
Annals of the Institute of Statistical Mathematics (2020) 72:945–967
https://doi.org/10.1007/s10463-019-00715-5

Space–time inhomogeneous background intensity
estimators for semi-parametric space–time self-exciting
point process models

Chenlong Li1,2 · Zhanjie Song1,3 ·Wenjun Wang4

Received: 29 April 2018 / Revised: 26 February 2019 / Published online: 5 April 2019
© The Institute of Statistical Mathematics, Tokyo 2019

Abstract
Histogram maximum likelihood estimators of semi-parametric space–time self-
exciting point process models via expectation–maximization algorithm can be biased
when the background process is inhomogeneous. We explore an alternative estima-
tionmethod based on the variable bandwidth kernel density estimation (KDE) and EM
algorithm. The proposed estimation method involves expanding the semi-parametric
models by incorporating an inhomogeneous background process in space and time and
applying the variable bandwidth KDE to estimate the background intensity function.
Using an example, we show how the variable bandwidth KDE can be estimated this
way. Two simulation examples based on residual analysis are designed to evaluate and
validate the ability of our methods to recover the background intensity function and
parametric triggering intensity function.
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1 Introduction

Self-exciting point process models are proposed to describe random collections of
events where the occurrence of one event increases the likelihood that another event
occurs shortly thereafter. An explicit form of the self-exciting point process model
was formally defined by Hawkes (1971). Ogata developed a class of important self-
exciting point process models in seismology, the Epidemic Type Aftershock Sequence
(ETAS) models, which were considered the main tool for the space–time analysis of
earthquakes (Ogata 1988, 1998). Recently, the self-exciting point processmodelswere
used to describe crime and security, social networks and financial (Mohler et al. 2011;
Bacry et al. 2012; Fox et al. 2016b).

ETAS and other space–time self-exciting models often restricted parametric forms
of the triggering intensity function (Ogata 1998; Bacry et al. 2012, 2015; Fox et al.
2016b) and nonparametric forms of the background intensity function (Zhuang et al.
2002; Veen and Schoenberg 2008; Mohler et al. 2011; Fox et al. 2016a). Zhuang et al.
(2002) proposed the variable bandwidth kernel density estimation (KDE) method to
estimate the background intensity function of the ETAS model, and the paramet-
ric triggering intensity function was estimated by using the numerical optimization
procedures. Veen and Schoenberg (2008) pointed out that the numerical optimiza-
tion procedures can be unstable and computationally intensive, and then proposed
a robust and accurate EM-type algorithm to estimate the background and triggering
intensity functions. Specifically, the histogram estimators were used to estimate the
background intensity function of the homogeneous time background process, then the
mean background intensity estimation within each bin can be obtained, which implied
the assumption of constancy in each bin. However, the shortcomings are that if a bin
does not contain any events, then the estimated value of intensity function in that bin
is zero, and if a small bin contains any events, then the estimated value of intensity
function in that bin is big. Veen and Schoenberg (2008) were primarily interested in
exploring the stable and computationally efficient of the EM-type estimation method,
and the explicit assessment or validation of the proposed histogram estimators for
estimating background intensity function was not addressed. Fox et al. (2016a) sys-
tematically studied the nonparametric estimation of the ETAS model and assessed the
performance of the histogram estimators of triggering intensity function. Addition-
ally, the background process is assumed to be homogeneous in most applications of
self-exciting point process models such as Marsan and Lengline (2008), Bacry et al.
(2012), Bacry et al. (2015) and Yang et al. (2018). While a homogeneous background
process is unrealistic in real situations. Even if the truth background process is homo-
geneous, missing values contained in the observed data will lead to an inhomogeneous
background process (Kagan 2003).

In this paper, we propose a novel EM-type estimation of the semi-parametric model
to overcome the shortcomings of the histogram estimators. Firstly, we expand the
semi-parametric models by incorporating an inhomogeneous background process in
space and time. Secondly, we apply the variable bandwidth KDE to estimate the back-
ground intensity function. For the parametric form of the triggering intensity function,
building on work done in modeling seismic datasets, crime and security datasets and
social network datasets (Zhuang et al. 2002; Mohler et al. 2011; Fox et al. 2016b),
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Semi-parametric space-time self-exciting models 947

the anisotropy Gaussian kernel and exponential kernel are considered. Viewing the
estimation of semi-parametric self-exciting point process models as incomplete data
problems, the EM algorithm can be used to attain the maximum likelihood estimates
(MLEs). By using the variable bandwidth KDE and EM algorithm, we are able to
present a highly robust and accurate estimation procedure that can be used to esti-
mate the proposed semi-parametric self-exciting point process model. We validate
and assess the ability of each method to recover the true form of the inhomogeneous
background process and the triggering intensity function using simulation datasets, and
the bias and standard error are calculated by repeatedly simulating and re-estimating
the simulation models (24) and (25). To demonstrate the fitting performance of our
proposed method, we examine the variable bandwidth KDE and histogram estimators
using the super-thinning method, which is a simple and efficient model diagnostics
(Clements et al. 2012), and then we compare the results of the variable bandwidth
KDE to the histogram estimators.

The rest of this paper is organized as follows. Section 2 describes the concepts of the
space–time self-exciting point processmodels. Section 3 proposes the semi-parametric
models, the EM-typeMLEs, themodel diagnostics, and the simulation algorithm. Sec-
tion 4 outlines the performance of the proposed method using the simulation datasets.
Finally, Sect. 5 summarizes the results with a discussion.

2 Space–time self-exciting point process models

A space–time point process X is a random collection of points with each point falling
in the observed metric space S×T ⊆ R

2×R. A space–time point process is typically
determined by specifying its intensity process, i.e., all finite-dimensional distributions
of the space–time point process are uniquely characterized by its intensity process if it
exists (Liniger 2009). In the general case the intensity processes of the random point
processes have to be conditioned, not only by the time since the last event, but by any
additional information concerning the past history that may affect the distribution of
the remaining time.

Let N be a simple counting process andHt the collection of all events observed on
the time interval (−∞, t), t ∈ T . The conditional intensity process λ(s, t) of a space–
time point process is the expected rate that points occur around the space location s
and time t , conditional on the history Ht , t ∈ T , consisting of the set of locations
and times of all events of the process that occur prior to time t . In other words, Ht

is the family of σ -algebras generated by the events occurring at times up to, but not
including t . The definition of conditional intensity process is given by Eq. (1), if the
limits in Eq. (1) exist.

⎧
⎪⎪⎨

⎪⎪⎩

lim�s,�t→0

1

�s�t
P(N ([s, s + �s) × [t, t + �t) = 1|Ht ) = λ(s, t |Ht ),

lim�s,�t→0

1

�s�t
P(N ([s, s + �s) × [t, t + �t) > 1|Ht ) = 0,

(1)

where s:=(x, y) ∈ S represents the space location.
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948 C. Li et al.

The crucial problem of modeling of such point processes is to determine how the
conditional intensity process depends on such past variables (Vere-Jones 1995). Typ-
ically, it is performed by specifying the special structures for the conditional intensity
processes. The self-exciting point process models are a kind of important conditional
intensity process models. Given the space–time dataset of events with locations si
and times ti up to time t , we have the following definition of the conditional intensity
process of a space–time self-exciting point process.

Definition 1 Given the observation dataset with locations si and times ti up to time
t , a space–time self-exciting point process is a simple point process N such that N
follows conditional intensity process

λ(s, t |Ht ) = μ(s, t) +
∫

S×(−∞,t)
g(s − ξ , t − u)N (dξ , du)

:= μ(s, t) +
∑

i :ti<t

g(s − si , t − ti ), (2)

for (s, t) ∈ S × T , where N (dξ , du) = 1 if an infinitesimal element (dξ , du) includes
an event (si , ti ) for some i , otherwise N (dξ , du) = 0.

The form of Eq. (2) is closely related to the branching process, i.e., each point of
a self-exciting process is either an immigrant (background) or a descendant (off-
spring or being triggered) (Veen and Schoenberg 2008). The immigration intensity
function μ(s, t) governs the frequency at which new immigrants arrive. Whenever
a point event occurs, it is either an immigrant or a descendant, and the conditional
intensity process is increased temporarily, i.e., points arrive at a higher frequency for
some time. This intensity increase causes secondary point events, which in turn can
spawn descendants of their own. How fast this effect decays in time is governed by
the triggering intensity function g(s, t).

Given the conditional intensity process in Eq. (2) over the observation period
D:=[t∗, t∗), estimates of the parameters may be obtained by maximizing the log-
likelihood function (Daley and Vere-Jones 2003):

log L =
∫ ∫ ∫

S×D
log λ(s, t)N (ds, dt) −

∫ ∫ ∫

S×D
λ(s, t)dxdydt

:=
n∑

i=1

log λ(si , ti ) −
∫ ∫ ∫

S×D
λ(s, t)dxdydt . (3)

Note that the log-likelihood depends on the choice of the observation period D. And
the history Ht defined in Eq. (2) is adjusted as the collection of all events observed
on the time interval [t∗, t), t ≤ t∗.

3 Semi-parametric models andmodel diagnostics

In this section, we consider semi-parametric space–time self-exciting point process
modelswith inhomogeneous background process. Following previous research includ-
ing Zhuang et al. (2002), Veen and Schoenberg (2008) and Mohler et al. (2011),
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Semi-parametric space-time self-exciting models 949

we first give the proposed semi-parametric model and then explore the estimation
method based on EM algorithm. To examine the goodness-of-fit of the proposed semi-
parametric models, the residual analysis with the super-thinning method proposed in
Clements et al. (2012) is considered.

3.1 Semi-parametric model

Here, we consider the space–time self-exciting point processmodel with a background
intensity functionμ(x, y, t) and the parametric triggering intensity function g(x, y, t).
While the proposed estimation method allows for quite general parametric forms of
the triggering intensity function g(x, y, t), g(x, y, t), in general, is chosen such that
the conditional intensity process decreases in space and time away from each event.
To distinguish the deduction proposed in Veen and Schoenberg (2008), we use the
following parametric form of the triggering intensity function based on the studies in
seismic, crime and security and social networks (Ogata 1998; Mohler et al. 2011; Fox
et al. 2016b),

g(x, y, t) = ωβ

2πσ1σ2
exp

{

− x2

2σ 2
1

− y2

2σ 2
2

− βt

}

, (4)

where 0 < ω < 1, β > 0, σ1 > 0, σ2 > 0. In Eq. (4), the anisotropic Gaussian kernel
is considered in spatial dimension, and the exponential kernel is considered in time
dimension. Parameter β controls the exponential kernel rate of decay, parameters σ1
and σ2 control the spatial distribution, parameter ω controls the number of triggering
events.

Standard nonparametric methods for estimating the background intensity function
μ(x, y, t) include spline, kernel smoothing, and Voronoi estimation (Mohler et al.
2011). As in Vere-Jones (1992), Zhuang et al. (2002) and Mohler et al. (2011), we
assume that the space–time background intensity functionμ(x, y, t) can be separately
by

μ(x, y, t) = αu(x, y)v(t) (5)

where α is a positive scaling factor controlling the overall background rate. Then, we
use the variable bandwidth kernel smoothing to model u(x, y) and v(t) (Zhuang et al.
2002)

u(x, y) = 1

nb

nb∑

i=1

Kdui

(
x − xbi , y − ybi

)
, (6)

v(t) = 1

nb

nb∑

i=1

Kdv
i

(
t − tbi

)
, (7)

where {(xbi , ybi , tbi )}nbi=1 represents background events, nb represents the size of back-
ground events, Kdui

(x, y) and Kdv
i
(t) denote the Gaussian kernel functions
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Kdui
(x, y) = 1

2π(dui )2
exp

{

− x2

2(dui )2
− y2

2(dui )2

}

,

Kdv
i
(t) = 1√

2πdv
i

exp

{

− t2

2(dv
i )2

}

,

dui and dv
i represent the variable bandwidths of space and time calculated for each

event i , respectively. In particular, the variable bandwidth dui is computed by finding
the radius of the smallest disk centered at (xi , yi ) that contains at least nup other events.
Similarly, one can choose variable bandwidth dv

i by finding the radius of the smallest
disk centered at ti that contains at least nv

p other events. In addition, Zhuang et al.
(2002) suggested setting dui a threshold value ε if this distance is less than ε. This
parameter becomes important when some points happen to overlap at one location
caused by rounding the numbers or measurement errors (Zhuang 2011). This method
makes Algorithm 1 more stable and is used in Zhuang et al. (2002), Zhuang et al.
(2004), Zhuang (2011) and Fox et al. (2016a).

Using Eqs. (4)–(7), we propose the semi-parametric models of the form

λ(x, y, t |Ht ) = αu(x, y)v(t) +
∑

i :ti<t

g(x − xi , y − yi , t − ti ). (8)

3.2 EM-typemaximum likelihood estimates

Viewing the estimation of self-exciting point process models as incomplete data prob-
lems, we derive the EM-type MLEs of the proposed semi-parametric model (8).

Suppose now we have observed a realization of a space–time self-exciting point
process, with event locations {s1, . . . , sn} and times {t1, . . . , tn} over a spatial region
S and a temporal window D. Consider the random variables

ζi =
{
i if event i is a background event,

j if event i is triggered by event j, i 
= j .
(9)

If the branching structure is incorporated, the complete data log-likelihood can be
decomposed additively into likelihood functions for the background process and trig-
gering processes, respectively:

log Lc(Θ) =
n∑

i=1

1{ζi=i} log(μ(si , ti )) +
n∑

i=1

n∑

j=1

1{ζi= j} log(g(si − s j , ti − t j ))

−
∫ ∫ ∫

S×D
λ(s, t)dxdydt

=
n∑

i=1

1{ζi=i} log(μ(xi , yi , ti )) −
∫ ∫ ∫

S×D
μ(x, y, t)dxdydt
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+
n∑

j=1

⎡

⎣
∑

i :t j<ti

1{ζi= j} log(g(xi − x j , yi − y j , ti − t j ))

−
∫ ∫ ∫

S×[t j ,t∗)
g(x − x j , y − y j , t − t j )dxdydt

]

, (10)

where Θ = {ζi , i = 1, . . . , n, Ψ }, Ψ = {α, u(x, y), v(t),G}, G represents the set
of parameters of g(x, y, t), 1{·} is the indicator function. Let Ψ (k):={α(k), u(k)(x, y),
v(k)(t),G(k)} represent the set of the kth iteration values of Ψ . Then, the E-step and
M-step can be calculated as follows.

E-Step Calculating

p(k)
i j :=E(1{ζi= j}) =

⎧
⎪⎪⎨

⎪⎪⎩

μ(k)(xi ,yi ,ti )
λ(k)(xi ,yi ,ti )

j = i,
g(k)(xi−x j ,yi−y j ,ti−t j )

λ(k)(xi ,yi ,ti )
ti > t j , j > 0,

0 ti < t j , j > 0.

(11)

M-Step Maximizing Q(Ψ ;Ψ (k)).

Q(Ψ ;Ψ (k)) = EΨ (k){log Lc(Θ)|(x, y, t)}

=
n∑

i=1

p(k)
i i log(μ(xi , yi , ti )) −

∫ ∫ ∫

S×D
μ(x, y, t)dxdydt

+
n∑

j=1

⎡

⎣
∑

i :t j<ti

p(k)
i j log(g(xi − x j , yi − y j , ti − t j ))

−
∫ ∫ ∫

S×[t j ,t∗)
g(x − x j , y − y j , t − t j )dxdydt

]

, (12)

Theprobabilities p(k)
i j allowestimatingu(k+1)(x, y) andv(k+1)(t)bykernel smooth-

ing as follows:

u(k+1)(x, y) = 1
∑n

i=1 p
(k)
i i

n∑

i=1

p(k)
i i Kdui

(x − xi , y − yi ) (13)

v(k+1)(t) = 1
∑n

i=1 p
(k)
i i

n∑

i=1

p(k)
i i Kdv

i
(t − ti ). (14)

The last integral term of Eq. (12) can be approximated by ω using the fact that the
space–time distances between triggering events and their parent events are usually
much smaller than the study region S × D. This approximation was also considered
in Veen and Schoenberg (2008). Then we can calculate the rest parameters by making
the partial derivatives with respect to the parameters of g(x, y, t) be equal to zero, that
is,
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α(k+1) =
∑n

i=1 p
(k)
i i∫ ∫ ∫

S×D u(k+1)(x, y)v(k+1)(t)dxdydt
, (15)

σ
(k+1)
1 =

√
√
√
√

∑n
j=1

∑n
i= j+1 p

(k)
i j (xi − x j )2

∑n
j=1

∑n
i= j+1 p

(k)
i j

, (16)

σ
(k+1)
2 =

√
√
√
√

∑n
j=1

∑n
i= j+1 p

(k)
i j (yi − y j )2

∑n
j=1

∑n
i= j+1 p

(k)
i j

, (17)

ω(k+1) ≈
∑n

j=1
∑n

i= j+1 p
(k)
i j

n
, (18)

β(k+1) ≈
∑n

j=1
∑n

i= j+1 p
(k)
i j

∑n
j=1

∑n
i= j+1 p

(k)
i j (ti − t j )

. (19)

For a similar reason, the integral term of Eq. (15) can be approximated by one.
Then, we have

α(k+1) ≈
n∑

i=1

p(k)
i i . (20)

Furthermore, one has λ(k+1)(x, y, t) = μ(k+1)(x, y, t) +∑
i :ti<t g

(k+1)(x − xi , y −
yi , t − ti ) and μ(k+1)(x, y, t) = α(k+1)u(k+1)(x, y)v(k+1)(t).

The following summarizes our proposed EM-type algorithm to estimate the pro-
posed semi-parametric model:

Algorithm 1: Estimation Algorithm.

Step 1. Set k = 0 and initialize P(0) := (p(0)
i j ) by

P(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0 0
1
2

1
2 0 · · · 0 0

1
4

1
4

1
2 · · · 0 0

...
...

...
. . .

...
...

1
2(n−1)

1
2(n−1)

1
2(n−1) · · · 1

2(n−1)
1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n×n

.

Step 2. Estimate background intensity function u(k+1)(x, y), v(k+1)(t) and α(k+1)

by using (13), (14) and (20).
Step 3. Estimate parameters of triggering intensity function by using (16)–(19).
Step 4. Update probabilities p(k+1)

i j by using (11).

Step 5. If L2:=
√

1
n2
∑n

i=1
∑n

j=1(p
(k+1)
i j − p(k)

i j )2 < ε, then the algorithm has

converged (in practice we take ε = 1 × 10−4). Otherwise, repeat steps 2–5 until
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convergence or k > B where B is the upper limit of iteration number (in practice
we take B = 200).

Note: (1) The approximations in (18)–(20) can easy the computation. We show that
one can obtain a robust and accurate estimation of background and triggering intensity
functions with these approximations in the simulation. In addition, in Algorithm 1,
P(0) is one possible initialization, one can take others, e.g., Fox et al. (2016a).

(2) The background intensity function can be more complex in real situations. For
example, Mohler (2013) explored a 1-D discrete time Hawkes–Cox process model of
crime and security. In this model, the background intensity function was determined
by a log Gaussian Cox process (LGCP). This idea can be extended to our proposed
semi-parametric models (8), and the proposed Algorithm 1 can be used to estimate
the background intensity function which is a realization of an LGCP. We verify the
performance of the histogram estimators and the variable bandwidth KDE for this
model in Sect. 4.2.

(3) Histogram maximum likelihood estimator proposed in Veen and Schoenberg
(2008) modeled the background intensity function by subdividing the space–time
observation window S × D into m cells each with constant intensity μk, k ∈
{1, . . . ,m}. To simplify notations, one can define the expected number of background
earthquakes in cell k, denoted as vk (Veen and Schoenberg 2008):

vk = μk × (area of cell k) × (length of time window).

3.3 Bandwidth selection

The cross-validation-type technique has been proposed for selecting bandwidths, e.g.,
Vere-Jones (1992) and Adelfio and Chiodi (2015). In Vere-Jones (1992), the author
proposed two scoringmethods, theK–L (Kullback–Leibler) score and theMISE (mean
integrated square error) score, to determine the optimal values of the bandwidths (i.e.,
the value giving the maximum score). In Adelfio and Chiodi (2015), the authors
proposed the FLP (Forward Likelihood Predictive) method for estimating the optimal
values of the bandwidths. The FLP method is a special case of the K–L score. In this
paper, we use the FLP method to determine the optimal values of the bandwidths.

To implement the FLP method, the data are first divided into two parts in time, a
training period, {(xi , yi , ti )}ntrai=1, which is used to produce an intensity estimate, and a
forecast forward period, {(xi , yi , ti )}ni=ntra+1. Then the forecast is scored by using the
log-likelihood of next point, i.e.,

CV (nup, n
v
p, ε1, ε2) =

n−1∑

i=ntra

[
log λ̂ti (xi+1, yi+1, ti+1)

−
∫ ∫

S

∫ ti+1

ti
λ̂ti (x, y, t)dtdxdy

]
, (21)

where λ̂ti (x, y, t) is the proposed intensity estimate by using the data up to ti , ε1 and
ε2 are the threshold values for the bandwidths dup and dv

p, respectively. The resulting
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scores can then be compared for different bandwidths, and the optimal bandwidths
are chosen for forecast of next point (Vere-Jones 1992; Adelfio and Chiodi 2015).

Note that

∫ ∫ ∫

S×[ti ,ti+1)

λ̂ti (x, y, t)dxdydt

=
∫ ∫ ∫

S×[ti ,ti+1)

μ̂ti (x, y, t)dxdydt

+ ω̂ti

i∑

j=1

∫ ∫ ∫

S×[ti ,ti+1)

ĝti (x − x j , y − y j , t − t j )dxdydt

≈
i∑

j=1

[

p̂ j j

∫

[ti ,ti+1)

Kdv
j
(t − t j )dt

+ ω̂ti (exp{−β̂ti (ti − t j )} − exp{−β̂ti (ti+1 − t j )})
]
, (22)

where μ̂ti (x, y, t), ĝti , ω̂ti and β̂ti represent the estimated values by using the data
up to ti . We can then use approximate (22) to improve computational efficiency of
Equation (21).

Zhuang et al. (2002) suggested taking nup from 15 to 100 for estimating back-
ground rate of self-exciting process for modeling earthquakes. Mohler et al. (2011)
used the same parameter interval for estimating the space background rate of self-
exciting model of crimes and suggested taking nv

p from 15 to 100. Fox et al.
(2016a) used the fixed ε = 0.02 and chosen nup = 50 by minimizing the root-
mean-square error (RMSE) of the estimates over 200 simulated realizations of a
specified ETASmodel for nup ∈ {10, 15, . . . , 95, 100}. Based on Zhuang et al. (2002),
Mohler et al. (2011) and Fox et al. (2016a), we set nup, n

v
p ∈ {5, 10, . . . , 100} and

ε1, ε2 ∈ {0.005, 0.01, . . . , 0.05}.
Note: (4) The above method is also used for choosing the optimal bin width of the
histogram estimators. We choose the optimal numbers of space bin over each edge of
S, named nS1 and nS2, and the optimal number of time bin over D, named nD , instead
of choosing the width of the histogram. And we set nS1, nS2, nD ∈ {5, 6, . . . , 20}.
Furthermore, there are two cases, both of which lead to λ̂ti (xi+1, yi+1, ti+1) = 0.
Firstly, if point (xi+1, yi+1, ti+1) lies in the kth space bin and there is no other points
in this bin, we set λ̂ti (xi+1, yi+1, ti+1) = 10−15. Secondly, if the first case does not
happen and points (xi , yi , ti ) and (xi+1, yi+1, ti+1) lie in the kth and the k + 1th time
bins, respectively, we let the kth time bin, (tk−1, tk], be (tk−1, ti+1]. In fact, in order
to improve the estimation accuracy of the kth time bin, we always use (tk−1, ti+1] as
the kth time bin.

3.4 Model diagnostics

There are many model diagnostics for testing self-exciting point process models
(Schoenberg 2003; Ogata et al. 2003; Bray and Schoenberg 2013; Bray et al. 2014).
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The residual analysis with thinningmethod proposed in Schoenberg (2003) is a simple
and efficient model diagnosis method. The thinning method used the property that any
process characterized by its conditional intensity process may be thinned to obtain a
homogeneous Poisson process (Ogata 1981). The following procedure is a standard
thinning algorithm comes from Schoenberg (2003):

(1) Define b = inf(xi ,yi ,ti ) λ̂(xi , yi , ti );
(2) For each event i in the observed process, calculate the quantity pi = b

λ̂(xi ,yi ,ti )
;

(3) Retain event i with probability pi .

Clements et al. (2012) considered using “super-thinning” method to ensure there
are enough points remained when b is small. Choosing a rate κ such that b <

κ < supx,y,t λ(x, y, t), and thinning with probabilities pi = min{ κ
λ(xi ,yi ,ti )

, 1}.
Then by adding a simulated inhomogeneous Poisson process with intensity max{κ −
λ(x, y, t), 0} to the thinned process. The sum process will be a homogeneous process
with rate κ when the estimated intensity λ̂(x, y, t) is correct. The parameter κ is actu-
ally a tuning parameter that needs to be chosen in a way that optimizes the power of
formal tests of homogeneity of the residuals (Clements et al. 2012). We follow the
example of Clements et al. (2012) and choose

κ = 1

|S||D|
∫ ∫ ∫

S×D
λ̂(s, t)dsdt,

where |S| is the area of the space region S and |D| is the length of the time interval D.
For the thinned process, one can use Ripley’s K -function (Ripley 1977), which

calculates the proportion of events per unit area which are within a given distance, to
make model diagnostics. This will detects if the thinned process still has clustering not
account by the model (Schoenberg 2003; Clements et al. 2012). The most commonly
used K -function with edge-corrected estimator is given as follows (Ripley 1977):

K̂ (d) = |S|n−2
∑

i

∑

j 
=i

w(si , s j )−11{di j<d}, (23)

where |S| is the area of the observation region, di j is the distance between the i th and
j th points, and the weight function, w(si , s j ) is the proportion of the circumference
of that circle that falls in the study area. Alternatively, the L-function, estimated by

L(d) =
√

K̂ (d)
π

, has more stable variance than Ripley’s K -function. Thus, we use
L-function to make model diagnostics. Note that it takes a lot of time to calculate
L-function for large κ . Therefore, we further thinned the sum process with probability
κ̃
κ
. The following algorithm gives the diagnostics procedure based on Monte Carlo

method.

Algorithm 2: Diagnostics Algorithm.
Beginwith the parameter κ , the estimated intensity λ̂(s, t), the number of simulation

M and the discrete d.

Step 1. Using “super-thinning” method to obtain the sum process, and thinned the
sum process with probability κ̃

κ
.
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Step 2. Calculate the L-functions.
Step 3. Repeat Step 1 and 2 M times.
Step 4. Calculate the empirical mean of L-functions.
Step 5. Simulate homogeneous Poisson process with intensity κ̃ over the observed
region S and repeat Step 2 M times.
Step 6. Calculate the empirical 95% bounds for L-functions corresponding to M
realizations of the homogeneous Poisson process.

3.5 Simulationmethod

Here, we introduce the simple and efficient simulation method proposed by Zhuang
et al. (2004). The original simulation method is modified to generate space–time
points over region S × D. For a thorough introduction to simulation methods and
the rationality of the thinning method, see Ogata (1981), Moller and Waagepetersen
(2003) and Daley and Vere-Jones (2003).

Algorithm 3: Simulation Algorithm.
Begin with estimated intensity processes μ̂(x, y, t) and ĝ(x, y, t), and calculate

m̂ = ∫

R2

∫

R
ĝ(x, y, t)dtdxdy.

Step 1. Generate events from the background process with the intensity function
μ̂(x, y, t) over region S × D by using a thinning method for nonhomogeneous
space–time Poisson point processes (e.g., Ogata 1998). Call this catalog of events
G(0).
Step 2. Let l = 0.
Step 3. For each event i in G(l), simulate its N (i) offspring where N (i) ∼
Poisson(m̂), and the offspring’s location and time are generated from the trigger-
ing intensity function ĝ, normalized as a probability density. Call these offspring
O(l)
i .

Step 4. Let G(l+1) = ⋃
i∈G(l) O

(l)
i .

Step 5. If G(l) is not empty, set l = l + 1 and return to Step 3. Otherwise, return
G = ⋃l

j=0 G
( j).

Step 6. Disregard the event in G falling in (R2 × R)\(S × D), and keep the rest
as the final set of simulated events.

4 Numerical experiments

4.1 Experiment 1

4.1.1 Artificial data 1

In this experiment, the artificial datasets generated from conditional intensity process
(24) with data size around 1× 104 are used to verify the performance of the proposed
method. The artificial conditional intensity process (24) is modified from Mohler
et al. (2011) to obtain the space–time self-exciting point process with inhomogeneous
background process.
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Fig. 1 Experiment 1: error L2 (top left) and Q-function (top right) at the k + 1th iteration for histogram
estimators. Error L2 (bottom left) and Q-function (bottom right) at the k + 1th iteration for variable
bandwidth KDE

⎧
⎪⎪⎨

⎪⎪⎩

μ(x, y, t) = μ(cos(t/120)+2)
2πσ 2

μ
exp

(

− (x−c)2

2σ 2
μ

− (y−d)2

2σ 2
μ

)

,

g(x, y, t) = θω
2πσ1σ2

exp

(

− x2

2σ 2
1

− y2

2σ 2
2

− ωt

)

,

(24)

where μ = 5.71, σμ = 4.5, c = 10, d = 10, θ = 0.2, ω = 0.1, σ1 = 0.01 and
σ2 = 0.1. The simulation is carried out using Algorithm 3 in an 20 by 20 region of
space. In order to have a realization of the point process at steady state, the first and
last 2000 points are disregarded in each simulation.

4.1.2 Fitting artificial data 1

We fit the artificial datasets generated from (24) to the conditional intensity (8). The
variable bandwidth KDEs depend on the smoothing parameters nup, n

v
p and threshold

values ε1, ε2. Here we choose nup = 35, nv
p = 55, ε1 = 0.02, and ε2 = 0.04, since

these values give the largest average CV (21) of ten artificial datasets for nup, n
v
p ∈

{5, 10, . . . , 100} and ε1, ε2 ∈ {0.005, 0.01, . . . , 0.05}. For efficiently and effectively
calculating CV (nup, n

v
p, ε1, ε2), we set ntra = [ 19n20 ] ≈ 500. The results of (nup, n

v
p) ∈

{(15, 50), (15, 100), (50, 50)} are also shown for comparison. Meanwhile, for the
histogram estimators, we choose nS1 = 17, nS2 = 16, nD = 7 based on the average
CV (21) of ten artificial datasets for nS1, nS2, nD ∈ {5, 6, . . . , 20}. We also show
other three cases where the space–time observation window S × D are subdivided
into 5 × 5 × 5, 10 × 10 × 10, 15 × 15 × 15 cells, respectively.

In Fig. 1, we plot the errors L2 (seeAlgorithm 1) and the Q-function at the k+1th
iteration. Here, we observe that, from the left of Fig. 1, the errors converge quickly for
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Fig. 2 Experiment 1: estimated parameter values of σx , σy , θ and ω (top) at the k + 1th iteration for
histogram estimators. Estimated parameter values of σx , σy , θ and ω (bottom) at the k + 1th iteration for
variable bandwidth KDE method

the first 10 iterations and then a fluctuation appears before the errors stabilize. From
the right of Fig. 1, it can be seen that the Q-functions converge to some maximums.
Both histogram estimators and variable bandwidth KDE have similar results except
that the fluctuations appeared in the errors of variable bandwidth KDE are smaller
than that of histogram estimators.

In Fig. 2, we plot the estimated parameter values of triggering intensity function
at the k + 1th iteration. From Fig. 2, we can see that the fluctuations appeared in
the estimated parameter values of variable bandwidth KDE are smaller than that of
histogram estimators.We also observe that the estimated σx converges to the true value
without fluctuation. Furthermore, we observe that, from Figs. 1 and 2, the fluctuations
of the errors and estimated θ and ω emerge when the estimated σx and σy are about
to get to the true values, respectively. In Table 1, we list the exact parameter values,
the estimates averaged over 100 times fitting results with 100 datasets generated from
(24) and the standard errors calculated from the above fitting results. Here we observe
that both the estimated parameter values are close to the exact parameter values.

In Fig. 3, we plot the estimated space marginals. It can be seen, from the top right of
Fig. 3, that the space background intensity is averaged within each bin for histogram
estimators. We observe that the estimated space marginal u(200)(t) for variable band-
width KDE is consistent with the true space marginal. In Fig. 4, we plot the estimated
time marginals. From the top of Fig. 4, we can see that the estimated time background
intensity is piecewise constant for histogram estimators. From the bottom of Fig. 4,
we observe that there is a boundary issue in the estimated space marginal α̂v(200)(t)
for variable bandwidth KDE.

4.1.3 Model diagnostics

Now we compare the model diagnostics of histogram estimators and variable band-
width KDE method using residual introduced in Sect. 3.2. In this paper, we set
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Table 1 Experiment 1: Estimates of parameters σx , σy , θ, ω

Tuning parameter Parameters σ̂x σ̂y θ̂ ω̂

5 × 5 × 5 Mean .0104 .1032 .2033 .1033

Standard errors (×10−3) .1293 1.1153 1.5234 1.6128

Bias in % of true value 4.2842% 3.2060% 1.6421% 3.2934%

10 × 10 × 10 Mean .0102 .0950 .2014 .1057

Standard errors (×10−3) .1036 1.0387 1.8522 1.4995

Bias in % of true value 2.0692% −5.0004% .7309% 5.6903%

15 × 15 × 15 Mean .0097 .0994 .1856 .1088

Standard errors (×10−3) .1193 1.2388 1.7008 1.5152

Bias in % of true value −2.6319% .6203% −7.1734% 8.8194%

17 × 16 × 7 (optimal) Mean .0099 .0970 .1924 .1095

Standard errors (×10−3) .1040 1.2291 1.8836 1.7298

Bias in % of true value − .7115% −2.9660% −3.7913% 9.5335%

Variable bandwidth KDE

(15, 50) Mean .0098 .1009 .1980 .1017

Standard errors (×10−3) .1307 1.1943 1.6900 1.6342

Bias in % of true value −1.7617% .8657% −1.0197% 1.6863%

(15, 100) Mean .0095 .1007 .1973 .1050

Standard errors (×10−3) .1093 1.2538 1.7782 1.3919

Bias in % of true value −5.0109% .7321% −1.3451% 4.9627%

(50, 50) Mean .0098 .0975 .1947 .0995

Standard errors (×10−3) .1206 1.5928 1.5910 1.2666

Bias in % of true value −2.0224% −2.4609% −2.6405% − .5022%

(35, 55) (optimal) Mean .0100 .0994 .1983 .1066

Standard errors (×10−3) .1375 1.3636 1.9092 1.2819

Bias in % of true value − .4038% − .5755% .8434% 6.5963%

κ̃ = 1500. In Fig. 5, we plot the estimated centered L-function, L(d) − d, and
95% confidence bounds of homogeneous Poisson processes. For a homogeneous
Poisson process, L(d) − d = 0, so departures from zero indicates inhomogene-
ity. It can be seen that the thinned residuals for variable bandwidth KDE method
are evidently homogeneous, as seen in the bottom of Fig. 5 by the estimated cen-
tered L-functions, which are entirely within the 95% bounds. On the contrary, we
observe that the thinned residuals for histogram estimators are inhomogeneous for
5 × 5 × 5 cells, as seen in the top left of Fig. 5 by the estimated centered L-function,
which is entirely outside the 95% bounds. In addition, from Fig. 5, we can observe
that the estimated centered L-functions departure from zero for the other results
of histogram estimators. The shortcomings of histogram estimators introduced in
Sect. 1 lead to the inaccurate estimates of background intensity function. Further-
more, we study other three cases where κ̃ = 1000, 2000 and 3000 and obtain similar
results.
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Fig. 3 Experiment 1: actual space marginals (top left). Estimated space marginals (top right) for histogram
estimators. Estimated space marginals (bottom right) for variable bandwidth KDE

Fig. 4 Experiment 1: estimated (solid blue) and actual (solid red) time marginals (top) for histogram
estimators. Estimated (solid blue) and actual (solid red) time marginals (bottom) for variable bandwidth
KDE method
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Fig. 5 Experiment 1: thinning residuals for histogram estimators (top) and variable bandwidth KDEmethod
(bottom). Lower red: 5% bounds of the estimated centered L-function, L(d)− d, of homogeneous Poisson
process; Upper red: 95% bounds of the estimated centered L-function of homogeneous Poisson process;
Lower green: 5% bounds of the estimated centered L-function of the thinning residuals; Upper green: 95%
bounds of the estimated centered L-function of the thinning residuals; Middle black: the empirical mean of
the estimated centered L-function of the thinning residuals; Gray region: confidence region of the estimated
centered L-function of the thinning residuals

4.2 Experiment 2

4.2.1 Artificial data 2

Based on Brix and Diggle (2001), Diggle (2006) and Diggle et al. (2013), we propose
the following conditional intensity process (25). The artificial datasets generated from
(25) with data size around 1× 104 are used to verify the performance of the proposed
method.

⎧
⎪⎨

⎪⎩

μ(x, y, t) = μ(cos(t/120)+2)
2πσ 2

μ
exp(G(s)),

g(x, y, t) = θω
2πσxσy

exp

(

− x2

2σ 2
x

− y2

2σ 2
y

− ωt

)

,
(25)

where s = (x, y), G(s) is a spatial Gaussian process with expectation E[G(s)] =
− (x−c)2

2σ 2
μ

− (y−d)2

2σ 2
μ

, variance Var{G(s)} = 0.5 and exponential correlation function,

ρ(s1 − s2) = Var{G(s)} exp(−||s1 − s2||2/12), and the other parameters are the same
as the parameters used in (24). The simulation are carried out using Algorithm 3 in
the [0, 20] × [0, 20] × (0, 2500] space–time region. The first and last 2000 points are
disregarded in each simulation.

4.2.2 Fitting artificial data 2

As the experiment 1, we choose nup = 20, nv
p = 90, ε1 = 0.015, and ε2 = 0.045 for

the variable bandwidth KDE and nS1 = 17, nS2 = 17, nD = 11 for the histogram
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Fig. 6 Experiment 2: error L2 (top left) and Q-function (top right) at the k + 1th iteration for histogram
estimators. Error L2 (bottom left) and Q-function (bottom right) at the k + 1th iteration for variable
bandwidth KDE

estimators. The results of (nup, n
v
p) ∈ {(15, 50), (15, 100), (50, 50)} for variable band-

width KDE and 5× 5× 5, 10× 10× 10, 15× 15× 15 cells for histogram estimators
are also shown for comparison.

Figure 6 shows the errors L2 and the Q-function at the k + 1th iteration. It can
be seen that, from the left of Fig. 6, the errors also converge quickly for the first 10
iterations and then a fluctuation appears before the errors stabilize. Meanwhile the
Q-functions converge to a maximum. These results are similar to the results of Fig. 1.
Figure 7 shows the estimated parameter values of triggering intensity function at the
k + 1th iteration. Here we obtain the similar results except when the number of cells
m is small. That is, the estimated parameters θ, ω, σx and σy departure from the true
values in the cases of 5 × 5 × 5 cells and 10 × 10 × 10 cells. Table 2 lists the exact
parameter values, the estimates averagedover 100 timesfitting resultswith 100datasets
generated from (25) and the standard errors calculated from the above fitting results.
We eliminate the results of histogram estimators for the case of 5×5×5 cells because
of the poor performance. From Table 2, it can be seen that the estimated parameter
values are close to the exact parameter values. Figures 8 and 9 show the estimated
space and time marginals, respectively. We observe that the results are similar to the
results shown in Figs. 3 and 4 of experiment 1.

4.2.3 Model diagnostics

The model diagnostics of histogram estimators and variable bandwidth KDE using
residual are shown in Fig. 10. We observe that the thinned residuals for variable
bandwidth KDE are evidently homogeneous as same as the results shown in Fig. 5.
On the contrary, we observe that the thinned residuals for histogram estimators are
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Fig. 7 Experiment 2: estimated parameter values of σx , σy , θ and ω (top) at the k + 1th iteration for
histogram estimators. Estimated parameter values of σx , σy , θ and ω (bottom) at the k + 1th iteration for
variable bandwidth KDE method

evidently inhomogeneous for 5 × 5 × 5 cells, as seen in the top left of Fig. 10 by the
estimated centered L-function, and the estimated centered L-function for the case of
10 × 10 × 10 cells departures from zero. Different from the results of the cases of
15 × 15 × 15 cells and the optimal cells for histogram estimators shown in Fig. 5,
the thinned residuals are homogeneous. Which means the histogram estimators can
obtain well performance for some cases with a proper selection of the number of
bin.

5 Discussion

Wepresent a semi-parametricmodel based on the variable bandwidthKDE for learning
the background intensity function of a space–time self-exciting point process model
given the space–time observations. We expand the semi-parametric methods by incor-
porating the inhomogeneous background process into the method. The advantages
of this method compared to other semi-parametric methods are substantial for the
case of estimating background intensity function, in terms of robustness and accu-
racy. The results in Sect. 4 demonstrate that the proposed estimation method based
on variable bandwidth KDE and EM algorithm performs remarkably well at esti-
mating semi-parametric space–time self-exciting process models. Specifically, by
repeatedly simulating and re-estimating the parametric models (24) and (25), we
show the bias and variance of the estimated semi-parametric model approximate
zero, and using the residual analysis as the model diagnostic, we assess the good-
of-fit of the estimated semi-parametric. The results show that the thinned residuals
for variable bandwidth KDE method are evidently homogeneous, i.e., the estimated
centered L-function is entirely within the 95% bounds. On the contrary, the histogram
estimators can be biased when the background process is inhomogeneous in some
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Table 2 Experiment 2: Estimates of parameters σx , σy , θ, ω

Tuning parameter Parameters σ̂x σ̂y θ̂ ω̂

True values .0100 .1000 .2000 .1000

Histogram estimators

10 × 10 × 10 Mean .0349 .1549 .2685 .0696

Standard errors (×10−3) .5446 3.1166 3.0901 1.2592

Bias in % of true value 249.1692% 54.9977% 34.2650% −30.3765%

15 × 15 × 15 Mean .0105 .1001 .1897 .0954

Standard errors (×10−3) 0.1802 1.4712 2.2452 2.0443

Bias in % of true value −5.0002% 0.1041% −5.1531% −4.6041%

17 × 17 × 11 (optimal) Mean .0103 .0951 .1869 .0965

Standard errors (×10−3) .1512 1.2798 2.5345 1.6937

Bias in % of true value 3.0561% −4.8722% −6.5151% −3.4988%

Variable bandwidth KDE

(15, 50) Mean .0102 .0954 .1862 .0979

Standard errors (×10−3) .1526 1.7150 2.5225 2.4047

Bias in % of true value 2.3748% −4.5992% −6.9013% −2.0838%

(15, 100) Mean .0102 .0950 .1842 .0992

Standard errors (×10−3) .1302 1.4068 2.4145 2.2439

Bias in % of true value 1.8187% −4.9698% −7.9062% − .7883%

(50, 50) Mean .0101 .1002 .2023 .1046

Standard errors (×10−3) .1641 .9335 1.4597 1.5822

Bias in % of true value 1.0627% .1956% 1.1424% 4.6499%

(20, 90) (optimal) Mean .0103 .0953 .1863 .0974

Standard errors (×10−3) .1639 1.7796 2.6050 2.5500

Bias in % of true value 2.5507% −4.7130% −6.8283% −2.5275%

cases such as experiment 1. Specifically, the thinned residuals for histogram esti-
mators are evidently inhomogeneous when the number of the bin is small, i.e., the
estimated centered L-function is entirely outside the 95% bounds. The assumption of
constancy within each bin leads to the inaccurate estimates of background intensity
function.

The number of cellsm influences the estimation results of the histogram estimators.
We further study the estimation of the partition from 20×20×20 cells to 25×25×25
cells (the results are not shown in this paper), and we find that the EM-type algorithm
based on histogram estimators may fail to recover the background and triggering
intensity functions. The reason is that, in each small bin, the estimated histogram
estimators for background intensity function is too big. In addition, we note that
the number of partition on any dimension used in Fox et al. (2016a) was less than
25.

The limited number of partition makes it impossible for us to improve the accuracy
of the estimation of background intensity function based on histogram estimators.
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Fig. 8 Experiment 2: actual space marginals (top left). Estimated space marginals (top right) for histogram
estimators. Estimated space marginals (bottom right) for variable bandwidth KDE method

Fig. 9 Experiment 2: estimated (solid blue) and actual (solid red) time marginals (top) for histogram
estimators. Estimated (solid blue) and actual (solid red) time marginals (bottom) for variable bandwidth
KDE method

The variable bandwidth KDE discussed in this paper can serve as an estimation
method for estimating the semi-parametric space–time self-exciting point process
model.
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Fig. 10 Experiment 2: thinning residuals for histogram estimators (top) and variable bandwidth KDE
method (bottom). Lower red: 5% bounds of the estimated centered L-function, L(d) − d, of homogeneous
Poisson process; Upper red: 95% bounds of the estimated centered L-function of homogeneous Poisson
process; Lower green: 5% bounds of the estimated centered L-function of the thinning residuals; Upper
green: 95% bounds of the estimated centered L-function of the thinning residuals; Middle black: the
empirical mean of the estimated centered L-function of the thinning residuals; Gray region: confidence
region of the estimated centered L-function of the thinning residuals
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