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Abstract
We consider the estimation of an extreme conditional quantile. In a first part, we pro-
pose a new tail condition in order to establish the asymptotic distribution of an extreme
conditional quantile estimator. Next, a general class of estimators is introduced, which
encompasses, among others, kernel or nearest neighbors types of estimators. A unified
theorem of the asymptotic normality for this general class of estimators is provided
under the new tail condition and illustrated on the different well-known examples. A
comparison between different estimators belonging to this class is provided on a small
simulation study and illustrated on a real dataset on earthquake magnitudes.

Keywords Extreme quantile · Local estimation · Asymptotic normality

1 Introduction

To describe the dependence between a real-valued random variable Y and an explana-
tory random vector X of dimension p ∈ N\{0}, different approaches can be used. The
most common one is perhaps provided by the conditional mean m(X) := E(Y |X),
which gives information on the central part of the conditional distribution. However,
depending on the applications in mind, it can be also of interest to consider a condi-
tional quantile instead ofm(X) (e.g., median or quartile). To bemore specific, denoting
by S(·|x0) := P(Y > ·|X = x0) the conditional survival function of Y given {X = x0}
for some x0 ∈ R

p in the support of X , the conditional quantile of level α ∈ [0, 1]
of Y given {X = x0} is Q(α|x0) := S←(α|x0) = inf{y ∈ R; S(y|x0) ≤ α} with

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10463-
019-00713-7) contains supplementary material, which is available to authorized users.

B Armelle Guillou
armelle.guillou@math.unistra.fr

1 Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg & CNRS,
7 rue René Descartes, 67084 Strasbourg Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-019-00713-7&domain=pdf
https://doi.org/10.1007/s10463-019-00713-7
https://doi.org/10.1007/s10463-019-00713-7


916 L. Gardes et al.

the convention inf{∅} = +∞. This conditional quantile presents the advantage to be
more robust than the classical conditional mean.

Givenn independent copies (X1,Y1), . . . , (Xn,Yn)of (X ,Y ), one question of inter-
est is of course the estimation of the conditional quantile Q(α|x0) in a nonparametric
way. There exist numerous estimation methods in the literature. The most common
one is the indirect method: starting from a suitable estimator ̂Sn(·|x0) of S(·|x0), the
associated estimator of Q(α|x0) is given by

̂Qn(α|x0) := ̂S←
n (α|x0) = inf{y ∈ R; ̂Sn(y|x0) ≤ α}. (1)

Estimator (1) is called indirect since, as pointed by Racine and Li (2017), “one esti-
mates a conditional survival function, and then, one ’backs out’ the inferred quantile
via inversion.”

An alternative way to estimate a conditional quantile is by using the so-called check
function defined for α ∈ [0, 1] by ρα(v) := v[α − I(−∞,0](v)] where for any A ⊂ R,
IA(x) = 1 if x ∈ A and 0 otherwise. Indeed, since the conditional quantile is also
defined by

Q(α|x0) = arg min
τ∈[0,1]

E [ρα(Y − τ)| X = x0] ,

the estimation of Q(α|x0) can be achieved by replacing the conditional expectation
by a suitable estimator and then by solving the minimization problem. This method
of estimation was investigated among others by Koenker and Bassett (1978), Koenker
et al. (1994) and He and Ng (1999). In this paper, we focus on the so-called indirect
method.

In some applications, we are interested in the tail of the conditional distribution
rather than on its central part. In this case, instead of looking at the conditional quantile
of level α ∈ [0, 1], we consider an extreme conditional quantile, i.e., a conditional
quantile of level αn where αn → 0 as the sample size n increases.

To obtain the asymptotic distribution of an indirect conditional quantile estimator,
the following two-step procedure can be used. First, we establish the asymptotic dis-
tribution of the associated conditional survival function estimator. Next, a delta-type
method is used to deduce the result on the conditional quantile estimator from this first
step. This requires an additional condition on the conditional survival function. When
the level α is fixed, this condition is simply that S(·|x0) is continuously differentiable.
However, in case of an extreme level, this condition is much more complicated. In this
work, we introduce a new general condition, called tail-first-order condition, which is
the cornerstone to obtain the asymptotic distribution of any indirect conditional quan-
tile estimator. As we will see, this condition is more flexible than the one classically
used in extreme value theory.

To understand where the tail-first-order condition comes from, the main ingredients
of the proof of the asymptotic normality in case of a fixed level α and of an extreme
level αn is outlined in Sect. 2. In Sect. 3, this condition is specified and illustrated
on many well-known examples of conditional distributions. Section 4 is devoted to
the study of a general class of extreme conditional quantile estimators. In particular,
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Estimation of extreme conditional quantiles 917

a unified theorem for the asymptotic normality is established. A simulation study
is provided in Sect. 5 where several examples of estimators belonging to this class,
among them, the kernel and nearest neighbors type estimators, are compared. Their
performance is finally illustrated in Sect. 6 on a real dataset on earthquakemagnitudes.
The proofs of the main results are postponed to Sect. 7, whereas those of the technical
results are postponed to the supplementary material.

2 Description of themethodology

The aim of this paper is to show the asymptotic normality of a general class of indirect
type of conditional quantile estimators when the level is extreme. This requires a
condition, which is not usual in the case of a fixed level α. To understand where this
condition comes from we briefly start to present the simple case where the level is
fixed, and then, we outline the main differences when it is assumed to be extreme, and
we introduce the required condition in that context.

Case where the level is fixed—When the level α is fixed, the asymptotic distribution
of (1) can be deduced from the one of the conditional survival function estimator
̂Sn(·|x0). More precisely, if we assume that for some y ∈ R, there exists a sequence
vn(x0) → ∞ such that for all sequence εn → 0

vn(x0)
(

̂Sn(y + εn|x0) − S(y + εn|x0)
) d−→ Λ, (2)

where Λ is some non-degenerate distribution, then if S(·|x0) is a continuously differ-
entiable function with S[Q(α|x0)|x0] = α

vn(x0)
(

̂Qn(α|x0) − Q(α|x0)
) d−→ 1

f (Q(α|x0)|x0)Λ, (3)

where f (·|x0) is the probability density function of Y given X = x0 with
f (Q(α|x0)|x0) 	= 0. The proof of (3) is based on the following remark: for all z ∈ R,
letting σn(x0) := vn(x0) f (Q(α|x0)|x0), one has

P
[

σn(x0)
(

̂Qn(α|x0) − Q(α|x0)
) ≤ z

] = P[Zn(x0) ≤ zn(x0)], (4)

where,

Zn(x0) := vn(x0)
(

̂Sn(Q(α|x0) + zσ−1
n (x0)|x0) − S(Q(α|x0) + zσ−1

n (x0)|x0)
)

and zn(x0) := vn(x0)[α − S(Q(α|x0) + zσ−1
n (x0)|x0)]. From (2) with y = Q(α|x0),

Zn(x0)
d−→ Λ and since S(·|x0) is continuously differentiable, zn(x0) → z as n → ∞

proving (3). Note that the asymptotic distribution of indirect estimators for a fixed level
α has been treated for instance by Berlinet et al. (2001).

Case of an extreme level—We consider the situation where the level of the con-
ditional quantile is a sequence αn where αn → 0 as the sample size n increases.

123
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Replacing the level α by a sequence αn does not change (at least if αn does not con-
verge too fast to 0) the estimation procedure. We still estimate Q(αn|x0) as in (1)
just by replacing α by αn . The difference lies in the assumptions required to obtain
the asymptotic distribution of ̂Qn(αn|x0). First, instead of (2), the following kind of
result for the conditional survival function estimator is required: for some well-chosen
sequence yn(x0) → y∗(x0) := Q(0|x0), there exists a sequence vn(x0) → ∞ such
that

vn(x0)
(

̂Sn(yn(x0)|x0) − S(yn(x0)|x0)
) d−→ Λ, (5)

for some non-degenerate distribution Λ. Of course, the sequence vn(x0) depends on
the sequence yn(x0). Since y∗(x0) is the right endpoint, convergence (5) focuses on
the asymptotic behavior of ̂Sn(·|x0) in the right tail of the conditional distribution.
To obtain the asymptotic distribution of ̂Qn(αn|x0), we start again with (4) where α

is replaced by αn . In the extreme level case, the main difficulty is to deal with the
non-random sequence zn(x0). More specifically, assuming that S[Q(α|x0)|x0] = α

at least for α small enough, we need to find a general condition on the conditional
distribution ensuring that for a well-chosen sequence σn(x0) and for a sequence vn(x0)
satisfying (5) with yn(x0) = Q(αn|x0) + zσ−1

n (x0)

zn(x0) = −αnvn(x0)

[

S[yn(x0)|x0]
S[Q(αn|x0)|x0] − 1

]

→ z, (6)

as n → ∞ for all z ∈ R. Obviously, assuming that S(·|x0) is a continuously differen-
tiable function is not relevant here and the sequence σn(x0) is not necessarily equal to
vn(x0) f (Q(αn|x0)|x0). Since Q(αn|x0) → y∗(x0), a natural general condition lead-
ing to (6) is to assume that for some open interval Ix0 = I ⊂ R containing 0, there
exist positive functions dx0 ≡ d and Ψx0 ≡ Ψ such that for all t ∈ I ,

lim
y↑y∗(x0)

Ψ (y)

(

S[y + td(y)|x0]
S(y|x0) − 1

)

→ φ−1
x0 (t), (7)

where φ−1
x0 ≡ φ−1 is the inverse of a continuous and strictly decreasing function

φx0 ≡ φ such that φ(t)/t → −1 as t → 0.
Indeed, taking σn(x0) = αnvn(x0)/[Ψ (Q(αn|x0))d(Q(αn|x0))] and t−1

n (x0) :=
σn(x0)d[Q(αn|x0)], we obtain

zn(x0) = −Ψ [Q(αn|x0)]
tn(x0)

(

S[Q(αn|x0) + ztn(x0)d[Q(αn|x0)]|x0]
S[Q(αn|x0)|x0] − 1

)

.

Under (7) and assuming that tn(x0) → 0, we can show that zn(x0) → z (see Sect. 3,
Proposition 1). Next, the random sequence Zn(x0) is treated by (5). To sum up, in
the extreme level case, a natural condition on S(·|x0) to establish the asymptotic
distribution of the conditional quantile estimator is (7). Condition (7) is referred inwhat
follows to as the tail-first-order condition. Under this condition and if (5) holds with
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Estimation of extreme conditional quantiles 919

yn(x0) := Q(αn|x0) + zσ−1
n (x0), we have σn(x0)(̂Qn(αn|x0) − Q(αn|x0)) d−→ Λ.

We show in Sect. 3 that this tail-first-order condition is satisfied by a larger class
of conditional distributions than the one satisfying the condition classically used in
extreme value theory. Note that while on the fixed level case, the rate of convergence
of ̂Qn(α|x0) is proportional to vn(x0) this is no longer the case when estimating an
extreme conditional quantile.

3 The tail-first-order condition

The tail-first-order condition is related to the conditional distribution of Y given {X =
x0} for some x0 ∈ R

p in the support of X . Since x0 is fixed, the dependence on x0 can
be omitted. This is what we do in all this section. For a given (conditional) survival
function S, we denote by Q = S← the associated quantile and by x∗ = S←(0) the
right endpoint.

Definition 1 A survival function S satisfies the tail-first-order (TFO) condition if for
some open interval I ⊂ R containing 0, there exist positive functions d and Ψ such
that for all t ∈ I ,

lim
x↑x∗ Ψ (x)

(

S[x + td(x)]
S(x)

− 1

)

= φ−1(t), (8)

where φ−1 is the inverse of a continuous and strictly decreasing function φ : J → I
such that φ(t)/t → −1 as t → 0.

Note that convergence (8) entails that for all t ∈ I and for x large enough, x +
td(x) < x∗. Consequently, the function Ψ is such that Ψ (x)/S(x) → ∞ as x ↑ x∗.
Finally, it is easy to check that φ−1(t)/t → −1 as t → 0. As a consequence of Dini’s
theorem, we obtain the useful properties gathered in the next proposition.

Proposition 1 If S satisfies the T FO condition, the following statements are true:

1. Convergence in (8) holds locally uniformly on I .
2. For all t0 ∈ I ,

lim
(t,x)→(t0,x∗)

Ψ (x)

t

(

S[x + td(x)]
S(x)

− 1

)

= lim
t→t0

φ−1(t)

t
.

We give in the next result some equivalent reformulations of the TFO condition.

Proposition 2 The following statements are equivalent:

1. The survival function S satisfies the TFO condition.
2. There exist positive functions a and g such that for all t ∈ J ,

lim
α→0

Q[α + tg(α)] − Q(α)

a(α−1)
= φ(t). (9)
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3. There exist sequences an > 0, bn ∈ R and cn > 0 with ncn → ∞ such that for
all t ∈ I ,

lim
n→∞ [ncnS(ant + bn) − cn] = φ−1(t). (10)

Remark (1) The relations between the auxiliary functions involved in (8) and (9) are:
d(·) = a(1/S(·)) and Ψ (·) = S(·)/g(S(·)).

(2) A possible choice for the sequences an , bn and cn in (10) is an = a(n), bn =
Q(1/n) and cn = 1/[ng(1/n)]. It is also easy to check that necessarily g(α) → 0
as α → 0.

(3) An interpretation of condition (9) is based on the following remark: from the
second statement of Proposition 1,

Q[α + tg(α)] − Q(α)

tg(α)
∼ −a(α−1)

g(α)
,

as (t, α) → (0, 0). Hence, one can see the function −a(α−1)/g(α) as the derivative
of Q near 0 and in the direction of g(α). This heuristic is confirmed by the next result
which provides a sufficient condition for the TFO condition.

Proposition 3 Assume that Q is a differentiable function and that for some open inter-
val J ⊂ R containing 0, there exists a positive function g such that for all t ∈ J ,

lim
α→0

Q′ [α + tg(α)]

Q′(α)
= Θ(t). (11)

If for all t ∈ J ,
∫ t
0 Θ(s)ds =: θ(t) ∈ R where θ is an increasing function on J

such that θ(t)/t → 1 as t → 0 then condition (9) holds with φ(t) = −θ(t) and
a(α−1) = −Q′(α)g(α).

We conclude this section by giving examples of distributions satisfying the TFO
condition.

Maximumdomainof attraction—Inextremevalue theory, in order tomake inference
on the tail of a distribution S, we classically assume that there exist sequences an > 0
and bn and a non-degenerate distribution function G for which

lim
n→∞ [1 − S(anx + bn)]

n = G(x), (12)

for all point of continuity of G. Fisher and Tippett (1928) and Gnedenko (1943) show
that G(x) = Gγ (ax + b) for some a > 0 and b ∈ R where

Gγ (x) = exp
[

−(1 + γ x)−1/γ
]

,

for all x such that 1 + γ x > 0. A survival function S satisfying (12) is said to
belong to the maximum domain of attraction of the extreme value distribution Gγ .
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The parameter γ ∈ R is called the extreme value index. As established in de Haan and
Ferreira (2006, Theorem 1.1.6), condition (12) is equivalent to assume the existence
of a positive auxiliary function a and a non-constant function φ for which

lim
α→0

Q(tα) − Q(α)

a(α−1)
= φ(t). (13)

From deHaan and Ferreira (2006, TheoremB.2.1), the functionφ in (13) is necessarily
of the form φ(t) = c(t−γ − 1)/γ for some c 	= 0 and where γ ∈ R is always the
extreme value index.

The aim of the next result is to show that the TFO condition introduced in this paper
(see Definition 1) is weaker than (12).

Proposition 4 If S satisfies the TFO condition with an auxiliary function g in (9) such
that α/g(α) → c ≥ 0 as α → 0 (with g continuous and strictly increasing if c = 0)
then S satisfies (12).

As a consequence of this result, if a survival function S satisfies the TFO condition
with a function g as in Proposition 4, then S also satisfies the TFO condition with
g(α) = α and in this case the TFO condition coincides with the classical extreme
value condition. Remark also that in this situation (i.e., g(α) = α), condition (11) is
equivalent to assume that

lim
α→0

Q′(tα)

Q′(α)
= t−γ−1,

for some γ ∈ R. This condition coincides with condition (1.1.33) in de Haan and
Ferreira (2006, Corollary 1.1.10).

At this step, a natural question is: “Can we find survival functions that satisfy the
TFO condition but not the classical extreme value one ?” Roughly speaking, this is
equivalent to find survival functions S such that (9) holds with a function g such that
α/g(α) → ∞. An example of such survival functions is given by super heavy-tailed
distributions.

Super heavy-tailed distributions—The term super heavy-tailed is often attached in
the literature to a distribution with a slowly varying survival function S, i.e., such that
for all t > 0,

lim
x→∞

S(t x)

S(x)
= 1. (14)

It can be shown that these survival functions do not satisfy the classical first-order
condition (12). Note that a heavy-tailed distribution corresponds to a survival function
satisfying for all t > 0, S(t x)/S(x) → t−1/γ as x → ∞, for some γ > 0. Hence,
roughly speaking, a super heavy-tailed distribution is a heavy-tailed distribution with
γ = +∞.

Unfortunately, condition (14) is not precise enough for the study of super heavy-
tailed distribution. To definemore precisely the class of super heavy-tailed distribution,
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we start by remarking that for heavy-tailed distributions, there exists γ > 0 such that
for all s > −1,

lim
α→0

Q[(1 + s)α]
Q(α)

= (1 + s)−γ .

Since super heavy-tailed distribution can be seen as a heavy-tailed distribution with
γ = +∞, we propose to replace in the previous limit γ by γ (α) where γ (α) → ∞
as α → 0, and s by t/γ (α) with t ∈ R to obtain a non-degenerate limit:

lim
α→0

Q[(1 + t/γ (α))α]
Q(α)

= e−t .

The class of super heavy-tailed distributions can thus be defined by the set of distri-
butions for which there exists a positive function g with g(α)/α → 0 as α → 0 such
that for all t ∈ R

lim
α→0

Q[α + tg(α)]
Q(α)

= e−t . (15)

It appears that convergence (15) coincides with the TFO condition with a(α−1) =
Q(α) andφ(t) = e−t−1.As shown in Proposition 5 below, this definition is equivalent
to the one introduced for instance in Fraga Alves et al. (2009) where the class of super
heavy-tailed distributions is defined as the set of distributions for which there exists a
positive function b such that

lim
x→∞

U [x + tb(x)]
U (x)

= et (16)

with U (·) := Q(1/·). Note that according to Fraga Alves et al. (2009, Lemma 4.1),
condition (16) implies (14). Furthermore, the function b is such that b(x)/x → 0
as x → ∞. Remark finally that the right endpoint of a distribution satisfying (16)
is necessarily infinite. As examples of super heavy-tailed distribution satisfying (16),
one can cite the standard log-Pareto distribution given by S(x) = [log(x)]−ξ with
ξ > 0 and the log-Weibull distribution for which S(x) = exp(−ξ logθ x), with ξ > 0
and θ ∈ (0, 1). For these two distributions, one can take b ∼ U/U ′.

Proposition 5 Conditions (15) and (16) are equivalent. The relation between the
involved functions is b(x) = x2g(x−1).

4 Extreme conditional quantile estimation

Let (X ,Y ) be a random vector taking its values in R
p × R. In all what follows, we

assume that (X ,Y ) admits a probability density function (PDF). The marginal PDF
of X is denoted by f . As in the introduction, for all x0 ∈ R

p, let S(·|x0) and Q(·|x0)
be the survival function and the quantile function of the conditional distribution of Y
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Estimation of extreme conditional quantiles 923

given {X = x0}, respectively. Given n independent copies (X1,Y1), . . . , (Xn,Yn) of
(X ,Y ), the first part of this section is dedicated to the presentation of a large class
of estimators of Q(·|x0). In the second part, we show that under the TFO condition,
the proposed estimators computed with an extreme level αn → 0 are asymptotically
Gaussian.

4.1 A class of conditional quantile estimators

As mentioned in the introduction we focus in this paper on indirect estimators of
Q(·|x0). Thefirst step is thus the estimation of the conditional survival function S(·|x0).
We consider estimators of the form

̂Sn(y|x0) :=
n

∑

i=1

Wn,i (x0)I(y,∞)(Yi ). (17)

The set of weights {Wn,i (x0), 1 ≤ i ≤ n} is a triangular array of positive random
variables depending on the data X1, . . . Xn as well as on x0 such that

n
∑

i=1

Wn,i (x0) = 1.

These properties on the random weights ensure that ̂Sn(·|x0) is a well-defined dis-
tribution function. This is crucial to estimate the conditional quantile by inverting
estimator (17). This class of estimators encompasses various classical estimators of
the conditional distribution function, see below for some examples. The indirect esti-
mator of the conditional quantile of level α ∈ (0, 1) is thus defined as in (1) by

̂Qn(α|x0) := ̂S←
n (α|x0) = inf{y ∈ R; ̂Sn(y|x0) ≤ α}.

Of course, the main feature of the weights {Wn,i (x0), 1 ≤ i ≤ n} is to select a set
of data around x0. For this reason, estimator of form (17) is called weighted local
estimators.

The kernel-based estimator introduced by Nadaraya (1964) and Watson (1964) is
a classical example of weighted local estimator. This estimator is obtained by using
the following random weights in (17):

WNW
n,i (x0, hn) := K

(

Xi − x0
hn

)/ n
∑

j=1

K

(

X j − x0
hn

)

, (18)

where K is a density on R
p and hn is a positive non-random sequence satisfying

hn → 0 as n → ∞. Typically, the probability density function K has a unique mode
at 0 in order to give the largest values of the weights for the observations close to x0.

Another possibility to select the observations is to take the kn observations which
are closest to the reference position x0. This approach is called the kn-nearest
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neighbors (kn-NN) method. More specifically, for some norm ‖ · ‖ on R
p, let

{Di (x0) := ‖Xi − x0‖, i = 1, . . . , n} be the distances between each observation
and x0 and let D(1)(x0) ≤ . . . ≤ D(n)(x0) the corresponding order statistics. Denoting
by {r(i), i = 1, . . . , n} the ranks of these distances (i.e., D(i)(x0) = Dr(i)(x0) for
i = 1, . . . , n), the kn-NN estimator is obtained by using the following randomweights
in (17):

WNN
n,i (x0, kn) := [

(kn − r(i) + 1)+
]�

/ kn
∑

j=1

j�, (19)

where (·)+ stands for the positive part function and � ∈ N. For instance, by taking
� = 0 (with the convention 00 = 0), we affect the same weight to the kn closest
observations. The corresponding weights are referred to as uniform kn-NN weights.
The choice � = 1 (resp., � = 2) leads to triangular kn-NN weights (resp., quadratic
kn-NN weights).

Roughly speaking, the main difference between these two sets of weights is that
the kernel-based estimator averages over all observations which are within a fixed
distance, whereas the kn-NN approach averages over a fixed number of observations
which might be arbitrarily far away. Of course, one can also think about a linear
combination (LC) of (18) and (19). For instance, we can consider the random weights
defined for τ ∈ (0, 1) by

WLC
n,i (x0, τ, hn, kn) := τ

Mn
I[0,1]

(∥

∥

∥

∥

Xi − x0
hn

∥

∥

∥

∥∞

)

+ 1 − τ

kn
I[0,1]

(

r(i)

kn

)

, (20)

whereMn is the random number of random variables among {X1, . . . , Xn} that belong
to Bx0(hn), the closed ball with respect to ‖ · ‖∞ centered at x0 and with radius hn .

4.2 Main results

Under general conditions on the random weights {Wn,i (x0), i = 1, . . . , n}, we want
to establish the convergence in distribution of a normalized version of ̂Qn(αn|x0) for
a level αn converging to 0 as n → ∞. As outlined in Sect. 2, we first need to find
a sequence vn(x0) → ∞ and a non-degenerate distribution Λ such that (under some
additional assumptions)

vn(x0)
(

̂Sn(yn(x0)|x0) − S(yn(x0)|x0)
) d−→ Λ,

for some sequence yn(x0) ↑ y∗(x0). This is done in Theorem 1 where the following
notation is used

nx0 :=
(

n
∑

i=1

W2
n,i (x0)

)−1

.
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Estimation of extreme conditional quantiles 925

Note that the random variable nx0 corresponds, roughly speaking, to the number of
observations used in the estimation procedure. For instance, for the Nadaraya–Watson
(NW) weights with the uniform kernel K (·) ∝ I[0,1](‖ · ‖∞), it is easy to check that
nx0 is exactly the number of points in Bx0(hn). For the uniform kn-NN weights, one
has nx0 = kn , the number of nearest neighbors.

Theorem 1 Let x0 ∈ R
p such that f (x0) > 0 and let yn(x0) be a sequence converging

to the right endpoint y∗(x0) of the conditional distribution of Y given that X = x0.

Assume that there exists a sequence mn(x0) such that nx0/mn(x0)
a.s.−→ 1 and let

v2n(x0) := mn(x0)/S(yn(x0)|x0). Under the conditions

vn(x0) max
1≤i≤n

Wn,i (x0)
a.s.−→ 0 (21)

and

vn(x0)
n

∑

i=1

Wn,i (x0) |S(yn(x0)|Xi ) − S(yn(x0)|x0)| P−→ 0, (22)

we have that vn(x0)
(

̂Sn (yn(x0)|x0) − S (yn(x0)|x0)
) d−→ N (0, 1).

To understand the usefulness of conditions (21) and (22), we provide below the
main ideas of the proof of Theorem 1, the complete proof being postponed to Sect. 7.
Let Y x0

i := Q(Ui |x0) where U1,U2, . . . are independent standard uniform random
variables, independent of the Xi . The random vectors {(Xi , Q(Ui |Xi )), i = 1, . . . , n}
are thus independent and distributed as (X ,Y ), which implies that

̂Sn(yn(x0)|x0) d=
n

∑

i=1

Wn,i (x0)I(yn(x0),∞)(Q(Ui |Xi )).

In other words, one can work as if Yi = Q(Ui |Xi ). The starting point of the proof is
the decomposition

̂Sn (yn(x0)|x0) − S (yn(x0)|x0) = [

̂Sx0n (yn(x0)) − S (yn(x0)|x0)
]

+ [

̂Sn (yn(x0)|x0) −̂Sx0n (yn(x0))
]

,

where for all y ∈ R,

̂Sx0n (y) :=
n

∑

i=1

Wn,i (x0)I(y,∞)(Y
x0
i ).

Since E[̂Sx0n (yn(x0))] = S(yn(x0)|x0), the first term corresponds to the variance term
and the second one to the bias term.
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The first part of the proof consists in establishing the asymptotic normality of the
normalized variance term given by:

vn(x0)
[

̂Sx0n (yn(x0)) − S (yn(x0)|x0)
]

,

see Sect. 7, Proposition 7. This is obtained mainly by applying the Lindeberg theorem,
and only condition (21) is required. This condition is in fact equivalent to the Lindeberg
condition.

In the second part of the proof, we show that the bias term given by

Bn(x0) := vn(x0)
[

̂Sn (yn(x0)|x0) −̂Sx0n (yn(x0))
]

converges to 0 in probability (see Sect. 7, Proposition 8). The proof is based on the
following remark. LetWn,x0 be the discrete randommeasure define for all A ∈ B(Rp)

by

Wn,x0(A) :=
n

∑

i=1

Wn,i (x0)δXi (A).

Straightforward calculation leads to

̂Sn(yn(x0)|x0)−̂Sx0n (yn(x0))=
∫ n

∑

i=1

Wn,i (x0)I(yn(x0),∞)(Q(Ui |·))
(

dWn,x0 − dδx0
)

.

To control the bias term, we need to measure the discrepancy between the two
probability measures Wn,x0 and δx0 . A useful distance between probability mea-
sures is the Wasserstein distance defined for all probability measures P1 and P2 by
W1(P1,P2) = inf {[E(|X1 − X2|)], X1 ∼ P1, X2 ∼ P2}. Condition (22) can in fact
be written in term of the Wasserstein distance as follows:

vn(x0)W1(W∗
n,x0 , δ

∗
x0)

P−→ 0, (23)

whereW∗
n,x0 and δ∗

x0 are the pushforwardmeasures ofWn,x0 and δx0 by themeasurable
function S(yn(x0)|·).

We have now all the ingredients to establish the asymptotic distribution of the
conditional quantile estimator of level αn obtained by inverting the estimator̂Sn(·|x0).
This requires the following first order condition on the conditional distribution of Y
given X = x0.

(H) The conditional survival function S(·|x0) satisfies the TFO condition with
positive auxiliary functions Ψx0 ≡ Ψ and dx0 ≡ d.

Let a(1/·) ≡ ax0(1/·) = d[Q(·|x0)] and g(·) ≡ gx0(·) = ·/Ψ [Q(·|x0)]. From
Proposition 2, condition (H) is equivalent to assume that for some open interval Jx0 =
J ⊂ R containing 0, one has for all t ∈ J
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lim
α→0

Q(α + tg(α)|x0) − Q(α|x0)
a(α−1)

= φx0(t),

whereφx0 ≡ φ is a continuous and strictly decreasing function such that φ(t)/t → −1
as t → 0.

Theorem 2 Let x0 ∈ R
p such that f (x0) > 0 and assume that condition (H) holds.

Assume that there exists a sequence mn(x0) such that nx0/mn(x0)
a.s.−→ 1 and let

v2n(x0) := mn(x0)/αn. If αnmn(x0) → ∞, vn(x0)g(αn) → ∞,

vn(x0) max
1≤i≤n

Wn,i (x0)
a.s.−→ 0

and [αnmn(x0)]1/2 sup
|β/αn−1|≤ξ

n
∑

i=1

Wn,i (x0)

∣

∣

∣

∣

S[Q(β|x0)|Xi ]
β

− 1

∣

∣

∣

∣

P−→ 0,

for some ξ ∈ (0, 1) then

vn(x0)
g(αn)Q(αn|x0)

a(α−1
n )

(

̂Qn(αn|x0)
Q(αn|x0) − 1

)

d−→ N (0, 1).

Recall that if g(α) = α (or equivalently Ψ ≡ 1), condition (H) coincides with
the classical first-order condition (13) used in extreme value theory. In this case,
φ(t) ∝ (t−γ (x0) − 1)/γ (x0) where the function γ is referred to as the conditional
extreme value index. Under (13) and if the conditions of Theorem 2 are satisfied,

[αnmn(x0)]
1/2 Q(αn|x0)

a(α−1
n |x0)

(

̂Qn(αn|x0)
Q(αn|x0) − 1

)

d−→ N (0, 1).

Moreover, we know from de Haan and Ferreira (2006, Lemma 1.2.9) that under (13),
Q(αn|x0)/a(α−1

n ) → 1/γ+(x0), where γ+(x0) = max(γ (x0), 0). So, under the first-
order condition (13), the worst rate of convergence is achieved when γ (x0) > 0. This
was expected since the case γ (x0) > 0 corresponds to heavy-tailed distributions.

Let us now focus on the rate of convergence in Theorem 2 for conditional super
heavy-tailed distribution. Taking the definition of super heavy-tailed distributions
given in FragaAlves et al. (2009) into account, we have in this case a(α−1) = Q(α|x0)
and g(α)/α → 0 as α → 0. Hence, for these distributions,

[αnmn(x0)]
1/2 g(αn)

αn

(

̂Qn(αn|x0)
Q(αn|x0) − 1

)

d−→ N (0, 1).

Not surprisingly, this rate is worse than the one for heavy-tailed distributions.
Theorem 2 is proved under general conditions on the randomweights used to define

the conditional survival estimator (17). We close this section by applying Theorem 2
to particular weights.
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Nadaraya–Watson weights—Taking the weights defined in (18) leads to the well-
known NW estimator of the conditional survival function:

̂SNWn (y|x0) :=
n

∑

i=1

K

(

Xi − x0
hn

)

I(y,∞)(Yi )

/ n
∑

i=1

K

(

Xi − x0
hn

)

. (24)

The corresponding conditional quantile estimator is denoted by ̂QNW
n (αn|x0). In order

to apply Theorem 2, we need to check that the NW weights satisfy the required
conditions. To this aim, we assume the following on the kernel function K :

(K) the kernel K is either an indicator function on a cell of Rp or such that
K (x) = L(‖x‖) where L is of bounded variation, continuous on (0,∞) and with
support [0, 1].

It is very easy to check that (K) is satisfied for a large range of usual kernels such as the
uniform kernel (K (t) ∝ I[0,1](‖t‖∞)), triangular (with L(t) ∝ 1 − t), Epanechnikov
kernel (L(t) ∝ 1 − t2), biweight kernel (L(t) ∝ (1 − t2)2), etc.
We can now state the convergence in distribution of the conditional survival estima-
tor (24). Recall that f is the PDF of X .

Corollary 1 Let x0 ∈ R
p such that f is continuous at x0 and f (x0) > 0 and let K be

a kernel satisfying (K). Under (H), for sequences hn → 0 and αn ∈ (0, 1) such that
nh p

n [αn ∧ (log log n)−1] → ∞, α−1
n nh p

n g2(αn) → ∞ and

sup
|β/αn − 1| ≤ ξ

‖x − x0‖ ≤ hn

∣

∣

∣

∣

S[Q(β|x0)|x]
β

− 1

∣

∣

∣

∣

2

= o

(

1

nh p
nαn

)

, (25)

for some ξ ∈ (0, 1) we have

g(αn)

αn

Q(αn|x0)
a(α−1

n )

(

nh p
nαn

)1/2
(

̂QNW
n (αn|x0)
Q(αn|x0) − 1

)

d−→ N
(

0,
‖K‖22
f (x0)

)

.

Note that under the classical first-order condition (13) (i.e., when g(αn) = αn

in (H), see (9) and the remarks below Proposition 2), the asymptotic normality of the
NW conditional quantile estimator has already been obtained in Daouia et al. (2013,
Corollary 1). This last result also requires the use of condition (25) which controls
the oscillations of the function Q(αn|·). Of course, the proof of Daouia et al. (2013,
Corollary 1) uses arguments adapted to the NW estimator while Theorem 2 can be
used for a large range of weighted conditional survival estimators. As a consequence,
conditions on hn and αn involved in Daouia et al. (2013, Corollary 1) and in our
Corollary 1 are slightly different. More precisely, the conditions in Daouia et al.
(2013, Corollary 1) are nh p

nαn → ∞ and nh p+2
n αn → 0 while in our Corollary 1 it is

required that nh p
nαn → ∞ and nh p

n (log log n)−1 → ∞. Hence, if αn log log n → 0
as n → ∞ (i.e., for large quantiles), conditions on the sequences hn and αn are weaker
in Corollary 1 than in Daouia et al. (2013, Corollary 1).
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Nearest neighbors approach—Now, let us consider the kn-NN random weights
defined in (19) and leading to the conditional survival function estimator

̂SK NN
n (y|x0) :=

n
∑

i=1

[(kn − r(i) + 1)+]�I(y,∞)(Yi )

/ kn
∑

j=1

j�,

with kn ∈ {1, . . . , n}, � ∈ N and r(i) is the rank of ‖Xi − x0‖ among the random
variables X1, . . . , Xn . The asymptotic normality of the kn-NN conditional quantile
estimator ̂QKNN

n (αn|x0) is established in the following result.

Corollary 2 Let x0 ∈ R
p such that f (x0) > 0. Under (H), for sequences kn → ∞

and αn ∈ (0, 1) such that knαn → ∞, α−1
n kng2(αn) → ∞ and

(knαn) sup
|β/αn − 1| ≤ ξ

‖x − x0‖ ≤ D(kn)(x0)

∣

∣

∣

∣

S[Q(β|x0)|x]
β

− 1

∣

∣

∣

∣

2
P−→ 0,

for some ξ ∈ (0, 1), we have

g(αn)

αn

Q(αn|x0)
a(α−1

n )
(knαn)

1/2
(

̂QKNN
n (αn|x0)
Q(αn|x0) − 1

)

d−→ N
(

0,
(� + 1)2

2� + 1

)

.

The asymptotic variance (� + 1)2/(2� + 1) is an increasing function of �, and thus,
the best choice (at least in term of variance) seems to be � = 0, i.e., when the same
weight 1/kn is affected to the kn observations closest to x0.

Linear combination of weights − We finally focus on the estimator ̂QLC
n (αn|x0) of

Q(αn|x0) obtained by using the LC weights introduced in (20).

Corollary 3 Let x0 ∈ R
p such that f is continuous at x0 and f (x0) > 0. Let hn → 0,

kn → ∞ and αn be sequences such that nh p
n / log log n → ∞, �nαn → ∞ with

�n := (nh p
n ∧ kn), α−1

n �ng2(αn) → ∞ and

(�nαn) sup
|β/αn − 1| ≤ ξ

‖x − x0‖ ≤ (hn ∨ D(kn)(x0))

∣

∣

∣

∣

S[Q(β|x0)|x]
β

− 1

∣

∣

∣

∣

2
P−→ 0,

for some ξ ∈ (0, 1). Under (H) and if there exists κ ∈ [0,∞] such that kn/(nh p
n ) → κ ,

we have

g(αn)

αn

Q(αn|x0)
a(α−1

n )
(�nαn)

1/2
(

̂QLC
n (αn|x0)
Q(αn|x0) − 1

)

d−→ N
(

0,
C2(κ)

2p f (x0)

)

.

In practice, one can take kn = �κnh p
n � with κ > 0. The parameter κ is thus a tuning

parameter that has to be chosen by a data-driven procedure (see Sect. 5.1).
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5 Simulation study

In this section, we are interested in the finite sample behavior of the estima-
tor ̂Qn(αn|x0) defined in (1) for a given value of x0. The random weights
{Wn,1(x0), . . . ,Wn,n(x0)} used in the expression of estimator (17) of the conditional
survival function S(·|x0) often depend on an hyperparameter λn ∈ R

d , d ∈ N \ {0},
useful in order to control the smoothness of the estimator. This is the case for instance
for the NW weights, the kn-NN random weights or the LC weights defined in (18),
(19) and (20), where λn is equal to hn , kn and (hn, κ), respectively. In the next section,
we propose an adaptive procedure to select λn in practice.

5.1 Choice of the hyperparameter

For t ∈ R
p, let us denote by ̂Qn(αn|t, λn) an estimator of Q(αn|t) depending on

an hyperparameter λn and by ̂Qn,−i (αn|t, λn) the estimator computed without the
random pair (Xi ,Yi ).

Our procedure of selection is based on the following simple remark: for a good
choice of λn , the random value S[̂Qn,−1(αn|X1, λn)|X1] should be close to αn at least
when the observed value of X1 is close to x0. We thus propose to define our optimal
value of λn as λopt := argmin{Λ2

n(λ), λ ∈ R
d}, with

Λn(λ) := E

[

Wn,1(x0)

E
[

Wn,1(x0)
] S[̂Qn,−1(αn|X1, λ)|X1]

]

− αn .

Note that the proximity of X1 and x0 is controlled by the random weightWn,1(x0). Of
course, the function Λn is unknown in practice and should be estimated. We propose
to use the following estimator

Λ̂n(λ) :=
n

∑

i=1

Wn,i (x0)I{Yi>̂Qn,−i (αn |Xi ,λ)} − αn . (26)

The estimated optimal value of the hyperparameter λn is thus given by

̂λn,opt := argmin{Λ̂2
n(λ), λ ∈ R

d}. (27)

Estimator (26) can be motivated by the following result.

Proposition 6 If there exists a function ϕ : R
p × R

p×(n−1) �→ [0,∞) such that
for all i = 1, . . . , n, Wn,i (x0) = ϕ(Xi ,X−i ) where the matrix X−i is given by
[X1, . . . , Xi−1, Xi+1, . . . , Xn] then E[Λ̂n(λ)] = Λn(λ) for all λ ∈ R

d .

Note that the assumption of Proposition 6 is satisfied for the NN approach with the
function ϕ defined for t ∈ R

p and u = [u1, . . . , un−1] ∈ R
p×(n−1) by ϕ(t, u) =

λ−1
I{‖t−x0‖<d(λ)(x0)}, where di (x0) = ‖ui − x0‖, i = 1, . . . , n − 1 and d(1)(x0) ≤

. . . ≤ d(n−1)(x0) are the corresponding ordered values.
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This is also the case for the NW weights by using the function

ϕ(t, u) = K [(t − x0)/λ]
/

(

n−1
∑

i=1

K [(ui − x0)/λ] + K [(t − x0)/λ]
)

.

5.2 Finite sample behavior

Using a sample of size n from the randomvector (X ,Y ), we are interested in estimating
an extreme conditional quantile in the situation where the quantile level αn is not too
small. We consider the situation where X is a real-valued random variable (p = 1). In
a theoretical point of view, we assume that the conditions of Theorem 2 are satisfied
for such a sequence αn . In practice, we take αn = 20/n and the quantile Q(αn|x0) is
estimated using (1). Three sets of random weights are considered:

(i) the NW weights with the Epanechnikov kernel: K (u) = 3
4 (1 − u2)I[0,1](|u|),

(ii) the kn-NN weights with � = 1 (triangular kn-NN weights),
(iii) the LC weights given in (20) with τ = 1/2 and kn = �κnhn�.

Although the theory on our estimators is valid without any assumption on the
distribution of X , from a practical point of view, the estimation is very difficult in
case of unbounded distribution, especially at the border. For this reason, we illustrate
our methodology in the case of a bounded distribution, namely the standard uniform
distribution. The four following models have been considered for the conditional
survival distribution function of Y given X :

M1—Conditional Burr distribution:

S(y|X) =
(

1 + y−ρ/γ (X)
)1/ρ

, y > 0,

where ρ < 0 and for all x ∈ (0, 1), γ (x) = 2x(1 − x).

It is well-known that for this model, condition (13) holds (i.e., condition (H) with
g(α|x0) = α, see, e.g., Embrechts et al. (1997), Table 3.4.2). The parameter ρ is
referred in the literature to as the second-order parameter and it affects the bias of the
estimator.

M2—Conditional Beta distribution with parameters θ1 > 0 and θ2(X) where for
all x ∈ (0, 1), θ2(x) = 1/[2x(1 − x)].

This conditional distribution satisfies condition (13) with a conditional extreme value
index given by γ (x) = −1/θ2(x) < 0 (see, e.g., Embrechts et al. (1997), Table 3.4.3).

M3—Conditional Gaussian distribution with mean μ(X) = 2X(1− X) and vari-
ance σ 2.

Under this model, condition (13) is satisfied with γ (X) = 0 (see, e.g., Embrechts et al.
(1997), Table 3.4.4).

We finally consider a model for which condition (13) does not hold.
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M4—Conditional super heavy-tailed distribution:

S(y|X) = exp
{

−ξ [ln(y)]θ(X)
}

, y > 1,

with ξ > 0 and θ(x) = 19(x + 1/2)(3/2 − x)/20 ∈ [0, 0.95].
One can check that this conditional distribution satisfies condition (H) with

a(α−1) = Q(α|x) = exp

{

[

ln(1/α)

ξ

]1/θ(x)
}

and g(α) = αθ(x)ξ

[

ln(1/α)

ξ

]1−1/θ(x)
.

For each model, N = 500 samples of size n = 1000 have been generated. The
hyperparameter λn is chosen according to (27), and the minimization is achieved

– over a regular gridH of 20 points evenly spaced between 0.05 and 0.3 for the NW
weights,

– over a gridK of 20 points evenly spaced between 100 and 600 for the NNweights,
– over the gridH×F where F is a grid of 5 evenly spaced points between 0.9 and
1.1.

The accuracy of the estimators is measured by the errors

RMSE :=
√

√

√

√

1

N

N
∑

i=1

[

̂Q•,i
n (αn|x0)
Q(αn|x0) − 1

]2

and ARE := 1

N

N
∑

i=1

∣

∣

∣

∣

∣

̂Q•,i
n (αn|x0)
Q(αn|x0) − 1

∣

∣

∣

∣

∣

,

where • has to be replaced byNW,NNor LC and the index i refers to the i− simulation
run. The error RMSE corresponds to the root mean squared error of the ratio between
the estimates and the true quantile value. The error ARE is the average over all repli-
cations of the absolute value of the relative error. The estimation of Q(αn|x0) is done
at three different positions: x0 := x (1)

0 = (1 − √
1/3)/2 ≈ 0.211, x0 = x (2)

0 = 1/2

and x0 = x (3)
0 = (1 + √

1/2)/2 ≈ 0.854. The results are gathered in Tables 1, 2, 3
and 4.

Based on these simulations, we can draw the following conclusions:

– The three methods, NW, NN and LC, perform similarly for the models M1–M3;
– Concerning model M1, the errors (RMSE and ARE) increase as |ρ| decreases.
This is expected since the estimation is much more difficult when ρ is close to 0
where a bias in the estimation appears. Also the errors increase in general when
γ (·) increases;

– Concerning model M2, both RMSE and ARE increase with θ2, i.e., when γ (·) =
−1/θ2(·) increases, and decreases with θ1. Compared to the modelM1, the RMSE
and ARE are considerably smaller, but this is not surprising since the conditional
extreme value index is negative in model M2, which means that the observations
are bounded;

– Concerning modelM3, RMSE and ARE are not too much sensitive on the values
of σ , nor on x0. In general, the orders of the errors are intermediate between those
obtained in the case γ (·) > 0 (model M1) and γ (·) < 0 (model M2);

123



Estimation of extreme conditional quantiles 933

Table 1 RMSE (first line) and ARE (second line) of ̂Qn(20/n|x0) based on 500 samples of size n = 1000
according to the model M1, for three different values of ρ and x0 and three different weights: Nadaraya–
Watson (NW), nearest neighbors (NN) and linear combination of both (LC)

Table 2 RMSE (first line) and ARE (second line) of ̂Qn(20/n|x0) based on 500 samples of size n = 1000
according to the model M2, for three different values of θ1 and x0 and three different weights: Nadaraya–
Watson (NW), nearest neighbors (NN) and linear combination of both (LC)

Table 3 RMSE (first line) and ARE (second line) of ̂Qn(20/n|x0) based on 500 samples of size n = 1000
according to the model M3, for three different values of σ and x0 and three different weights: Nadaraya–
Watson (NW), nearest neighbors (NN) and linear combination of both (LC)
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Table 4 RMSE (first line) and ARE (second line) of ̂Qn(20/n|x0) based on 500 samples of size n = 1000
according to the model M4, for three different values of ξ and x0 and three different weights: Nadaraya–
Watson (NW), nearest neighbors (NN) and linear combination of both (LC)

– Concerning model M4, RMSE and ARE depend a lot on the value of ξ . Indeed,
if ξ is too small, both RMSE and ARE increase drastically and in that case the
variability of the results is probably too large to allow amore precise interpretation
of the results. For larger values of ξ (ξ = 1 or 3/2), the errors are more reasonable,
although larger than for the others models. In that case, a slight increase in θ(·)
implies in general a decrease in RMSE and ARE.

To complete the simulation study, we compare in Fig. 1 the boxplots of the estimates
of Q(αn) with the three weights (NW, NN and LC) for model M1 when ρ = −1/2,
which corresponds to a difficult case, and x0 = x (3)

0 . The horizontal line indicates the
true value of the conditional quantile. As is clear from this figure, the three methods
perform similarly and well, with almost no bias and a sampling distribution of the
estimates symmetric. Since the boxplots for the other considered cases (model and
values of x0 and parameters) are similar, they are omitted from the paper.

6 Real data analysis

As an illustration, we consider in this section the world catalogue of earthquake from
2002 until 2017 which contains information such as the longitude, latitude and seismic
moment of earthquakes. The seismic moment denoted by MS is a physical quantity
which illustrates the severity of an earthquake. It is a measure of the energy released
by a seism and whose unit is the dyne-centimeters. The dataset considered in this
section, of size 15000, is part of the Global Centroid Moment Tensor database, which
can be uploaded freely on http://www.globalcmt.org/CMTsearch.html (Dziewonski
et al. 1981; Ekström et al. 2012). Note also that this database has already been used
in the extreme value framework, but on different periods, by Goegebeur et al. (2014,
2017). Being able to model accurately the tail of the earthquake energy distribution is
clearly of interest since severe earthquakes may cause important damage and serious
losses.
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Fig. 1 Boxplots of ̂QNW
n (αn |x0) (A), ̂QNN

n (αn |x0) (B) and ̂QLC
n (αn |x0) (C) for the model M1 when

ρ = −1/2, x0 = (1 + √
1/2)/2, αn = 20/n and n = 1000. The horizontal line indicates the true value of

the conditional quantile

Althoughwewant to study the tail behavior at a specific, fixed, location, the extreme
conditional quantiles estimates have to take into account that earthquakes happen at
a random location. Thus, this dataset is particularly suited for illustration of our local
estimation method. Note that the scientists prefer to convert the seismic moment MS

into the magnitude moment MW , defined as

MW = 2

3
log10(MS) − 32

3

which is a dimensionless value. A value MW > 9 indicates an extreme earthquake
which may cause severe damages and losses, whereas a value MW < 6 corresponds to
a moderated one. Our interest is thus on the distribution of MW given the location (in
latitude and longitude) of the earthquake. The five-number summary of MW is given
below:

Min. 1st Qu. Median 3rd Qu. Max.

5.224 5.617 5.778 6.052 9.75

It appears that between 2002 and 2017, approximately 75% of the earthquakes can
be classified asmoderate. Concerning the points in the covariate space where we want
to do our estimation, we use locations where an earthquake has already happened. In
order to determine the neighborhood of these locations, we compute the distance in
kilometers to every other earthquake position using the formula

RArcos (cos(φ1) cos(φ2) cos(φ1 − φ2) + sin(ψ1) sin(ψ2)) ,
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Fig. 2 Level plot of the conditional extreme quantiles of order 20/15, 000 in the Asia–Pacific region with
NW weights (left panel) and NN weights (right panel)

which gives the spherical distance between two points with longitude and latitude
(φ1, ψ1) and (φ2, ψ2), respectively, expressed in radian (see, e.g., Weisstein 2003).
Here, it is assumed that the earth is a perfect sphere, with radius R = 6371km.

We estimate the extreme quantile of level αn = 20/15000, and the hyperparameters
are selected as described in Sect. 5. The same grid as the one used in Goegebeur et al.
(2014), i.e., H = {200, 300, . . . , 2000}, has been used for the NW weights, and for
the NN weights, we use a grid K of 19 evenly spaced points between 1 and 50. Note
that the LC method is not considered here since it does not outperform the others two
methods as seen in Sect. 5. The level plot of our quantile estimates is given in Fig. 2 for
the NW (left panel) and NN (right panel) weights, respectively. Note that this figure
focuses on the Asia–Pacific region, since it is part of the well-known Ring of Fire,
an area where many earthquakes and volcanic eruptions occur. The two panels of the
figure are slightly different but, as expected, we can observe in both level plots that
the seismic activity is intense, especially in Japan and Thailand where we can observe
earthquakes with magnitude moment beyond 9. Finally, among all extreme quantile
estimates of level 20/15000 calculated with NWweights (resp. NNweights), we have
a proportion of 1.5% (resp. 1.25%) for which MW > 9 and 60.75% (resp. 61.25%)
for which MW < 7.
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7 Proofs

7.1 Proof of the results given in Sect. 3

Proof of Proposition 1 1. Since S is decreasing and φ−1 is a continuous function,
statement 1. is a direct consequence of Dini’s theorem.

2. It suffices to remark that from the first statement, one has for all t0 ∈ I ,

lim
(t,x)→(t0,x∗)

Ψ (x)

(

S[x + td(x)]
S(x)

− 1

)

= lim
t→t0

φ−1(t).

��
Proof of Proposition 2 We first prove that condition (9) implies condition (8). From de
Haan and Ferreira (2006, Lemma 1.1.1), one has, for all t ∈ I ,

lim
x→x∗

S[x + ta(1/S(x))] − S(x)

g[S(x)] = φ−1(t).

Taking an = d(Q(1/n)), bn = Q(1/n) and cn = Ψ (Q(1/n)), we easily show that
1. ⇒ 3.

Finally, let us prove that 3. ⇒ 2. From de Haan and Ferreira (2006, Lemma 1.1.1),
we have that for all t ∈ J ,

lim
n→∞

Q[n−1(1 + tcn)] − bn
an

= φ(t). (28)

Hence, since Q is decreasing and �α−1� ≤ α−1 < �α−1� + 1,

Q

(

1 + tc�α−1�
�α−1�

)

≤ Q[α(1 + tc�α−1�)] ≤ Q

(

1 + tc�α−1�
�α−1� + 1

)

. (29)

Using (28), we know that

1

a�α−1�

[

Q

(

1 + tc�α−1�
�α−1�

)

− b�α−1�
]

→ φ(t). (30)

Moreover,

Q
[(

�α−1� + 1)−1(1 + tc�α−1�
)]

= Q
{

�α−1�−1
[

1 + tc�α−1�ξt (�α−1�)
]}

,

where for all m ∈ N,

ξt (m) := m

1 + m

(

1 − 1

tmcm

)

.
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Sincemcm → ∞, we have ξt (m) → 1 asm → ∞ . Dini’s theorem together with (28)
entail that

1

a�α−1�

[

Q

(

1 + tc�α−1�
�α−1� + 1

)

− b�α−1�
]

→ φ(t). (31)

Hence, by collecting (29), (30) and (31) we obtain

Q[α + tg(α)] − b(α)

a(α−1)
→ φ(t), (32)

with g(α) = αc�α−1�, b(α) = b�α−1� and a(α−1) = a�α−1�. Using twice, convergence
(32) yields

Q[α + tg(α)] − Q(α)

a(α−1)
→ φ(t) − φ(0) = φ(t).

��
Proof of Proposition 3 It suffices to remark that

Q[α + tg(α)] − Q(α)

a(α−1)
= Q′(α)g(α)

a(α−1)

∫ t

0

Q′[α + sg(α)]
Q′(α)

ds.

The local uniform convergence (11) concludes the proof. ��
Proof of Proposition 4 From Proposition 2, the TFO condition entails that ncnS(ant +
bn)− cn → φ−1(t) as n → ∞ with cn = 1/[ng(1/n)], an = a(n) and bn = Q(1/n).
First assume that α/g(α) → c as α → 0 with c > 0. We have that cn → c > 0
as n → ∞ and thus nS(ant + bn) → 1 + φ−1(t)/c. In particular, we have that
S(ant +bn) → 0 and thus that, letting F := 1− S,−nS(ant +bn) ∼ ln Fn(ant +bn)
as n → ∞. Hence,

lim
n→∞ Fn(ant + bn) = G(t) = exp

[

−
(

1 + φ−1(t)

c

)]

,

showing that condition (12) is satisfied. Now, let us consider the case c = 0. From
Proposition 2, we have ncnS(ant + bn) → φ−1(t). Let mn := ncn = 1/g(1/n) =:
g̃(n). Since g(α) → 0 as α → 0, mn → ∞ as n → ∞. Since g is a continuous and
increasing function, we have that g̃−1(m) → ∞ as m → ∞. Letting ãm := ag̃−1(m)

and b̃m := bg̃−1(m), we obtain the convergence

lim
m→∞mS(ãmt + b̃m) = φ−1(t).

The end of the proof is similar to the one in the case c > 0. ��
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Proof of Proposition 5 Let us show that (16) implies (15), the converse being similar.
Let g(α) = α2b(α−1). Since g(α)/α → 0 as α → 0, one has for all t ∈ R

Δ(α, t) := α

g(α)

[

(

1 + t
g(α)

α

)−1

− 1

]

→ −t,

as α → 0. Hence,

Q[α + tg(α)]
Q(α)

= U [α−1 + b(α−1)Δ(α, t)]
U (α−1)

.

From Dini’s theorem, convergence (16) is locally uniform leading to (15). ��

7.2 Proof of Theorem 1

As explained in Sect. 4.2, the asymptotic normality of the conditional survival estima-
tor is established in two steps: a) prove the asymptotic normality of the variance term
and b) show that the bias term is negligible. These two steps are based on technical
results given below, and whose proofs are postponed to the supplementary material.

The first step is a direct consequence of the following lemma.

Lemma 1 Let {Vn,1, Vn,2, . . . , Vn,n} be a triangular array of independent copies of a
centered random variable Vn. Assume that E(V 2

n ) = 1 and E(|Vn|3) < ∞. Let Tn :=
{Tn,i , 1 ≤ i ≤ n} be a triangular array of positive random variables independent of
the Vn,i and such that T 2

n,1 + . . . + T 2
n,n = 1.

For Tn := max{Tn,i , 1 ≤ i ≤ n}, if E(|Vn|3)Tn a.s.−→ 0 then

n
∑

i=1

Tn,i Vn,i
d−→ N (0, 1).

We can now establish the asymptotic normality of the variance term. Let σ 2
n (x0) :=

S(yn(x0)|x0)[1 − S(yn(x0)|x0)] and recall that mn(x0) is a sequence such that
nx0/mn(x0)

a.s.−→ 1 and that v2n(x0) = mn(x0)/S(yn(x0)|x0).
Proposition 7 For x0 ∈ R

p, let yn(x0) be a sequence converging to the right endpoint
y∗(x0) of the conditional distribution of Y given {X = x0}. If condition (21) holds

then vn(x0)
(

̂Sx0n (yn(x0)) − S (yn(x0)|x0)
) d−→ N (0, 1).

The second step of the proof is treated in the following result.

Proposition 8 Let x0 ∈ R
p and yn(x0) be a sequence converging to the right endpoint

y∗(x0) of the conditional distribution of Y given {X = x0}. If condition (22) holds

then vn(x0)
(

̂Sn (yn(x0)|x0) −̂Sx0n (yn(x0))
) P−→ 0.

Theorem 1 is thus proved by gathering Propositions 7 and 8. ��

123



940 L. Gardes et al.

7.3 Proof of Theorem 2

The proof follows the lines described in Sect. 2. Let us introduce the sequences
t−1
n (x0) := −vn(x0)g(αn) and σ−1

n (x0) = a(α−1
n )tn(x0). It is easy to check that

for all z ∈ R,

P
{

σn(x0)[̂Qn(αn|x0) − Q(αn|x0)] ≤ z
} = P {Zn(x0) ≤ zn(x0)} ,

where yn(x0) := Q(αn|x0) + σ−1
n (x0)z, zn(x0) = vn(x0)[αn − S(yn(x0)|x0)] and

Zn(x0) := vn(x0)[̂Sn(yn(x0)|x0) − S(yn(x0)|x0)]. From Proposition 1, condition (H)
entails that for all t0 ∈ I ,

lim
(t,y)→(t0,y∗(x0))

Ψ (y)

t

(

S[y + td(y)|x0]
S(y|x0) − 1

)

= lim
t→t0

φ−1(t)

t
. (33)

Since yn(x0) = Q(αn|x0) + a(α−1
n )tn(x0)z = Q(αn|x0) + d(Q(αn|x0))tn(x0)z with

tn(x0) → 0 as n → ∞, (33) entails that as n → ∞
zn(x0) ∼ −zvn(x0)tn(x0)g(αn) = z. (34)

Now, to prove that Zn(x0)
d−→ N (0, 1), it suffices to show that conditions (21)

and (22) hold for yn(x0). From (34),

1 − S[yn(x0)|x0]
αn

∼ zα−1
n v−1

n (x0) = z(αnmn(x0))
−1/2 → 0, (35)

as n → ∞ and thus S[yn(x0)|x0] ∼ αn . This entails that condition

vn(x0) max
1≤i≤n

Wn,i (x0)
a.s.−→ 0

is equivalent to condition (21) with yn(x0). It remains to prove condition (22).
From (35), there exists ξ > 0 such that for n large enough, S(yn(x0)|x0) ∈
[(1 − ξ)αn, (1 + ξ)αn]. Hence, for n large enough,

n
∑

i=1

Wn,i (x0)

∣

∣

∣

∣

S(yn(x0)|Xi )

S(yn(x0)|x0) − 1

∣

∣

∣

∣

≤ sup
|β/αn−1|≤ξ

n
∑

i=1

Wn,i (x0)

∣

∣

∣

∣

S[Q(β|x0)|Xi ]
β

− 1

∣

∣

∣

∣

,

and the proof is complete. ��

7.4 Proof of Corollaries 1, 2 and 3

We first recall a useful result dealing with the almost sure convergence of the statistic

f̂n(x) := 1

nh p
n

n
∑

i=1

K

(

Xi − x0
hn

)

,
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which is the kernel estimator of the density f of the random value X . The following
result can be found for instance in Dony and Einmahl (2009, Corollary 2.1).

Lemma 2 Let x ∈ R
p such that f is continuous at x and f (x) > 0. If the

kernel K is a bounded density with support included in the unit ball Up of Rp

and if K := {K (γ (t − ·)), γ > 0, t ∈ R
p}, is a pointwise measurable Vapnik–

Chervonenkis (VC) type class of functions from R
p to R then for a sequence hn → 0

such that nh p
n / log log n → ∞, we have that f̂n(x)

a.s.−→ f (x).

Conditions on the family K of functions are not easy to check in practice. Never-
theless, the measurability condition on K is satisfied whenever K is right-continuous
(see Einmahl and Mason 2005) or K is an indicator function on a cell of Rp (see van
der Vaart and Wellner 1996, Example 2.3.4). Concerning the VC condition, it is satis-
fied for kernel function K such that K (x) = L(‖x‖) where L is of bounded variation
(see Giné and Nickl 2015, Exercice 3.6.13). For the sake of simplicity, we have pre-
ferred to replace in Lemma 2 all the conditions involving the kernel function by the
stronger (but simpler to check) condition (K).

Corollaries 1, 2 and 3 are direct consequences of Theorem 2 and of the three follow-
ing lemmas establishing the asymptotic distribution of the corresponding conditional
survival function estimators, whose proofs are given in the supplementary material.

Lemma 3 Let x0 ∈ R
p such that f is continuous at x0 and f (x0) > 0 and let K

be a kernel satisfying (K). For sequences hn → 0 and yn(x0) ↑ y∗(x0) such that
nh p

n [S(yn(x0)|x0) ∧ (log log n)−1] → ∞ and

sup
‖x−x0‖≤hn

∣

∣

∣

∣

S(yn(x0)|x)
S(yn(x0)|x0) − 1

∣

∣

∣

∣

2

= o

(

1

nh p
n S(yn(x0)|x0)

)

,

one has

(

nh p
n S(yn(x0)|x0)

)1/2
(

̂SNWn (yn(x0)|x0)
S(yn(x0)|x0) − 1

)

d−→ N
(

0,
‖K‖22
f (x0)

)

.

Lemma 4 Let x0 ∈ R
p. For sequences kn and yn(x0) such that, as n → ∞, yn(x0) ↑

y∗(x0), kn S(yn(x0)|x0) → ∞ and

sup
‖x−x0‖≤D(kn )(x0)

∣

∣

∣

∣

S(yn(x0)|x)
S(yn(x0)|x0) − 1

∣

∣

∣

∣

2

= o

(

1

knS(yn(x0)|x0)
)

,

with D(kn)(x0) = ‖Xr(kn) − x0‖, one has

(knS(yn(x0)|x0))1/2
(

̂SKNNn (yn(x0)|x0)
S(yn(x0)|x0) − 1

)

d−→ N
(

0,
(� + 1)2

2� + 1

)

.
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Lemma 5 Let x0 ∈ R
p such that f is continuous at x0 and f (x0) > 0. Let hn, kn and

yn(x0) ↑ y∗(x0) be sequences such that nh p
n / log log n → ∞, �n S(yn(x0)|x0) → ∞

with �n := (nh p
n ∧ kn) and

sup
‖x−x0‖≤(hn∨D(kn )(x0))

∣

∣

∣

∣

S(yn(x0)|x)
S(yn(x0)|x0) − 1

∣

∣

∣

∣

2

= o

(

1

�n S(yn(x0)|x0)
)

.

If there exists κ ∈ [0,∞] such that kn/(nh
p
n ) → κ then

(�n S(yn(x0)|x0))1/2
(

̂SLCn (yn(x0)|x0)
S(yn(x0)|x0) − 1

)

d−→ N
(

0,
C2(κ)

2p f (x0)

)

,

where C2(κ) := (1 ∧ κ−1)
[

κτ 2 + 2p f (x0)(1 − τ)2 + 2τ(1 − τ) (κ ∧ 2p f (x0))
]

.

��

7.5 Proof of Proposition 6

Proposition 6 is a consequence of the following lemma.

Lemma 6 Let (X ,Y , Z)� be a random vector for which (X ,Y ) and Z are indepen-
dent. Let g be a measurable function such that g(X ,Y , Z) is integrable. One has
E[g(X ,Y , Z)] = E[Ψ (X , Z)], where Ψ (x, z) := E[g(x,Y , z)|X = x].
Proof of Proposition 6 First remark that the assumption on the weights entails that the
Wn,i (x0) are identically distributed. Furthermore, since the Wn,i (x0) sum to 1, it is
clear that E[Wn,1(x0)] = . . . = E[Wn,n(x0)] = 1/n. It thus remains to show that

E

[

1

n

n
∑

i=1

Wn,i (x0)I{Yi>̂Qn,−i (αn |Xi ,λ)}

]

= E
[

Wn,1(x0)S[̂Qn,−1(αn|X1, λ)|X1]
]

.

We apply Lemma 6 with X = X1, Y = Y1, Z = X−1 and g(t, y, u) =
ϕ(t, u)I{y>φ(αn ,t,u)} where the function φ is such that

̂Qn,−1(αn|X1, λ) = φ(αn, X1,X−1).

The conclusion is straightforward since, with the notation of Lemma 6, Ψ (t, u) =
ϕ(t, u)S(φ(αn, t, u)|t). ��
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