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Abstract
This paper is about nonparametric regression function estimation. Our estimator is
a one-step projection estimator obtained by least-squares contrast minimization. The
specificity of our work is to consider a new model selection procedure including a
cutoff for the underlying matrix inversion, and to provide theoretical risk bounds that
apply to non-compactly supported bases, a case which was specifically excluded of
most previous results. Upper and lower bounds for resulting rates are provided.

Keywords Hermite basis · Laguerre basis · Model selection · Nonparametric
estimation · Regression function

1 Introduction

Consider observations (Xi ,Yi )1≤i≤n drawn from the regression model

Yi = b(Xi ) + εi , E(εi ) = 0, Var(εi ) = σ 2
ε , i = 1, . . . , n. (1)

The random design variables (Xi )1≤i≤n are real-valued, independent and identically
distributed (i.i.d.) with common density denoted by f , the noise variables (εi )1≤i≤n

are i.i.d. real-valued and the two sequences are independent. The problem is to estimate
the function b(.) : R → R from observations (Xi ,Yi )1≤i≤n .

Classical nonparametric estimation strategies are of two types. First, Nadaraya
(1964) and Watson (1964) methods rely on quotient estimators of type ̂b = ̂b f /̂f ,
where ̂b f and ̂f are projection or kernel estimators of b f and f . Those methods are
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popular, especially in the kernel setting. However, they require the knowledge or the
estimation of f (see Efromovich 1999; Tsybakov 2009) and in the latter case, two
smoothing parameters.

The secondmethod, proposed byBirgé andMassart (1998) andBarron et al. (1999),
improved by Baraud (2002), is based on a least-squares contrast, analogous to the one
used for parametric linear regression:

1

n

n
∑

i=1

[Yi − t(Xi )]
2 ,

minimized over functions t that admit a finite development over some orthonormal
A-supported L

2(A, dx) basis, A ⊂ R. In other words, this is a projection method
where the coefficients of the approximate function in the finite basis play the same
role as the regression parameters in the linear model. This strategy solves part of the
drawbacks of the first one. It provides directly an estimator of b restricted to the set
A, a unique model selection procedure is required and has been proved to realize an
adequate squared bias-variance compromise under weak moment conditions on the
noise (see Baraud 2002). Lastly, there is no quotient to make and the rate only depends
on the regularity index of b, while in the quotient method it also generally depends
on the one of f . These arguments are in favour of the second strategy. Noting that the
least-squares contrast can be rewritten

γn(t) = 1

n

n
∑

i=1

[t2(Xi ) − 2Yi t(Xi )], (2)

it can be seen that, for a given function t in a finite-dimensional linear space included
in L

2(A, dx), three norms must be compared: the integral L
2(A, dx)-norm, ‖t‖2A =

∫

A t
2(x)dx , associated with the basis, the empirical norm involved in the definition

of the contrast, ‖t‖2n = n−1 ∑n
i=1 t

2(Xi ), and its expectation, corresponding to a
L
2(A, f (x)dx)-norm, ‖t‖2f = ∫

A t
2(x) f (x)dx . Due to this difficulty, only compactly

supported bases have been considered, i.e. the set A on which estimation is done is
generally assumed to be compact. This allows to assume that f is lower bounded on
A, a condition which would not hold on non-compact A. Then, if f is upper and lower
bounded on A, the L

2(A, f (x)dx) and the L
2(A, dx) norms are equivalent and this

makes the problem simpler. Moreover, the equivalence of the norms ‖t‖n and ‖t‖ f

for t in a finite-dimensional linear space must be handled. This is done by Cohen et al.
(2013) and we take advantage of their findings.

However, Cohen et al. (2013)’s work has drawbacks: their stability condition is
settled in terms of an unknown quantity; the regression function is assumed to be
bounded by a known quantity and the definition of the estimator depends on this
known bound; they do not study the model selection problem. Due to their statistically
simplified setting, they do not deal with the entire partially inverse problem hidden in
the procedure.

Our aim in this work is to obtain theoretical results in regression function estimation
by the least-squares projection method described above, and we want to handle the
case of possibly non-compact support A of the basis. This explains why we must
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Regression function estimation as a partly inverse problem 1025

avoid boundedness assumption on b. A consequence is that the cutoff which has
to be introduced in the definition of the estimator depends on the behaviour of the
eigenvalues of a random matrix. This requires a specific study to obtain a bound on
the integrated L

2 risk and makes the model selection question near of an inverse
problem with unknown operator.

What is the interest of non-compactly supported bases? In general, the estimation
set and the bases support are considered as fixed in the theoretical part, while are
in practice adjusted on the data. With a non-compact support, it is not necessary to
fix a preliminary definition. Moreover, we have at disposal non-compactly supported
bases such as the Laguerre (A = R

+) or the Hermite (A = R) basis which have
been used recently for nonparametric estimation by projection (see e.g. Comte and
Genon-Catalot 2015, 2018; Belomestny et al. 2016), showing that theses bases are
both convenient and with specific properties. They are especially useful in certain
inverse problems (see Comte et al. 2017; Mabon 2017).

Before giving our plan, let us highlight our main findings.

– First, we propose a new procedure of estimation relying on a random cutoff, and
generalize Cohen et al. (2013)’s results, with a more statistical flavour.

– We deduce from the bias-variance decomposition upper rates of the estimator on
specific Sobolev spaces, for which lower bounds are also established. We recover
the standard rates of the “compact case” but also exhibit non-standard ones when
considering Laguerre or Hermite bases and spaces.

– We propose a model selection procedure for regression function estimation on a
set A whether compact or not, where the collection of models itself is random
and prove that it reaches automatically a bias-variance tradeoff. We highlight the
regression problem as a partially inverse problem: the eigenvalues of the matrix
which must be inverted play a role in the problem not directly as a weight on the
variance term but in the definition of the collection of models.

The framework and plan of the paper is the following. We fix a set A ⊂ R and
concentrate on the estimation of the regression function b restricted to a set A, bA :=
b1A. As A may be unbounded, we do not want to assume that bA ∈ L

2(A, dx)
which would exclude linear or polynomial functions. Our main assumption is that
bA ∈ L

4(A, f (x)dx), i.e. Eb4A(X1) < +∞ which is rather weak. In Sect. 2, we
define the projection estimator of the regression function bA and check that the most
elementary risk bound holds without any constraint on the support A or the projection
basis. In Sect. 3, we prove a risk bound for the estimator on one model, borrowing
some elements to Cohen et al. (2013)’s results to extend them. Then, we study rates
and optimality for the integrated L

2(A, f (x)dx)-risk. Introducing regularity spaces
linkedwith f , we prove upper andmatching lower bounds for our projection estimator.
Then we quickly show how to recover existing results for compactly supported bases
and more precisely illustrate the case of non-compact support with the Hermite and
Laguerre bases for estimation on A = R and A = R

+ respectively. In Sect. 4, we
propose a model selection strategy on a random collection of models taking into
account a possible inversion problem of the matrix allowing a unique definition of the
estimator. A risk bound for the adaptive estimator is provided both for the integrated
empirical risk and for the integratedL

2(A, f (x)dx)-risk: it generalizes existing results
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1026 F. Comte, V. Genon-Catalot

to non-compactly supported bases. Section 5 gives some concluding remarks. Most
proofs are gathered in Sect. 6.An appendix in Supplementarymaterial gives theoretical
tools used along the proofs and presents numerical illustrations of the method.

2 Projection estimator and preliminary results

Recall that f denotes the density of X1. In the following, ‖.‖2,p denotes the euclidean
norm in R

p. For A ⊂ R, ‖.‖A denotes the integral norm in L
2(A, dx), ‖.‖ f the

integral norm inL
2(A, f (x)dx) and ‖.‖∞ the supremum norm on A. For any function

h, hA = h1A.

2.1 Definition of the projection estimator

Consider model (1). Let A ⊂ R and let (ϕ j , j = 0, . . . ,m − 1) be an orthonor-
mal system of A-supported functions belonging to L

2(A, dx). Define Sm =
span(ϕ0, . . . , ϕm−1), the linear space spanned by (ϕ0, . . . , ϕm−1). Note that the ϕ j ’s
may depend on m but for simplicity, we omit this in the notation.

We assume that for all j ,
∫

ϕ2
j (x) f (x)dx < +∞ so that Sm ⊂ L

2(A, f (x)dx) and
define a projection estimator of the regression function b on A, by

b̂m = arg min
t∈Sm

γn(t)

where γn(t) is defined in (2). For functions s, t , we set

‖t‖2n = 1

n

n
∑

i=1

t2(Xi ) and 〈s, t〉n := 1

n

n
∑

i=1

s(Xi )t(Xi ),

and write 〈u, t〉n = 1
n

∑n
i=1 ui t(Xi ) when u is the vector (u1, . . . , un)′, u ′ denotes

the transpose of u and t is a function. We introduce the matrices

̂Φm = (ϕ j (Xi ))1≤i≤n,0≤ j≤m−1, ̂Ψm = (〈ϕ j , ϕk〉n)0≤ j,k≤m−1 = 1

n
̂Φ ′
m
̂Φm,

and

Ψm =
(∫

ϕ j (x)ϕk(x) f (x)dx

)

0≤ j,k≤m−1
= E(̂Ψm). (3)

Set Y = (Y1, . . . ,Yn)′ and define â(m) = (â(m)
0 , . . . , â(m)

m−1)
′ as the m-dimensional

vector such that b̂m = ∑m−1
j=0 â(m)

j ϕ j . Assuming that ̂Ψm is invertible almost surely
(a.s.) yields:

b̂m =
m−1
∑

j=0

â(m)
j ϕ j , with â(m) = (̂Φ ′

m
̂Φm)−1

̂Φ ′
mY = 1

n
̂Ψ −1
m

̂Φ ′
mY. (4)
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Regression function estimation as a partly inverse problem 1027

2.2 Bound on themean empirical risk on a fixed space

We now evaluate the risk of the estimator, without any constraint on the basis support.
Though classical, the result hereafter requires noteworthy comments.

Proposition 1 Let (Xi ,Yi )1≤i≤n be observations drawn from model (1) and denote by
bA = b1A. Assume that bA ∈ L

2(A, f (x)dx) and that ̂Ψm is a.s. invertible. Consider
the least-squares estimator b̂m of b, given by (4). Then

E
[‖b̂m − bA‖2n

] = E

(

inf
t∈Sm

‖t − bA‖2n
)

+ σ 2
ε

m

n
, (5)

≤ inf
t∈Sm

[∫

(bA − t)2(x) f (x)dx

]

+ σ 2
ε

m

n
. (6)

It is not obvious from (6) or from the previous formula that the bias term is small
when m is large. Therefore, two questions arise: is Ψm invertible for any m, and does
the bias tend to zero whenm grows to infinity? Lemmas provide sufficient conditions.
These conditions can be refined if the basis is specified.

Lemma 1 Assume that λ(A ∩ supp( f )) > 0 where λ is the Lebesgue measure and
supp( f ) the support of f , that the (ϕ j )0≤ j≤m−1 are continuous, and that there exist
x0, . . . , xm−1 ∈ A ∩ supp( f ) such that det[(ϕ j (xk))0≤ j,k≤m−1] �= 0. Then, Ψm is
invertible.

Lemma 2 Assume that bA ∈ L
2(A, f (x)dx). Assume that (ϕ j ) j≥0 is an orthonormal

basis ofL2(A, dx) such that, for all j ≥ 0,
∫

ϕ2
j (x) f (x)dx < +∞, that f is bounded

on A and that for all x ∈ A, f (x) > 0.
Then inf t∈Sm

[∫

(bA − t)2(x) f (x)dx
]

tends to 0 when m tends to infinity.

Lemma 1 follows from the following equality. For all u = (u0, . . . , um−1)
′ ∈

R
m \ {0}, for t(x) = ∑m−1

j=0 u jϕ j (x), u ′ Ψm u = ‖t‖2f = ∫

A t
2(x) f (x)dx ≥ 0. Under

the assumptions, the result follows.
The proof of Lemma 2 is elementary. Note that

∫

(bA − t)2(x) f (x)dx = ‖bA −
t‖2f = ‖bA√

f − t
√

f ‖2A. Under the assumptions of Lemma 2, the system φ j =
ϕ j

√
f , j ≥ 0 is a complete family of L

2(A, dx). Indeed, if g ∈ L
2(A, dx),

∫

gφ j =
∫

ϕ j (g
√

f ) = 0 ∀ j ≥ 0 implies g = 0 using our assumptions.
The result of Proposition 1 is general in the sense that it holds for any basis support,

whether compact or not. We stress that (5) is an equality, in particular the variance
term is exactly equal to σ 2

ε m/n. In addition, the result does not depend on the basis.

Remark 1 We underline that the latter fact is not obvious. Consider the density estima-
tion setting, where f̂m = ∑m−1

j=0 ĉ jϕ j with ĉ j = (1/n)
∑n

i=1 ϕ j (Xi ) is a projection

estimator of f . Then the integrated L
2−risk bound is

E(‖ f̂m − f A‖2) = inf
t∈Sm

‖ f A − t‖2 +
∑m−1

j=0 E[ϕ2
j (X1)]

n
− ‖ fm‖2

n
,
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1028 F. Comte, V. Genon-Catalot

where fm = ∑m−1
j=0 〈 f , ϕ j 〉ϕ j is the L

2(dx)-orthogonal projection of f on Sm . The

variance term has the order of
∑m−1

j=0 E[ϕ2
j (X1)]/n. For most compactly supported

bases, this term has order m/n (for instance, it is equal to m/n for histograms or
trigonometric polynomial basis, see Sect. 3.3); but it is proved in Comte and Genon-
Catalot (2018) that for Laguerre or Hermite basis (see Sect. 3.4), this term has exactly
the order

√
m/n (lower and upper bound are provided, under weak assumptions). This

is why it is important to see that, in regression context, the variance order does not
depend on the basis.

2.3 Useful inequalities

For M a matrix, we denote by ‖M‖op the operator norm defined as the square root of
the largest eigenvalue of MM ′. If M is symmetric, it coincides with sup{|λi |} where
λi are the eigenvalues of M . Moreover, if M, N are two matrices with compatible
product MN , then, ‖MN‖op ≤ ‖M‖op‖N‖op.

The possible values of the dimension m to study the collection (b̂m) of estimators
are subject to restrictions, for which the following property is important:

Proposition 2 Assume that the spaces Sm are nested (i.e. m ≤ m′ ⇒ Sm ⊂ Sm′ ) and
Ψm (resp. ̂Ψm) is invertible, then m �→ ‖Ψ −1

m ‖op (resp m �→ ‖̂Ψ −1
m ‖op) is nondecreas-

ing.

Let us define

L(m) = sup
x∈A

m−1
∑

j=0

ϕ2
j (x) and assume L(m) < +∞. (7)

This quantity is independent of the choice of theL
2(dx)-orthonormal basis of Sm , and

for nested spaces Sm , the map m �→ L(m) is increasing. We need to study the set


m(δ) =
{

sup
t∈Sm , t �=0

∣

∣

∣

∣

∣

‖t‖2n
‖t‖2f

− 1

∣

∣

∣

∣

∣

≤ δ

}

(8)

where the empirical and the L
2(A, f (x)dx) norms are equivalent on Sm . Theorem 1

in Cohen et al. (2013) provides the adequate inequality. In our context, it takes the
following form:

Proposition 3 Let ̂Ψm, Ψm be the m ×m matrices defined in Eq. (3) and assume that
Ψm is invertible. Then for all 0 ≤ δ ≤ 1,

P(
m(δ)c) = P

[

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op > δ

]

≤ 2m exp

(

−c(δ)
n

L(m)(‖Ψ −1
m ‖op ∨ 1)

)

,

where Idm denotes the m × m identity matrix and c(δ) = δ + (1 − δ) log(1 − δ).
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Regression function estimation as a partly inverse problem 1029

By convention, we set ‖Ψ −1
m ‖op = +∞ whenever Ψm is not invertible. As a conse-

quence, if m is such that

L(m)(‖Ψ −1
m ‖op ∨ 1) ≤ c

2

n

log(n)
, c = 1 − log(2)

5
, (9)

we obtain that, choosing δ = 1/2, the set 
m := 
m(1/2) satisfies P(
c
m) ≤ 2n−4.

Indeed, L(m)‖Ψ −1
m ‖op ≥ m (seeLemma4 in the proof of Proposition 3). Condition (9)

can be understood as ensuring the stability of the least-squares estimator, as underlined
in Cohen et al. (2013). We can prove:

Proposition 4 (i) Assume that f is bounded. Let ̂Ψm be the m × m matrix defined
in Eq. (3). Then for all u > 0

P
[‖Ψm − ̂Ψm‖op ≥ u

] ≤ 2m exp

(

− n u2/2

L(m) (‖ f ‖∞ + 2 u/3)

)

.

(ii) Assume that ̂Ψm, Ψm are (a.s.) invertible. Then for α > 0,

{

‖̂Ψ −1
m − Ψ −1

m ‖op > α‖Ψ −1
m ‖op

}

⊂
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op >

α ∧ 1

2

}

.

3 Truncated estimator on a fixed space

Wemay consider fromProposition 1 that the problem is standard. However, it is known
that difficulties arise if wewant to bound the integratedL

2-risk instead of the empirical
risk, even for fixed m. Actually, the general regression problem is an inverse problem
since the link between the function of interest b and the density of the observations
(Yi , Xi )i is of convolution type fY (y) = ∫

fε(y − b(x)) f (x)dx where fY and fε are
the densities of Y1 and ε1. This can also be seen from the fact that the estimator is
computed via the inversion of the matrix ̂Ψm . Thus we can expect that the procedure
depends on the eigenvalues of Ψm .

3.1 Integrated risk bound

Let us assume as above that bA ∈ L
2(A, f (x)dx). It is not possible to deduce from

Proposition 1 a bound on E[‖b̂m − bA‖2f ] for all m such that ̂Ψm is invertible. On the
other hand, we introduce a cutoff and define

b̃m := b̂m1L(m)(‖̂Ψ −1
m ‖op∨1)≤cn/ log(n)

, (10)

where L(m) is defined by (7) and c in (9). On the set {L(m)(‖̂Ψ −1
m ‖op ∨ 1) ≤

cn/ log(n)}, the matrix ̂Ψm is invertible and its eigenvalues (λi )1≤i≤m satisfy
inf1≤i≤m(λi ) ≥ m log(n)/(cn). Analogously, condition (9) is equivalent to the fact
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1030 F. Comte, V. Genon-Catalot

that Ψm is invertible and its eigenvalues are lower bounded by 2m log(n)/(cn). We
have:

Proposition 5 Assume that E(ε41) < +∞ and bA ∈ L
4(A, f (x)dx). Then for any m

satisfying (9), we have

E
[‖b̃m − bA‖2f

] ≤
(

1 + 8c

log(n)

)

inf
t∈Sm

‖bA − t‖2f + 8σ 2
ε

m

n
+ c

n
, (11)

where c is a constant depending on E(ε41) and
∫

b4A(x) f (x)dx.

The proof of Proposition 5 exploits as a first step the proof of Theorem 3 in Cohen
et al. (2013).However, the estimator inCohen et al. (2013) ismainly theoretical: indeed
they assume that b is bounded and the estimator depends on the bound, which has thus
to be known. As A may be unbounded, it is important to get rid of this restriction.

3.2 Rate and optimality

So far, the bias rate of the L
2(A, f (x)dx)-risk in (6) and (11) has not been assessed.

To this end, we introduce regularity spaces related to f by setting:

Ws
f (A, R) =

{

h ∈ L
2(A, f (x)dx),∀ ≥ 1, ‖h − h f

 ‖2f ≤ R−s
}

(12)

where we recall that h f
 is the L

2(A, f (x)dx)-orthogonal projection of h on S.
From (11), we easily deduce an upper bound for the risk, which we state below.

The risk rate is optimal, as we also prove the following lower bound.

Theorem 1 Assume that bA ∈ Ws
f (A, R) and that mopt := [n1/(s+1)] satisfies (9).

• Upper bound. If E(ε41) < +∞, E(‖b̃mopt − bA‖2f ) ≤ Cn−s/(s+1).

• Lower bound. If ε1 ∼ N (0, σ 2
ε ),

lim inf
n→+∞ inf

Tn
sup

bA∈Ws
f (A,R)

EbA [ns/(s+1)‖Tn − bA‖2f ] ≥ c

where infTn denotes the infimum over all estimators and where the constant c > 0
depends on s and R.

The condition that mopt = [n1/(s+1)] satisfies (9) is actually mainly a constraint on
f , see the discussion at the end of Sect. 3.4.
The partly inverse problem appears here. The rate of ‖Ψ −1

m ‖op as a function of m
is to be interpreted as a measure of the degree of ill-posedness of the inverse problem,
in the context of regression function estimation.

Proposition 6 Under the assumptions of Theorem 1, if moreover L(m) � m and

‖Ψ −1
m ‖op � mk, then E[‖b̂mopt − bA‖2f ] ≤ C(R)n− s

(s∨k) +1 .
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Regression function estimation as a partly inverse problem 1031

This result is due to the fact that the constraint L(m)‖Ψ −1
m ‖op � mk+1 � n/ log(n)

has to be fulfilled for mopt.

3.3 Case of compact A and compactly supported bases

In this section, we assume that A is compact and give examples of bases where, for
simplicity, A = [0, 1]. Classical compactly supported bases are: histograms ϕ j (x) =√
m1[ j/m,( j+1)/m[(x), for j = 0, . . . ,m − 1; piecewise polynomials with degree r

(rescaled Legendre basis up to degree r on each subinterval [ j/mr , ( j + 1)/mr [,
with m = (r + 1)mr ); compactly supported wavelets; trigonometric basis with
odd dimension m, ϕ0(x) = 1[0,1](x) and ϕ2 j−1(x) = √

2 cos(2π j x)1[0,1](x), and
ϕ2 j (x) = √

2 sin(2π j x)1[0,1](x) for j = 1, . . . , (m − 1)/2.
For spaces generated by histograms and by trigonometric basis, L(m) = m, for

spaces generated by piecewise polynomials with degree r , L(m) = (r + 1)m. Spaces
generated by compactly supported wavelets also satisfy (7) with L(m) of orderm. The
trigonometric spaces are nested; for histograms, piecewise polynomials and wavelets,
the models are nested if the subdivisions are diadic (m = 2k for increasing values of
k).

Let Pk(x) = √
2Lk(2x − 1) 1[0,1](x), for k = 0, . . . ,m − 1 be the Legendre

polynomial basis rescaled from [−1, 1] to [0, 1]. It is an L
2([0, 1], dx) orthonormal

basis of Sm = span(P0, . . . , Pm−1). As ‖Pk‖∞ = √
2
√
2k − 1, we get L(m) = 2m2

(see Cohen et al. 2013).
If A is compact, one can assume that

∃ f0 > 0, such that ∀x ∈ A, f (x) > f0. (13)

This assumption is commonly and crucially used in papers on nonparametric regres-
sion.

In particular, it implies that Ψm is invertible, and more precisely:

Proposition 7 Assume that Assumption (13) is satisfied, then

∀m ≤ n, ‖Ψ −1
m ‖op ≤ 1/ f0.

Indeed (13) implies that, for u = (u0, . . . , um−1)
′ a vector of R

m , u ′ Ψm u is equal
to

∫

A

⎛

⎝

m−1
∑

j=0

u jϕ j (x)

⎞

⎠

2

f (x)dx ≥ f0

∫

A

⎛

⎝

m−1
∑

j=0

u jϕ j (x)

⎞

⎠

2

dx = f0‖u‖22,m . (14)

Therefore, ‖Ψ −1
m ‖op ≤ 1/ f0 and Proposition 7 is proved. A consequence of (13) is

that the matrix Ψm needs not appear in condition (9), thus the matrix ̂Ψm needs not
appear in the definition of b̃m . So we can define, as in Baraud (2002), for c′ a constant,

b̃m = b̂m1L(m)≤c′n/ log(n). (15)
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1032 F. Comte, V. Genon-Catalot

Now, let us discuss about the usual rates in this compact setting. Assume that

bA ∈ L
2(A, dx) and ‖ f ‖∞ < +∞. (16)

Then ∀t ∈ Sm , ‖bA − t‖2f ≤ ‖ f ‖∞‖bA − t‖2A and thus

inf
t∈Sm

‖bA − t‖2f ≤ ‖ f ‖∞‖bA − bm‖2A (17)

where bm is the L
2(A, dx)-orthogonal projection of bA on Sm . Thus we recover a

classical bias, and the bias-variance compromise leads to standard rates, typically
n−2α/(2α+1) for bA ∈ Bα,2,∞(A, R) a Besov ball with radius R and regularity α (see
DeVore and Lorentz 1993, or Baraud 2002, section 2).

3.4 Examples of non-compact A and non-compactly supported bases

If A is not compact, assumption (13) cannot hold, therefore we cannot get rid of the
matrix Ψm . Our contribution is to take into account and enlight the role of Ψm and
to introduce a new selection procedure involving a random collection of models (see
Sect. 4).

Now we assume that

bA ∈ L
2(A, f (x)dx), λ(A ∩ supp( f )) > 0, and f is upper bounded. (18)

We give two concrete examples of non-compactly supported bases: the Laguerre
basis on A = R

+ and the Hermite basis on A = R. See e.g. Comte and Genon-Catalot
(2018) for density estimation by projection using these bases.

• Laguerre basis, A = R
+. Consider the Laguerre polynomials (L j ) and the

Laguerre functions ( j ) given by

L j (x) =
j

∑

k=0

(−1)k
(

j

k

)

xk

k! ,  j (x) = √
2L j (2x)e

−x1x≥0, j ≥ 0. (19)

The collection ( j ) j≥0 constitutes a complete orthonormal system on L
2(R+), and is

such that (see Abramowitz and Stegun 1964):

∀ j ≥ 0, ∀x ∈ R
+, | j (x)| ≤ √

2. (20)

Clearly, the collection of models (Sm = span{0, . . . , m−1}) is nested, and (20)
implies that this space satisfies (7) with L(m) = 2m (the supremum is attained at
x = 0).

• Hermite basis, A = R. The Hermite polynomial and the Hermite function of order
j are given, for j ≥ 0, by:
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Hj (x) = (−1) j ex
2 d j

dx j
(e−x2 ), h j (x) = c j H j (x)e

−x2/2, c j =
(

2 j j !√π
)−1/2

.

(21)

The sequence (h j , j ≥ 0) is an orthonormal basis of L
2(R, dx).

The infinite norm of h j satisfies (see Abramowitz and Stegun 1964; Szegö 1975,
p. 242):

‖h j‖∞ ≤ Φ0, Φ0 � 1, 086435/π1/4 � 0.8160, (22)

so that the Hermite space satisfies (7) with L(m) ≤ Φ2
0m. The collection of models is

also clearly nested.
Hereafter, we use the notation ϕ j to denote  j in the Laguerre case and h j in the

Hermite case. We denote by Sm = span(ϕ0, ϕ1, . . . , ϕm−1) the linear space generated
by the m functions ϕ0, . . . , ϕm−1 and by fm = ∑m−1

j=0 a j ( f )ϕ j the orthogonal pro-
jection of f on Sm . Then a j ( f ) = 〈 f , ϕ j 〉 will mean the integral of f ϕ j either on R

or on R
+.

As the bases functions are bounded, the terms
∫

ϕ2
j f are finite.

The matrices Ψm , ̂Ψm in these bases have specific properties:

Lemma 3 For all m ∈ N, for all m ≤ n, ̂Ψm is a.s. invertible.

The result below on Ψm is crucial for understanding our procedure.

Proposition 8 For all m, Ψm is invertible and there exists a constant c� such that,

‖Ψ −1
m ‖2op ≥ c�m. (23)

In the Laguerre and Hermite cases, inequality (23) clearly implies that ‖Ψ −1
m ‖op

cannot be uniformly bounded in m contrary to the case of compactly supported bases.
This means that the constraint in (9) leads to restrictions on the valuesm, as illustrated
by the next proposition.

Proposition 9 Consider the Laguerre or the Hermite basis. Assume that f (x) ≥
c/(1 + x)k for x ≥ 0 and k ≥ 2 in the Laguerre case or f (x) ≥ c/(1 + x2)k

for x ∈ R and k ≥ 1 in the Hermite case. Then for m large enough, ‖Ψ −1
m ‖op ≤ Cmk.

We performed numerical experiments which seem to indicate that the order mk is
sharp.

If f is as in Proposition 9 and bA ∈ Ws
f (A, R), then Proposition 6 applies: the

optimal rate of order n−s/(s+1) can be reached by the adaptive estimator if s > k. Note
that in a Sobolev–Laguerre ball:

Ws(R+, R) = {h ∈ L
2(A, dx),

∑

j≥0

j s〈h,  j 〉2 ≤ R}, (24)

the index s (and not 2s) is linked with regularity properties of functions (see Section
7 of Comte and Genon-Catalot 2015 and Section 7.2 of Belomestny et al. 2016). The
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1034 F. Comte, V. Genon-Catalot

same type of property holds for Sobolev–Hermite balls, see Belomestny et al. 2019.
Therefore, the rate n−s/(s+1) is non-standard.1

In density estimation using projection methods on Laguerre or Hermite bases, the
variance term in the risk bound of projection estimators has order

√
m/n so that the

optimal rate on a Sobolev–Laguerre or Sobolev–Hermite ball for the estimators risk
is n−2s/(2s+1) (see Remark 1). It seems that, in the regression setting, we cannot have
such a gain. Analogous considerations hold with the Hermite basis.

We do not know the order of ‖Ψ −1
m ‖op for f exponential or Gaussian: it is likely

to increase exponentially fast. However, the bias term is then also likely to decrease
exponentially fast. Thus, the resulting risk may remain quite small: this is what we
observe in simulations.

4 Adaptive procedure

Let us consider now the following assumptions.

(A1) The collection of spaces Sm is nested (that is Sm ⊂ Sm′ for m ≤ m′) and such
that, for each m, the basis (ϕ0, . . . , ϕm−1) of Sm satisfies

∀m ≥ 1, L(m) =
∥

∥

∥

∥

∥

∥

m−1
∑

j=0

ϕ2
j

∥

∥

∥

∥

∥

∥∞
≤ c2ϕm for c2ϕ > 0 a constant. (25)

(A2) ‖ f ‖∞ < +∞.

We present now a model selection procedure and associated risk bounds.
To select the most relevant space Sm , we proceed by choosing

m̂ = arg min
m∈ ̂Mn

{

−‖b̂m‖2n + κσ 2
ε

m

n

}

(26)

where κ is a numerical constant, and ̂Mn is a random collection of models defined by

̂Mn =
{

m ∈ N,m(‖̂Ψ −1
m ‖2op ∨ 1) ≤ d

n

log(n)

}

, d = 1

192 c2ϕ(‖ f ‖∞ ∨ 1 + (1/3))
.

(27)
The value of the constant d is determined by Lemma 7.

A theoretical counterpart of ̂Mn , with d is defined in (27), is useful:

Mn =
{

m ∈ N,m (‖Ψ −1
m ‖2op ∨ 1) ≤ d

4

n

log(n)

}

. (28)

1 If bA is a combination of �-type functions, then the bias term inf t∈Sm ‖bA − t‖2 is much smaller
(exponentially decreasing) and the rate log(n)/n can be reached by the adaptive estimator (see e.g. Mabon
2017).
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Note that the cutoff for defining m̂ and b̂m̂ is different from the one used in (10).
As m(‖̂Ψ −1

m ‖op ∨ 1) ≤ m(‖̂Ψ −1
m ‖2op ∨ 1), this yields a smaller set of possible values

for m̂.
The procedure (26) aims at performing an automatic bias-variance tradeoff. Each

term is related to the bias or the variance obtained in Proposition 1. The squared bias
term is equal to ‖bA − b f

m‖2f = ‖bA‖2f − ‖b f
m‖2f where b f

m is the L
2(A, f (x)dx)-

orthogonal projection of bA on Sm . The first term ‖bA‖2f is unknown but does not

depend on m; on the other hand, ‖b f
m‖2f = E[‖b f

m‖2n]. Thus, the quantity −‖b̂m‖2n
approximates the squared bias, up to an additive constant, while σ 2

ε m/n has the vari-
ance order.

Theorem 2 Let (Xi ,Yi )1≤i≤n be observations frommodel (1). Assume that (A1), (A2)
hold, that E(ε61) < +∞ and E

[

b4(X1)
]

< +∞. Then, there exists a numerical
constant κ0 such that for κ ≥ κ0, we have

E
[‖b̂m̂ − bA‖2n

] ≤ C inf
m∈Mn

(

inf
t∈Sm

‖bA − t‖2f + κσ 2
ε

m

n

)

+ C ′

n
, (29)

and

E
[‖b̂m̂ − bA‖2f

] ≤ C1 inf
m∈Mn

(

inf
t∈Sm

‖bA − t‖2f + κσ 2
ε

m

n

)

+ C ′
1

n
(30)

where C,C1 are a numerical constants and C ′,C ′
1 are constants depending on ‖ f ‖∞,

E[b4(X1)], E(ε61).

Theorem 2 shows that the risk of the estimator b̂m̂ automatically realizes the bias-
variance tradeoff, up to the multiplicative constants C,C1, both in term of empirical
and of integrated L

2(A, f (x)dx)−risk. The conditions are general, rather weak, and
do not impose any support constraint. Theorem 2 contains existing results when the
bases are regular and compactly supported.

The numerical constant κ provided by the theory (here κ ≥ κ0 = 32) is not optimal
from theoretical point of view and too large in practice. It is thus standard to choose
its value from preliminary calibration of the method, on simulated experiments. Here
we took κ = 4, see the supplementary material.

The constant d in the definition of ̂Mn depends on ‖ f ‖∞ which is unknown. In
practice, this quantity may be replaced by an estimator, possibly rough. Otherwise,
to avoid looking for the value of d, we can replace the bound dn/ log(n) in ̂Mn by
n/ log1+ε(n), ε > 0, for n is large enough.

The constant σ 2
ε is also generally unknown, and must be replaced by an estimator.

We simply propose to use the residual least-squares estimator:̂σ 2
ε = (1/n)

∑n
i=1(Yi −

b̂m∗(Xi ))
2 where m∗ is an arbitrarily chosen dimension, which must be neither

too large, nor too small; for instance m∗ = �√n�. See e.g. Baraud 2000, section
6.
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5 Concluding remarks

In this paper, we study nonparametric regression function estimation by a projection
methodwhichwas first proposed byBirgé andMassart (1998) andBarron et al. (1999).
Compared with the popular Nadaraya–Watson approach, the projection method has
several advantages. In the Nadaraya–Watson method, one estimates b by a quotient of
estimators, namelŷb = ̂b f /̂f . Dividing by ̂f requires a cutoff or a threshold to avoid
too small values in the denominator, determining its level is difficult. It is not clear
whether bandwidth ormodel selectionmust be performed separately or simultaneously
for the numerator and the denominator. The rate of the final estimator of b corresponds
to the worst rate of the two estimators; in particular, it depends on the regularity index
of b, but also on the one of f . Therefore, the rate can correspond to the one associated
to the regularity index of b, if f is more regular than b, but it is deteriorated if f is
less regular than b.

On the other hand, there is no support constraint for this estimation method. In the
projection method used here, the drawbacks listed above do not perturb the estimation
except that the unknown function b is estimated in a restricted domain A. Up to now,
this set was mostly assumed to be compact. In the present paper, we show how to
eliminate the support constraint by introducing a new selection procedure where the
dimension of the projection space is chosen in a random set. The procedure can be
applied to non-compactly supported bases such as the Laguerre or Hermite bases.
Several extensions of our method can be obtained.

First, note that the result of Proposition 1 holds for any sequence (Xi )1≤i≤n provided
that it is independent of (εi )1≤i≤n with i.i.d. centred εi .

We also may have considered the heteroskedastic regression the model Yi =
b(Xi ) + σ(Xi )εi , Var(ε1) = E(ε21) = 1, and the same contrast. The estimator on
Sm is still given by (4). Assuming that σ 2(x) is uniformly bounded, we can obtain
results similar to those obtained here.

Note that regression strategies have been used in other problems, for instance sur-
vival function estimation for interval censored data (see Brunel and Comte 2009),
hazard rate estimation in the presence of censoring (see Plancade 2011): our proposal
for classical regression may extend to these contexts, for which it is natural to use
R

+-supported bases, see Bouaziz et al. (2018). Indeed, the variables are lifetimes and
thus nonnegative, and censoring implies that the right-hand bound of the support is
unknown and difficult to estimate; it is convenient that the Laguerre basis does not
require to choose it.

6 Proofs

6.1 Proof of Proposition 1

Let us denote by Πm the orthogonal projection (for the scalar product of R
n) on the

sub-space
{(

t(X1), . . . ,t(Xn)
)′
, t ∈ Sm

}

ofR
n and byΠmb the projection of the vector

(b(X1), . . . , b(Xn))
′. The following equality holds,
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‖b̂m − bA‖2n = ‖Πmb − bA‖2n + ‖b̂m − Πmb‖2n = inf
t∈Sm

‖t−bA‖2n+‖b̂m−Πmb‖2n .
(31)

By taking expectation, we obtain

E
[‖b̂m − bA‖2n

] ≤ inf
t∈Sm

∫

(t − bA)2(x) f (x)dx + E

[

‖b̂m − Πmb‖2n
]

. (32)

Now we have:

E

[

‖b̂m − Πmb‖2n
]

= σ 2
ε

m

n
. (33)

The result of Proposition 1 follows. ��
Proof of equality (33) Denote by b(X) = (b(X1), . . . , b(Xn))

′ and bA(X) =
(bA(X1), . . . , bA(Xn))

′. We can write

b̂m(X) = (b̂m(X1), . . . , b̂m(Xn))
′ = ̂Φm â

(m)
,

where â(m) is given by (4), and

Πmb = ̂Φma(m), a(m) = (̂Φ ′
m
̂Φm)−1

̂Φ ′
mb(X).

Now, denoting by P(X) := ̂Φm(̂Φ ′
m
̂Φm)−1

̂Φ ′
m , we get

‖b̂m − Πmb‖2n = ‖P(X)"‖2n = 1

n
"′P(X)′P(X)" = 1

n
"′P(X)" (34)

as P(X) is the n × n-matrix of the euclidean orthogonal projection on the sub-
space of R

n generated by the vectors ϕ0(X), . . . , ϕm−1(X), where ϕ j (X) =
(ϕ j (X1), . . . , ϕ j (Xn))

′. Note that E(‖P(X)"‖22,n) ≤ E(‖"‖22,n) < +∞. Next, we
compute, using that P(X) has coefficients depending on the Xi ’s only,

E
[

" ′ P(X))"
] =

∑

i, j

E
[

εiε jPi, j (X)
] = σ 2

ε

n
∑

i=1

E
[

Pi,i (X)
] = σ 2

ε E
[

Tr(P(X))
]

,

where Tr(.) is the trace of the matrix. So, we find

Tr(P(X)) = Tr
(

(̂Φ ′
m
̂Φm)−1

̂Φ ′
m
̂Φm

) = Tr(Im) = m

where Im is them×m identity matrix. Finally, we getE
[

‖b̂m − Πmb‖2n
]

= σ 2
ε (m/n).

This is (33). ��

6.2 Proof of Proposition 2

Let t = ∑m−1
j=0 a jϕ j , and a = (a0, . . . , am−1)

′, then ‖t‖2 = ‖a‖2,m = a′ a and

‖t‖2f = a′Ψma = ‖Ψ 1/2
m a‖22,m , where Ψ

1/2
m is a symmetric square root of Ψm . Thus
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sup
t∈Sm ,‖t‖ f =1

‖t‖2 = sup
a∈Rm ,‖Ψ 1/2

m a‖2,m=1

a′ a.

Set b = Ψ
1/2
m a, that is a = Ψ

−1/2
m b. Then

sup
t∈Sm ,‖t‖ f =1

‖t‖2 = sup
b∈Rm ,‖b‖2,m=1

b′Ψ −1
m b = ‖Ψ −1

m ‖op.

As, for m ≤ m′, we assume Sm ⊂ Sm′ , we also have

‖Ψ −1
m ‖op = sup

t∈Sm ,‖t‖ f =1
‖t‖2 ≤ sup

t∈Sm′ ,‖t‖ f =1
‖t‖2 = ‖Ψ −1

m′ ‖op.

The same holds for supt∈Sm ,‖t‖n=1 ‖t‖2 = ‖̂Ψ −1
m ‖op. ��

6.3 Proof of Proposition 3

The first equality holds by writing

sup
t∈Sm ,‖t‖ f =1

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[t2(Xi ) − Et2(Xi )]
∣

∣

∣

∣

∣

∣

= sup
x∈Rm ,‖√Ψmx‖2,m=1

∣

∣x′
̂Ψmx − x′Ψmx

∣

∣

= sup
x∈Rm ,‖√Ψmx‖2,m=1

∣

∣x′(̂Ψm − Ψm)x
∣

∣ = sup
u∈Rm ,‖u‖2,m=1

∣

∣

∣u′√Ψm
−1

(̂Ψm − Ψm)
√

Ψm
−1

u
∣

∣

∣

= ‖√Ψm
−1

(̂Ψm − Ψm)
√

Ψm
−1‖op.

Now, Theorem 1 in Cohen et al. (2013) yields that for 0 < δ < 1, P(
m(δ)c) ≤
2me−c(δ)n/K (m) where, for (θ j )0≤ j≤m−1 an L

2(A, f (x)dx)-orthonormal basis of Sm ,

K (m) = sup
x∈A

m−1
∑

j=0

θ2j (x), (35)

provided that K (m) < +∞.2 Note that K (m) is independent of the choice of the basis
(θ j )0≤ j≤m−1. Then, the following lemma:

Lemma 4 Assume that Ψm is invertible and L(m) < +∞ (see (7)). Then K (m) <

+∞, and for −−→ϕ(m)(x) = (ϕ0(x), . . . , ϕm−1(x))′, we have

m ≤ K (m) = sup
x∈A

−−→ϕ(m)(x)
′Ψ −1

m
−−→ϕ(m)(x) ≤ L(m)‖Ψ −1

m ‖op.

2 In Cohen et al. (2013), the condition K (m) < +∞ is not clearly stated; it is implicit as the result does
not hold otherwise. Actually all examples of the paper are for A compact, in which case K (m) < +∞. If
A is not compact, then K (m) may be +∞. Therefore, our condition (7) and Lemma 4 clarify Cohen et al.’s
result.
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gives the result of Proposition 3. ��
Proof of Lemma 4 We have

∑m−1
j=0

∫

θ2j (x) f (x)dx = m ≤ K (m). Now, let
−→
θ(m)(x) = (θ0(x), . . . , θm−1(x))′. There exists an m × m matrix Am such that−→
θ(m)(x) = Am

−−→ϕ(m)(x). By definition of the basis (θ j )0≤ j≤m ,

∫

A

−→
θ(m)(x)

−→
θ(m)(x)

′ f (x)dx = Idm

and
∫

A

−→
θ(m)(x)

−→
θ(m)(x)

′ f (x)dx = AmΨm A′
m .

This implies A−1
m (A′

m)−1 = (A′
m Am)−1 = Ψm and A′

m Am = Ψ −1
m . Thus

−→
θ(m)(x)

−→
θ(m)(x)

′ = −−→ϕ(m)(x)A
′
m Am

−−→ϕ(m)(x) = −−→ϕ(m)(x)
′Ψ −1

m
−−→ϕ(m)(x).

This gives the first equality. To end the proof of Lemma 4, note that the last term is
bounded by ‖Ψ −1

m ‖op‖−−→ϕ(m)(x)‖22,m = ‖Ψ −1
m ‖op ∑m−1

j=0 ϕ2
j (x) . ��

Note that we can see also here that G in Cohen et al. (2013), that we denote here
̂Gm is such that ̂Gm = Am̂Ψm A′

m where A′
m is a square root of Ψ −1

m .

6.4 Proof of Proposition 4

Proof of(i)Toget the announced result, we apply again aBernsteinmatrix inequality
given in Tropp (2012) (see Theorem A.2 in Supplementary material). We write ̂Ψm as

a sum of a sequence of independent matrices ̂Ψm = 1

n

∑n
i=1Km(Xi ),withKm(Xi ) =

(ϕ j (Xi )ϕk(Xi ))0≤ j,k≤m−1. We define

Sm = 1

n

n
∑

i=1

Km(Xi ) − E [Km(Xi )] . (36)

• Bound on ‖Km(X1) − E [Km(X1)] ‖op/n. First we can write that

‖Km(X1) − E [Km(X1)] ‖op ≤ ‖Km(X1)‖op + ‖E [Km(X1)] ‖op,

and we bound the first term, the other one being similar. AsKm(X1) is symmetric and
nonnegative a.s., we have a.s.

‖Km(X1)‖op = sup
‖x‖2,m=1

∑

0≤ j,k≤m−1

x j xk[Km(X1)] j,k

= sup
‖x‖2,m=1

∑

0≤ j,k≤m−1

x j xkϕ j (X1)ϕk(X1)
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= sup
‖x‖2,m=1

⎡

⎢

⎣

⎛

⎝

m−1
∑

j=0

x jϕ j (X1)

⎞

⎠

2
⎤

⎥

⎦ ≤ L(m).

So we get that, a.s.

‖Km(X1) − E [Km(X1)] ‖op/n ≤ 2L(m)

n
:= L. (37)

• Bound on ν(Sm) = ‖∑n
i=1 E

[

(Km(Xi )−E [Km(Xi )])′ (Km(Xi )−E [Km(Xi )])
]

‖op/n2. We have

ν(Sm) = 1

n
sup

‖x‖2,m=1
E ‖(Km(X1) − E [Km(X1)]) x‖22,m .

It yields that, for x′ = (x0, . . . , xm−1),

E1 := E ‖(Km(X1) − E [Km(X1)]) x‖22,m =
m−1
∑

j=0

Var

[

m−1
∑

k=0

(

ϕ j (X1)ϕk(X1)
)

xk

]

≤
m−1
∑

j=0

E

(

m−1
∑

k=0

(

ϕ j (X1)ϕk(X1)
)

xk

)2

=
m−1
∑

j=0

∫

(

m−1
∑

k=0

(

ϕ j (u)ϕk(u)
)

xk

)2

f (u)du.

Therefore as, by (A2), f is bounded,

E1 ≤ ‖ f ‖∞
m−1
∑

j=0

∫

⎛

⎝

m−1
∑

k=0

(

ϕ j (u)ϕk(u)
)

xk

⎞

⎠

2

du ≤ ‖ f ‖∞L(m)

m−1
∑

k=0

x2k = ‖ f ‖∞L(m).

Then we get that ν(Sm) ≤ ‖ f ‖∞L(m)

n
. Applying Theorem A.2 in Supplementary

material (see Tropp 2012) gives the result (i) of Proposition 4. ��
Proof of (ii) First note that

‖̂Ψ −1
m − Ψ −1

m ‖op = ‖Ψ −1/2
m

(

Ψ
1/2
m ̂Ψ −1

m Ψ
1/2
m − Idm

)

Ψ
−1/2
m ‖op)

≤ ‖Ψ −1
m ‖op‖Ψ 1/2

m ̂Ψ −1
m Ψ

1/2
m − Idm‖op,

so that

{

‖̂Ψ −1
m − Ψ −1

m ‖op > α‖Ψ −1
m ‖op

}

⊂
{

‖Ψ 1/2
m ̂Ψ −1

m Ψ
1/2
m − Idm‖op > α

}

. (38)

Now, we write the decomposition
{

‖Ψ 1/2
m ̂Ψ −1

m Ψ
1/2
m − Idm‖op > α

}

:= B1 ∪ B2 with
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B1 =
{

‖Ψ 1/2
m ̂Ψ −1

m Ψ
1/2
m − Idm‖op > α

}
⋂

{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op <

1

2

}

B2 =
{

‖Ψ 1/2
m ̂Ψ −1

m Ψ
1/2
m − Idm‖op > α

}
⋂

{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op ≥ 1

2

}

.

Clearly B2 ⊂
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op ≥ 1

2

}

.

Applying Theorem A.1 (see Stewart and Sun 1990 and Theorem A.1 in supple-
mentary material) with A = Idm and B = Ψ

−1/2
m ̂ΨmΨ

−1/2
m − Idm , yields

B1 ⊂
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op

1 − ‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op

> α

}

∩
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op <

1

2

}

⊂
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op > α/2

}

∩
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op <

1

2

}

⊂
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op > α/2

}

.

Thus B1 ∪ B2 ⊂
{

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op ≥ α ∧ 1

2

}

, which ends the proof of

(ii) and of Proposition 4. ��

6.5 Proof of Proposition 5

We define the sets (see (10)),

�m =
{

L(m)(‖̂Ψ −1
m ‖op ∨ 1) ≤ c

n

log(n)

}

, and 
m =
{∣

∣

∣

∣

∣

‖t‖2n
‖t‖2f

− 1

∣

∣

∣

∣

∣

≤ 1

2
, ∀t ∈ Sm

}

.

Below, we prove the following lemma.

Lemma 5 Under the assumptions of Proposition 5, for m satisfying condition (9), we
have

P(�c
m) ≤ c/n4, P(
c

m) ≤ c/n4

where c is a positive constant.

Now, we write

‖˜bm − bA‖2f = ‖b̂m − bA‖2f 1�m + ‖bA‖2f 1�c
m

= ‖b̂m − bA‖2f 1�m∩
m + ‖b̂m − bA‖2f 1�m∩
c
m

+ ‖bA‖2f 1�c
m
. (39)

From the proof of Theorem 3 in Cohen et al. (2013), we get

E

(

‖b̂m − bA‖2f 1�m∩
m

)

≤
(

1 + 8c

log(n)

)

inf
t∈Sm

(‖t − bA‖2f ) + 8σ 2
ε

m

n
. (40)
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1042 F. Comte, V. Genon-Catalot

Now we bound the two remaining terms. Clearly, with Lemma 5,

E(‖bA‖2f 1�c
m
) ≤ ‖bA‖2f P(�c

m) ≤ c/n4. (41)

Next we deal with E(‖b̂m − bA‖2f 1�m∩
c
m
). We have ‖b̂m − bA‖2f ≤ 2(‖b̂m‖2f +

‖bA‖2f ) and

‖b̂m‖2f =
∫

⎛

⎝

m−1
∑

j=0

â jϕ j (x)

⎞

⎠

2

f (x)dx = (â(m)
)′Ψm â(m) ≤ ‖Ψm‖op‖â(m)‖22,m .

First,

‖Ψm‖op = sup
‖x‖2,m=1

x′Ψm̂x = sup
‖x‖2,m=1

∫

⎛

⎝

m−1
∑

j=0

x jϕ j (u)

⎞

⎠

2

f (u)du

≤ sup
‖x‖2,m=1

∫

⎛

⎝

m−1
∑

j=0

x2j

m−1
∑

j=0

ϕ2
j (u)

⎞

⎠ f (u)du ≤ L(m).

Next, ‖â(m)‖22,m = (1/n2)‖̂Ψ −1
m

̂Φ ′
mY‖22,m ≤ (1/n2)‖̂Ψ −1

m
̂Φ ′
m‖2op‖Y‖22,n and

‖̂Ψ −1
m

̂Φ ′
m‖2op = λmax

(

̂Ψ −1
m

̂Φ ′
m
̂Φm̂Ψ −1

m

)

= nλmax(̂Ψ
−1
m ) = n‖̂Ψ −1

m ‖op.

Therefore, for all m satisfying (9),

‖b̂m‖2f ≤ L(m)‖̂Ψ −1
m ‖op

n

(

n
∑

i=1

Y 2
i

)

≤ c

log(n)

(

n
∑

i=1

Y 2
i

)

, (42)

and thus on �m , for n ≥ 3, ‖b̂m‖2f ≤ C
(∑n

i=1 Y
2
i

)

. Then as E[(∑n
i=1 Y

2
i )2] ≤

n2E(Y 4
1 ), we get

E(‖b̂m‖2f 1�m∩
c
m
) ≤

√

E(‖b̂m‖4f )P(
c
m) ≤ CE

1/2(Y 4
1 )nP

1/2(
c
m) ≤ c′/n.

On the other hand, E(‖bA‖2f 1�m∩
c
m
) ≤ ‖bA‖2f P(
c

m) ≤ c′′/n4. Thus

E

(

‖b̂m − bA‖2f 1�m∩
c
m

)

≤ c1/n. (43)

Taking expectation of (39) and plugging (40)–(41)–(43) therein gives the result. ��
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6.6 Proof of Lemma 5

The bound on P(
c
m) follows from Proposition 3 under condition (9).

We study now P(�c
m) for m satisfying condition (9). On �c

m , for m satisfying con-
dition (9), we have L(m)‖Ψ −1

m ‖op ≤ cn/2 log(n) and L(m)‖̂Ψ −1
m ‖op > cn/ log(n).

This implies, as

c
n

log(n)
< L(m)‖̂Ψ −1

m ‖op ≤ L(m)‖Ψ −1
m − ̂Ψ −1

m ‖op + L(m)‖Ψ −1
m ‖op

≤ L(m)‖Ψ −1
m − ̂Ψ −1

m ‖op + c

2

n

log(n)
,

that L(m)‖̂Ψ −1
m − Ψ −1

m ‖op ≥ cn/(2 log(n)). Therefore, we have

�c
m ⊂ {L(m)‖̂Ψ −1

m − Ψ −1
m ‖op >

c

2

n

log(n)
} ⊂ {‖̂Ψ −1

m − Ψ −1
m ‖op > ‖Ψ −1

m ‖op}.

Applying Proposition 4 (ii) and Proposition 3, we get

P(�c
m) ≤ P

(

‖Ψ −1/2
m ̂ΨmΨ

−1/2
m − Idm‖op ≥ 1

2

)

≤ c

n4
.

��

6.7 Proof of Theorem 1

Weuse the strategy of proof of Theorem 2.11 in Tsybakov (2009).We define proposals
b0(x) = 0 and for ` = (θ0, . . . , θm−1)

′ with θ j ∈ {0, 1},

bθ (x) = δvnσε

m−1
∑

j=0

[

Ψ
−1/2
m `

]

j
ϕ j (x)

where Ψ
−1/2
m is a symmetric square root of the positive definite matrix Ψ −1

m .
We choose v2n = 1/n and m = [n1/(s+1)].

• We prove that b0, bθ ∈ Ws
f (A, R).

As bθ ∈ Sm , (bθ )
f
m = bθ and (bθ )

f
 = bθ for all  ≥ m. Indeed, Sm ⊂ S. Thus,

for  ≥ m, ‖bθ − (bθ )
f
 ‖2f = 0.

Next, ‖bθ − (bθ )
f
 ‖2f ≤ ‖bθ‖2f and as

∫

ϕ jϕk f = [Ψm] j,k , we get

‖bθ‖2f = δ2v2nσ 2
ε

∑

0≤ j,k≤m−1

[

Ψ
−1/2
m `

]

j

[

Ψ
−1/2
m `

]

k
[Ψm ] j,k = δ2v2nσ 2

ε

m−1
∑

j=0

θ2j ≤ δ2v2nσ 2
ε m.
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1044 F. Comte, V. Genon-Catalot

Thus for  ≤ m,

s‖bθ − (bθ )
f
 ‖2f ≤ s‖bθ‖2f ≤ δ2v2nσ

2
ε ms ≤ δ2v2nσ

2
ε m

s+1 = δ2σ 2
ε .

Choosing δ small enough, we get the result.

• We prove that we can find {θ(0), . . . , θ (M)}, M elements of {0, 1}m such that
‖bθ( j) − bθ(k)‖2f ≥ cn−s/(s+1) for 0 ≤ j < k ≤ M . As above, we find

‖bθ − bθ ′ ‖2f = δ2v2nσ
2
ε

m−1
∑

j=0

(θ j − θ ′
j )
2 = δ2v2nσ

2
ε ρ(θ, θ ′),

where ρ(θ, θ ′) = ∑m−1
j=0 (θ j − θ ′

j )
2 = ∑m−1

j=0 1θ j �=θ ′
j
is the Hamming dis-

tance between the two binary sequences θ and θ ′. By the Varshamov–Gilbert
Lemma (see Lemma 2.9 p.104 in Tsybakov 2009), for m ≥ 8, there exists
a subset {θ(0), . . . , θ (M)} such that θ(0) = (0, . . . , 0), ρ(θ( j), θ (k)) ≥ m/8,
0 ≤ j < k ≤ M , and M ≥ 2m/8.

Therefore, ‖bθ( j) − bθ(k)‖2f ≥ δ2v2nσ
2
ε m/8 = δ2σ 2

ε n
−s/(s+1)/8.

• Conditional Kullback. Consider first the design X1, . . . , Xn as fixed. Let P
i
θ( j) the

density of Yi = bθ( j) (Xi ) + εi , i.e. the Gaussian distribution N (bθ( j) (Xi ), σ
2
ε ),

and Pθ( j) the distribution of (Y1, . . . ,Yn). Then,

1

M + 1

M
∑

j=1

K (Pθ( j) , Pθ(0) ) = 1

M + 1

M
∑

j=1

n
∑

i=1

b2
θ( j) (Xi )

2σ 2
ε

= n

2(M + 1)σ 2
ε

M
∑

j=1

‖bθ( j)‖2n .

Then on 
n = ∪m≤cn/ log(n)
m , we have ‖bθ( j)‖2n ≤ 2‖bθ( j)‖2f , thus

1

M + 1

M
∑

j=1

K (Pθ( j) , Pθ(0) ) ≤ nδ2v2n

M + 1

M
∑

j=1

m−1
∑

k=0

(θ
( j)
k )2 ≤ nδ2v2nm ≤ 8δ2

log(2)
log(M).

For δ2 small enough so that 8δ2/ log(2) := α < 1/8,

1

M + 1

M
∑

j=1

K (Pθ( j) , Pθ(0) )1
n ≤ α log(M)1
n .

Now, following Tsybakov (2009), p. 116,

sup
bA∈Ws

f (A,R)

EbA

[

ns/(s+1)‖Tn − bA‖2f
]

≥ A2 max
bA∈{b

θ( j) , j=0,...,M} PbA

(

‖Tn − bA‖ f > An−s/[2(s+1)])
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Regression function estimation as a partly inverse problem 1045

≥ A2
(

log(M + 1) − log(2)

log(M)
− α

)

P(
n).

For n large enough and m satisfying (9), it follows from Lemma 5 that P(
n) ≥
1 − (c/n3) ≥ 1/2. Therefore, the lower bound is proved. ��

6.8 Proof of Lemma 3 and Proposition 8

For all u = (u0, . . . , um−1)
′ ∈ R

m \ {0}, for t(x) = ∑m−1
j=0 u jϕ j (x), u ′

̂Ψm u =
‖t‖2n ≥ 0 . Thus ‖t‖n = 0 ⇒ t(Xi ) = 0 for i = 1, . . . , n. As the Xi are almost
surely distinct and t(x)w(x) is a polynomial with degree m − 1 where w(x) = ex in
the Laguerre case and w(x) = ex

2/2 in the Hermite case, for m ≤ n, we obtain that
t ≡ 0. This implies u = 0 and Lemma 3. ��

The invertibility of Ψm follows from Lemma 1 under (18). Now we prove (23).
First note that, for j large enough,

∫

ϕ2
j (x) f (x)dx ≤ c1√

j
, where c1 is a constant.

The proof of this Inequality in the Hermite case is given in Belomestny et al. 2019,
Proposition 2.1. and in Comte and Genon-Catalot (2018) in the Laguerre case. As Ψm

is a symmetric positive definite matrix, ‖Ψ −1
m ‖op = 1/λmin(Ψm), where λmin(Ψm)

denotes the smallest eigenvalue of Ψm . By (14), we get that for all j ∈ {1, . . . ,m},
denoting by e j the j th canonical vector (all coordinates are 0 except the j th which is
equal to 1), ej′Ψmej = ∫

ϕ2
j f , and

min‖u‖2,m=1
u ′Ψmu ≤ min

j=1,...,m
ej′Ψmej = min

j=1,...,m

∫

ϕ2
j f ≤ c√

m
.

As a consequence, λmin(Ψm) ≤ c/
√
m which implies the result of Proposition 8. ��

6.9 Proof of Proposition 9

We need results on Laguerre functions with index δ > −1. The Laguerre polynomial
with index δ, δ > −1, and degree k is given by

L(δ)
k (x) = 1

k!e
x x−δ dk

dxk

(

xδ+ke−x
)

.

We consider the Laguerre functions with index δ, given by


(δ)
k (x) = 2(δ+1)/2

(

k!
�(k + δ + 1)

)1/2

L(δ)
k (2x)e−x xδ/2, (44)

and 
(0)
k = k . The family (

(δ)
k )k≥0 is an orthonormal basis of L

2(R+).
In the following, we use the result of Askey and Wainger (1965) which gives

bounds on 
(δ)
k , depending on k: for ν = 4k + 2δ + 2, and k large enough, it holds

|(δ)
k (x/2)| ≤ Ce−c0x for x ≥ 3ν/2, where c0 is a positive fixed constant.
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1046 F. Comte, V. Genon-Catalot

We need similar results for Hermite functions. These can be deduced from the
following link between Hermite and Laguerre functions, proved in Comte and Genon-
Catalot (2018). For x ≥ 0,

h2n(x) = (−1)n
√

x/2 
(−1/2)
n (x2/2), h2n+1(x) = (−1)n

√

x/2 
(1/2)
n (x2/2).

This is completed by the fact that Hermite functions are even for even n, odd for odd n.
We treat the Laguerre basis first. The result of Askey and Wainger (1965) recalled

above states that, for j large enough,  j (x) ≤ ce−c0x for 2x ≥ 3(2 j + 1), where c02
is a constant. Thus for x ∈ R

m , ‖x‖2,m = 1, we have

x′Ψmx =
∫ +∞
0

⎛

⎝

m−1
∑

j=0

x j j (u)

⎞

⎠

2

f (u)du ≥
∫ 3(2m+1)

0

⎛

⎝

m−1
∑

j=0

x j j
(v

2

)

⎞

⎠

2

f
(v

2

) dv

2

≥ inf
v∈[0,3(2m+1)] f (v/2)

∫ 3(2m+1)/2

0

⎛

⎝

m−1
∑

j=0

x j j (u)

⎞

⎠

2

du

≥ inf
u∈[0,3(m+1/2)] f (u)

⎛

⎜

⎝

∫ +∞
0

⎛

⎝

m−1
∑

j=0

x j j (u)

⎞

⎠

2

du −
∫ +∞
3(m+1/2)

⎛

⎝

m−1
∑

j=0

x j j (u)

⎞

⎠

2

du

⎞

⎟

⎠ .

Then infu∈[0,3(m+1/2)] f (u) ≥ Cm−k and
∫ +∞
0

(

∑m−1
j=0 x j j (u)

)2
du = ‖x‖22,m = 1

and, for m large enough,

∫ +∞

3(m+1/2)
(

m−1
∑

j=0

x j j (u))2du ≤ C ′me−c′
0m ≤ 1

2
.

It follows that, for m large enough, x′Ψmx ≥ Cm−k/2.
For the Hermite basis, we proceed analogously using that |h j (x)| ≤ c|x |e−c0x2 for

x2 ≥ (3/2)(4 j + 3). ��

6.10 Proof of Inequality (29) of Theorem 2

We denote by ̂Mn the maximal element of ̂Mn (see (27)) and by Mn the maximal
element of Mn (see (28)). We need also:

M+
n =

{

m ∈ N, m (‖Ψ −1
m ‖2op ∨ 1) ≤ 4d

n

log(n)

}

, (45)

with d give in (27). Let M+
n denote the maximal element of M+

n . Heuristically, with
large probability, considering the constants associated with the sets, we should have
Mn ≤ ̂Mn ≤ M+

n or equivalentlyMn ⊂ ̂Mn ⊂ M+
n , and on this set, we really bound
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Regression function estimation as a partly inverse problem 1047

the risk; otherwise, we bound the probability of the complement. More precisely, we
denote by

�n := {Mn ⊂ ̂Mn ⊂ M+
n

}

, (46)

and we write the decomposition:

̂bm̂ − bA = (̂bm̂ − bA)1�n + (̂bm̂ − bA)1�c
n

:= T1 + T2. (47)

The proof relies on two steps and the two following Lemmas.

Lemma 6 Under the assumptions of Theorem 2, there exists κ0 such that for κ ≥ κ0,
we have

E
[‖b̂m̂ − bA‖2n1�n

] ≤ C inf
m∈Mn

(

inf
t∈Sm

‖t − bA‖2f + κσ 2
ε

m

n

)

+ C ′

n

where C is a numerical constant and C ′ is a constant depending on f , b, σε.

Lemma 7 We have, for c a positive constant, P(�c
n) ≤ c/n2.

Lemma 6 gives the bound on T1.
For T2, we use Lemma 7 as follows. Recall that Πm denotes the orthogonal pro-

jection (for the scalar product of R
n) on the sub-space

{(

t(X1), . . . ,t(Xn)
)′
, t∈ Sm

}

of

R
n . We have

(

b̂m(X1), . . . , b̂m(Xn)
)′ = ΠmY . By using the same notation for the

function t and the vector
(

t(X1), . . . , t(Xn)
)′, we can see that

‖b − b̂m̂‖2n = ‖b − Πm̂b‖2n + ‖Πm̂ε‖2n ≤ ‖b‖2n + n−1
n

∑

k=1

ε2k . (48)

Thus

E
[‖b − b̂m̂‖2n1�c

n

] ≤ E
[‖b‖2n1�c

n
] + 1

n

n
∑

k=1

E[ε2k1�c
n
]

≤ (E1/2[b4(X1)] + E
1/2[ε41])P1/2(�c

n).

We deduce that E
[‖b − b̂m̂‖2n1�c

n

] ≤ c′/n. This, together with Lemma 6 plugged in
decomposition (47), ends the proof of Inequality (29) of Theorem 2. ��

6.11 Proof of Lemma 6

To begin with, we note that γn(b̂m) = −‖b̂m‖2n . Indeed, using formula (4) and
̂Φ ′
m
̂Φm = n̂Ψm , we have

γn
(

b̂m
) = ∥

∥̂Φm â
(m)

∥

∥

2
n − 2

(

â(m)
)′
̂Φ ′
m Y = −(

â(m)
)′
̂Φ ′
m Y = −∥

∥̂Φm â
(m)

∥

∥

2
n .
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1048 F. Comte, V. Genon-Catalot

Consequently, we can write m̂ = argminm∈ ̂Mn
{γn(b̂m) + pen(m)}, with pen(m) =

κσ 2
ε
m
n .

Thus, using the definition of the contrast, we have, for any m ∈ ̂Mn , and any
bm ∈ Sm ,

γn(b̂m̂) + pen(m̂) ≤ γn(bm) + pen(m). (49)

Now, on the set �n = {Mn ⊂ ̂Mn ⊂ M+
n

}

, we have in all cases that m̂ ≤ ̂Mn ≤
M+

n and either Mn ≤ m̂ ≤ ̂Mn ≤ M+
n or m̂ < Mn ≤ ̂Mn ≤ M+

n . In the first case, m̂
is upper and lower bounded by deterministic bounds, and in the second,

m̂ = arg min
m∈Mn

{γn(b̂m) + pen(m)}.

Thus, on �n , Inequality (49) holds for any m ∈ Mn and any bm ∈ Sm . The
decomposition γn(t)−γn(s) = ‖t−b‖2n−‖s−b‖2n+2νn(t−s), where νn(t) = 〈", t〉n ,
yields, for any m ∈ Mn and any bm ∈ Sm ,

‖b̂m̂ − b‖2n ≤ ‖bm − b‖2n + 2νn(b̂m̂ − bm) + pen(m) − pen(m̂).

We introduce, for ‖t‖2f = ∫

t2(u) f (u)du, the unit ball B f
m,m′(0, 1) = {t ∈ Sm +

Sm′ , ‖t‖ f = 1} and the set


n =
{

∣

∣

∣

∣

∣

∣

‖t‖2n
‖t‖2f

− 1

∣

∣

∣

∣

≤ 1

2
, ∀t ∈

⋃

m,m′∈M+
n

(Sm + Sm′) \ {0}
⎫

⎬

⎭

. (50)

We start by studying the expectation on
n . On this set, the following inequality holds:
‖t‖2f ≤ 2‖t‖2n . We get, on �n ∩ 
n ,

‖b̂m̂ − b‖2n ≤ ‖bm − b‖2n + 1

8
‖b̂m̂ − bm‖2f + (8 sup

t∈B f
m̂,m (0,1)

ν2n (t) + pen(m) − pen(m̂))

≤
(

1 + 1

2

)

‖bm − b‖2n + 1

2
‖b̂m̂ − b‖2n + 8

(

sup
t∈B f

m̂,m(0,1)

ν2n (t) − p(m, m̂)
)

+

+ pen(m) + 8p(m, m̂) − pen(m̂). (51)

Here we state the following Lemma:

Lemma 8 Assume that (A1) holds, and that E(ε61) < +∞. Then νn(t) = 〈", t〉n
satisfies

E

⎡

⎣

(

sup
t∈B f

m̂,m (0,1)

ν2n (t) − p(m, m̂)
)

+1�n∩
n

⎤

⎦ ≤ C

n

where p(m,m′) = 8σ 2
ε max(m,m′)/n.
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We see that, for κ ≥ κ0 = 32, we have 8p(m, m̂) − pen(m̂) ≤ pen(m). Thus, by
taking expectation in (51) and applying Lemma 8, it comes that, for all m inMn and
bm in Sm ,

E
[‖b̂m̂ − bA‖2n1�n∩
n

] ≤ 3E
[‖bm − bA‖2n

] + 2pen(m) + 16C

n
. (52)

The complement of 
n satisfies the following Lemma:

Lemma 9 Assume that (A1)-(A2) hold. Then,
n defined by (50) is such that P(
c
n) ≤

c/n3 where c is a positive constant.

We conclude as above [see Eq. (48)] by writing

E
[‖b − b̂m̂‖2n1�n∩
c

n

] ≤ (

√

E
[

b4(X1)
] +

√

E
[

ε41

]

)
√

P(
c
n).

This result, together with (52), ends the proof of Lemma 6. ��
Proof of Lemma 8 We cannot apply Talagrand’s Inequality to the process νn itself as
the noise is not bounded. This is why we decompose the variables εi as follows:

εi = ηi + ξi , ηi = εi1|εi |≤kn − E
[

εi1|εi |≤kn

]

.

Then we have νn(t) = νn,1(t) + νn,2(t), νn,1(t) = 〈η, t〉n , νn,2(t) = 〈ξ, t〉n, and
⎛

⎝ sup
t∈B f

m̂,m (0,1)

ν2n (t) − p(m, m̂)

⎞

⎠

+
≤

⎛

⎝ sup
t∈B f

m̂,m (0,1)

2ν2n,1(t) − p(m, m̂)

⎞

⎠

+
+2 sup

t∈B f
m̂,m (0,1)

ν2n,2(t). (53)

We successively bound the two terms.
Let (ϕ̄ j ) j∈{1,...,max(m,m′)} be an orthonormal basis of Sm + Sm′ for the weighted

scalar product 〈·, ·〉 f . It is easy to see that:

E

[

sup
t∈B f

m′,m (0,1)

ν2n,1(t)
]

≤
∑

j≤max(m,m′)

1

n
Var(η1ϕ̄ j (X1)) ≤

∑

j≤max(m,m′)

1

n
E[(η1ϕ̄ j (X1))

2]

≤ 1

n
E
[

ε21
]

∑

j≤max(m,m′)
E

[

ϕ̄2
j (X1)

]

= σ 2
ε max(m,m′)

n
:= H2

since the definition of ϕ̄ j implies that
∫

ϕ̄2
j (x) f (x)dx = 1. Next

sup
t∈B f

m′,m (0,1)

Var(η1t(X1)) ≤ E
[

η21
]

sup
t∈B f

m′,m (0,1)

E
[

t2(X1)
] ≤ σ 2

ε := v
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1050 F. Comte, V. Genon-Catalot

since E
[

t2(X1)
] = ‖t‖2f . Lastly

sup
t∈B f

m′,m (0,1)

sup
(u,x)

(|u|1|u|≤kn |t(x)|
) ≤ kn sup

t∈B f
m′,m (0,1)

sup
x

|t(x)|.

For t = ∑m−1
j=0 a jϕ j , we have ‖t‖2f = a′Ψma = ‖√Ψma‖22,m . Thus, for any m,

sup
t∈B f

m (0,1)

sup
x

|t(x)| ≤ cϕ

√
m sup

‖√Ψma‖2,m=1
‖a‖2,m

≤ cϕ

√
m sup

‖u‖2,m=1
|‖
√

Ψ −1
m u‖2,m = cϕ

√
m
√

‖Ψ −1
m ‖op.

Under condition (45) onM+
n , we have

√
m
√

‖Ψ −1
m ‖op =

(

m‖Ψ −1
m ‖2op

)1/4
m1/4 ≤

(

4d
n

log(n)

)1/4

m1/4.

We can take

M1 := cϕkn

(

4d
n

log(n)

)1/4

(m ∨ m′)1/4. (54)

Consequently, the Talagrand Inequality (see Theorem Klein and Rio (2005) and
TheoremA.3 in Supplementarymaterial) implies, for p(m,m′) = 8σ 2

ε max(m,m′)/n,
and denoting by m∗ := max(m,m′),

E

⎡

⎢

⎣

⎛

⎝ sup
t∈B f

m,m′ (0,1)
[νn,1]2(t) − 1

2
p(m,m′)

⎞

⎠

+

⎤

⎥

⎦

≤ C1

n
(e−C2m∗ + k2n

√
n(m∗)1/2

n
e−C3

n1/4(m∗)1/4
kn ).

So, we choose kn = n1/4 and we get,

E

⎛

⎝ sup
t∈B f

m′,m(0,1)

[νn,1]2(t) − 1

2
p(m,m′)

⎞

⎠

+

≤ C ′
1

n

(

exp(−C2m
∗) + (m∗)1/2 exp(−C3(m

∗)1/4)
)

.

By summing up all terms over m′ ∈ Mn , we deduce

E[( sup
t∈B f

m̂,m (0,1)

[νn,1]2(t) − p(m, m̂))+1�n ]

≤
∑

m′∈M+
n

E( sup
t∈B f

m′,m (0,1)

[νn,1]2(t) − p(m,m′))+ ≤ C

n
. (55)
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Let us now study the second term in (53). Recall that M+
n ≤ 4dn/ log(n) the

dimension of the largest space of the collection. Then we have

E

⎡

⎢

⎣

⎛

⎝ sup
t∈B f

m̂,m (0,1)

ν2n,2(t)1�n

⎞

⎠

+

⎤

⎥

⎦ ≤
M+

n
∑

j=1

E
[〈ξ, ϕ̄ j 〉2n

] =
M+

n
∑

j=1

Var

(

1

n

n
∑

i=1

ξi ϕ̄ j (Xi )

)

= 1

n

M+
n

∑

j=1

E
[

ξ21
]

E
[

ϕ̄2
j (X1)

] ≤ M+
n

n
E
[

ε211|ε1|>kn

] ≤ M+
n

n

E
[|ε1|2+p

]

k pn
≤ C

E
[

ε61

]

n
,

where the last line follows from the Markov inequality and the choices kn = n1/4 and
p = 4. This, together with (55) plugged in (53) gives the result. ��
Proof of Lemma 9 As the collection of models is nested, we have P(
c

n) ≤
∑

m∈M+
n

P(∃t ∈ Sm,

∣

∣

∣

∣

‖t‖2n
‖t‖2f

−1

∣

∣

∣

∣

> 1
2 ) = ∑

m∈M+
n

P(
c
m). Now we proved in Lemma

5, that P(
c
m) ≤ c/n4 if m‖Ψ −1

m ‖op ≤ (c/2)(n/ log(n)). Here

m(‖Ψ −1
m ‖2op ∨ 1) ≤ 4d

n

log(n)
⇒ m‖Ψ −1

m ‖op ≤ 4d
n

log(n)
.

Therefore, the result holds if 4d ≤ c/2, which is true. With the sum other a set of
cardinality less than n, we get that P(
c

n) ≤ c/n3. ��

6.12 Proof of Lemma 7

We study first P(Mn � ̂Mn) = P(Mn > ̂Mn). On this set, there exists k ∈ Mn such
that k /∈ ̂Mn .

For this index k, we have k‖Ψ −1
k ‖2op ≤ dn/4 log(n) and k‖̂Ψ −1

k ‖2op > dn/ log(n).
This implies, as

d(n/ log(n)) < k‖̂Ψ −1
k ‖2op ≤ 2k‖Ψ −1

k − ̂Ψ −1
k ‖2op + 2k‖Ψ −1

k ‖2op
≤ 2k‖Ψ −1

k − ̂Ψ −1
k ‖2op + (d/2)(n/ log(n)),

that k‖̂Ψ −1
k − Ψ −1

k ‖2op ≥ dn/(4 log(n)). Let �m = {m‖̂Ψ −1
m − Ψ −1

m ‖2op >

(d/4)n/ log(n)}, we have,

P(Mn � ̂Mn) ≤
∑

m∈Mn

P(�m) ≤
∑

m∈Mn

P(‖̂Ψ −1
m − Ψ −1

m ‖op > ‖Ψ −1
m ‖op).

We have from (ii) of Propositions 3 and 4, that P(‖̂Ψ −1
m − Ψ −1

m ‖op > ‖Ψ −1
m ‖op) ≤

c/n4 form satisfying (9) with c given by (10). Indeed, we can conclude as in the proof
of Lemma 9, because d/4 ≤ c/2. Thus we proved that P(Mn � ̂Mn) ≤ c/n3.
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1052 F. Comte, V. Genon-Catalot

Nowwe study P( ̂Mn � M+
n ). On the set (̂Mn � M+

n ), we can find a k satisfying

k‖̂Ψ −1
k ‖2op ≤ d

n

log(n)
and k‖Ψ −1

k ‖2op > 4d
n

log(n)
,

therefore such that k‖̂Ψ −1
k ‖2op ≤ d n

log(n)
and k‖̂Ψ −1

k − Ψ −1
k ‖2op ≥ d n

log(n)
. Thus we

have

P( ̂Mn � M+
n ) ≤

∑

k≤dn/ log(n)

P(k‖̂Ψ −1
k ‖2op ≤ d

n

log(n)
and k‖̂Ψ −1

k − Ψ −1
k ‖2op ≥ d

n

log(n)
)

≤
∑

k≤dn/ log(n)

P(k‖̂Ψ −1
k ‖2op ≤ d

n

log(n)
and ‖̂Ψ −1

k − Ψ −1
k ‖op ≥ ‖̂Ψ −1

k ‖op).

Now, proceeding with Proposition 4 (ii), interchanging ̂Ψm and Ψm , we get

{

‖̂Ψ −1
m − Ψ −1

m ‖op > ‖̂Ψ −1
m ‖op

}

⊂
{

‖̂Ψ −1/2
m Ψm̂Ψ

−1/2
m − Idm‖op >

1

2

}

.

Using ‖̂Ψ −1/2
m Ψm̂Ψ

−1/2
m − Idm‖op ≤ ‖̂Ψ −1

m ‖op‖Ψm − ̂Ψm‖op, we get

{

‖̂Ψ −1
m − Ψ −1

m ‖op > ‖̂Ψ −1
m ‖op

}

⊂
{

‖̂Ψm − Ψm‖op >
1

2
‖̂Ψ −1

m ‖−1
op

}

.

Therefore, by Proposition 4 and using the value of d (this is where d is chosen)

P( ̂Mn � M+
n ) ≤

∑

k≤dn/ log(n)

P(k‖̂Ψ −1
k ‖2op ≤ d

n

log(n)
and ‖̂Ψk − Ψk‖op ≥ 1

2‖̂Ψ −1
k ‖op

)

≤
∑

k≤dn/ log(n)

P(‖̂Ψk − Ψk‖op ≥ 1

2

√

k log(n)

dn
) ≤ c

n2
. ��

6.13 Proof of Inequality (30) of Theorem 2

We have the following sequence of inequalities, for any m ∈ Mn and t any element
of Sm ,

‖b̂m̂ − bA‖2f = ‖b̂m̂ − bA‖2f 1
n + ‖b̂m̂ − bA‖2f 1
c
n

≤ 2‖b̂m̂ − t‖2f 1
n + 2‖t − bA‖2f 1
n + ‖b̂m̂ − bA‖2f 1
c
n

≤ 4‖b̂m̂ − t‖2n1
n + 2‖t − bA‖2f 1
n + ‖b̂m̂ − bA‖2f 1
c
n

≤ 8‖b̂m̂ − bA‖2n1
n + 8‖t − bA‖2n1
n + 2‖t − bA‖2f 1
n + ‖b̂m̂ − bA‖2f 1
c
n
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where 
n is defined by (50). Therefore, using the result of Theorem 2 and E(‖t −
bA‖2n) = ‖t − bA‖2f , we get that for all m ∈ Mn and for any t ∈ Sm ,

E(‖b̂m̂ − bA‖2f ) ≤ C1

(

‖t − bA‖2f + σ 2
ε

m

n

)

+ C2

n
+ E

(

‖b̂m̂ − bA‖2f 1
c
n

)

, (56)

so only the last term is to be studied. First, recall that Lemma 9 implies that P(
c
n) ≤

d/n3. Next, write that ‖b̂m̂ − bA‖2f ≤ 2(‖b̂m̂‖2f + ‖bA‖2f ). As f is bounded, we use
a slightly improved version of (42). Indeed, for all m,

‖Ψm‖op = sup
‖x‖2,m=1

x′Ψmx = sup
‖x‖2,m=1

∫

⎛

⎝

m−1
∑

j=0

x jϕ j (u)

⎞

⎠

2

f (u)du ≤ ‖ f ‖∞,

yields, as for m̂ ∈ ̂Mn , ‖̂Ψ −1
m̂ ‖op ∨ 1 ≤ c

√
n, ‖b̂m̂‖2f ≤ ‖ f ‖∞

‖̂Ψ −1
m̂ ‖op
n

(∑n
i=1 Y

2
i

) ≤
C√
n

(∑n
i=1 Y

2
i

)

. Then as E[(∑n
i=1 Y

2
i )2] ≤ n2E(Y 4

1 ), we get

E(‖b̂m̂‖2f 1
c
n
) ≤

√

E(‖b̂m̂‖4f )P(
c
n) ≤ CE

1/2(Y 4
1 )

√
nP

1/2(
c
n) ≤ c′/n.

On the other hand,E(‖bA‖2f 1
c
n
) ≤ ‖bA‖2f P(
c

n) ≤ c′′/n3. ThusE

(

‖b̂m̂−bA‖2f 1
c
n

)

≤ c1/n and plugging this in (56) ends the proof of Inequality (30) in Theorem 2. ��
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