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Abstract
Markov models provide a good approximation to probabilities associated with many
categorical time series, and thus they are applied extensively. However, a major draw-
back associatedwith them is that the number ofmodel parameters grows exponentially
in the order of the model, and thus only very low-order models are considered in appli-
cations. Another drawback is lack of flexibility, in that Markov models give relatively
few choices for the number of model parameters. Sparse Markov models are Markov
models with conditioning histories that are grouped into classes such that the condi-
tional probability distribution for members of each class is constant. The model gives
a better handling of the trade-off between bias associated with having too few model
parameters and variance from having too many. In this paper, methodology for effi-
cient computation of pattern distributions through Markov chains with minimal state
spaces is extended to the sparse Markov framework.

Keywords Auxiliary Markov chain · Pattern distribution · Sparse Markov model ·
Variable length Markov chain

1 Introduction

Mining data for exceptional patterns can lead to important discoveries, such as sites
on DNA sequences that are recognized by various agents, locations of an outbreak
of an epidemic, changes in a production process, and similar segments of biological
sequences. In using a pattern statistic for detection of special segments, one models
the data sequence under a null hypothesis that characterizes what is typical, and uses
the model to quantify exceptionality of the statistic (through the associated p value).
Pattern statistics and their distributions may also be used to summarize important
properties of a sequence. A method is therefore needed to obtain their distributions.
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Whereas Monte Carlo methods may be used to approximate probabilities, large num-
bers of replicates are typically required for accurate results, especially for eventswhose
occurrence is rare.More accuratemethods that are also less computationally expensive
are desired.

A simple but powerful approach for computing exact distributions of pattern statis-
tics in an mth-order discrete Markovian sequence X ≡ X1, . . . , Xn is to set up a
correspondence between events related to the statistic of interest and events related to
an auxiliaryMarkov chain (AMC)Y ≡ Y1, . . . ,Yn . This allows using basic properties
of Markov chains to compute the desired probabilities. The approach was forwarded
in Brookner (1966) and became popular in more recent years with the work of Fu and
Koutras (1994) and Koutras and Alexandrou (1995). In the present paper, the main
focus is on extending Markov chain-based methodology for computing distributions
of pattern statistics in categorical time series tomore flexible and parsimoniousmodels
than are supplied by higher-order Markov chains.

1.1 Variable lengthMarkov chains and sparse Markovmodels

Analysis of a categorical time series X taking values in a finite set � is facilitated by
a model that captures the statistical properties of the sequence, while being simple
enough so that accurate statistical analysis is feasible. In many cases, the analysis of
such time series has been simplified by the sequence having a short memory orMarkov
property in the sense that the conditional probability of the current observation given
the last m data points does not change by conditioning further into the past, i.e., for
all t ≥ m + 1,

Pr[Xt = xt |Xt−1 = xt−1, . . . , X1 = x1]
= Pr[Xt = xt |Xt−1 = xt−1, . . . , Xt−m = xt−m]. (1)

Sequences satisfying (1) are said to bemth-orderMarkovian. Anmth-orderMarkovian
sequence X may be embedded in a first-order Markov chain, with states that are the
m-tuples x̃t ≡ (xt−m+1, . . . , xt ) of �m , an initial distribution π over m-tuples and a
|�|m × |�|m transition probability matrix T that has |�| nonzero elements per row.
(| · | denotes set cardinality or vector length, as appropriate.)

Markovmodels provide a good approximation to probabilities associatedwithmany
categorical time series, and thus, they are applied extensively. However, a major draw-
back associated with them is that the number of model parameters needed to specify
transition probabilities is |�|m(|�| − 1). Therefore, only very low-order models are
typically used in applications. Another drawback, as pointed out in Bühlmann and
Wyner (1999), is lack of flexibility, in that Markov models give relatively few choices
for the number of model parameters. For example, if |�| = 4, the number of parame-
ters is 3× 4m , so that for m ∈ {0, 1, 2, 3, 4, 5, 6} the number of parameters lies in the
set {3, 12, 48, 192, 768, 3072, 12288}, but can take on no values in between. It would
be useful to have a class of models that has more flexibility while being more parsimo-
nious in terms of the number of parameters, allowing a better trade-off of the bias that
arises from using models of an order lower than the true value, and variance that arises
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from estimating many transition probabilities. Variable length Markov chains as well
as the more general sparse Markov models have those properties. These models are
defined next.

Definition 1 [Sparse Markov Model] (Jääskinen et al. 2014). Let X be a Markovian
sequence of finite order m transformed into a first-order Markov chain. Define p·|k to
be a conditional probability distribution given context k and let � = {γ1, . . . , γη} be a
partition of�m into probability equivalence classes such that the transition probability
vectors satisfy p·|i = p·| j for all pairs of conditioning contexts {i, j} ∈ γl , l =
1, . . . , η. Also let P be the corresponding set of η conditional probability distributions
on �m . {�, P} is called a sparse Markov model (SMM) (of order, or maximal context
depth, m).

Remark 1 In essence, an SMM of order m is an mth-order Markovian sequence for
which parameters associated with equal conditional distributions are lumped.

Definition 2 [Variable lengthMarkov chain] A variable lengthMarkov chain (VLMC)
is a sparse Markov model such that for every l = 1, . . . , η, each of the m-tuples of γl
has a common suffix (see the proof in Jääskinen et al. 2014).

If lγ j denotes the length of the longest common suffix of strings of probability equiv-
alence class γ j , then a VLMC has lγ j > 0 ∀ j .

In VLMC, the length of the context needed for conditional probabilities depends
on the context itself. VLMCs were introduced in Rissanen (1983), who, in the setting
of data compression, gave a “context algorithm” that generates a context tree repre-
senting segments of variable length needed for conditioning. The name derives from
Bühlmann andWyner (1999), who discussed themodel from amore statistical point of
view.VLMCs have L(|�|−1) parameters for transition probabilities, where L denotes
the number of leaf nodes in the corresponding context tree. That L ∈ {1, . . . , |�|m}
highlights the flexibility of the model. VLMCs are also called Markov sources (Rissa-
nen 1986; Roos and Yu 2009), finite-memory sources (Weinberger et al. 1992, 1995),
variable-orderMarkov (VOM)models (Begleiter et al. 2004), probabilistic suffix trees
(Gabadinho and Ritschard 2016), and probabilistic suffix automata (Ron et al. 1996).
In addition to information theory, themodel has been studied by statisticians, computer
scientists, and computational biologists, among others, and applied to statistical appli-
cations such as classification (Shmilovici and Ben-gal 2007), prediction (Begleiter
et al. 2004), statistical process control (Ben-gal et al. 2003), linguistics (Galves et al.
2012; Gallo and Leonardi 2015; Belloni and Oliveira 2017), spam filtering (Bratko
et al. 2006), web navigation (Borges and Levene 2007), and in general as a tool for
exploratory data analysis of categorical time series, including DNA nucleotides and
other biological sequences (Browning 2006; Bercovici et al. 2012), binary times series
from computer science or information theory (Willems et al. 1995), or text (Ron et al.
1996).

The more general model has been considered in very recent years under the names
minimal Markov models (García and González-López 2010), sparse Markov chains
(Jääskinen et al. 2014), sparse Markov models (Xiong et al. 2016), and partition
Markov models (García and González-López 2017; Fernández et al. 2018). Whereas

123



898 D. E. K. Martin

Fig. 1 Context tree
corresponding to the variable
length Markov chain of Example
1.1. Leaf nodes corresponding to
the contexts needed for
conditioning have a bold outline

VLMC have the restriction that grouped contexts must have a common suffix, by
eliminating that restriction SMM allow a wider variety of models.

Example 1 Consider a sparse Markov model of order m = 3, with partition � =
{γ1, . . . , γ4} = {{000, 100, 010, 110}, {011, 111}, {001}, {101}} for binary X. The
model is a VLMC with context tree shown in Fig. 1. Here there are L = 4 contexts
corresponding to the classes of � and represented by the leaf nodes of the graph
[instead of the eight possible 3-tuples representing (xt−3, xt−2, xt−1)]. The leaf nodes
give the common suffixes of 3-tuples in the various classes.

Example 2 LetX be a VLMC of orderm = 4, with� = {0, 1} and context tree shown
in Fig. 2. The five contexts are represented by the leaf nodes of the graph. The model
corresponds to the partition � of 4-tuples into the classes

� = {{0000, 0010, 0100, 0110, 1000, 1010, 1100, 1110}, {0001, 0101, 1001, 1101},
{0011, 1011}, {0111}, {1111}}.

These classes correspond to the number of consecutive 1’s at the end of strings. For
an mth-order model of this form, the number of leaf nodes in the VLMC would be
L = m + 1 as opposed to 2m , a significant reduction in the number of parameters and
associated contexts.

Example 3 Let X be a second-order Markovian sequence with � = {A,C,G, T }, for
which the conditional distribution is constant over the classes
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Fig. 2 Context tree of the
variable length Markov chain of
Example 1.2. Nodes with a bold
outline are the contexts of the
model and correspond to the
number of 1’s at the end of the
sequence

� = {{AA, AC, AG, AT }, {CA,CC,CG,CT }, {GA,GC,GG,GT },
{T A, TC, TG, T T }}.

The classes γl , l = 1, . . . , 4 are the partition of the set of 2-tuples into those with a
fixed value of Xt−2 and an arbitrary value of Xt−1. Since the elements of the γl do
not have a common suffix, the model may not be represented as the context tree of a
VLMC, but is a sparse Markov model.

In the next section, as background we give highlights of previous work on the
computation of distributions of pattern statistics in mth-order Markovian sequences.
Section 3 gives the desired extension to SMM, with an application to spaced seed
coverage being presented in Sect. 4. The final section concludes the paper.

2 Distributions of pattern statistics in higher-order Markovian
sequences

A pattern is a finite string of symbols from �. For pattern w = (w1, . . . , w|w|),
u = (w1, . . . , wh), 1 ≤ h ≤ |w| is a prefix of w (a proper prefix if h < |w|), and
v = (w j , . . . , w|w|), 1 ≤ j ≤ |w| is a suffix of w (a proper suffix if j > 1). Let W be
a collection of patterns that occur in X and Z a pattern statistic related to W , taking
values z in a finite set �. For convenience, it will be assumed that all patterns of W
have length greater than m; otherwise, minor adjustments can be made. Also, u · v

denotes the concatenation of strings u and v. For example, if u = 11 and v = 011,
then u · v = 11011. We have, for z ∈ �,

123



900 D. E. K. Martin

Pr[Z = z] =
∑

x:Z(x)=z

Pr[X = x], (2)

i.e., Pr[Z = z] is the sum of probabilities of sequences x that are mapped by Z
into z. However, examining each of the |�|n possible sequences x to carry out the
computation is typically not feasible unless it is carried out in an efficient manner.

Using an auxiliary Markov chain (AMC) for computation has provided a way to
make the computation feasible whenX ismth-order Markovian, which is the assump-
tion of this section. In Markov chain-based computation, an AMC Y is set up so that
Pr[Z = z] = Pr[Yn ∈ ϒz], where {ϒz , z ∈ �} forms a partition of the state space ϒ

ofY. Let αm denote the initial distribution ofY at timem and
 its transition probabil-
ity matrix (which are determined from initial distribution π and transition probability
matrix T forX). Then row vectors αt , t = m, . . . , n holding probabilities for the AMC
lying in the states of ϒ may be computed through αn = αm
n−m , which, beginning
with αm , may be obtained recursively using αt+1 = αt
, t = m,m + 1, . . . , n − 1.
Pr[Z = z] may then be obtained by extracting the probabilities associated with ϒz

from αn .
BecauseY is to be a Markov chain, its states ϒ must include sufficient information

so that the transition probabilities of 
 may be computed (the last m observations are
needed for mth-order Markovian X), and states must contain information concerning
progress toward observing the patterns of interest. Note that the current value of the
statistic Z must be kept in some form, though not necessarily in states of ϒ . While
maintaining the Markov property for Y can render |ϒ | to be large, since the order of

 is |ϒ |, keeping |ϒ | small is important for computation, especially for the complex
pattern types and pattern lengths that arise in practice.An example pattern type follows.

Example 4 Spaced seeds (Ma et al. 2002) are used in an initial filtering step to help
with the trade-off between attempting too many costly DNA sequence alignments
and missing similar DNA segments by not aligning them. A spaced seed is a pattern
S = s1, . . . , sk from {1, ∗}, with s1 = sk = 1, where 1 indicates a match position and
* a wildcard position that does not have to match. LetX be the binary sequence formed
by aligning two DNA segments of length n and assigning a value X j = 1 if the j th
position of the segments match, and 0 otherwise. Spaced seed S hits or occurs in X at
position ν if for j = 1, . . . , k, Xν−k+ j = 1 whenever s j = 1. In an occurrence, a 1 at
position Xν−k+ j corresponding to s j = 1 is said to be covered.

In typical studies using spaced seeds (see, e.g., Ma et al. 2002; Keich et al. 2004;
Buhler et al. 2005), a full alignment is triggered when the seed hits in X. The proba-
bility of a single hit (the seed’s sensitivity) helps to determine a seed that differentiates
between random and meaningful similar segments. Computing a spaced seed’s sen-
sitivity is relatively easy. Spaced seed coverage, the number of covered positions in
X, may also be used as a criterion to trigger a full alignment based on multiple hits in
a region. However, overlapping and non-overlapping seed hits must be distinguished
when setting up ϒ because the update to coverage on a seed hit depends on which
positions were previously covered. The many combinations of prefixes of patterns
representing overlapping spaced seed hits and positions that may be covered (or not)
can render the number of states of an AMC to be extremely large, and the computation
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to be much more difficult than for sensitivity. Thus, there are relatively few studies
where seed coverage is used as a criterion (see Benson andMak 2009; Noé andMartin
2014; Noé 2017; Martin and Noé 2017; Martin 2018). The coverage of spaced seeds
will be revisited in Sect. 4. The efficient setup of ϒ to handle such applications is
discussed next.

2.1 Setup of AMC states

The state space ϒ of AMC Y used in Fu and Koutras (1994) consisted of the same
set of pattern–progress strings for each value z of the pattern statistic, a setup that
can lead to an extremely large number of states. Koutras and Alexandrou (1995) and
Aston and Martin (2007) attempted to get past this by restricting ϒ to contain only
pattern–progress/m-tuple strings, while using another mechanism to keep track of the
value of statistic Z . Probabilitymatrices�t , t = m, . . . , n were used in the latter paper
instead of probability vectors αt , with the rows of the�t corresponding to values of Z ,
and the columns to pattern–progress/m-tuple strings (along with other information, if
necessary). However, for complex pattern statistics, |ϒ | can still be extremely large.

To help reduce |ϒ |, several researchers (see, e.g., Lladser 2007; Lladser et al. 2008;
Ribeca and Raineri 2008; Marshall and Rahmann 2008) applied computer science
theory related to minimizing a deterministic finite automaton (DFA) to minimize
|ϒ |. In that work, after forming a state space consisting of all m-tuples and pattern–
progress strings, an algorithm such as the Hopcroft (1971) algorithm was applied to
determine classes of states that are equivalent for computing the distribution of the
pattern statistic, with only one state representing each equivalence class being retained
inϒ . Equivalent statesq andq

′
(in the context of computing the distribution of a pattern

statistic) are such that concatenating an arbitrary string r to form q · r and q ′ · r gives
the same update in terms of both the probability and the value of the pattern statistic.
The equivalence of states q and q

′
will be denoted by q ∼ q

′
.

While the application of DFA minimization represents a tremendous breakthrough
in terms of setting up an AMC with a smaller state space, that approach suffers from
the need to first set up a large state space before applying a minimization algorithm to
reduce it. Nuel (2008) got around this problem by setting up a non-deterministic finite
automaton that greatly reduces the size of the original state space for patterns with
many wildcard positions before setting up a minimal DFA. Martin (2018) developed
a characterization of equivalent states so that extraneous ones may be deleted during
the process of forming the AMC state space. Thus, no extraneous states enter the state
space at any stage. The methodology of that paper for developing minimal state spaces
will be outlined next.

Let Q = Q̃ ∪ �m , where Q̃ consists of proper prefixes of patterns of W that are
of length at least m and �m denotes the set of all m-tuples. Q could correspond to ϒ ,
but that is not necessarily the case, as it could be that additional information is needed
in AMC states (as is the case with spaced seed coverage; see Example 4 and Sect. 4).
The longest proper suffix of a string q ∈ Q that is itself in Q is called the failure state
of q (Aho and Corasick 1975) and is denoted by f l(q). By definition, strings q ∈ �m

do not have failure states. Martin (2018) defined the failure sequence associated with
q to consist of q and its sequence of failure states of decreasing lengths:
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f sq = (
f sq,1, . . . , f sq,| f sq |

) ≡ (q, f l(q), f l( f l(q)), . . . , (q)m).

Here (q)l denotes the l-tuple at the end of q. Note that (q)m may or may not be a
pattern prefix. Also defined was

C̃q = {
v : ∃u ∈ f sq such that u · v = w ∈ W ; |v| < |w|}

∪ {v : ∃l such that 1 ≤ l < m and (q)l · v = w ∈ W } .

C̃q contains completion strings for prefix strings of f sq and suffixes of q of length
less than m that are pattern prefixes. The occurrence of strings of C̃q may or may not
require an update to the pattern statistic Z . (An example of when an occurrence of a
pattern does not require the update of the pattern statistic is as follows. Let Z be the
indicator of whether or not W occurs in a sequence. If W has already occurred, Z
remains 1 with any additional occurrences, and thus the statistic is not updated.) The
set of completion strings whose occurrence does require an update to Z is denoted by
Cq . Also, define the direct occurrence of a q ∈ Q̃ to be the occurrence of q · v, where
v is the completion string of q. The transition function for string q ∈ Q on symbol
x ∈ � is defined by δ(q, x) ≡ the longest suffix of q · x that is in Q. Thus either
δ(q, x) = q · x , or δ(q, x) = f l(q · x).

Martin (2018) proved two main theorems, along with a corollary to the second
one. The first theorem showed that failure states may be obtained using the transition
function δ, which helpedwith sequentially (over string lengths) obtaining failure states.
The second theorem, along with its corollary, gives necessary and sufficient conditions
for strings to be equivalent, so that equivalent stringsmay be determined and combined
during the setup of the state space ϒ .

Theorem 1 If q ∈ �m, f l(q · x) = (q · x)m. For q ∈ Q\�m, f l(q · x) = δ( f l(q), x).

Theorem 2 For mth-order Markovian sequenceX, q ∼ q
′
if and only if (q)m = (q

′
)m

and the updates to the statistic’s value are exactly the samewhen any string of Cq∪Cq ′
occurs.

Corollary 1 For statistics and pattern counting techniques such that the direct occur-
rence of q does not preclude updating the statistic on the occurrence of the strings
of C f lq , if | f sq | > 1 and | f sq ′ | > 1, q ∼ q

′
if and only if f l(q) ∼ f l(q

′
) and the

updates to the statistic are exactly the same on the direct occurrences of q and q
′
.

3 Distributions of pattern statistics in SMM

In this section, the methodology for computing distributions of pattern statistics in a
stationarymth-orderMarkovian sequenceXwill be extended to SMM. This will allow
not only the use of the advantages of SMM for flexible and parsimonious modeling of
categorical time series, but also the use of minimization techniques of Martin (2018)
to keep the AMC state space as small as possible.
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3.1 Setting up the state space7

A knowledge of the lastm observations at each time point gives sufficient information
so that conditional probabilities of a sparseMarkov model may be computed. It is then
tempting to define the AMC state space ϒ to be the state space used for themth-order
Markovian case. However, that approach would ignore the possibility that equivalent
m-tuples could be combined, resulting in a smaller state space. Thus as an initial step
to set upϒ , conditions for equivalentm-tuples are determined, followed by conditions
for longer strings. Those conditions are given next.

Theorem 3 Strings q and q
′
are equivalent if and only if they have the same updates

to Z on the occurrence of all strings of Cq ∪ Cq ′ , and in addition

(i) If |q| = |q ′ | = m, they lie in the same class γ j of � and when concatenating an
arbitrary string r satisfying |r | ∈ {1, . . . ,m − 1 − lγ j }, (q · r)m and (q

′ · r)m lie
in the same probability equivalence class γl for some l.

(ii) For |q| and |q ′ | > m, (q)m ∼ (q
′
)m.

Recall that lγ j ≥ 0 is the longest common suffix of m-tuples in probability equivalence
class γ j .

Proof The necessity of the conditions is clear, as updates to the statistic and conditional
probabilities upon concatenation of an arbitrary string must be exactly the same. To
show sufficiency, equality of updates to Z on the occurrence of completion strings
implies that all updates to Z must be the same, since the completion strings of Cq and
Cq ′ are the proper suffixes of q where the statistic is updated. Any other subsequent
pattern occurrences must have a pattern as a suffix of the concatenated string r . The
other conditions ensure equivalence of conditional probabilities beginning in the states
when concatenating arbitrary strings, as for |r | ≥ m − lγ j , the resulting strings after
concatenation will necessarily have the same suffix of length m. �

Corollary 2 For statistics and pattern counting techniques such that the direct occur-
rence of q (q

′
) does not preclude updating the statistic on the occurrence of the strings

of C f l(q) (C f l(q ′
)
), if |q| > m and |q ′ | > m, q ∼ q

′
if and only if f l(q) ∼ f l(q

′
) and

the updates to the statistic are exactly the same on the direct occurrences of q and q
′
.

Proof Let |q| > m and |q ′ | > m. If q ∼ q
′
, by Theorem 3, (q)m ∼ (q

′
)m and the

updates to the value of Z are exactly the samewhen any string ofCq∪Cq ′ occurs,which

includes q and q
′
. Since (q)m = ( f l(q))m and (q

′
)m = ( f l(q

′
))m , (q)m ∼ (q

′
)m

implies that ( f l(q))m ∼ ( f l(q
′
))m . Note also that f s f l(q) is a subsequence of f sq ,

and similarly for f s f l(q ′
)
and f s f l(q ′

)
. That, along with the assumption that we are

dealing with statistics and pattern counting techniques such that the direct occurrence
of q does not preclude updating the statistic on the direct occurrence of strings of
C f l(q) and C f l(q ′

)
implies that the updates to the statistic’s value are exactly the same

when any completion string of C f l(q) ∪ C f l(q ′
)
occurs, and thus f l(q) ∼ f l(q

′
).

Conversely, let f l(q) ∼ f l(q
′
) with the updates to Z being the same on direct hits

of q and q
′
. Then ( f l(q))m ∼ ( f l(q

′
))m , which implies that (q)m ∼ (q

′
)m using the
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same reasoning as above. Also since by assumption we have the same updates on the
occurrence of all elements of C f l(q) ∪ C f l(q ′

)
as well as on the direct occurrences of

q and q
′
, we have the same updates on all elements of Cq ∪ Cq ′ , so that q ∼ q

′
. �


Theorem 3 leads to the following algorithm for setting up ϒ and computing the
distribution of pattern statistic Z in the case of an SMM.

Algorithm Given sparse Markov model {�, P} with maximal context depth m, the
distribution of Z may be obtained as follows:

(i) Refine probability equivalence classes γ j , j = 1, . . . , η based on updates to
Z . To do this, determine suffixes of m-tuples that are pattern prefixes and their
completion strings. Check to see thatm-tuples are completed on the same strings
with the same update to Z , and separate ones that are not. A separated m-tuple
will either be placed into a new class that was previously formed from γ j (if it
has the same completion strings and update to Z as strings in that class), or into
an additional new class for which it is the only member.

(ii) Refine probability equivalence classes (and any new classes formed by refining
them) so that on concatenation of arbitrary strings r of sequentially increasing
lengths h = 1, . . . ,m − 1 − lγ j , (q · r)m and (q

′ · r)m lie in the same class.
First note that strings with the same (m − 1)-tuple suffix automatically have the
samem-tuple suffix on concatenation of a non-empty string. Now for each class
γ j , determine the destination of its elements on the concatenation of a single
symbol from �. This is carried out by determining the suffix of length m − 1
of each m-tuple of γ j . This suffix will be the prefix of the |�| m-tuples that
will be reached after concatenating a symbol. Compare the class of these |�|
m-tuple destinations for each m-tuple of γ j , forming new classes as needed (see
Example 5). The process of checking destinations form-tuples on concatenation
of a single symbol is repeated until no new classes are formed, as with new
classes, transitions may be changed. It suffices to only check the concatenation
of a single symbol, for once there is no further splitting of any class in that case,
induction implies that there will be no further splits when concatenatingmultiple
symbols.

(iii) Revise matrix T based on the final grouping of m-tuples, calling the reduced
matrix Ť . Also, combine initial probabilities for grouped m-tuples in a single
element of new initial vector π̌ . In the stationary case, solve for π̌ using π̌ Ť = π̌ .

(iv) Set up the |�| × |ϒ | initial probability matrix �m for time m. Its nonzero initial
probabilities are given by �m,(i j , j) = π̌( j), where i j is the row corresponding
to the value of z for state j of ϒ . Due to the assumption that patterns of W have
lengths greater thanm, i j = 1 (corresponding to Z = 0) for all j , but in general,
that doesn’t have to be the case.

(v) To form the pattern prefixes, determine the destination state for strings of ϒ

on the concatenation of symbols x ∈ �, beginning with the m-tuples that are
pattern prefixes. If q · x ∈ Q̃, use Theorem 3 to determine whether there is
an equivalent state already in the state space. If there is, map the transition to
that state, but if not, form a new state. If q · x /∈ Q̃, the transition is obtained
using δ(q, x) = f l(q · x). After the pattern prefixes are formed, states are added
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(as needed) using transition function δ and other transition related rules that are
required, with equivalent states determined using Theorem 3. Repeat the process
of determining new states and their transitions for all new states formed at the
last stage, terminating if there are no new states.

(vi) At each stage, obtain failure states using f l(q · x) = δ( f l(q), x).
(vii) At each stage, the transition probabilities are given by Pr[q → q

′ ] = Pr[(q)m →
(q

′
)m],where transitionprobabilities form-tuples are taken frommatrix Ť . These

probabilities are recorded in 
.
(viii) After obtaining the states of ϒ and their transition probabilities, for t =

m, . . . , n − 1, right multiply �t by 
 and move transition probabilities for
entering a “counting state” (a state for which the value of Z should be updated)
to the appropriate row. This gives �t+1.

(ix) Extract probabilities from �n corresponding to ϒz to obtain Pr[Z = z].
We now give examples of determining equivalent m-tuples for the partitions of

Examples 1–3.

Example 5 Let � = {γ1, . . . , γ4} = {{000, 100, 010, 110}, {011, 111}, {001}, {101}}
for binaryX,with Pr [Xt = 1|γ j ], j = 1, 2, 3, 4 respectively equal to (0.6,0.8,0.65,0.7),
and with Z being the number of overlapping occurrences of W = {11111}. The class
{011, 111} would be split since string 111 is completed by 11, but string 11 is not.
This gives new class γ5 = {111}.

With this split, only probability equivalence class γ1 can possibly be split further.
To determine the result after concatenating a single symbol to m-tuples of γ1, note
that for m-tuples in this class, two of the suffixes of length two are 00 and the other
two are 10. Thus two transition to 000 and 001 (which are in classes 1 and 3), while
the other two transition to 100 and 101 (which are in classes 1 and 4). Thus we split
these strings, leaving γ1 = {000, 100}, and forming new class γ6 = {010, 110}. The
final classes are {γ1, . . . , γ6} = {{000, 100}, {011}, {001}, {101}, {111}, {010, 110}},
and the transition probability matrix Ť , using this order, is then

Ť =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.4 0 0.6 0 0 0
0 0 0 0 0.8 0.2
0 0.65 0 0 0 0.35
0 0.7 0 0 0 0.3
0 0 0 0 0.8 0.2
0.4 0 0 0.6 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Solving π̌ Ť = π̌ gives initial probability vector

π̌ = 1

455
[50, 51, 30, 45, 204, 75].

Example 6 Since the probability equivalence classes
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� = {{0000, 0010, 0100, 0110, 1000, 1010, 1100, 1110}, {0001, 0101, 1001, 1101},
{0011, 1011}, {0111}, {1111}}

correspond to the number of consecutive 1’s at the end of strings, there will be no
splitting based on transitions of m-tuples, as the number of 1’s at the end of strings in
the same probability equivalence class will remain the same after concatenation of an
arbitrary string. If Z is the number of overlapping occurrences of W = {11111}, the
classes would remain intact as the completion strings of all strings in the same class
are equal. For other patterns, however, that may not be the case. For example, if Z
is the number of overlapping occurrences of pattern 10111, m-tuples 1101 and 0101
of γ2 both have completion strings 11 and 0111, whereas 0001 and 1001 have lone
completion string 0111. Thus γ2 would be split into two classes.

Example 7 For � = {{AA, AC, AG, AT }, {CA,CC,CG,CT }, {GA,GC,GG,

GT }, {T A, TC, TG, T T }}with� = {A,C,G, T }, all classeswould be split into four
separate 2-tuples since a transition on a single symbol would map the four members of
each class into the four different classes γ1, . . . , γ4. For example, after concatenating
symbol A to string AA, the 2-tuple suffix is AA ∈ γ1, whereas concatenating symbol
A to string AC gives 2-tuple suffixCA ∈ γ2. Thus, in the end, the state spaceϒ would
be the same as for a second-order Markov chain.

4 Application to spaced seed coverage

Consider now a spaced seed S = s1, . . . , sk with k > m, and let W be the set of
2r patterns obtained by replacing the r stars of the seed by either 0 or 1. The binary
sequence X that gives indicators of matching positions in the two DNA segments is
assumed to be stationary and to follow an SMMof maximal depthm. Recall that when
reckoning spaced seed coverage in X, a “1” in a seed hit can only be counted once, so
that overlapping patterns must be differentiated from non-overlapping ones.

One option for forming an AMC state space ϒ is to use prefix strings of the set
Wext that contains the extension of patterns of W to all possible overlapping pattern
occurrences (Martin and Coleman 2011). Wext is defined by

Wext = {u : ∃w1, w2 ∈ W such that u = νw1 · αw1w2 · βw2 ,

where νw1 · αw1w2 = w1, αw1w2 · βw2 = w2,

and νw1 and βw2 are non-empty}.

Here αw1w2 is a suffix of w1 and prefix of w2, the overlapping portion of the two
patterns. As all spaced seeds begin and end with 1, αw1w2 is guaranteed to be non-
empty. While an option, a representation based on the extended strings of Wext is
less than optimal, as it uses excessive storage locations, and increases the difficulty
in locating equivalent strings. A more storage friendly representation is established
in the following manner. Let Q = Q̃ ∪ �m , as in Sect. 2. Then use strings of Q to
represent progress toward patterns, while marking covered positions. An example of
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Fig. 3 AMC state space for spaced seed 11*1 using prefixes of extended setWext . States that are not needed
in the minimal state space have white color

Fig. 4 AMC state space for spaced seed 11*1 with covered positions marked with a dot. States that are not
in the minimal state space have white color

the representation based on Wext and based on Q with marked coverage is shown in
Figs. 3 and 4 for the small spaced seed 11*1. In those plots, the seven states in white
are not needed in the computation. The representation based on Q makes it clear that
six of these seven states are not needed, as they have exactly the same Q string and
covered positions as strings that would already have been placed in the state space.

Instead of considering updates to Z on the occurrence of all completion strings
of f sq to determine equivalent strings, Martin and Noé (2017) only located equiv-
alent strings q and q

′
that either have exactly the same coverage or whose failure

states are empty, so that only equality of the update to coverage on the direct hits
of q and q

′
needed to be checked. (The latter is the case for seed 11*1 and states

1·10 and 11·0 of Fig. 4. The failure state of 110 is empty, and the updates on the

direct occurrences of both q and q
′
are two, so that the states are equivalent.) Martin

(2018) extended the methods of the latter paper to find all equivalent states using
complete failure sequences as described in Sect. 2. To illustrate the extension of

123
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Fig. 5 States of the AMC for seed 1*11*1. The counting states whose entrance signals that the statistic is
updated are colored in light gray, and other states with nonzero coverage in darker gray. Coverage updates
on transitions into counting states are indicated and covered positions are marked with a dot. For clarity,
not all transitions are shown

the method to SMM, we now consider the relatively short spaced seeds 1*11*1 and
111*1*1, and then the longer “Patternhunter seed” 111*1**1*1**11*111 (Ma et al.
2002) to show feasibility of the computation for a seed of a length used in prac-
tice. The model is fixed to have probability equivalence classes � = {γ1, . . . , γ4} =
{{000, 100, 010, 110}, {011, 111}, {001}, {101}}, with Pr [Xt = 1|γ j ], j = 1, 2, 3, 4
respectively equal to (0.6,0.8,0.65,0.7). This VLMC model is input to the algorithm.
The length of X is fixed at n = 64, the length considered in Ma et al. (2002).

Spaced seed S = 1 ∗ 11 ∗ 1 has W = {101101, 101111, 111101, 111111}. For this
collection of patterns, m-tuples 011 and 111 have different completion strings, and
thus γ2 = {011, 111} needs to be split. Also, whereas the elements of {000, 100} have
no pattern progress, those of {010, 110} have pattern prefix 10 as their suffix, and thus
γ1 needs to be split into these two classes. Thus Ť and π̌ are as in Example 5.

The state space ϒ has the 26 states shown in Fig. 5. This is to be compared with
the 84 states (not shown) that are obtained using prefixes of Wext. In Fig. 5, only
the 11 states in white are needed to compute the sensitivity of the seed (along with
an absorbing state to indicate the seed’s occurrence). The strings 10110 and 11110
are equivalent (from Corollary 2) for computing sensitivity or coverage, as they both
have the same failure state, and the update to coverage is +4 when both strings are
completed. Thus, on symbol 0, 1111 transitions to 10110, and 11110 is deleted. State
1·1·11· transitions to 1·011·0 on symbol 0 (the second position of the string is no longer

marked as being covered since the position cannot possibly be involved in a seed hit
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Fig. 6 States of the AMC for seed 111*1*1. The counting states whose entrance signals that the statistic
is updated are colored in light gray, and other states with nonzero coverage in darker gray. Coverage on
transitions into counting states is indicated and covered positions are marked with a dot. For clarity, not all
transitions are shown

that occurs after the direct one). Similarly, state 1·1·11·1 transitions to 1·011·0 on symbol

0 (instead of 1·01·10 since 1·011·0 and 1·01·10 are equivalent. The equivalence of these

states may not be obvious, since for pattern prefix 10, the 1 is covered in one case
and not in the other. However, the completion string of 10 is of the form 11*1. The
occurrence of the first 1 of this string implies the direct hit of the longer string 10110
with a coverage update of +2 for both states, rendering all 1’s as being covered so that
the subsequent updates to the statistic must be the same.)

AMATLAB programwas written to implement the algorithm to compute coverage
of spaced seeds and run on a Dell PC with an Intel Core i7 CPU 873 with 2.93 GHz
and 8 GB RAM. The total computation time for spaced seed S = 1 ∗ 11 ∗ 1 was about
0.5 s, 0.1 s to set up the state space, and 0.4 s to carry out the computation.

For spaced seed S = 111 ∗ 1 ∗ 1, W = {1110101, 1110111, 1111101, 1111111}.
For this collection of patterns, none of the m-tuples {000, 100, 010, 110} have pattern
progress, so that only 011 and 111 need to be split based on this criterion. As in
Example 5, {000, 100} and {010, 110} need to be split based on their transitions on
a single symbol. The final six classes, initial distribution and transition probability
matrix is then the same as for the seed 1 ∗ 11 ∗ 1. The state space ϒ for this seed is
shown in Fig. 6. One thing to note is that on symbol 0, state 1·01· transitions to 10 and
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Fig. 7 Coverage distribution for seed 111*1**1*1**11*111 in a 3rd-order SMM with probability equiva-
lence classes (000,010,100,110), (011,111), (001), (101), conditional probabilities given classes respectively
given by (0.6,0.8,0.65,0.7), and n = 64

not 01·0. This is because 010 has no suffix that is a pattern prefix, and thus there is no
need to indicate that its middle symbol has been covered. The total computation time
for this seed was 1.2 s, with 0.3 s used to set up the state space, and 0.9 s to carry out
the computation.

For the spaced seed 111*1**1*1**11*111 used in the original version of the Pat-
ternhunter software (Ma et al. 2002), |ϒ | = 3815, compared with the more than
320,000 strings that are obtained using prefixes of Wext. The distribution of coverage
is depicted in Fig. 7. The total computation time was about 40 s, 33.8 s to set up the
state space, and 6.5 s to carry out the computation.

5 Conclusion

In this paper, Markov chain-based methodology for computing distributions of pattern
statistics inmth-orderMarkovian sequences is extended to sparseMarkovmodels. The
models involve general partitions of the set ofm-tuples, wherem is the maximal depth
of conditioning needed to compute conditional probabilities. Form-tuples in the same
class of the partition, conditional probability distributions are exactly the same. The
model allows one to use less parameters and affords more flexibility than higher-order
Markov models, leading to better model fits.

The methodology for computing the distribution of a pattern statistic discussed in
the paper involves setting up an auxiliary Markov chain so that events related to the
pattern statistic correspond to events for the Markov chain. Properties of the Markov
chain are thenused to carry out the computation in a simplemanner.However satisfying
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the Markov property can mean that the state space of the AMC has to be very large.
It has been shown that theory related to determining equivalent states can lead to a
great reduction in the size of the state space of the AMC (and in fact can facilitate the
setup of state spaces in cases that would not be possible otherwise; see Martin 2018
and the example on structured motifs). Using this theory then expands the application
of Markov chain-based computation to more general pattern statistics.

The extension of the methodology to sparse Markov models as carried out in this
paper allows the use of the techniques for keeping the state space small and also
the improved modeling capabilities of sparse Markov models. This extension mainly
involves minimizing the set of all m-tuples by determining those having the same
conditional distributions and update to the pattern statistic after concatenating an
arbitrary string. The lumping of m-tuples into equivalence classes can also result
in the grouping of longer states.

5.1 Future work

Two areas of future work have been identified.Whereas it is assumed here that a model
is given, model fitting for SMMs (determining a maximal depth m and a partition of
m-tuples) is an important problem. The author seeks to add to and improve on the
limited work in the literature on fitting SMMs (García and González-López 2010,
2017; Jääskinen et al. 2014; Xiong et al. 2016; Fernández et al. 2018).

Secondly, inMarkov chain-basedmethods for computing pattern distributions, after
defining an initial distribution, probabilities of lying in the AMC states at each time
point are obtained bymultiplying a probabilitymatrix by theMarkov chain’s transition
probability matrix. As the matrices in the procedure depend on probabilities, different
input probabilities require the computation to be rerun. A more efficient method was
used in Mak and Benson (2009), Benson and Mak (2009) and Noé (2017) for binary
sequences. Instead of updating probabilities, counts of sequences in pattern–progress
stateswith constant values of the number of successes and the statistic are updated. The
rationale is that the counts themselves do not depend on input probabilities, and thus a
set of probabilitiesmay be input into an equation after counts are obtained, saving com-
putation time by eliminating repeated computations. The equation may be obtained
through the representation (2) for Pr[Z = z] and then partitioning Pr[X = x] based on
values of sufficient statistics. Extensions of this work from independent trials to first-
and second-order Markovian sequences as well as sparse Markov models are planned.
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