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Proof of Lemma 1 − Let {tn,i, i = 1, . . . , n} be a triangular array of real numbers satisfying

min (tn,i; i = 1, . . . , n) ≥ 0 and
n∑

i=1

t2n,i = 1. (1)

Let tn := max (tn,i; i = 1, . . . , n) and νn := E(|Vn|3). In a first step, let us show that if νntn → 0

as n→∞ then, for all z ∈ R,

lim
n→∞

P

(
n∑

i=1

tn,iVn,i ≤ z

)
= Φ(z), (2)

where Φ is the cumulative distribution function of a N (0, 1) distribution. Since the Vn,i are

independent and centered random variables, it suffices to prove that the Lindeberg condition is

satisfied, i.e., that

lim
n→∞

n∑
i=1

t2n,iE
(
V 2
n,iI{tn,i|Vn,i|>ε}

)
= 0,

for all ε > 0. Since tn,i ≤ tn for all i ∈ {1, . . . , n},

n∑
i=1

t2n,iE
(
V 2
n,iI{tn,i|Vn,i|>ε}

)
≤

n∑
i=1

t2n,iE
(
V 2
n,iI{tn|Vn,i|>ε}

)
= E

(
V 2
n I{tn|Vn|>ε}

)
,

since the Vn,i are identically distributed and under (1).

Hölder’s inequality entails that E
(
V 2
n I{tn|Vn|>ε}

)
≤ ν2/3n [P (tn|Vn| > ε)]1/3. Chebyshev’s inequal-

ity ensures that P (tn|Vn| > ε) ≤ t2n/ε2 and thus E
(
V 2
n I{tn|Vn|>ε}

)
≤ [νntn/ε]

2/3 → 0, as n→∞,
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by assumption. Convergence (2) is thus proved for all triangular array {tn,i, i = 1, . . . , n} sat-

isfying (1) with νntn → 0.

Now, remark that for all ω ∈ {νnTn → 0}, convergence (2) entails that∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i = Tn,i(ω); i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣
=

∣∣∣∣∣P
(

n∑
i=1

Tn,i(ω)Vn,i ≤ z

)
− Φ(z)

∣∣∣∣∣→ 0,

as n→∞. Note that the last equality is true since the Tn,i are independent of the Vn,i. Hence,

since P[νnTn → 0] = 1,

lim
n→∞

∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣ = 0 a.s. (3)

To conclude the proof, let us remark that

lim
n→∞

∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z

)
− Φ(z)

∣∣∣∣∣
≤ lim

n→∞
E

[∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣
]

≤ E

[
lim
n→∞

∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣
]

= 0,

by the dominated convergence theorem and (3).

Proof of Proposition 7 − Remark that(
nx0

σ2n(x0)

)1/2 (
Ŝx0
n (yn(x0))− S (yn(x0)|x0)

)
=

n∑
i=1

Tn,i(x0)Vn,i(x0),

with Tn,i(x0) := (nx0)1/2Wn,i(x0) and

Vn,i(x0) := [σn(x0)]
−1
(
I{Y x0

i >yn(x0)} − S(yn(x0)|x0)
)
.

It thus suffices to apply Lemma 1 after remarking that nx0/σ
2
n(x0)

a.s.∼ v2n(x0) and that

E(|Vn,1(x0)|3) = σ−1n (x0)
{

[S(yn(x0)|x0)]2 + [1− S(yn(x0)|x0)]2
}
∼ σ−1n (x0),

as n→∞, since S(yn(x0)|x0)→ 0.
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Proof of Proposition 8 − Let U1, . . . , Un be independent uniform random variables indepen-

dent of the Xi. Since Y x0
i = Q(Ui|x0) and Yi

d
= Q(Ui|Xi) for all i ∈ {1, . . . , n},

Bn(x0)
d
= vn(x0)

n∑
i=1

Wn,i(x0)
[
I(−∞,S(yn(x0)|Xi)) − I(−∞,S(yn(x0)|x0))

]
(Ui).

From Owen (1987, Lemma 3.4.5), one has for all ε > 0,

P(|Bn(x0)| > ε) ≤ ε+ P

{
vn(x0)

n∑
i=1

Wn,i(x0)E
[
∆n,i(x0)

∣∣∣X] > ε2

}
,

where X := (X1, . . . , Xn) and

∆n,i(x0) :=
∣∣I(−∞,S(yn(x0)|Xi)) − I(−∞,S(yn(x0)|x0))

∣∣ (Ui).

Introducing the quantity Dn,i(x0) := |S(yn(x0)|Xi) − S(yn(x0)|x0)|, it is easy to check that

E[∆n,i(x0)|X] ≤ 2Dn,i(x0). Remarking that

n∑
i=1

Wn,i(x0)Dn,i(x0) = W1

(
W∗n,x0

, δ∗x0

)
leads to P(|Bn(x0)| > ε) ≤ ε + P

[
vn(x0)W1

(
W∗n,x0

, δ∗x0

)
> ε2/2

]
. The result is thus proved by

using assumption (23) (or equivalently (22)) from the paper.

Proof of Lemma 3 − Let K̃ := K2/‖K‖22 where ‖K‖22 :=
∫
Up K

2(y)dy. It is easy to check

that K̃ also satisfy condition (K). Hence, Lemma 2 entails that almost surely,

lim
n→∞

‖K‖22
nhpn

nx0 = lim
n→∞

f̂2n(x0)

/[
1

nhpn

n∑
i=1

K̃

(
x0 −Xi

hn

)]
= f(x0).

Hence, almost surely, nx0 ∼ f(x0)nh
p
n/‖K‖22 =: mn(x0). It is easy to infer that, as soon as

nhpnS(yn(x0)|x0)→∞, we have

mn(x0)

S(yn(x0)|x0)

(
max
1≤i≤n

WNW
n,i (x0, hn)

)2

≤ f(x0)

‖K‖22
1

nhpnS(yn(x0)|x0)
‖K‖2∞
f̂2n(x0)

a.s.−→ 0.

Similarly, using Assumption (K), we have

n∑
i=1

WNW
n,i (x0, hn)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣ ≤ sup
‖x−x0‖≤hn

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣
from which Lemma 3 follows according to Theorem 1.
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Proof of Lemma 4 − First, remark that since kn →∞ as n→∞,

(`+ 1)2

2`+ 1

nx0

kn
=

(`+ 1)2

kn(2`+ 1)

(
kn∑
i=1

i`

)2/ kn∑
i=1

i2` → 1,

as n→∞. Thus, nx0 ∼ mn(x0) with mn(x0) = (2`+1)/(`+1)2kn. As soon as knS(yn(x0)|x0)→

∞, we have
mn(x0)

S(yn(x0)|x0)

(
max
1≤i≤n

WNN
n,i (x0, kn)

)2

=
2`+ 1

knS(yn(x0)|x0)
→ 0.

Using the bound

n∑
i=1

WNN
n,i (x0, kn)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣ ≤ sup
‖x−x0‖≤D(kn)(x0)

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣ ,
we prove Lemma 4 by applying Theorem 1.

Proof of Lemma 5 − We start by remarking that

n∑
i=1

I[0,1]
(∥∥∥∥Xi − x0

hn

∥∥∥∥
∞

)
I[0,1]

(
r(i)

kn

)
= kn ∧Mn.

Then, straightforward calculation shows that

n−1x0
=

τ2

Mn
+

2τ(1− τ)

kn ∨Mn
+

(1− τ)2

kn
.

Next, since by assumption nhpn/ log log n → ∞ and since the uniform kernel satisfies condi-

tion (K), Lemma 2 ensures that (2hn)−pn−1Mn
a.s.−→ f(x0) as n → ∞. Hence, as a first

conclusion, nx0 ∼ `n2pf(x0)C
−2(κ) =: mn(x0) almost surely. Furthermore,

max
1≤i≤n

WLC
n,i (x0, τ, hn, kn) ≤ τ

Mn
+

1− τ
kn

.

Hence, using again the almost sure convergence (2hn)−pn−1Mn → f(x0),

lim
n→∞

`n max
1≤i≤n

WLC
n,i (x0, τ, hn, kn) =

τ(κ ∧ 1)

2pf(x0)
+ (1− τ)(κ−1 ∧ 1),

almost surely for all κ ∈ [0,∞]. As a consequence, since `nS(yn(x0)|x0) → ∞, condition (21)

from the paper is satisfied. Finally, using the bounds obtained in the proofs of Lemmas 3 and 4,

one has

n∑
i=1

WLC
n,i (x0, τ, hn, kn)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣ ≤ sup
‖x−x0‖≤hn∨D(kn)(x0)

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣ ,
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and thus condition (22) from the paper holds. Theorem 1 concludes the proof.

Proof of Lemma 6 − Since (X,Y ) and Z are independent

E[g(X,Y, Z)] =

∫ ∫ (∫
g(x, y, z)PY (dy|X = x)

)
PX(dx)PZ(dz)

=

∫ ∫
Ψ(x, z)PX(dx)PZ(dz).

The conclusion follows since X and Z are independent.
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