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Abstract
Incomplete information on explanatory variables is commonly encountered in studies
of possibly censored event times. A popular approach to deal with partially observed
covariates is multiple imputation, where a number of completed data sets, that can be
analyzed by standard complete data methods, are obtained by imputing missing values
from an appropriate distribution. We show how the combination of multiple imputa-
tions from a compatible model with suitably estimated parameters and the usual Cox
regression estimators leads to consistent and asymptotically Gaussian estimators of
both the finite-dimensional regression parameter and the infinite-dimensional cumula-
tive baseline hazard parameter. We also derive a consistent estimator of the covariance
operator. Simulation studies and an application to a study on survival after treatment
for liver cirrhosis show that the estimators perform well with moderate sample sizes
and indicate that iterating the multiple-imputation estimator increases the precision.

Keywords Asymptotic distribution · Coarsened data · Semiparametric · Survival ·
Variance estimator

1 Introduction

The possible effect of prognostic factors X on a censored time-to-event outcome is
often modeled using the Cox model (Cox 1972), specified by the conditional hazard
function

α(t |X = x) = α(t) exp (β�x), (1)
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where β denotes the regression parameter and α(t) is the baseline hazard function,
which is not further specified. Statistical inference in the Cox model with no missing
data is well established, but in practice some values of X may be missing. Literature
studying possible solutions to this problem is extensive. One solution is to use inverse
probability weighted estimators (Pugh et al. 1993), but these may suffer from low effi-
ciency. Augmenting may improve the efficiency but the optimal augmenting function
may be difficult to estimate in practice. Another way of improving the efficiency of
inverse probability weighted estimators is to estimate the weights nonparametrically
as shown by Qi et al. (2005). However, when having several covariates nonparamet-
ric estimation is affected by the curse of dimensionality and the higher-order kernels
used by Qi et al. (2005) may result in estimated selection probabilities outside the
unit interval. An alternative direction is to use full likelihood based methods (Chen
and Little 1999; Martinussen 1999; see also Chen 2002; Herring and Ibrahim 2001).
This leads to efficient estimators but requires specialized programming. Another class
of methods, that are popular in practice, are imputation methods, where missing data
are replaced by suitably generated “best guesses”, which can then be analyzed by
standard software. Multiple imputation methods, where the imputation and estima-
tion process is repeated a number of times and the estimators subsequently combined,
are particularly popular, in part because the simulation noise may be diminished by
repeated imputation. It has been stressed in the literature that the imputations should
be done with care and that the response must be included in the imputation model,
see Sterne et al. (2009). This has created some confusion when dealing with survival
data where the response is censored. The problem was investigated in some detail
by White and Royston (2009). Taking their approach, however, may lead to models
that are incompatible which in turn may result in inconsistent estimates as shown by
Bartlett et al. (2015). Bartlett et al. (2015) also show how rejection sampling may be
used to generate the imputations that ensure model compatibility. In their paper, they
devised a Bayesian multiple imputation procedure that seems to work well judging
from their numerical results. Unfortunately, they did not establish large sample results
for this procedure.

Although multiple imputation is widely used in practice for analyzing survival data
with the Cox model, there exists, to the best of our knowledge, no formal results
justifying its appropriateness. General asymptotic results for multiple imputation esti-
mators in parametric models, such as those established by Wang and Robins (1998)
and Robins and Wang (2000)(see also Tsiatis 2006), rely on stochastic equicontinuity
of a process, which is not stochastic equicontinuous in this setting. Thus, the large
sample properties of the estimators are unclear, and the validity of the suggested stan-
dard error estimators is unknown. This is unfortunate as it may invalidate scientific
conclusions based on such analysis.

In this paper, we study the properties of multiple imputation estimators based on
imputations from a compatiblemodel. Such imputationsmay be generated using rejec-
tion sampling as suggested by Bartlett et al. (2015). We focus on what Tsiatis (2006)
call frequentist multiple imputation, i.e., the case where the imputation model is based
on a consistent and asymptotically linear initial estimator. Estimators of the finite-
dimensional regression parameter and the infinite-dimensional cumulative baseline
hazard parameter are shown to be

√
n-consistent and weak convergence is established.
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Multiple imputation for Cox regression 971

Furthermore, we provide a consistent estimator of the asymptotic variance for the esti-
mator of the regression parameter as well as a consistent estimator for the covariance
operator for the estimator of the cumulated baseline hazard. Hence, our results provide
the necessary justification for drawing correct statistical inference when using multi-
ple imputation in Cox regression. Finally, we discuss how to improve on the multiple
imputation estimators using a simple iterative scheme. The finite sample performance
of the proposed estimators is investigated using simulations, and we further apply
them in a study on survival after treatment for liver cirrhosis.

2 Frequentist multiple imputation for Cox regression

Let X denote a p-dimensional vector of prognostic covariates that are partiallymissing
for some individuals. Assume that the distribution of the event time T̃ given X is
governed by the Cox model (1). T̃ may be censored by U and we only observe the
minimum of the two T = T̃ ∧ U and the event indicator � = I (T̃ ≤ U ). We assume
that T̃ and U are independent given the always observed part of X . Assume that T is
observed on the finite time interval [0, τ ]. The full data, denoted by Z1, . . . , Zn , are
independent realizations of Z = (T ,�, X) with density

α(t)δ exp(δβ�x) exp
{
−A(t) exp(β�x)

}
αU (t |x)1−δ pr(U > t |x)pX (x, θ),

for z = (t, δ, x), where the density of X , pX (x, θ), is known up to the q-dimensional
parameter θ , and A(t) = ∫ t

0 α(s) ds is the integrated baseline hazard function. Let
φ = (β, A, θ) and let φ0 denote the true parameter. Assume that the censoring hazard
αU (t |X) does not depend on φ or partially unobserved covariates. Under full data, we
would estimateβ0 byCox’s partial likelihood estimator and A0(t)by the corresponding
Breslow estimator.

The data is assumed missing (or coarsened) at random, and the observed data is
{C, GC(Z)}, where C denotes themissingness pattern and GC(Z) = {T ,�, G X ,C(X)}
with G X ,r (x) denoting the observed part of x under missingness pattern C = r , using
a similar notation as in Tsiatis (2006). Thus with missing data we may let C = r be
a vector of response indicators, i.e., a vector of zeros and ones denoting (by 1) which
components of X are observed and which are missing (corresponding to 0), or as
in Tsiatis (2006) simply a number indicating which missingness pattern we observe
for this observation. G X ,C(X) may then be just the actually observed values. Our
notation and results also apply to data that are coarsened at random; see Jacobsen and
Keiding (1995) for examples of how to represent coarsened data by {C, G X ,C(X)}. In
the appendix we argue that the part of the density function adhering to censoring can
be ignored when estimating φ0. Furthermore, both the censoring mechanism and the
missing data mechanism may be ignored when imputing the missing covariates.

In this paper, we consider what Tsiatis (2006) refers to as frequentist multi-
ple imputation and Wang and Robins (1998) call “type B”. For each observed
data {Ci , GCi (Zi )}, we wish to sample at random from the conditional distribu-
tion of X given the observed data with density pX |C,G{x |Ci , GCi (Zi ), φ0}, but to
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do so we need to estimate the parameter φ0. We assume that an initial consis-
tent and asymptotically linear estimator φ̂ I is available. We then sample at random
from pX |C,G{x |Ci , GCi (Zi ), φ̂

I } m times to obtain random quantities Xi j (φ̂
I ), j =

1, . . . , m, i = 1, . . . , n. One way of sampling from this distribution is to use rejection
sampling, i.e., by generating proposals from another distribution and accepting these
with a suitable probability to make the resulting sample a sample from the desired
distribution. How to do this when the substantive model is a Cox model has been
described by Bartlett et al. (2015), who used conditional distributions derived from
the distribution of X to generate proposals. However, our results do not rely on how
the imputations are generated as long as the imputations have the correct conditional
distribution.

Standard Cox regression analysis on the j th set of imputed full data yields the
estimators {β̂ j , Â j (t)}. The multiple-imputation estimators are

β̂ = m−1
m∑

j=1

β̂ j , Â(t) = m−1
m∑

j=1

Â j (t), (2)

where β̂ j is the maximizer of Cox’s partial likelihood function based on the j th set of
imputations and Â j (t) the corresponding Breslow estimator.

3 Asymptotics

In order to present our result regarding the asymptotic distribution of β̂ and
{ Â(t)}t∈[0;τ ], we need to introduce some notation. The asymptotic representation of
the full-data efficient score for β evaluated at φ0 is

SF
eff(Z) =

∫ τ

0

{
X − s1(t)

s0(t)

}
dM F (t, Z),

where dM F (t, Z) = dN (t) − Y (t) exp(β�
0 X)α0(t)dt with N (t) = I (T ≤ t,� =

1) and Y (t) = I (T > t), sk(t) = E[Sk{t, Z(φ0), β0}], and Sk(t, Z , β) =
Y (t)X⊗k exp(β� X), k = 0, 1, 2.

Let the continuous linear operator Sφ(z) : R
p × 	∞[0, τ ] × R

q 	→ R

denote the Hadamard derivative of log { p̃Z (z, φ)}, where p̃Z (z, φ) = exp{δβ�x −
A(t) exp(β�x)}pX (x, θ), at φ (van der Vaart 1998, Section 20.2). The derivative at
φ0 in the direction (φ̂ I − φ0) is given by

Sφ0(z)
(
φ̂ I − φ0

)
=
{
δ − A0(t) exp(β

�
0 x)

}
x�(β̂ I − β0)

+ {∇θ0 log pX (x, θ)|θ=θ0

}�
(θ̂ I − θ0)

−
∫ ∞

0
I (u ≤ t) exp(β�

0 x)d( ÂI − A0)(u).
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Define Sφ0(r , gr ) = E
{Sφ0(Z)

∣∣ C = r , GC(Z) = gr
}
similar to Tsiatis (2006, Sec-

tion 7.3). Finally, let q{C, GC(Z)} be the influence function of the initial estimator,
φ̂ I , so that

n1/2(φ̂ I − φ0)(t) = n−1/2
n∑

i=1

q{Ci , GCi (Zi )}(t) + op(1).

Theorem 1 Under the regularity conditions in the appendix,

[
n1/2

(
β̂ − β0

)
, n1/2

{
Â(t) − A0(t)

}
t∈[0,τ ]

]

converges in distribution to a tight mean zero Gaussian process in R
p × 	∞[0, τ ]. In

particular,

n1/2(β̂ − β0) → N
{
0, (I F )−1
 (I F )−1

}
(3)

in distribution, where


 = m−1E
[
var

{
SF
eff(Z)|C, GC(Z)

}]

+var
[

E
{

SF
eff(Z)|C, GC(Z)

}
+ Deff(φ0)q{C, GC(Z)}

]

and Deff(φ0) = E
(
SF
eff(Z)

[Sφ0(Z) − Sφ0{C, GC(Z)}]) and I F denotes the variance
of the Cox partial likelihood score, i.e., the full-data information matrix for β0.

Remark 1 We omit giving an expression for the asymptotic variance of Â to keep the
presentation brief. In the next section, we present consistent estimators of the variance
of both β̂ and Â(t).

Remark 2 Having a joint asymptotic distribution for β̂ and Â allows us to draw infer-
ence also about, e.g., the survival function S0(t, x) = exp{−A0(t) exp(β�

0 x)} for a
subject with covariates x . To do so, we may use that

n1/2{Ŝ(t, x) − S0(t, x)}
= − S0(t, x) exp(β�

0 x)
[
n1/2{ Â(t) − A0(t)} + A0(t)n

1/2(β̂ − β0)
]

+ oP (1)

(see e.g., Andersen et al. 1992).

Asmentioned in the introduction, the standard asymptotic results formultiple impu-
tation estimators rely on empirical process tools. In particular, we would need stochas-
tic equicontinuity of the empirical process based onm−1∑m

j=1 SF
eff {Zi j (φ)}. However,

as we show in the appendix, if any of themissing explanatory variables are categorical,
this process is not stochastic equicontinuous. To circumvent this problem, we split
m−1∑m

j=1 SF
eff {Zi j (φ)} in m−1∑m

j=1(SF
eff{Zi j (φ)} − E[SF

eff{Zi j (φ)}|Ci , GCi (Zi )])
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974 F. Eriksson et al.

and
∑m

j=1 E[SF
eff {Zi j (φ)}|Ci , GCi (Zi )], show that the empirical process correspond-

ing to the latter term is stochastic equicontinuous and handle the former term using
a conditional central limit theorem conditioning on the observed data. Further details
are given in the appendix.

4 Estimation of the variance

The variance of a multiple imputation estimator is usually estimated by combining
of the complete data variance estimators and an estimate of the between imputation
variance. For the regression parameters of the Cox model, the variance would be
estimated by:

(
Î F
)−1 +

(
1 + 1

m

)
1

m − 1

m∑
j=1

(β̂ j − β̂)2 (4)

where Î F = 1
m

∑m
j=1 Î F

j , with

Î F
j = n−1

n∑
i=1

⎛
⎝
∑n

l=1 S2{Ti , Zl j (φ̂
I ), β̂ j }∑n

l=1 S0{Ti , Zl j (φ̂ I ), β̂ j }
−
[∑n

l=1 S1{Ti , Zl j (φ̂
I ), β̂ j }∑n

l=1 S0{Ti , Zl j (φ̂ I ), β̂ j }

]⊗2
⎞
⎠�i ,

the full-data observed information matrix from Cox’s partial likelihood based on the
imputed data. It is, however, generally accepted that the validity of this estimator
relies on the imputations being at least approximately drawn from Bayesian predictive
distribution (Rubin 1996; Wang and Robins 1998). Using the results we derive in
the appendix, it is easily seen that (4) fails to estimate the variance of β̂, and the
simulations in Sect. 6 indicate that (4) underestimates the variance in line with Tsiatis
(2006, p. 365).

In the following, we will derive a consistent variance estimator. The multiple-
imputation estimator of β is not asymptotically linear in general as the imputations
are not generally sufficiently “smooth” as functions of the initial estimator. It does,
however, have the same asymptotic distribution as n−1/2∑n

i=1(I F )−1ξi , where

ξi = 1

m

m∑
j=1

SF
eff{Zi j (φ0)} + Deffq{Ci , GCi (Zi )}, (5)

by the central limit theorem as var(ξ1) = 
. Hence, the variance of the estimator of
β0 can be estimated consistently by

(
Î F
)−1

n−1
n∑

i=1

ξ̂i ξ̂
�
i

(
Î F
)−1

,
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Multiple imputation for Cox regression 975

if we can provide reasonable estimates, ξ̂i , of ξi , so that n−1∑n
i=1 ξ̂i ξ̂

�
i is a consistent

estimator of
. It follows from lemma4 in the appendix that Î F is a consistent estimator
of the full-data expected information I F .

To obtain ξ̂i we first note that as shown in the appendix we can replace the efficient
score, SF

eff{Zi j (φ0)}, in (5) involving the infeasible perfect imputations Zi j (φ0) by the
Cox partial score function with the actual imputations Zi j (φ̂

I ).
Next, to estimate the term Deff(φ0)q{Ci , GCi (Zi )}, we first replace q{Ci , GCi (Zi )}

by its empirical counter part q̂{Ci , GCi (Zi )} (cf. assumption 7 in the appendix). To
estimate Deff(φ0), we need to estimate

E
{

SF
eff(Z)Sη

�(Z , φ0)
}

− E
[

SF
eff(Z)Sη

�{C, GC(Z), φ0}
]

where η = (β, θ) and Sη(z, φ) = ∂/∂η log p̃Z (z, φ) is the score for η, as well as the
mean in the integral

∫ τ

0
E
(

SF
eff(Z)I (u ≤ T )

[
exp(β�

0 X) − E
{
exp(β�

0 X)

∣∣∣ C, GC(Z)
}])

× dq̂A{Ci , GCi (Zi )}(u) (6)

where q̂A is the part of q̂ corresponding to A. Hence, we need to estimate means of the
form E

{
SF
eff(Z) f (Z , φ0, u)

}
and E

[
SF
eff(Z)E{ f (Z , φ0, u)|C, GC(Z)}] for suitable

functions f . The first type of terms can be estimated consistently by

m−1
m∑

j=1

n−1
n∑

i=1

[
Xi j (φ̂

I ) −
∑n

l=1 S1{Ti , Zl j (φ̂
I ), β̂ j }∑n

l=1 S0{Ti , Zl j (φ̂ I ), β̂ j }

]
�i f {Zi j (φ̂

I ), φ̂ j , u},

where φ̂ j = (β̂ j , Â j , θ̂
I ), using corollary 1 and lemma 4. The second type of terms

can be estimated consistently by

n−1
n∑

i=1

{m(m − 1)}−1
m∑

j, j ′=1
j 
= j ′

[
Xi j (φ̂

I ) −
∑n

l=1 S1{Ti , Zl j (φ̂
I ), β̂ j }∑n

l=1 S0{Ti , Zl j (φ̂ I ), β̂ j }

]

× �i f {Zi j ′ (φ̂
I ), φ̂ j ′ , u},

as

E
[

SF
eff(Z)E{ f (Z , φ0, u)|C, GC(Z)}

]

= E
[

E{SF
eff(Z)|C, GC(Z)}E{ f (Z , φ0, u)|C, GC(Z)}

]

= E
[

SF
eff{Zi j (φ0)} f {Zi j ′ (φ0), φ0, u}

]
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for j 
= j ′. This allows us to estimate the means that form Deff(φ0) giving us the
estimator D̂eff .

We summarize this as

Theorem 2 The asymptotic variance of the multiple imputation estimator β̂ can be
estimated by

(
Î F
)−1

n−1
n∑

i=1

ξ̂i ξ̂
�
i

(
Î F
)−1

where Î F is the average of the observed data information matrices from Cox’s partial
likelihood based on the m sets of imputations and

ξ̂i = 1

m

m∑
j=1

[
Xi j (φ̂

I ) −
∑n

l=1 S1{Ti , Zl j (φ̂
I ), β̂ j }∑n

l=1 S0{Ti , Zl j (φ̂ I ), β̂ j }

]
�i + D̂eff q̂{Ci , GCi (Zi )},

with D̂eff as described above.

Estimation of the variance of Â(t) may be done in a similar manner: n1/2{ Â(t) −
A0(t)} has the same asymptotic distribution as

n−1/2
n∑

i=1

ρ A
i (t), (7)

where

ρ A
i (t) = −

∫ t

0

s1(u)

s0(u)
α0(u)du (I F )−1ξi + m−1

m∑
j=1

∫ t

0

dM F {u, Zi j (φ0)}
s0(u)

−
{∫ t

0

E
(
S0(u, Z)

[Sφ0(Z) − Sφ0{C, GC(Z)}])
s0(u)

α0(u)du

}
q{Ci , GCi (Zi )}

and its variance can be estimated by n−1∑n
i=1

{
ρ̂ A

i (t)
}2
, where ρ̂ A

i approximates ρ A
i

using techniques parallel to what was outlined for β above.

5 Iteratedmultiple imputation

The efficiency of the multiple-imputation estimator depends on the number of impu-
tations and on the efficiency of the initial estimator. Clearly, the efficiency increases
with the number of imputations, but we would also expect the multiple imputation
estimator with a sufficiently large number of imputations to improve on an inefficient
initial estimator. Obviously, if the initial estimator is fully efficient, imputing the miss-
ing data will not improve the estimation. If on the other hand the initial estimator is
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Multiple imputation for Cox regression 977

the complete-case estimator (if the data is missing completely at random) or a sim-
ple inverse probability of missingness weighted estimator, imputation will allow us
to use the incomplete observations, too. Indeed, for both of these initial estimators,
the estimator of the integrated hazard will only jump at event times for which we
have complete data, whereas the multiple-imputation estimator will jump whenever
we observe an event time allowing the multiple imputation estimator to better approx-
imate the unknown smooth integrated baseline hazard. An obvious idea for how to
improve the estimation further would be to iterate the imputation: First estimate the
parameters using multiple imputations based on an inefficient initial estimator. It will
typically be beneficial to re-estimate θ as well based on the multiply imputed data.
Then generate new imputations based on the multiple-imputation estimator and esti-
mate the unknown parameters again. Obviously, this iteration schememay be repeated
several times. The final estimator is again a multiple imputation estimator based on
an initial estimator which is now a multiple imputation estimator. Unfortunately, the
proofs of our asymptotic results rely on the initial estimator being asymptotically lin-
ear, which the imputation estimator is not guaranteed to be as that requires stochastic
equicontinuity. Hence, a new argument, which we outline in the appendix, is required
to secure the asymptotic results for the iterated estimator. The conclusion is that the
iterated multiple-imputation estimator is asymptotically Gaussian and that its variance
may be estimated as outlined in the previous section with q̂{Ci , GCi (Zi )}(t) replaced
by ρ̂i (t) = {ρ̂β

i , ρ̂ A
i (t), ρ̂θ

i } where ρ̂
β
i = (I F )−1ξ̂i , ξ̂i and ρ̂ A

i were defined in Sect. 4,
and ρ̂θ

i is an estimate of the influence function of the multiple imputation estimator

for θ obtained using techniques similar to those used to get ρ̂β
i .

6 Simulation study

We simulated covariates X3 ∼ N (1, 0.5), X2 ∼ Bernoulli{p = expit(−1 + 0.5X3)},
X1 ∼ N (−0.25+ X2−0.5X3, 1). Event times were generated from the hazard α(t) =
λνtν−1 exp(β1X1 + β2X2 + β3X3 + β4X2X3), with Weibull baseline parameters
ν = 0.5, λ = 0.1 and regression coefficients β1 = −0.2, β2 = 0.3, β3 = 0.5,
β4 = 0.2. Right-censoring times were generated from an exponential distribution
with mean 100. Durations longer than τ = 100 were right-censored.

The covariates X1 and X2 were missing at random according to three dif-
ferent missing data mechanisms. In the first, pr(X1 missing|X3) = expit(−3 +
X3) and pr(X2 missing|X3) = expit(1 − 2X3), leading to approximately 60%
complete cases. In the second, pr(X1 missing|X3) = expit(−1 + X3) and
pr(X2 missing|X3) = expit(2 − 2X3), leading to approximately 23% complete
cases. In the last, pr(X1 missing|X3) = expit(0.6X3) and pr(X2 missing|X3) =
expit(1.6− X3), leading to approximately 12% complete cases. For the first scenario,
we used a moderate sample size (n = 500), while for the latter two, we used a larger
sample size (n = 2000).

Table 1 summarizes 10,000 repeated simulations with m = 20 imputations and
using rejection sampling as inBartlett et al. (2015) to generate the imputations. Increas-
ing m to 40 had no notable effect on the precision. The complete-case estimator was
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used as initial estimator, as this is an asymptotically linear, unbiased estimator of the
unknown parameters under the missing data mechanisms used here. The confidence
intervals for the cumulative baseline were calculated using a log-transformation.

In all scenarios, the multiple-imputation estimators appear to produce unbiased
estimates and yield considerably smaller standard errors compared to the complete-
case estimator. In the simulations where the probability of missingness is smaller,
the variance of the multiple imputation estimator is 17–47% smaller than that of the
complete-case estimator. Iterating the multiple imputation estimator leads to a negligi-
ble improvement. In the simulations with larger rates of missing data, the variance of
the multiple imputation estimator is 31–78% smaller than the complete-case estimator
variance. Here, iterating the multiple imputation estimator leads to another 13–45%
improvement.

The estimator of the cumulative baseline performs very well in terms of standard
error and confidence interval coverage in all settings. The bias is small in all cases
but noticeably smaller for the multiple imputation estimators. The coverage of the
confidence intervals for the regression parameters is reasonable in all settings.

For completeness, we compared the average β̂ variance estimates using the biased
estimator given in (4) to the empirical variance. As expected, the estimator (4) under-
estimates the variance. In the first scenario (moderate missingness), the variance is
underestimated by 5–23%, in the second scenario the variances are estimated 23–57%
too low, and in the third scenario (heavymissingness), the underestimation is 44–72%.

7 Example: survival with liver cirrhosis

CSL1 was a double blind randomized clinical trial conducted by the Copenhagen
Study Group for Liver Diseases (Schlichting et al. 1983). In the period 1962–1969,
488 patients with liver cirrhosis were treated with either the active drug prednisone
(251 patients), or placebo (237 patients). The purpose of the trial was to evaluate the
effect of treatment on survival after randomization. Patients were followed to either
death, drop-out or end of study in September 1974. 142 prednisone patients and 150
placebo patients died during follow-up. The survival times for the remaining patients
were right-censored.

The covariates recorded at entry into the trial were treatment, 0 if prednisone and 1
if placebo; sex; age at entry; antinuclear factor (an unspecific serological indicator of
self-perpetuated autoimmune processes), 0 if not present and 1 if ++ to +++; and
acetylcholinesterase in µmol/min/ml. Schlichting et al. (1983) found that antinuclear
factor interactswith treatment. Therefore, we include this interaction in our substantive
Cox model.

Antinuclear factor is missing for 153 (31%) patients and acetylcholinesterase is
missing for 43 (9%) patients. Only 300 (61%) of the patients have fully observed
covariate data.We assume that data aremissing completely at random. Since treatment
was randomized, this covariate is left out from the imputationmodel. It is not necessary
to specify a distribution for sex and age, which have no missing values. The problem
is thus reduced to the specification of the joint conditional distribution of antinuclear
factor and acetylcholinesterase.Wemodel acetylcholinesterase by linear regression on
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sex, age and antinuclear factor, and model the conditional distribution of antinuclear
factor by a logistic regression on sex and age.

Table 2 shows the estimates from the complete-case estimator, a multiple-
imputation estimator with m = 20 using the complete-case estimator as initial
estimator, and an estimator where the multiple-imputation estimator is iterated five
times. The standard error estimates obtained by the multiple-imputation estimators
are smaller than those of the complete-case estimator, and iterating the multiple-
imputation estimator improves the precision of the estimates further. There are only
minor differences between the point estimates, but effects of treatment and its interac-
tionwith the antinuclear factor becomes significantwhen using themultiple imputation
estimators.

A Appendix

A.1 Assumptions

Assumption 1 Assume that (β0, θ0) ∈ B × � for known compact sets B ⊂ R
p and

� ⊂ R
q , and that A0(t) is strictly increasing and continuously differentiable and that

A0(0) = 0.

Assumption 2 The covariates X are bounded almost surely.

Assumption 3 Data are missing at random, pr(C = r |Z = z) = pr{C = r |GC(Z) =
Gr (z)}.

Assumption 4 The full-data information matrix, I F , for β at the true parameter value
is invertible.

Assumption 5 There is a finite maximum follow-up time τ > 0, when all individuals
still at risk are censored, and pr{Y (τ ) = 1} = pr(T = τ) > 0.

Assumption 6 The censoring distribution does not depend on φ0 and potentially miss-
ing covariates, αU (t |x)1−δ pr(U > t |x) = αU {t |G X ,r (x)}1−δ pr{U > t |G X ,r (x)}.

Assumption 7 There exists a consistent (but possibly inefficient) asymptotically lin-
ear estimator φ̂ I = {β̂ I , ÂI (t), θ̂ I } such that n1/2(φ̂ I − φ0)(t) = n−1/2∑n

i=1
q{Ci , GCi (Zi )}(t) + oP (1), where q{Ci , GCi (Zi )}(t) are independent processes, con-
verges weakly to a tight Gaussian process in R

p × 	∞[0, τ ] × R
q . Further, we

assume that the variance var{q{Ci , GCi (Zi )}(t)} can be estimated consistently by
n−1∑n

i=1 q̂{Ci , GCi (Zi )}(t)q̂{Ci , GCi (Zi )}(t)� for some suitable q̂{Ci , GCi (Zi )}(t).

Assumption 8 Assume that pX |C,G(x |r , g, φ), the conditional density of X given C
and GC with respect to a reference measure νX , is a Lipschitz continuous function of
φ (with respect to the L2-norm) in a neighborhood of φ0, with an integrable Lipschitz
constant, h(x |r , g) such that

∫
h(x |r , g)dνX (x) is a bounded function of (r , g).
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A.2 Lemmas

We first introduce some notation. The density of the (potentially unobserved) full data
z = (t, δ, x) and the observed data {r , g = (t, δ, gx )} are

pC,Z (r , z, φ) = pr(C = r |Z = z)αU (t |x)1−δ pr(U > t |x)

× α(t)δ exp
{
δβ�x − A(t) exp(β�x)

}
pX (x, θ)

= pr{C = r |GC(Z) = Gr (z)}αU {t |G X ,r (x)}1−δ

× pr{U > t |G X ,r (x)}α(t)δ exp
{
δβ�x − A(t) exp(β�x)

}
pX (x, θ),

pC,G(r , g, φ) =
∫

{Gr (z)=g}
pC,Z (r , z, φ)dνZ (z)

= pr(C = r |GC(Z) = g)αU {t |G X ,r (x)}1−δ pr{U > t |G X ,r (x)}
× α(t)δ

∫

{G X ,r (x)=gx }
exp

{
δβ�x− A(t) exp(β�x)

}
pX (x, θ)dνX (x),

where ν·(·) is a dominating measure for which the densities of the random variables
are defined. Recall the definition p̃Z (z, φ) = exp

{
δβ�x − A(t) exp

(
β�x

)}
pX (x, θ)

and let p̃G(g, φ) = ∫
{Gr (v)=g} p̃Z (v)dνZ (v). Note that

pC,Z (r , z, φ)

pC,G{r , Gr (z), φ} = p̃Z (z, φ)

p̃G{Gr (z, φ)} .

The following lemma building on Wang and Robins (1998), Robins and Wang
(2000), see also Tsiatis (2006, Lemma 14.2), will be used repeatedly.

Lemma 1 For f (t, Z), continuous in t ∈ [0, τ ] and bounded with probability one,

n1/2E [ f {t, Z(φ)} − f {t, Z(φ0)}]|φ=φ̂ I

= E
(

f (t, Z)
[Sφ0(Z) − Sφ0{C, GC(Z)}]) n1/2(φ̂ I − φ0) + op(1)

where the remainder term is uniform in t.

Proof Following Tsiatis (2006, pp. 350–352), we write

E [ f {t, Z(φ)}] = E (E [ f {t, Z(φ)}| C, GC(Z), φ])

=
∫

f (t, z)
pC,Z (r , z, φ)

pC,G{r , Gr (z), φ} pC,G{r , Gr (z), φ0}dνC,Z (r , z)

=
∫

f (t, z)
p̃Z (z, φ)

p̃G{Gr (z), φ} pC,G{r , Gr (z), φ0}dνC,Z (r , z)

so that

E [ f {t, Z(φ)} − f {t, Z(φ0)}]|φ=φ̂ I
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984 F. Eriksson et al.

=
∫

f (t, z)

[
p̃Z (z, φ̂ I )

p̃G{Gr (z), φ̂ I } − p̃Z (z, φ0)

p̃G{Gr (z), φ0}

]
pC,G{r , Gr (z), φ0}dνC,Z (r , z)

=
∫

f (t, z)
p̃Z (z, φ0)

p̃G{Gr (z), φ0}
[Sφ0(z) − Sφ0{r , Gr (z)}

]
(φ̂ I − φ0)

× pC,G{r , Gr (z), φ0}dνC,Z (r , z) + oP (n−1/2)

=
∫

f (t, z)
[Sφ0(z) − Sφ0{r , Gr (z)}

]
(φ̂ I − φ0)pC,Z (r , z, φ0)dνC,Z (r , z)

+ oP (n−1/2)

= E
(

f (t, Z)
[Sφ0(Z) − Sφ0{C, GC(Z)}]) (φ̂ I − φ0) + oP (n−1/2).

��
Lemma 2 Let f [{Xi j (φ), Ci , GCi (Zi )} j=1,...,m] be a bounded function. Then the log-
arithm of the ε-bracketing number of the class

{(r , g) 	→ E( f [{Xi j (φ)} j=1,...,m, Ci , GCi (Zi )]|Ci = r , GCi (Zi ) = g)

: ‖φ − φ0‖L2 ≤ δ} (8)

is bounded by a constant times 1/ε.

Proof Let Fi (φ) = E( f [{Xi j (φ)} j=1,...,m, Ci , GCi (Zi )]|Ci , GCi (Zi )). Then

|Fi (φ) − Fi (φ0)|
≤
∫

| f {x, Ci , GCi (Zi )}||pX |C,G{x |Ci , GCi (Zi ), φ}
− pX |C,G{x |Ci , GCi (Zi ), φ0}|dνX (x)

≤ constant × ‖φ − φ0‖L2

by assumption 8. It follows that the bracketing number of the class (8) is bounded
by the bracketing number of {φ : ‖φ − φ0‖L2 ≤ δ} and this is dominated by the
bracketing number of the integrated baseline hazard which is smaller than exp(K/ε)

by van der Vaart and Wellner (1996, Theorem 2.7.5) for a constant K . ��
It follows that for a bounded function f , the process

n−1/2
n∑

i=1

{
E( f [{Zi j (φ)} j=1,...,m]|Ci , GCi (Zi )) − E( f [{Zi j (φ)} j=1,...,m])}

is stochastic equicontinuous near φ0, and that

n−1
n∑

i=1

E( f [{Zi j (φ)} j=1,...,m]|Ci , GCi (Zi ))
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converges almost surely, uniformly in a neighborhood of φ0. The process

n−1/2
n∑

i=1

{
f [{Zi j (φ)} j=1,...,m] − E( f [{Zi j (φ)} j=1,...,m])}

is not stochastic equicontinuous in general. A proof of this is included at the end of
this appendix.

We will need some results for averages of functions of the imputations and the
unknown parameter.

Lemma 3 Let f [{Zi j (φ̂
I )} j=1,...,m, φ] be a bounded function which is Lipschitz con-

tinuous as a function of φ in a neighborhood of φ0 with a bounded Lipschitz constant.
Then

n−1
n∑

i=1

f [{Zi j (φ̂
I )} j=1,...,m, φ̃] − E( f [{Zi j (φ)} j=1,...,m, φ0]|Ci , GCi (Zi ))|φ=φ̂ I

converges to in probability to 0 for any consistent estimator φ̃ of φ0.

Proof As | f [{Zi j (φ̂
I )} j=1,...,m, φ̃] − f [{Zi j (φ̂

I )} j=1,...,m, φ0]| ≤ constant × ‖φ̃ −
φ0‖L2 , we only need to consider the case where φ̃ = φ0. Letting

Fi = f [{Zi j (φ̂
I )} j=1,...,m, φ0] − E( f [{Zi j (φ)} j=1,...,m, φ0]|Ci , GCi (Zi ))|φ=φ̂ I

we see that E{Fi |Ci , GCi (Zi )} = 0 so that

var

(
n−1

n∑
i=1

Fi

)
= E

[
n−2

n∑
i=1

var
{

Fi | Ci , GCi (Zi )
}] = O(1/n)

as Fi is bounded by assumption. ��
Corollary 1 Let f [{Zi j (φ̂

I )} j=1,...,m, φ] be a bounded function, which is Lipschitz
continuous as a function of φ in a neighborhood of φ0 with a bounded Lipschitz
constant. Suppose further that E( f [{Zi j (φ

′)} j=1,...,m, φ0]) is a continuous function
of φ′. Then

n−1
n∑

i=1

f [{Zi j (φ̂
I )} j=1,...,m, φ̃] → E( f [{Z1 j } j=1,...,m, φ0])

in probability for any consistent estimator φ̃ of φ0.

Proof The average n−1∑n
i=1 f [{Zi j (φ̂

I )} j=1,...,m, φ̃] may be split into a sum of

n−1
n∑

i=1

f [{Zi j (φ̂
I )} j=1,...,m, φ̃] − E( f [{Zi j (φ)} j=1,...,m, φ0]|Ci , GCi (Zi ))|φ=φ̂ I
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which is oP (1) by lemma 3, and n−1∑n
i=1 E( f [{Zi j (φ)} j=1,...,m, φ0]|Ci ,

GCi (Zi ))|φ=φ̂ I which converges to E( f [{Z1 j } j=1,...,m, φ0]) by lemma 2 and the uni-
form law of large numbers. ��
Lemma 4 If β̃ → β0 in probability, then

n−1
n∑

i=1

Sk{t, Zi j (φ̂
I ), β̃} → sk(t) (k = 0, 1, 2, j = 1, . . . , m)

in probability, uniformly in t ∈ [0, τ ].
Proof It suffices to consider the case where X is one-dimensional. Clearly, by differ-
entiability and boundedness,

sup
t∈[0,τ ]

∣∣∣∣∣∣
n−1

n∑
i=1

Sk{t, Zi j (φ̂
I ), β̃} − n−1

n∑
i=1

Sk{t, Zi j (φ̂
I ), β0}

∣∣∣∣∣∣
≤ constant × |β̃ − β0|

sowemay replace β̃ byβ0. Furthermore, by corollary1,n−1∑n
i=1 Sk{t, Zi j (φ̂

I ), β0}−
sk(t) = oP (1) for any t . Assume for simplicity X1 ≥ 0 with probability 1. Choose
finitely many 0 = t0 < t1 < · · · < tL = τ such that for any t there is an 	 such
that E{Y1(t) − Y1(t	)}, E{Y1(t	−1) − Y1(t)} ≤ ε/ck , where ck is an upper bound on
Xk
1 exp(β

�
0 X1). Then

n−1
n∑

i=1

Sk{t, Zi j (φ̂
I ), β0} − sk(t)

≤ n−1
n∑

i=1

Sk{t	−1, Zi j (φ̂
I ), β0} − sk(t	−1) + sk(t	−1) − sk(t) ≤ oP (1) + ε

where the oP (1)-term does not depend on t . Combined with a similar lower bound,
this yields the desired uniform convergence. If pr(X1 < 0) > 0 we may split
(when k = 1) Xi j (φ̂

I ) into a sum of Xi j (φ̂
I ) − min X1 and min X1, where

min X1 denotes the lower bound for the support of X1 (the essential infimum). Thus,
n−1∑n

i=1 Sk{t, Zi j (φ̂
I ), β0}may be split into a sum of two terms, each of which may

be handled as indicated above. ��

A.3 Proof of Theorem 1: Regression parameters

The multiple-imputation estimator of β0 is β̂ = m−1∑m
j=1 β̂ j , where the j th impu-

tation estimator β̂ j is the solution to U j (β̂ j , φ̂
I ) = 0, with

U j (β, φ̂ I ) =
n∑

i=1

[
Xi j (φ̂

I ) −
∑n

l=1 S1{Ti , Zl j (φ̂
I ), β}∑n

l=1 S0{Ti , Zl j (φ̂ I ), β}

]
�i .
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Following standard arguments and using lemma4, β̂ j maybe shown to be consistent

and n1/2(β̂ j − β0) = n−1/2
(
I F
)−1

U j (β0, φ̂
I ) + oP (1), where I F is the full-data

information matrix for β. Averaging the m estimators we get

n1/2(β̂ − β0) = n−1/2
(

I F
)−1

m−1
m∑

j=1

U j (β0, φ̂
I ) + oP (1). (9)

As the imputations depend on the initial estimator, φ̂ I , which involves information
from all subjects, this is not a sum of independent and identically distributed terms.
We can write

n−1/2U j (β0, φ̂
I ) = n−1/2

n∑
i=1

∫ τ

0

[
Xi j (φ̂

I ) −
∑n

l=1 S1{u, Zl j (φ̂
I ), β0}∑n

l=1 S0{u, Zl j (φ̂ I ), β0}

]
dM F {u, Zi j (φ̂

I )}

= n−1/2
n∑

i=1

∫ τ

0

{
Xi j (φ̂

I ) − e(u)
}
dM F {u, Zi j (φ̂

I )}

+
∫ τ

0

[
e(u) −

∑n
l=1 S1{u, Zl j (φ̂

I ), β0}∑n
l=1 S0{u, Zl j (φ̂ I ), β0}

]
n−1/2

n∑
i=1

dM F {u, Zi j (φ0)}

−
∫ τ

0

[
e(u) −

∑n
l=1 S1{u, Zl j (φ̂

I ), β0}∑n
l=1 S0{u, Zl j (φ̂ I ), β0}

]

× n−1/2
n∑

i=1

Yi (u)
[
exp

{
β�
0 Xi j (φ̂

I )
}

− exp
{
β�
0 Xi j (φ0)

}]
α0(u)du. (10)

The second term on the right-hand side above converges to zero in probability by
Lemma 4 and Kosorok (2008, Lemma 4.2). To show that the third term also converges
to zero in probability, it suffices (by Kosorok 2008, Lemma 4.2) to show that the
second factor in the integrand of (10),

n−1/2
n∑

i=1

Yi (u)
[
exp

{
β�
0 Xi j (φ̂

I )
}

− exp
{
β�
0 Xi j (φ0)

}]

= n−1/2
n∑

i=1

Yi (u)

(
exp

{
β�
0 Xi j (φ̂

I )
}
−E

[
exp

{
β�
0 Xi j (φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)

− n−1/2
n∑

i=1

Yi (u)
(
exp

{
β�
0 Xi j (φ0)

}
− E

[
exp

{
β�
0 Xi j (φ0)

}∣∣∣ Ci , GCi (Zi )
])

+ n−1/2
n∑

i=1

Yi (u)

(
E
[
exp{β�

0 Xi j (φ)}
∣∣∣ Ci , GCi (Zi )

]
|φ=φ̂ I

− E
[
exp{β�

0 Xi j (φ0)}
∣∣∣ Ci , GCi (Zi )

])
(11)

is bounded in probability. The first two terms have mean zero and finite variance
and are thus bounded in probability. By stochastic equicontinuity, continuity of the
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mean and n1/2-consistency of the initial estimator, the third term is also bounded in
probability. Thus,

n−1/2m−1
m∑

j=1

U j (β0, φ̂
I )

= n−1/2
n∑

i=1

m−1
m∑

j=1

SF
eff {Zi j (φ̂

I )} + oP (1)

= n−1/2
n∑

i=1

m−1
m∑

j=1

(
SF
eff{Zi j (φ̂

I )} − E[SF
eff{Zi j (φ)}|Ci , GCi (Zi )]|φ=φ̂ I

)
(12)

+ n−1/2
n∑

i=1

(
E[SF

eff {Zi1(φ)}|Ci , GCi (Zi )]|φ=φ̂ I − E[SF
eff{Zi1(φ)}]|φ=φ̂ I

)

− n−1/2
n∑

i=1

(
E[SF

eff {Zi1(φ0)}|Ci , GCi (Zi )] − E[SF
eff {Zi1(φ0)}]

)
(13)

+ n−1/2
n∑

i=1

E[SF
eff {Zi1(φ0)}|Ci , GCi (Zi )] (14)

+ n1/2
(

E[SF
eff {Z11(φ)}]|φ=φ̂ I − E[SF

eff{Z11(φ0)}]
)

+ oP (1), (15)

where E[SF
eff {Zi1(φ0)}] equals zero but has been included for clarity. Using lemma 1

we may write

n1/2
(

E[SF
eff {Z11(φ)}]|φ=φ̂ I − E[SF

eff{Z11(φ0)}]
)

= Deff(φ0)n
1/2(φ̂ I − φ0) + oP (1)

= n−1/2
n∑

i=1

Deff(φ0)q{Ci , GCi (Zi )} + oP (1)

where Deff(φ0) = E(SF
eff(Z)[Sφ0(Z)−Sφ0{C, GC(Z)}]). Thus, the last three terms—

(13), (14), (15)—may be written as

n−1/2
n∑

i=1

(
E[SF

eff {Zi1(φ0)}|Ci , GCi (Zi )] + Deff(φ0)q{Ci , GCi (Zi )}
)

+ oP (1)

as (13) is oP (1) by the stochastic equicontinuity implied by lemma 2.
Lemma 2 (with a straightforward extension) also implies that

n−1
n∑

i=1

var[SF
eff{Zi1(φ)}|Ci , GCi (Zi )] → E

(
var[SF

eff{Z(φ)}|C, GC(Z)]
)
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almost surely, uniformly in a neighborhood of φ0. Assume for now (for simplicity)
that φ̂ I is strongly consistent. Then, conditionally on the observed data, for almost
every realization,

n−1/2
n∑

i=1

m−1
m∑

j=1

(
SF
eff{Zi j (φ̂

I )} − E[SF
eff {Zi j (φ)}|Ci , GCi (Zi )]|φ=φ̂ I

)

→ N
{
0, m−1E

(
var[SF

eff{Z(φ0)}|C, GC(Z)]
)} (16)

in distribution by the Lindeberg–Feller central limit theorem (van der Vaart
1998, Proposition 2.27). Using Schenker and Welsh (1988, Lemma 1) or Nielsen
(2003, Lemma 1), it follows that (16) also holds unconditionally and that (12) is
asymptotically independent of the observed data. Without strong consistency, we may
for every subsequence extract a further subsequence where φ̂ I converges almost surely
to φ0. Thus, every subsequence has a subsequence, where (16) holds. Thus, the con-
ditional characteristic function of the left-hand side of (16) converges almost surely
along subsequences of subsequences to the characteristic function of the right-hand
side of (16). This implies that the convergence holds in probability for the original
sequence of characteristic functions and as the characteristic function is bounded this
ensures that (16) holds unconditionally. The asymptotic distribution of β̂ now follows.

A.4 Proof of Theorem 1: Cumulative baseline hazard

The multiple-imputation estimator of the cumulative baseline hazard function is
Â(t) = m−1∑m

j=1 Â j (t, β̂ j ), where

Â j (t, β) =
∫ t

0

1∑n
i=1 S0{u, Zi j (φ̂ I ), β}d N·(u)

is the estimator from the j th imputation where N·(t) = ∑n
i=1 Ni (t). Let

dM(t, Zi ) = dNi (t) − E{Yi (t) exp(β
�
0 Xi )|Ci , GCi (Zi )}α0(t)dt .

Then, M·(t) = ∑n
i=1 M(t, Zi ) is a zero mean square-integrable martingale with

respect to the observed filtration.
We may write n1/2{ Â(t) − A0(t)} = n1/2{ Â(t) − Â0(t)} + n1/2{ Â0(t) − A0(t)},

where

Â0(t) = m−1
m∑

j=1

∫ t

0

1∑n
i=1 S0{u, Zi j (φ̂ I ), β0}

dN·(u).

Using lemma 4 and Kosorok (2008, Lemma 4.2), we have
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n1/2{ Â(t) − Â0(t)}

= −m−1
m∑

j=1

∫ t

0

n−1∑n
i=1 S1{u, Zi j (φ̂

I ), β0}
[n−1

∑n
i=1 S0{u, Zi j (φ̂ I ), β0}]2

n−1dN·(u)n1/2(β̂−β0)+oP (1)

= −
∫ t

0

s1(u)

s0(u)
α0(u)du n1/2(β̂ − β0) + oP (1).

Now

n1/2{ Â0(t) − A0(t)}

= n1/2

⎛
⎝m−1

m∑
j=1

∫ t

0

1∑n
i=1 S0{u, Zi j (φ̂ I ), β0}

dN·(u) −
∫ t

0
α0(u)du

⎞
⎠

= m−1
m∑

j=1

∫ t

0

[
1∑n

i=1 S0{u, Zi j (φ̂ I ), β0}

− 1∑n
i=1 E{Yi (u)exp(β�

0 Xi )|Ci , GCi (Zi )}

]
n1/2dN·(u)

+ n1/2

[∫ t

0

1∑n
i=1 E{Yi (u)exp(β�

0 Xi )|Ci , GCi (Zi )}
dN·(u) −

∫ t

0
α0(u)du

]
.

(17)

The second term of (17) may be rewritten as:

∫ t

0

1

n−1
∑n

i=1 E{Yi (u)exp(β�
0 Xi )|Ci , GCi (Zi )}

n−1/2dM·(u) + oP (1)

=
∫ t

0

1

s0(u)
n−1/2dM·(u) + oP (1)

which converges to a Gaussian martingale. Before turning to the first term of (17), we
note that

n−1/2
n∑

i=1

Yi (u)
(
exp

{
β�
0 Xi j (φ̂

I )
}

− E
[
exp

(
β�
0 Xi

)
|Ci , GCi (Zi )

])

= n−1/2
n∑

i=1

Yi (u)

(
exp

{
β�
0 Xi j (φ̂

I )
}

− E
[
exp

{
β�
0 Xi1(φ)

}
|Ci , GCi (Zi )

]
|φ=φ̂ I

)

+ n−1/2
n∑

i=1

Yi (u)

(
E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

−E
{
exp

(
β�
0 Xi

)
|Ci , GCi (Zi )

})
. (18)
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The second term of (18) is asymptotically equivalent to

n1/2
(

E[S0{u, Z(φ), β0}]|φ=φ̂ I − E{S0(u, Z , β0)}
)

= D0(u, φ0)n
1/2(φ̂ I − φ0) + oP (1)

where D0(u, φ0) = E(S0(u, Z , β0)[Sφ0(Z) − Sφ0{C, GC(Z)}]) by lemma 1. Thus,
we may write the integrand of the first term of (17) as

n1/2

(
1∑n

i=1 S0{u, Zi j (φ̂ I ), β0}
− 1∑n

i=1 E
[
Yi (u)exp

{
β�
0 Xi1(φ0)

}|Ci , GCi (Zi )
]
)

= −
n−3/2∑n

i=1 Yi (u)
(
exp

{
β�
0 Xi j (φ̂

I )
}

− E
[
exp

{
β�
0 Xi1(φ)

}∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)

s0(u)2

− n−1D0(u, φ0)
n1/2(φ̂ I − φ0)

s0(u)2
+ oP (1)

and hence the first term of (17) as

−
∫ t

0
n−1

n∑
i=1

Yi (u)

⎛
⎝m−1

m∑
j=1

exp
{
β�
0 Xi j (φ̂

I )
}

−E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)
n−1/2dM .(u)

s0(u)2

−
∫ t

0
n−1/2

n∑
i=1

Yi (u)

⎛
⎝m−1

m∑
j=1

exp
{
β�
0 Xi j (φ̂

I )
}

−E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)
α0(u)

s0(u)
du

−
∫ t

0
D0(u, φ0)

1

s0(u)2
n−1dM .(u)n1/2(φ̂ I − φ0)

−
∫ t

0
D0(u, φ0)

α0(u)

s0(u)
du n1/2(φ̂ I − φ0) + oP (1)

where the first and the third term are both oP (1) (Kosorok 2008, Lemma 4.2). Thus

n1/2{ Â(t) − A0(t)}

= −
∫ t

0
n−1/2

n∑
i=1

Yi (u)

⎛
⎝m−1

m∑
j=1

exp
{
β�
0 Xi j (φ̂

I )
}

−E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)
α0(u)

s0(u)
du
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−
∫ t

0
D0(u, φ0)

α0(u)

s0(u)
du n1/2(φ̂ I − φ0) +

∫ t

0

1

s0(u)
n−1/2dM·(u)

−
∫ t

0

s1(u)

s0(u)
α0(u)du n1/2(β̂ − β0) + oP (1) (19)

where the three latter terms converge as processes. To show tightness of the first term,
let w(s, t) denote

−
∫ t

s
n−1/2

n∑
i=1

Yi (u)

⎛
⎝m−1

m∑
j=1

exp
{
β�
0 Xi j (φ̂

I )
}

−E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)
α0(u)

s0(u)
du

= −n−1/2
n∑

i=1

∫ t

s
Yi (u)

α0(u)

s0(u)
du

× m−1
m∑

j=1

(
exp

{
β�
0 Xi j (φ̂

I )
}

− E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)
.

Then, clearly E{w(s, t)} = E(E[w(s, t)|{Ci , GCi (Zi )}i=1,...,n)} = 0 so that

E{w(s, t)2} = E(var [w(s, t)|{Ci , GCi (Zi )}i=1,...,n])

= n−1
n∑

i=1

E

({∫ t

s
Yi (u)

α0(u)

s0(u)
du

}2

×m−1var
[
exp

{
β�
0 Xi1(φ0)

}∣∣∣ {Ci , GCi (Zi )}i=1,...,n

])

= O{(t − s)2}

implying (van der Vaart and Wellner 1996, Section 2.2.3) that also the first term of
(19) is tight. Finally, we may write n1/2{ Â(t) − A0(t)} as a sum of

n−1/2
n∑

i=1

{∫ t

0

1

s0(u)
dMi (u) −

∫ t

0
D0(u, φ0)

α0(u)

s0(u)
du q{Ci , GCi (Zi )}

−
∫ t

0

s1(u)

s0(u)
α0(u)du (I F )−1

×
(

E[SF
eff {Zi j (φ0)}|Ci , GCi (Zi )] + Deff(φ0)q{Ci , GCi (Zi )}

)}
(20)
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and

− n−1/2
n∑

i=1

{∫ t

0

s1(u)

s0(u)
α0(u)du (I F )−1

×m−1
m∑

j=1

(
SF
eff {Zi j (φ̂

I )} − E[SF
eff {Zi j (φ)}|Ci , GCi (Zi )]|φ=φ̂ I

)

+
∫ t

0
Yi (u)

α0(u)

s0(u)
du

×m−1
m∑

j=1

(
exp

{
β�
0 Xi j (φ̂

I )
}

− E
[
exp

{
β�
0 Xi1(φ)

}∣∣∣ Ci , GCi (Zi )
]
|φ=φ̂ I

)⎫⎬
⎭
(21)

plus oP (1)-terms. Proceeding as in the proof of asymptotic normality of the regression
parameters, we can show that the terms in (21) are asymptotically independent of the
terms in (20) and converge in distribution to a normal distribution. Also the terms
in (20) are asymptotically normal. Thus n1/2{ Â(t) − A0(t)} converges to a Gaussian
process with mean 0.

A.5 Proof of Theorem 1: Joint convergence

To see that n1/2(β̂ − β0) and n1/2{ Â(t) − A0(t)}t∈[0,τ ] converge jointly in dis-
tribution, note that we have written both as a sum of terms—(12), (21)—that
depend on the imputations but are asymptotically independent of the observed data,
terms—(14), (15), (20)—that depend only on the observed data, and terms, that are
asymptotically negligible. Joint convergence follows by noting that linear combina-
tions of the “imputation terms”, (12) and (21), are asymptotically independent of the
observed data and converge to a normal distribution, while the same linear combi-
nations of the “observed data terms”, (14), (15) and (20), also converge to a normal
distribution. Hence, n1/2(β̂ − β0) and n1/2{ Â(t) − A0(t)}t∈[0,τ ] converge jointly in
distribution to a Gaussian process.

A.6 Iterating the estimation process

In order to establish asymptotic results for the iterated multiple-imputation estimator,
we extend the arguments in the previous parts of the appendix to the case where the
“initial estimator” is a multiple-imputation estimator of the type we are considering.
We let φ̂(1) denote the multiple-imputation estimator based on the initial imputations
and let Z (2)

i j (φ̂(1)) denote the second iteration imputations, i.e., imputations generated

using φ̂(1) as the true parameter. We focus on the asymptotic distribution of β̂(2), the
multiple-imputation estimator of β0 based on the second iteration imputations and
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outline the changes we need to make to the expansion of the score function given in
Eqs. (12)–(15).

Consider first the term (12). Conditional on the observed data and the first iteration
imputations the mean of SF

eff {Z (2)
i j (φ̂(1))} equals E[SF

eff {Z (2)
i j (φ)}|Ci , GC(Zi )]|φ=φ̂(1)

as the second iteration imputations only depend on the first iteration imputations
through the first iteration estimator φ̂(1). It follows as before that (12) is asymptotically
normal and asymptotically independent of the observed data (and the first iteration
imputations).

The terms (13) and (14) are unchanged. Finally, the term (15) may be rewrit-
ten as Deff(φ0)n1/2(φ̂(1) − φ0). When plugging in the asymptotic expression for
n1/2(φ̂(1) − φ0) derived above, and splitting it into the first iteration imputation part
corresponding to (12) and (21) and the rest, we end up with a term (12) depending on
the second iteration imputations, which is asymptotically independent of the first iter-
ation imputations, terms depending on the first iteration imputations and the observed
data, which are asymptotically independent of the observed data, and terms depending
only on the observed data. It now follows that the Cox partial score function is asymp-
totically normal and it is straightforward to verify that it has the same asymptotic
distribution as (5) with qi replaced by ρi = (I F )−1ξi .

The second iteration estimator of the integrated baseline hazard may be shown to be
asymptotically Gaussian by following a similar line of arguments, splitting (21) into a
sum of terms depending on the second iteration imputations and terms depending on
the first iteration imputations and conditioning as above. Joint convergence follows
in a similar manner to what we did for the original multiple-imputation estimator.
Further iterations may be handled by splitting the “imputation terms” into additional
terms and repeated conditioning.

A.7 Stochastic equicontinuity

Whereas stochastic equicontinuity of the empirical process based on
m−1∑m

j=1 SF
eff {Zi j (φ0)} is straightforward to verify when imputing a large class of

continuous covariates, we claim that for discrete covariates the combination of the
unknown baseline hazard and the inherent discontinuity of the covariate rules out
stochastic equicontinuity. To see this, we prove the following lemma:

Lemma 5 The set of sets

{
{(x, t) ∈ X × R : x ≤ a(t)} a : R → R increasing

}

with X ⊂ R is a Vapnik–Chervonenkis (VC) class if and only if X is a finite set.

Proof Consider a set A = {(x1, t1), . . . , (xn, tn)}. Assuming that |X | is finite, then
any set of n > |X | points will contain at least two points (xi , ti ), (x j , t j ), such that
xi = x j and (without loss of generality) ti ≤ t j . Clearly, we cannot pick out a subset
of A containing xi but not x j : If a(ti ) ≥ xi then a(t j ) ≥ a(ti ) ≥ xi = x j . Thus, no
sufficiently large set is shattered, and the set of sets is a VC class. If X is not finite,
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then choosing A such that x1 < x2 < · · · < xn and t1 < t2 < · · · < tn any subset
may be picked out: For a subset B ⊆ A choose a so that it jumps to just above xi just
before ti for any i such that (xi , ti ) ∈ B. As A can be shattered, the set of sets is not a
VC class. ��

Consider imputing a single binary explanatory variable, X , with conditional prob-
ability of success given by

p{C, GC(Z), φ} = exp{�β − A(T ) exp(β)}p(θ)

exp{�β − A(T ) exp(β)}p(θ) + exp{−A(T )}{1 − p(θ)} .

Then the simplest way of simulating X is

X(φ) = I [{Ũ ≤ �β − A(T )(exp(β) − 1) − logit{p(θ)}],

with Ũ = logit(U ), where U is uniformly distributed. Lemma 5 shows that even if we
fix β and θ , these indicator functions are not indicators of a VC class of sets. It follows
that it is not VC if we allow β and θ to vary, either. Dudley (1984, Theorem 11.4.1)
shows that when a set of indicator functions are not based on a VC class, the cor-
responding empirical process is not pregaussian. This basically rules out stochastic
equicontinuity.

This argument shows that the efficient score process with imputed data is not
stochastic equicontinuous in general. It does not rule out—thoughwefind it unlikely—
that one might construct another simulation scheme which would be sufficiently
“smooth” for a discrete covariate to make the process stochastic equicontinuous.
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