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Proof of Lemma 1 — Let {t,,;, i =1,...,n} be a triangular array of real numbers satisfying
n
min (¢, ¢ =1,...,n) >0 and Zti’i: 1. (1)
i=1

Let t,, :==max (ty;; i =1,...,n) and v, := E(|V,|?). In a first step, let us show that if v,,t, — 0
as n — oo then, for all z € R,
n
lim P (Z tniVini < z) = ®(z), (2)
i=1
where @ is the cumulative distribution function of a A(0,1) distribution. Since the V,,; are

independent and centered random variables, it suffices to prove that the Lindeberg condition is

satisfied, i.e., that
n
Jim Zt?mE (Vr?,iﬂ{tn,iwn,ipa}) =0,
i=1
for all € > 0. Since t,; <t, for all i € {1,...,n},
n n
> thiE <V712,i]1{tn,,-|vn,i|>e}> <> tE (Vriiﬂ{mvn,ipe}) =E (Vi val>e}) »
i=1 i=1

since the V;, ; are identically distributed and under (1).
Holder’s inequality entails that E (V,21g, v, se}) < v/ [P (t|V,| > €))%, Chebyshev’s inequal-

ity ensures that P (t,|V,| > €) < t7/? and thus E (V2L v, |>e}) < [Untn/€]?/® = 0, as n — oo,



by assumption. Convergence (2) is thus proved for all triangular array {t,;, i =1,...,n} sat-
isfying (1) with vpt, — 0.

Now, remark that for all w € {v,,T,, — 0}, convergence (2) entails that

P (Z Tn,ivn,i < Z‘{Tn,i = n,i(w); L= 17 o 7n}> - (I)(Z)

i=1
P (ﬁ: Tni(w) Vi < Z) — ®(2)
i—1

as n — 0o. Note that the last equality is true since the T, ; are independent of the V;, ;. Hence,

— 0,

since Py, T;, — 0] =1,

lim
n—oo

=0 a.s. (3)

P (Z Ty iVini < z\{Tn,i; i=1,... m}) —®(2)

=1

To conclude the proof, let us remark that

i=1

lim
n—oo

< nlggoE P <Zl T,V < z’{Tn,i; 1=1,... ,n}) — P(2) ]
< E nangO P <Z; Tn,iVni < z|{Thi; i=1,... ,n}) — ®(2) ] =0,

by the dominated convergence theorem and (3).

Proof of Proposition 7 — Remark that

n 1/2 =R n
(725) ™ (52 ontoo)) — S aCau)len)) = 3 T Vo)

O'n(.%'()) i—1
with T5, i(xo) := (nz0)1/2Wn7i(mo) and

Vai(@0) 1= [on(@0)] ™" (Ty 705y 0y — SWn(@0)le0))

a.s.

It thus suffices to apply Lemma 1 after remarking that ny,/o2(z0) ~ v2(z0) and that

E(|Va1(20)I) = 07, (20) {[S(yn(fvo)\fvo)]2 +[1- S(yn(w‘o)\xo)]z} ~ oy, (wo),

as n — oo, since S(yn(zo)|zo) — 0.



Proof of Proposition 8 — Let Uy, ..., U, be independent uniform random variables indepen-

ent of the X;. Since Y."° = ilrp) and Y; = ;| X;) for all 2 € {1,...,n},
dent of the X;. Since Y;" = Q(U, dY; £ Q(U| X;) for all

d n
By(x0) = vp(x0) an,i(xO) (L= 00,8 (n (0)|X3)) — L(—00,S(ym (z0)]z0))] (Ui)-
i—1

From Owen (1987, Lemma 3.4.5), one has for all € > 0,

P(‘Bn(aj‘oﬂ > 5) < e+P {’Un(ﬂjo) ZWn,z(xO)E [An’i($0)’X:| > 52} 7

=1

where X := (Xy,...,X,) and

Ai(20) 7= T —o0,8(yn (@0)X:)) — K00, (ya (o)lao)) | (Ui)-

Introducing the quantity Dy ;(x0) = |S(yn(20)|Xi) — S(yn(xo)|zo)|, it is easy to check that
E[Ay,i(z0)|X] < 2Dy, ;(x0). Remarking that

> Wai(20) Dni(xo) = Wi (Wi .05, )

i=1
leads to P(|Bp(zo)| > €) < €+ P [vn(@0)W1 (W 4y 0sy) > €2/2]. The result is thus proved by
using assumption (23) (or equivalently (22)) from the paper.
Proof of Lemma 3 — Let K := K?/||K||3 where |K|3 := fup K?(y)dy. Tt is easy to check
that K also satisfy condition (K). Hence, Lemma 2 entails that almost surely,

N [ L o (20— X\ | _
nlggo nhg n:co—nh%rrolofn(wo) TthK B _f(x0>'

=1

Hence, almost surely, ny, ~ f(zo)nhh/||K||3 =: mn(wg). It is easy to infer that, as soon as

nhh, S (yn(z0)|z0) — 00, we have

mn (o) ( NW )2 f(xo) 1 K% as,
———— | max W, " (0, hn < - — 0.
STum(ao)an) i, W™ (0 m) | < e g o) f2(zo)

Similarly, using Assumption (K), we have

n

i=1

S(Yn(w0)| X5)
S(yn(zo)|ro)

S(yn(zo)|x)

S(yn(zo)lzo)

[z—zol[<hn

—1‘ < sup

from which Lemma 3 follows according to Theorem 1.



Proof of Lemma 4 — First, remark that since k,, — 0o as n — oo,

k 2k
(0 +1)% ng, (£41)° ~ 4 ~ .90
o _ AT T 7T 1
2611 kn  kn(20+ 1) D i ;Z o

i=1

asn — 0o. Thus, ng, ~ my(zo) with my,(zo) = (20+1)/(0+1)%k,,. As soon as k,S(yn(w0)|z0) —

00, we have

M (0) < NN )2 20+ 1
_MnlT0) A ax W (20, k) ) = ot 0.
STy (wo)lan) \12i, e (m0-kn) | = et o)

Using the bound

S W (2, ) | 2

i=1

S(yn(zo)|7)

Stm(o)lz0) |’

— 1‘ < sup
lz—zol| <D (k,,)(20)

we prove Lemma 4 by applying Theorem 1.

Proof of Lemma 5 — We start by remarking that

" X, —x (7
> Toy (H h . >H[o,n (,fj) = kn A M.

i=1
Then, straightforward calculation shows that

2 2
T 27(1 — 71 1—7

oM, k, VM, + kn,

Next, since by assumption nh}/loglogn — oo and since the uniform kernel satisfies condi-
tion (K), Lemma 2 ensures that (2h,)Pn " 'M, 3% f(x9) as n — oo. Hence, as a first
conclusion, ng, ~ £,2P f(20)C~2(k) =: my(xg) almost surely. Furthermore,

LC T 1—7
g%ﬁwn,i (20, 7, hns k) < 7R + o

Hence, using again the almost sure convergence (2h,,) Pn~1M, — f(xq),

' LC _TwRAL)
s by max Wy (20, T, hn, kn) = e (L=7)(k AL,

almost surely for all k € [0,00]. As a consequence, since £,S(yn(zo)|zo) — 00, condition (21)
from the paper is satisfied. Finally, using the bounds obtained in the proofs of Lemmas 3 and 4,

one has

n

Z WTI;S (1‘0, 7, I, kn)

i=1

Sl X) | S(yn (o))

2Wn T0)IT)
S(yn(wo)|x0) T la—a0l| <hnVD oy (z0) | S (Un(0)]0)

)

4



and thus condition (22) from the paper holds. Theorem 1 concludes the proof.
Proof of Lemma 6 — Since (X,Y) and Z are independent

sy 2] = [ [ [oapr@lx - o) Pxlanpaa)
_ / / U(z, 2)Py (de)Py(dz).

The conclusion follows since X and Z are independent.
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