000, b(x) =
4x/(1 + x2)1x≥0 and different laws for the design.

work for k = 2, 3, but the last two plots of Figure 2 show that it works rather well for
k = 4, 5. The minimal theoretical condition may thus be weakened from E[b4(X1)] < +∞
to E[b2(X1)] < +∞.

Figure 2 allows also to compare results between two sample sizes, n = 250 and n = 1000:
the improvement is obvious but the estimation remains correct for n = 250.

Figures 3 and 4 present the results for the function b(x) = 4x/(1+x2)1x≥0 and different
distributions for X, heavy tailed or not. The beams are more concentrated around the
true function in Figure 4 for non heavy tailed distribution.

The estimation with the Hermite basis has similar behaviour, as can be seen in Figure
5, and a comparison between n = 100 and n = 1000 is provided here. The regression
function is unbounded, but a non heavy-tailed density for X is used: this makes the
problem obviously easier, and the results excellent even for n = 100.
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X ∼ U([−1, 1]) X ∼ N (0, 1) X ∼ Laplace/4
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Figure 5. 25 estimated curves in Hermite basis (dotted -green/grey), the
true in bold (red), first line: n = 100, last line: n = 1000, b(x) = 2x2 and
different laws for the design.
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