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Abstract
This paper develops a robust profile estimationmethod for the parametric and nonpara-
metric components of a single-index model when the errors have a strongly unimodal
density with unknown nuisance parameter. We derive consistency results for the link
function estimators as well as consistency and asymptotic distribution results for
the single-index parameter estimators. Under a log-Gamma model, the sensitivity
to anomalous observations is studied using the empirical influence curve. We also dis-
cuss a robust K -fold cross-validation procedure to select the smoothing parameters.
A numerical study carried on with errors following a log-Gamma model and for con-
taminated schemes shows the good robustness properties of the proposed estimators
and the advantages of considering a robust approach instead of the classical one. A
real data set illustrates the use of our proposal.
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1 Introduction

Semiparametric models are an appealing compromise between parametric and non-
parametric paradigms. These models represent an intermediate point between a fully
parametric model, which is usually of easy interpretation but vulnerable to poor spec-
ification, and a fully nonparametric model, which is more flexible but suffers from the
well-known curse of dimensionality. Semiparametric modelling combines paramet-
ric components with nonparametric ones, retaining the advantages of both types of
approaches and avoiding their drawbacks.

Single-index models are a relevant topic within the broad class of semiparamet-
ric methods with a great potential to model data in different scientific disciplines.
These models have raised a lot of interest in part due to the fact that they reduce the
dimensionality of the covariates through a suitable projection linked to the paramet-
ric component, while at the same time they capture a possible nonlinear relationship
through an unknown smooth function.

Under a single-index model, the response variable y is related to the covariates x
through the equation

y = η(βtx) + ε, (1)

where the single-index parameter β ∈ R
q and the link univariate real-valued function

η : R → R are both unknown. For the sake of identifiability, it is assumed with no loss
of generality that ‖β‖ = 1 and the last component of β is positive, where ‖ · ‖ denotes
the Euclidean norm. Furthermore, in the classical setting, it is usually assumed that
E(ε|x) = 0 and E(ε2|x) < ∞.

As noted above, in our framework‖β‖ = 1andwemayassume thatβq �= 0,without
loss of generality. However, some authors consider a different parametrization given
by

y = η�(θtx) + ε, (2)

where θ = (θ�, θq) with θq = 1 and θ� = (θ1, . . . , θq−1) ∈ R
q−1, which also

leads to an identifiable model. One of the advantages of parametrization (1) over
that given in (2) is that the finite-dimensional parameter β naturally belongs to a
compact set. The relation between both parametrizations is given by β = θ/‖θ‖ and
η(u) = η�(u ‖θ‖), while θ = β/βq and η�(u) = η(u βq). So, estimators in any of
these two parametrizations lead to estimators in the other one.

Single-index models have received an increasing amount of attention in the last
years, probably because they have an appealing feature: they cope with the curse of
dimensionality combining nonparametric and parametric-driven approaches. Beneath
single-index models underlies the idea that the contribution of the vector of covariates
x to the response y can be expressed in terms of a one-dimensional projection. In this
sense, these models can be seen as a dimension reduction technique since, once β has
been estimated, the unidimensional variable βtx can be used as a univariate carrier to
estimate nonparametrically the function η.
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Robust estimates in single index models with unimodal errors 857

There is an extensive literature in this area. Among the first works, we can mention
Powell et al. (1989), Härdle and Stoker (1989), Härdle et al. (1993), Xia et al. (2002)
and Carroll et al. (1997). More recently, Xia and Härdle (2006) studies the asymptotic
distribution of a class of estimators, Chang et al. (2010) consider the heteroscedas-
tic case and Xia et al. (2012) propose a family of estimators of the nonparametric
component for which it is not necessary to undersmooth in order to obtain a

√
n-rate

estimator of the parametric component. On the other hand, Wu et al. (2010) consider
the estimation of the single-index quantile regression, while Liu et al. (2013) propose
robust estimators by means of the mode, without taking into account the estimation
of a possible scale factor. Xue and Zhu (2006) focus on the problem of looking for
confidence regions and intervals, and Zhang et al. (2010) study the problem of test-
ing hypotheses that involve β. Recently, Li and Patilea (2017) considered a quadratic
form criterion involving kernel smoothing and propose a resampling method to build
confidence intervals for the index parameter. Wang et al. (2014) also consider the
extension of these models to the situation in which there are missing responses. All
the aforementioned procedures are based on classical methods, and hence, they are
very sensitive to the presence of outliers.

Indeed, even when different approaches have been proposed for fitting model (1),
such as kernel smoothing or sliced inverse regression methods, in most cases it is
assumed that the error distribution has finite first moment. In the robust framework,
this assumption is generally replaced by the symmetry of the error term distribution,
in order to achieve Fisher-consistent estimators. However, in practice, situations arise
in which the errors are asymmetric, as it is the case when the error term distribution
belongs to some class of exponential families, such as the log-Gamma distribution. In
this paper, we focus on the problem of robust estimating the parametric and nonpara-
metric components of model (1) when the density of the error ε is of the form

g(s, γ ) = Q(γ ) expγ t(s), (3)

where γ > 0 is an unknown parameter and t is a continuous function with unique
mode at e0. Under a linear regression model, this family of exponential distributions
has been previously considered by Bianco et al. (2005) in their attempt to extend
MM-estimators to the case of asymmetric errors. An attractive feature of this family of
distributions is that it enables to model either symmetric or asymmetric errors, as well.
A prominent member of this family is the log-Gamma distribution that is frequently
used to fit asymmetric data. Furthermore, in linear regression models, this family of
errors distribution leads to the log-Gamma regression model which corresponds to a
generalized linear model with log link function.

A first approach to deal with outliers in the responses was given in Delecroix et al.
(2006) who considered M-type estimators for single-index models with known nui-
sance parameter. In contrast, Boente and Rodriguez (2012) proposed robust estimators
of the parametric and nonparametric components under a generalized partially linear
single-index model by assuming that the conditional model of the responses given the
covariates belongs to a canonical exponential family. In this sense, a first contribution
of our approach is that when the errors in Eq. (1) have symmetric distribution with
unknown scale σ , our proposal is distributional free. This means that, under symmetry,
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by taking the nuisance parameter γ as σ , we do not need to assume a known density for
the errors, as it is the case in generalized linear models. Last but not least, it should be
emphasized that in both Delecroix et al. (2006) and Boente and Rodriguez (2012) it is
assumed that the nuisance parameters are known, which may be restrictive for practi-
cal uses. Moreover, a linear regression model with asymmetric errors is typically fitted
using a log-Gamma distribution where γ represents the unknown shape parameter. In
most cases, the estimation of γ is crucial to down-weight large residuals. In fact, as in
linear regression, it is necessary to determine the size of the residuals to decide if an
observation is an outlier or not and this task strongly depends on a good preliminary
nuisance parameter estimator. The symmetric and asymmetric errors situations show
how important is to estimate γ in order to calibrate the robust estimators.

Consequently, in this paper, we go beyond and we contemplate a more realistic
situation for model (1) with error distribution in (3), in which additional parameters of
shape or scale have to be estimated. For this purpose,we introduce a stepwise procedure
based on robust profile estimators.Wemake special emphasis in the case of errors with
log-Gamma distribution, which is often employed in applications, and then we extend
the proposal to the general setting. Under mild conditions, the estimators of η are
consistent and the parametric component estimators are consistent and asymptotically
normal with

√
n-rate. We also provide a class of initial estimators and a robust K -

fold cross-validation procedure to select the bandwidth parameters involved in our
proposal.

The outline of the paper is as follows. In Sect. 2, the three-step procedure for robust
estimation under a single-index model is introduced first for log-Gamma errors, and
then, it is extended tomore general situations. InSect. 3,wegive someasymptotic prop-
erties of the proposal, while in Sect. 4, we compute the empirical influence function
whichmay be helpful to study the sensitivity of the estimators to atypical observations.
Section 5 presents a robust K -fold cross-validation method to select the smoothing
parameters for the proposed robust estimators. The robustness and performance for
finite samples of the proposed method are analysed by means of a numerical study in
Sect. 6. Finally, in Sect. 7 we present an application to a real data set that illustrates
the use of our proposal. Proofs are relegated to the “Appendix”.

2 The estimators

Let (yi , xi ) ∈ R
q+1 be independent observations that follow model (1) for η = η0

and β = β0 and assume that the errors εi are independent, independent of xi and have
density (3) with γ = γ0. Denote E0 the expectation under the true model and α0 the
true nuisance parameter which as mentioned above is a function of γ0.

2.1 The log-Gamma setting

In order to introduce the proposed estimators, let us first revisit the particular case of
the purely parametric regression model with log-Gamma errors, that is, with density
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Robust estimates in single index models with unimodal errors 859

g(s, γ ) = γ γ

Γ (γ )
expγ (s−exp(s)) . (4)

Assume that the variable z ∈ R≥0 and the covariates x ∈ R
q are such that z|x ∼

Γ (γ0, μ(x)), where the parametrization is such that E(z|x) = μ(x) and logμ(x) =
xtβ0. Hence, defining u = z/μ(x), we have that u ∼ Γ (γ0, 1) and therefore, if
y = log(z) and ε = log(u), we get that

y = βt
0x + ε, (5)

where ε ∼ log(Γ (γ0, 1)) has a density given by (4) with γ = γ0, i.e. it belongs to the
family given in (3).

In the log-Gamma model, the classical estimators are based on the maximum
likelihood method and are defined through the minimization of the deviance, whose
components are given by d(y, a) = exp(y−a)−(y−a)−1.A natural way to robustify
these estimators is by means of an M-estimation procedure. Thus, if (yi , xi ) ∈ R

q+1,
1 ≤ i ≤ n, are independent observations following model (5), an M-estimator is
defined as

̂β = argmin
β

n
∑

i=1

φ(yi ,β
txi , ĉ) = argmin

β

n
∑

i=1

ρ

⎛

⎝

√

d(yi ,β
txi )

ĉ

⎞

⎠ , (6)

where ĉ is a preliminary estimate of a tuning constant c0 and ρ is a bounded and con-
tinuous loss function such as the Tukey’s biweight function given by ρ(s) = ρt(s) =
min

(

1, 3s2 − 3s4 + s6
)

. For this family of distributions, the nuisance parameter can
be taken as the tuning constant c0 that is related to the unknown shape parameter
γ0. Fisher consistency for this family of estimators has been studied in Bianco et al.
(2005), under general conditions.

With this background in mind, let us now consider the case of a single-index model
with log-Gamma errors, that is, (yi , xi ) ∈ R

q+1, 1 ≤ i ≤ n, is a random sample where

yi = η0(β
t
0x) + εi and εi ∼ log(Γ (γ0, 1)) . (7)

We will borrow some of the previous ideas to introduce a robust profile method that
involves smoothing and parametric techniques. Profile likelihood procedures were
studied by van der Vaart (1988) and applied to generalized partially linear models by
Severini and Wong (1992) and Severini and Staniswalis (1994). In order to introduce
the smoothers, we will consider local weights. For the sake of simplicity, given β we
define the kernel weights Wh(u,βtxi ) as

Wh(u,βtxi ) = Kh

(

βtxi − u
)

⎧

⎨

⎩

n
∑

j=1

Kh

(

βtx j − u
)

⎫

⎬

⎭

−1

,
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where Kh(u) = (1/h) K (u/h) with K a kernel function, i.e. a nonnegative integrable
function on R and h is the bandwidth parameter. The weights Wh(u,βtxi ) depend
on the closeness between the point u and the projection of xi on the direction β, i.e.
between u and βtxi . To assume that a consistent estimator of the tuning constant, ĉ,
is available, let γ̂r stand for a preliminary robust consistent estimator of γ0 allowing
to define ĉ = ĉ(γ̂r). The latter estimators must be properly computed according to
the underlying errors distribution whose density we assume in the family given in (3).
In Sect. 2.3, we introduce a robust consistent estimator of the nuisance parameter for
the usual regression model with symmetric errors and for the log-Gamma regression
model, as well.

Then, for the particular situation of model (7) we propose the following stepwise
procedure

Step LG1 For each fixed β, with ‖β‖ = 1, let

η̂β(u) = argmin
a∈R

n
∑

i=1

ρ

(√
d(yi , a)

ĉ

)

Wh(u,βtxi ).

Step LG2 Define the estimatorŝβ of β0 as the minimum of Δn(β) among ‖β‖ = 1,
where

Δn(β) = 1

n

n
∑

i=1

ρ

⎛

⎜

⎜

⎝

√

d
(

yi , η̂β

(

βtxi
))

ĉ

⎞

⎟

⎟

⎠

τ(xi )

and τ is a weight function.
Step LG3 Define the final estimator η̂ of η0 as η̂(u) = â(u) with

(̂a(u),̂b(u)) = argmin
(a,b)∈R2

n
∑

i=1

Wh(u,̂β
t
xi )ρ

⎛

⎝

√

d(yi , a + b (̂β
t
x j − u))

ĉ

⎞

⎠ .

The robust estimators are obtained by controlling large values of the deviance with
a bounded loss function ρ. A popular choice is the Tukey’s bisquare loss function
ρ = ρt, while ĉ estimates the tuning constant c0 selected to attain a given efficiency.
As mentioned above, c0 depends on the shape parameter γ0 (see Bianco et al. 2005).
Note that the three steps involve the function

φ(y, a, c) = ρ

(√
d(y, a)

c

)

,

where, as above, d(y, a) = exp(y−a)−(y−a)−1. Asmentioned in the Introduction,
the tuning constant c plays the role of the nuisance parameter.
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2.2 The proposal for the general setting (3)

Let us now consider the general case in which the errors have a density g in family (3).
In order to extend the proposal given in Sect. 2.1 to this situation, one may consider a
loss function φ bounding the deviances. To be more precise, let us denote as

φ(y, a, α) = ρ

(√
d(y, a)

α

)

,

where d(y, a) = t(e0) − t(y − a), with e0 the unique mode of the density g and α

is the tuning constant related to the nuisance parameter. As in Maronna et al. (2006),
ρ : R → R+ is aρ-function, that is, an even function, non-decreasing on |s|, increasing
for s > 0 when ρ(s) < limx→+∞ ρ(x) and such that ρ(0) = 0.

We define for each β and any continuous function v : R → R the functions

Υ (β, a, u, α) = E0

[

φ (y, a, α) |βtx = u
]

, (8)

Δ(β, v, α) = E0

[

φ
(

y, v(βtx), α
)

τ(x)
]

, (9)

where τ is a weight function as above. Denote as ηβ(u) = argmina∈R Υ (β, a, u, α0).
Note that, since we are considering the deviance and a continuous family of distri-
butions with strongly unimodal density, there is no need to introduce a correction
term to attain Fisher consistency (see Bianco et al. 2005). More precisely, we have
that β0 = argminβ∈Rq Δ(β, η0, α0) and ηβ0

= η0. Furthermore, β0 is the unique
minimum of Δ(β, η0, α0).

In order to define consistent estimators of the parametric and nonparametric com-
ponents, let us consider the empirical versions of the objective functions (8) and (9),
respectively, as

Υn(β, a, u, α) =
n
∑

i=1

Wh(u,βtxi )φ (yi , a, α) ,

Δn(β, v, α) = 1

n

n
∑

i=1

φ
(

yi , v(βtxi ), α
)

τ(xi ),

where v is any continuous function v : R → R.
Assume that an initial robust estimator of α, α̂r, is available. For a general single-

index model, the robustified profile method can thus be defined as

Step 1 For each fixed β, with ‖β‖ = 1, let

η̂β(u) = argmin
a∈R

Υn(β, a, u, α̂r).
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Step 2 Define the estimatorŝβ of β0 as

̂β = argmin
‖β‖=1

Δn(β, η̂β , α̂r).

Step 3 Define the final estimator η̂ of η0 as η̂(u) = â(u) with

(̂a(u),̂b(u)) = argmin
(a,b)∈R2

n
∑

i=1

Wh(u,̂β
t
xi )φ

(

yi , a + b (̂β
t
xi − u), α̂r

)

.

Note that the stepwise procedure defined by Step LG.1–Step LG.3 corresponds to
Step 1–Step 3 for a particular choice of the function φ.

It is worth noticing that this stepwise procedure only involves unidimensional
nonparametric smoothers, circumventing the sparsity of the data induced by the dimen-
sionality of the covariates. In the third step, a local polynomial of first degree is
computed in order to improve the estimation of the link function η0. Taking into
account that most kernels K attain their maximum at 0, the contribution of an obser-
vation (yi , xi ) to the smoothers computed in Steps 1 and 3 is determined by the

closeness between u and ̂β
t
xi . When nuisance parameters are present, they may be

estimated using a preliminary S-estimator which will allow to define also the tuning
constant as motivated in the next section.

2.3 Initial estimators

The calibration of the robust estimators will need the computation of a preliminary
estimator of the nuisance parameter γ0. As described in the Introduction, as for many
robust estimators, this is a crucial issue for the three-step procedure and it can be
accomplished in different ways according to the underlying error distribution. We will
illustrate the computation of an initial estimator of the nuisance parameter for the
log-Gamma model, which can be extended to the case of errors with density in the
family given in (3). In Sect. 2.4, we consider the situation in which the errors have a
symmetric distribution.

The preliminary estimator of the shape parameter γ0 under model (7) allows to
compute the tuning constant bymeans of an S-estimator. S-estimators were introduced
by Rousseeuw and Yohai (1984) for ordinary regression and studied in the framework
of linear regression with asymmetric errors in Bianco et al. (2005). Let ρt be the
bisquare ρ-function and consider the following S-estimator.

Step ILG.1 For each value of a, u and β, compute sn,β,u(a) as the solution of

n
∑

i=1

ρt

(√
d(yi , a)

sn,β,u(a)

)

Wh(u,βtxi ) = b,

where, for instance, b = 1/2 and d(y, a) = exp(y − a) − (y − a) − 1.
Define η̃β(u) as the value η̃β(u) = argmina sn,β,u(a).
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Step ILG.2 For each β, let σ̃ (β) be the solution of

1
∑n

i=1 τ(xi )

n
∑

i=1

ρt

⎛

⎜

⎜

⎝

√

d
(

yi , η̃β

(

βtxi
))

σ̃ (β)

⎞

⎟

⎟

⎠

τ(xi ) = b.

Now, the estimator of β0 is given by ˜β = argmin‖β‖=1 σ̃ (β) and ŝn =
σ̃ (˜β).

Step ILG.3 Define the estimator of γ0 as γ̂ = S� −1(̂sn) where S�(γ ) is the solution
of

Eγ ρt

(√
d(ε, 0)

S�(γ )

)

= Eγ ρt

(
√

exp(ε) − 1 − ε

S�(γ )

)

= b

where ε has density g(s, γ ) given in (4).

This method provides an estimator of γ0 as well as an initial estimator˜β of β0, which
is robust, but may be inefficient. It also provides an estimator of the function η0 as
η̂ = η̃

˜β . These estimators may be used to start the stepwise estimation procedure
in Steps LG1–LG3 given above. In Bianco et al. (2005) it is shown that S�(γ ) is a
one-to-one function and thus invertible. For this reason, they recommend to take the
data-driven tuning constant in (6) as ĉn ≥ ŝn = S�(γ̂ ).

It is worth noting that if we replace d(y, a) = exp(y − a) − (y − a) − 1 by
d(y, a) = t(e0)− t(y− a) in the initial Steps ILG.1–ILG.3, the described procedure
provides preliminary estimators when the errors have density given by (3).

2.4 Themodel with symmetric errors

As it is noted above, the family of densities given in (3) also includes symmetric
distributions. In this case, a suitable initialmethod that exploits this feature of the errors
distribution can be introduced. Thus, as a second example, we consider the symmetric
setting. We set α = σ and ρ0(u) = ρt(u/c0), where c0 is the tuning constant needed
to obtain a scale Fisher-consistent estimator. For instance, when dealing with Tukey’s
bisquare function ρt, the choice c0 = 1.54764 and b = 1/2 leads to a scale Fisher-
consistent estimator at the normal distribution with breakdown point 50%. Then, to
provide a preliminary estimator of the true scale parameter α0 = σ0, let us consider
an S-estimator that can easily be computed as follows.

Step IS.1 For each value of u and β, compute η̃β(u) as the median of the empirical
local distribution

Fn,β,h(s) =
n
∑

i=1

I(−∞,s](yi )Wh(u,βtxi ).
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Step IS.2 For each β, let σ̃ (β) be the solution of

1
∑n

i=1 τ(xi )

n
∑

i=1

ρ0

⎛

⎝

yi − η̃β

(

βtxi
)

σ̃ (β)

⎞

⎠ τ(xi ) = b,

where, for instance, b = 1/2. Now, the estimators of β0 and σ0 are given
as˜β = argmin‖β‖=1 σ̃ (β) and α̂r = σ̂ = σ̃ (˜β).

To improve the efficiency of the estimators of β0, consider ρ1(u) = ρt(u/c1), with
c1 > c0, and define an MM-procedure as follows.

Step S.1 For each value of u and β, compute η̃β(u) as

η̂β(u) = argmin
a∈R

n
∑

i=1

Wh(u,βtxi )ρ1

(

yi − a

σ̂

)

.

Step S.2 Define the estimator̂β as

̂β = argmin
‖β‖=1

1

n

n
∑

i=1

ρ1

⎛

⎝

yi − η̂β

(

βtxi
)

σ̂

⎞

⎠ τ(xi ).

Step S.3 For each value of u, define the final estimator η̂ of η0 as η̂(u) = â(u) with

(̂a(u),̂b(u)) = argmin
(a,b)∈R2

n
∑

i=1

Wh(u,̂β
t
xi )ρ1

(

yi − a − b(̂β
t
xi − u)

σ̂

)

.

Note that the stepwise procedure defined by Steps S.1 to S.3 corresponds to Step
1–Step 3 for a particular choice of the function φ, that is, φ(y, a, α) = ρ1((y−a)/α).

3 Asymptotic results

In this section, we derive, under some regularity conditions, the consistency of the
estimators defined in Sect. 2.2 through Steps 1 to 3. We will assume that x ∈ X ⊂ R

p.
Let X0 ⊂ X be a compact set and define the set U(X0) = {βtx : x ∈ X0, β ∈ S1},
where S1 is the unit ball in R

p, i.e. S1 = {β ∈ R
p : ‖β‖ = 1}. For any continuous

function v : U(X0) → R denote ‖v‖0,∞ = supu∈U(X0)
|v(u)|. We consider the

following set of assumptions:

A1 The loss function ρ and the function t defined in (3) are continuous. Moreover,
ρ and τ are bounded.

A2 The kernel K : R → R is an even, nonnegative, continuous and bounded func-
tion, with bounded variation, satisfying

∫

K (u)du = 1,
∫

u2K (u)du < ∞ and
|u|K (u) → 0 as |u| → ∞.
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A3 The bandwidth sequence h = hn is such that h → 0, nh/ log(n) → ∞ when
n → ∞.

A4 i) The marginal density fX of x is bounded in X .
ii) Given any compact set X0 ⊂ X , there exists a positive constant A1(U(X0))

such that A1(U(X0)) < fβ(u) for all u ∈ U(X0) and ‖β‖ = 1, where fβ is the

marginal density of βtx.
A5 The functionΥ (β, a, u, α) satisfies the following equicontinuity condition: given

X0 ⊂ X and K ⊂ R>0 compact sets, for any ε > 0 there exists δ > 0 such that
for any u1, u2 ∈ U(X0); β1,β2 ∈ S1 and α1, α2 ∈ K,

|u1 − u2| < δ , |α1 − α2| < δ and ‖β1 − β2‖ < δ

⇒ sup
a∈R

|Υ (β1, a, u1, α1) − Υ (β2, a, u2, α2)| < ε .

A6 The functionΥ (β, a, u, α) is continuous andηβ,α(u) = argmina∈R Υ (β, a, u, α)

is a continuous function on (β, u, α).
A7 The initial estimator of α, α̂r, is a consistent estimator.
A8 The functions ρ and t are differentiable functions.

Remark 1 ConditionA1 is fulfilled by the loss functions commonly used in the frame-
work of robustness such as Tukey’s bisquare function and guarantees that φ(y, a, α)

is a continuous and bounded function. Assumptions A2 and A3 are standard in non-
parametric regression. Moreover, A2 is verified for the Epanechnikov and Gaussian
kernels, while A3 is satisfied choosing hn = n−q for q > 0. A4 is a standard con-
dition in semiparametric models; in particular ii) is achieved if fx(x) > B1(X0) for
any x ∈ U(X0). Note that A8 entails that φ(y, a, α) is a continuously differentiable
function with respect to a. We will denote as φ ′(y, a, α) its partial derivative with
respect to a.

The following Lemma gives the uniform convergence of η̂β,α to ηβ,α . Its proof is
omitted since it follows using analogous arguments to those considered in the proof
of Lemma 3.1 in Boente and Rodriguez (2012).

Lemma 1 Let K ⊂ R>0 and X0 ⊂ X be compact sets and assume that there
exists δ0 > 0 such that Xδ0,0 ⊂ X , where Xδ0,0 stands for the closure of a δ0-
neighbourhood of X0. Assume that A1 to A6 hold and that the family of functions
F = { f (y) = φ (y, a, α) , a ∈ R, α ∈ K} has a covering number satisfying
supQ N

(

ε,F , L1(Q)
) ≤ Aε−W , for any 0 < ε < 1 and some positive constants

A and W, where Q stands for any probability measure for (y, x). Then, we have that

a) sup
a∈R,β∈S1,α∈K

‖Υn(β, a, ·, α) − Υ (β, a, ·, α)‖0,∞ a.s.−→ 0.

b) If inf
β∈S1, α∈K
u∈U(X0)

[

lim|a|→∞ Υ (β, a, u, α) − Υ (β, ηβ,α(u), u, α)

]

> 0, then sup
β∈S1, α∈K

‖η̂β,α

− ηβ,α‖0,∞ a.s.−→ 0, where η̂β,α(u) = argmina∈R Υn(β, a, u, α).
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Remark 2 The condition on the infimum assumed in Lemma 1b) warranties that the
infimum of function Υ in (8) is not attained at infinity. Recall that finite-dimensional
families of functions are VC-classes of functions as defined in Pollard (1984). Hence,
using that

F =
{

f (y) = φ (y, a, α) = ρ

(√
t(e0) − t(y − a)

α

)

, a ∈ R, α ∈ K
}

,

we obtain that the required condition on the covering number depends on the behaviour
of the function t(s). In particular, for the log-Gamma regression model, this condition
is satisfied for any ρ-function.

From Lemma 1, the continuity with respect to β of the function ηβ,α(u) defined in
A6 and condition A7, we obtain the following result recalling that Δ(β, η0, α0) has a
unique minimum at β0.

Theorem 1 Let ̂β be defined ̂β = argminβ Δn(β, η̂β,α̂r , α̂r), where η̂β,α =
argmina∈R Υn(β, a, u, α) satisfies

sup
β∈S1, α∈K

‖η̂β,α − ηβ,α‖0,∞ a.s.−→ 0 . (10)

Assume that A1 and A8 hold and that α̂r
a.s.−→ α0. Then, we have that

a) sup
β,b∈S1;a∈K

∣

∣Δn(β, η̂b,a, a) − Δ(β, ηb,a, a)
∣

∣

a.s.−→ 0 for any compact setK ⊂ R>0.

b) ̂β
a.s.−→ β0.

The asymptotic distribution of̂β can be derived using the consistency of α̂r assum-
ing that the covariates x lie in a compact set with probability one. In fact, similar
arguments to those considered in the proof of Theorem 3.5.3 in Rodriguez (2007) can
be used, but taking into account the fact that the estimator of the nuisance parameter
is consistent. In particular, we consider below the case of a log-Gamma model.

From now on, we assume that ρ is twice continuously differentiable with first
and second derivatives Ψ (y) and Ψ ′(y), respectively, and that ηb,a is continuously
differentiable in (b, a).

Recall that under a log-Gammamodel, yi = η0(β
t
0xi )+εi with εi ∼ log (Γ (γ0, 1))

independent of xi , so d(y, a) = exp(y − a) − (y − a) − 1 and φ(y, a, c) =
ρ
(√

d(y, a)/c
)

. If we define d∗(u) = exp(u) − u − 1, we have that d(y, η0(β
t
0x)) =

d∗(y − η0(β
t
0x)). Let

ψ(y, a, c) = ∂

∂a
φ(y, a, c) (11)

χ(y, a, c) = ∂

∂a
ψ(y, a, c) . (12)
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Hence, ψ(y, η0(β
t
0x), c) = ψ∗(y − η0(β

t
0x), c) and χ(y, η0(β

t
0x), c) = χ∗(y −

η0(β
t
0x), c), where

ψ∗(u, c) = 1

2c
Ψ

(√
d∗(u)

c

)

1 − exp(u)√
d∗(u)

(13)

χ∗(u, c) = 1

4c2
Ψ ′

(√
d∗(u)

c

)

(1 − exp(u))2

d∗(u)

+ 1

4c
Ψ

(√
d∗(u)

c

)[

2 exp(u)√
d∗(u)

− (1 − exp(u))2

d∗(u)3/2

]

. (14)

Define B = E0

[

χ
(

y1, η0(β
t
0x1), c

)

τ(x) ν1(β0,β
t
0x1)ν1(β0,β

t
0x1)

t
]

, where

νi (b, t) = ∂

∂β
ηβ(s)|(β,s)=(b,t) + ∂

∂s
ηβ(s)|(β,s)=(b,t) xi . (15)

Due to the independence between the errors and the covariates, B can be written as

B = E
(

χ∗ (ε1, c)
)

˜B , (16)

where˜B = E

[

τ(x1)ν1(β0,β
t
0x1)ν1(β0,β

t
0x1)

t
]

. Furthermore, consider the matrix

Σ = 4E0

{

ψ2
(

y1, η0(β
t
0x1), c

)

τ 2(x1)ν1(β0,β
t
0x1)ν1(β0,β

t
0x1)

t
}

= E

{

ψ∗ 2 (ε1, c)
}

˜Σ , (17)

with ˜Σ = 4E
{

τ 2(x1)ν1(β0,β
t
0x1)ν1(β0,β

t
0x1)

t
}

. LetB1,˜B1,Σ1 and ˜Σ1 be the left

superiormatrices of dimension (q−1)×(q−1) ofB,˜B,Σ and˜Σ , respectively.Assume

thatB is non-singular,̂β
p−→ β0, xi are randomvectorswith distributionwith compact

support X and the bandwidth h = hn satisfies nh4 → 0 and nh2/log (1/h) → ∞.
Then, using analogous arguments to those considered in Rodriguez (2007) for the case

of fixed nuisance parameter and taking into account that ĉn
p−→ c, we obtain that

√
n(̂βq − β0q)

p−→ 0 (18)
√
n(̂β

(q−1) − β
(q−1)
0 )

D−→ N (0,B−1
1 Σ1(B

−1
1 )t) , (19)

where for any b ∈ R
q , b(q−1) = (b1, . . . , bq−1)

t.
Hence, using (16) and (17), we get that

√
n(̂β

(q−1) − β
(q−1)
0 )

D−→ N

(

0,
Eψ∗ 2 (ε1, c)

(Eχ∗ (ε1, c))2
˜B−1
1
˜Σ1(˜B

−1
1 )t

)

.
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Since the classical estimator of the single-index parameter corresponds to the choice
ρ(s) = s2, its asymptotic covariance matrix is of the form (1/γ0) ˜B−1

1
˜Σ1(˜B

−1
1 )t;

therefore, the asymptotic efficiency with respect to the classical estimator is given by

e = 1

γ0

(Eχ∗ (ε1, c))
2

E0ψ∗ 2 (ε1, c)
,

which equals the efficiency of the MM-regression estimator described in Bianco et al.
(2005). Hence, the tuning constant parameter in Steps LG1 to 3 can be chosen to
attain a given efficiency.

Let us consider the parametrization given in (2), and let θ = (θ�, θq) with θ� =
(θ1, . . . , θq−1) ∈ R

q−1 and θq = 1. Using that the parameter θ equals β/βq (βq > 0),
we have that θ� = β(q−1)/βq . Hence, the relation between both parameters suggests

to estimate θ� by means of̂θ
� = ̂β

(q−1)
/̂βq . Thus, from

√
n(̂θ

� − θ�
0) = √

n

(

̂β
(q−1)

̂βq
− β

(q−1)
0

β0q

)

= 1
̂βq

√
n
(

̂β
(q−1) − β

(q−1)
0

)

+√
n
(β0q − ̂βq)

̂βqβ0q
β

(q−1)
0 ,

it is easy to see that
√
n(̂θ

� − θ�
0)

D−→ N
(

0, (1/β2
0q)B

−1
1 Σ1(B

−1
1 )t

)

, since (18) and

(19) entail that
√
n(̂θ

� − θ�
0) = √

n(̂β
(q−1) − β

(q−1)
0 )/β0q + oP(1) .

4 Empirical influence curve

In this section, we derive the empirical influence function of the single-index param-
eter estimator under a log-Gamma model. The empirical influence function (EIF),
introduced by Tukey (1977), measures the robustness of an estimator with respect
to a single outlier. Essentially, it assesses the impact on an estimator of adding an
arbitrary observation to the sample. Diagnostic measures with the purpose of outlier
identification can be defined from the empirical influence function. Mallows (1974)
defines a finite version of the influence function, introduced by Hampel (1974), that is
computed at the sample empirical distribution. The EIF has been widely used in para-
metric statistics, but has retrieved less attention in nonparametric literature. Foremost,
Manchester (1996) introduces a simple graphical procedure to display the sensitivity of
a scatter plot smoother to perturbations in the data. Tamine (2002) defines a smoothed
influence function in the context of nonparametric regression with a fixed bandwidth
that is based on Aït Sahalia (1995) smoothed functional approach to nonparametric
kernel estimators.

Following Boente and Rodriguez (2010), we consider an empirical influence func-
tion that is close toManchester (1996) approach and at the same time, retains the spirit
of the EIF definition introduced by Mallows (1974).
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Robust estimates in single index models with unimodal errors 869

To be more precise, denote ̂β the single-index parameter estimator based on the
original data set (yi , xi ), 1 ≤ i ≤ n. If Pn is the empirical measure that gives weight
1/n to each datum in the sample, we have that̂β = ̂β(Pn). Let Pn,ε be the empirical
measure that gives mass (1 − ε)/n to each (yi , xi ), 1 ≤ i ≤ n and mass ε to the
arbitrary observation (y0, x0). In other words, we have a new sample with the original
data set accounting an 1−ε proportion and the new observation an ε proportion. Now,
denote ̂βε = ̂β(Pn,ε) the single-index parameter estimator for the new sample. We
compute the empirical influence function of̂β at a given point (y0, x0) as

EIF(̂β, (y0, x0)) = lim
ε→0

̂βε −̂β

ε
.

It is easy to see that the single-index estimator is equivariant under orthogonal trans-
formations. Hence, without loss of generality, we can assume that ̂β = eq , the q-th
canonical vector ofRq . To obtain the empirical influence function, wewill assume that
the matrix B1 given in (16) is non-singular, as required when deriving the asymptotic
distribution of̂β in Sect. 3. Furthermore, for simplicity, we will assume that the tuning
parameter c and the bandwidth parameter h are fixed.

To avoid heavy notation, denote EIF(̂β) = EIF(̂β, (y0, x0)), EIF(̂ηβ(u)) =
EIF(̂ηβ(u), (y0, x0)), EIF(∂ η̂β(u)/∂β) = EIF(∂ η̂β(u)/∂β, (y0, x0)) and EIF(∂ η̂β

(u)/∂u) = EIF(∂ η̂β(u)/∂u, (y0, x0)). Moreover, from now on, given b ∈ R
q ,

b(q−1) = (b1, . . . , bq−1)
t stands for the vector of its first q − 1 elements. Besides,

given the kernel K and its first derivative K ′, we define K ′
h(u) = (1/h) K ′(u/h).

Let us assume that ρ is three times continuously differentiable. Moreover, if in
addition, the kernel K is continuously differentiable, we get that η̂β(u) defined in
Step LG1 is twice continuously differentiable with respect to β and u. Moreover, its
first partial derivatives can be computed as

∂η̂β(u)

∂β
= −

∑n
i=1 K

′
h

(

βtxi − u
)

ψ
(

yi , η̂β(u), c
)

xi
∑n

i=1 Kh

(

βtxi − u
)

χ
(

yi , η̂β(u), c
)

and

∂η̂β(u)

∂u
=

∑n
i=1 K

′
h

(

βtxi − u
)

ψ
(

yi , η̂β(u), c
)

∑n
i=1 Kh

(

βtxi − u
)

χ
(

yi , η̂β(u), c
)

,

where, as in (11) and (12), ψ(y, a, c) and χ(y, a, c) stand for the derivatives with
respect to a of φ(y, a, c) and ψ(y, a, c), respectively.

Proposition 1 Assume that ρ is three times continuously differentiable, the kernel
K is continuously differentiable and that B1, the left superior matrix of dimension
(q − 1) × (q − 1) of the matrix B given in (16) is non-singular. Denote as
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�n(y0, x0) = ψ
(

y0, η̂̂β
(̂β

t
x0), c

)

ν̂0(̂β,̂β
t
x0)τ (x0)

+ 1

n

n
∑

i=1

χ
(

yi , η̂̂β
(̂β

t
xi ), c

)

τ(xi ) EIF
(

η̂β(u)
)∣

∣

(β,u)=̂si
ν̂i (̂β,̂β

t
xi )

+ 1

n

n
∑

i=1

ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

τ(xi )

{

EIF

(

∂

∂β
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

+ EIF

(

∂

∂u
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

xi

}

(20)

Mn =
[

1

n

n
∑

i=1

χ
(

yi , η̂̂β
(̂β

t
xi ), c

)

τ(xi ) ν̂i (̂β,̂β
t
xi ) ν̂i (̂β,̂β

t
xi )t

+ 1

n

n
∑

i=1

ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

V(̂si )τ (xi )

]

, (21)

where ŝi = (̂β,̂β
t
xi ) and ν̂i (b, t) are estimates of the quantities given in (15), that

is,

ν̂i (b, t) = ∂

∂β
η̂β(s)|(β,s)=(b,t) + ∂

∂s
η̂β(s)|(β,s)=(b,t) xi

ν̂0(b, t) = ∂

∂β
η̂β(s)|(β,s)=(b,t) + ∂

∂s
η̂β(s)|(β,s)=(b,t) x0

and

V(̂si ) =
⎡

⎣

∂2η̂β(u)

∂2β

∣

∣

∣

∣

∣

(β,u)=̂si

+ ∂2η̂β(u)

∂2u

∣

∣

∣

∣

∣

(β,u)=̂si

xixti

+ ∂2η̂β(u)

∂u∂β

∣

∣

∣

∣

∣

(β,u)=̂si

xti + ∂2η̂β(u)

∂β∂u

∣

∣

∣

∣

∣

(β,u)=̂si

xti

⎤

⎦ .

Then, ifMn,1, the left upper (q − 1)× (q − 1) submatrix ofMn, is invertible, we have
that

a) EIF(̂β)q = 0 and EIF(̂β
(q−1)

) = −M−1
n,1�

(q−1)
n , where �n = �n(y0, x0).

b) the empirical influence functions at (y0, x0), EIF(̂ηβ(u)), EIF(∂ η̂β(u)/∂β) and
EIF(∂ η̂β(u)/∂u) are given by

EIF(̂ηβ (u)) = − Kh(β
tx0 − u)ψ

(

y0, η̂β (u), c
)

Dn

EIF

(

∂η̂β (u)

∂β

)

= −
1

h
K ′
h(β

tx0 − u)ψ
(

y0, η̂β (u), c
)

x0 + Kh(β
tx0 − u)χ

(

y0, η̂β (u), c
) ∂

∂β
η̂β (u)

Dn
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+ Kh(β
tx0 − u)ψ

(

y0, η̂β (u), c
)

D2
n

[

1

h
gn + Fn

∂

∂β
η̂β (u)

]

EIF

(

∂η̂β (u)

∂u

)

= 1

Dn

{

1

h
K ′
h(β

tx0 − u)ψ
(

y0, η̂β (u), c
)

− Kh(β
tx0 − u)χ

(

y0, η̂β (u), c
) ∂

∂u
η̂β (u)

}

− Kh(β
tx0 − u)ψ

(

y0, η̂β (u), c
)

D2
n

(

Fn
∂

∂u
η̂β (u) − 1

h
En

)

,

where

∂

∂u
η̂β(u) = 1

h
F−1
n En ,

∂

∂β
η̂β(u) = −1

h
F−1
n gn

and

Dn = 1

n

n
∑

i=1

Kh(β
txi − u)ψ

(

yi , η̂β(u), c
)

,

En = 1

n

n
∑

i=1

K ′
h

(

βtxi − u
)

ψ
(

yi , η̂β(u), α
)

,

Fn = 1

n

n
∑

i=1

Kh

(

βtxi − u
)

χ
(

yi , η̂β(u), α
)

,

gn = 1

n

n
∑

i=1

K ′
h

(

βtxi − u

h

)

ψ
(

yi , η̂β(u), α
)

xi .

Remark 3 In Proposition 1, the left upper submatrix Mn,1 is assumed to be non-

singular.Using the conditional Fisher consistency, that is,E0

(

ψ
(

y, ηβ0
(βt

0x), c0
)

|x
)

= 0, we have that

1

n

n
∑

i=1

ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

V(̂si )τ (xi )
p−→ 0 ,

under mild conditions, while

1

n

n
∑

i=1

χ
(

yi , η̂β(̂β
t
xi ), c

)

τ(xi ) ν̂i (̂β,̂β
t
xi )̂νi (̂β,̂β

t
xi )t

p−→ B .

Therefore, Mn
p−→ B which implies that Mn,1

p−→ B1. Hence, taking into account
that we have assumed that B1 is invertible, we get that with probability converging to
1Mn,1 is non-singular.

As mentioned above, the EIF may be used as a tool to assess the robustness of the
method under consideration. To the greatest extent, we can say that if an estimator has
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an unbounded empirical influence function, we may expect the estimator to have a
high sensitivity to the presence of outliers. On the contrary, a bounded EIF reflects that
the effect of an anomalous point on the estimator is somehow down-weighted. In this
sense, a robust method should give stable results when adding any possible point, even
an extremely unlikely one. It should be taken into account that, in the present context
of semiparametric methods, we are mainly concerned about the influence of large
residuals due to an anomalous response (vertical outlier), since, as in nonparametric
regressionor partly linearmodels, to derive asymptotic distribution results it is assumed
that the covariates related to the nonparametric component lie in a compact set.

It is important to recall that, as in nonparametric regression, when using a kernel
with compact support to compute the smoother η̂β only atypical responses near the
value at which the link function estimator is evaluated may impact the nonparametric
estimator. This well-known effect is clear from the dependence of EIF(̂ηβ(u)) on

Kh(β
tx0 − u). Consequently, the effect of an atypical response y0 on η̂β(u) takes

into account not only the size of ψy0,β,u = ψ(y0, η̂β(u), c), but also the distance

between βtx0 and u. More precisely, a large value of ψy0,β,u will be more harmful

when combined with values of x0 whose distance between βtx0 and u is small with
respect to the considered bandwidth.

In the case of the estimator of the single-index parameter, we observe that the
EIF(̂β) depends on the arbitrary point (y0, x0) just through the factor �n = �n(y0, x0),
since the matrix Mn only involves the original sample (yi , xi ), 1 ≤ i ≤ n. Hence,
focusing on �n , we realize that its dependency on the discretionary response y0 is
carried out in the first term through ψy0,̂β,u . In the remaining terms of �n , the effect
of y0 is related to the behaviour of the empirical influence functions of η̂β(u) and its

derivatives at (β, u) = (̂β,̂β
t
xi ), which are larger when the projection̂β

t
x0 is close

to that of one of the sample points xi , as described above. It is worth mentioning that
the empirical influence functions EIF

(

∂η̂β(u)/∂β
)

and EIF
(

∂η̂β(u)/∂u
)

depend on
y0 not only through the score functions ψ but also through its partial derivative χ .

For the classical estimator,we have thatΨ (t) = t ; therefore, the values of �n(y0, x0)
and EIF(̂ηβ(u)) may go beyond any limit when y0 goes to infinity. Furthermore, as
mentioned above, the effect on the nonparametric component and its derivatives may
be larger when the outlier y0 corresponds to projection values βtx0 close to u. On
the opposite, for our robust proposal, we choose Ψ as a bounded redescending score
function leading to bounded ψ and χ functions, which enable to control the local
effect of anomalous responses on the single-index estimator ̂β and the link function
one η̂.

It is worth noticing that even when considering a bounded loss function, such as

the Tukey’s bisquare function, the term in �n(y0, x0) involving x0 in ν̂0(̂β,̂β
t
x0) may

not be bounded in directions orthogonal tôβ, unless the function τ(x0) controls large
values of the covariates. This behaviour is similar to that arisingwith projection-pursuit
estimators when estimating the principal directions (see Croux and Ruiz-Gazen 2005),
but unlike this case, in the present context of single-index models, our main concern is
on the estimators sensitivity to anomalous responses and the values of x0 are assumed
to be within a compact set.
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5 Selection of the smoothing parameters

The estimation of the nonparametric component of the model involves a smoothing
parameter both in the first and third steps. Each step may require a different degree
of smoothness, and for this reason, the bandwidths may be different. The effect of the
bandwidth is crucial on the performance of the nonparametric estimator; the smooth-
ing parameter must warranty a balance between bias and variance. The problem of
bandwidth selection has been widely studied in nonparametric and semiparametric
models, and leave-one-out cross-validation procedures have been extensively used
for this purpose. K -fold cross-validation criteria are also a reasonable choice with a
computationally cheaper cost.

However, it is well known that classical cross-validation criteria are very sensitive
to outliers. It is worth noticing that robust criteria for the selection of the smoothing
parameter are needed even when robust estimators are considered. Leung et al. (1993),
Wang and Scott (1994), Boente et al. (1997), Cantoni and Ronchetti (2001) and Leung
(2005) discuss these ideas in the fully nonparametric framework, while Bianco and
Boente (2007) and Boente and Rodriguez (2008) consider robust cross-validation in
semiparametric models.

For the initial and final smoothing steps performed in Steps 1 and 3 of the proposed
method, we consider a robust version of the classical K -fold cross-validation criterion
based on the deviance to select the bandwidths. More precisely, let us first randomly
split the data set into K subsets of similar size, disjoint and exhaustive, with indexes
I j , 1 ≤ j ≤ K , such that ∪K

j=1I j = {1, . . . , n}. LetH1
n ⊂ R be the set of bandwidths

to be considered in the first step of the proposed procedure. Denote ˜β
(− j)
h the robust

regression estimator computed in Step 2 without the observations with indexes in the
set I j and using as smoothing parameter h ∈ H1

n in the previous step and let η̂
(− j)
˜β,h

(u)

be the corresponding nonparametric robust estimator computed in Step 1.
Taking into account that for each i , 1 ≤ i ≤ n, there exists j , 1 ≤ j ≤ K ,

such that i ∈ I j , we define the prediction of observation yi as ŷi = η̂
(− j)
˜β,h

(xti˜β
(− j)
h ).

Noticing that in the actual setting, the deviance residuals are a suitable measure of
the discrepancy between an observation and its predictor; the robust K -th fold cross-
validation smoothing parameter is defined aŝh1 = argminh∈H1

n
RCV (h), where

RCV (h) =
n
∑

i=1

ρ

(√
d (yi , ŷi )

c

)

, (22)

for a given tuning constant c. Clearly, the choice of the optimal bandwidth depends
on the subset H1

n . It is worth noticing that for unit vectors β, |xti β| ≤ ‖xi‖, so
the projected data take values in the interval [− supi ‖xi‖, supi ‖xi‖]. In practice, to
determine meaningful boundaries for the bandwidth setH1

n , one needs to have a more
precise idea of the interspacing. For that purpose, the practitioner could generate M
random unit directions β and explore the spacing between the values βtxi for each
direction.

123



874 C. Agostinelli et al.

Denote ̂β the robust estimator based on the whole sample when the smoothing
parameter is the optimal h = ̂h1. It is worth noticing that the robust K -th fold cross-
validation RCV (h) given in (22) is a robustified version of its classical counterpart
that seeks for the smoothing parameter minimizing

CCV (h) =
n
∑

i=1

d (yi , ŷi ), (23)

where ŷi are based on the classical estimators.
In order to select the second bandwidth to be used in the local linear nonparametric

estimator described in Step 3, we consider a similar procedure. That is, we take
H2

n ⊂ R the set of bandwidths to be considered in the third step. Denote η̂
(− j)
̂β,h

(u)

the robust nonparametric estimator without the observations with indexes in the set
I j and using as smoothing parameter h ∈ H2

n and ̂β. Again, reasoning as above,

for each 1 ≤ i ≤ n, we define the predictor of observation yi as ŷi = η̂
(− j)
̂β,h

(̂β
t
xi )

and so, the robust K -th fold cross-validation linear smoothing parameter is defined as
̂h2 = argminh∈H2

n
RCV (h). Once the data-driven bandwidtĥh2 is obtained, the final

nonparametric estimator denoted η̂
̂β,̂h2

can be computed as in Step 3 from the whole
sample using this bandwidth.

We want to highlight that the set of possible bandwidths inH2
n depends now on the

spacing between the projections ̂β
t
xi . Since β0 has already been estimated through

̂β at this stage, this determination results in a simpler process than for H1
n .

6 Numerical results

In this section, we summarize the results of a simulation study designed to compare the
performance of the proposed estimators with the classical ones under a log-Gamma
model.

We have performed N = 1000 replications with samples of size n = 100. For the
clean samples, the covariates xi are generated as xi ∼ U((0, 1) × (0, 1)), while the
response variables follow the log-Gamma single-index model yi = η0(β

t
0xi )+ε, with

η0(u) = sin(2πu), β0 = (1/
√
2, 1/

√
2)t and ε ∼ log(Γ (3, 1)).

In all Tables, the results for the uncontaminated samples are denoted as C0. Fur-
thermore, the robust estimators introduced in this paper are subindicated with r, while
their classical counterparts based on the deviance are subindicated with cl. To be
more precise, the robust estimators correspond to those controlling large values of
the deviance. In this case, the robust estimators were computed using the Tukey’s
bisquare loss function with adaptive tuning constants computed as in Bianco et al.
(2005). It should be stressed that the tuning constant, which plays the role of the nui-
sance parameter in this setting, allows to measure the size of deviance residuals in
order to down-weight the effect of possible influential observations. For that reason,
as mentioned in the Introduction, its estimation is a key point to detect possible atyp-
ical data. More precisely, at each replication the calibration of the robust estimators
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was implemented through an S-estimator. For this purpose, we computed the initial
procedure described in Steps ILG.1 to ILG.3 in Sect. 2.3. Since the resulting outcome
of Step ILG.3 provides an estimator γ̂ of the shape parameter γo = 3, we calibrated
the robust estimator through the function S� defined in Step ILG.3 by taking as tuning
constant ĉ = S�(γ̂ ).

On the other hand, the classical estimators correspond to choosing the loss function
equal to the deviance. With respect to the weight or trimming function, in order to
make a fair comparison between the classical and robust estimators, we choose τ(x) =
‖x − c‖I[0,bn ], with c = (0.5, 0.5) and bn = 0.4

√

log (log (n)) for both estimators.

The value bn is selected as in Sherman (1994) to avoid the density of βt
0x to be too

small.
The smoothing parameterswere selected as described in Sect. 5 using a 5-fold cross-

validation procedure. For the classical estimators, we use criterion (23) in each step,
while for the robust estimates, we used the robust 5-fold method (22) with c = 1.6394
that under the centralmodel corresponds to an asymptotic efficiency of 0.90. In all these
cases, the setH1

n of candidates for the initial bandwidth h was taken as an equidistant
grid of length 13 between 0.05 and 0.35,while for the local linear smoothing parameter,
we chooseH2

n as an equidistant grid of length 25 between 0.05 and 0.35. To simplify
the notation, henceforth we denote ̂βr and η̂r the robust estimators computed with
the two robust cross-validation bandwidths, whilêβcl and η̂cl stand for the classical
estimators computed with the bandwidths obtained minimizing (23).

To evaluate the performance of each estimator, we compute different measures.
For the parametric component, given an estimator ̂β of the true single-index param-
eter β0, we consider MSE

̂β
as the mean values over replications of ‖̂β − β0‖2. For

the nonparametric component, we compute MSEη̂ as the mean over replications of

(1/n)
∑n

i=1(η0(β
t
0xi ) − η̂(̂β

t
xi ))2 and also MedSEη̂ as the median over replications

of mediani=1:n(η0(βt
0xi )− η̂(̂β

t
xi ))2, where η̂ is a given estimator of the function η0.

In order to assess the behaviour of the estimators under contamination, we have
considered two types of contaminations and samples (yi,c, xi,c) generated from them.
The first set of contaminations introduces moderate outlying points, while with the
second one we expect a more dramatic effect on the classical estimators.

Three different models, labelled M1, M2 and M3 in all Tables and Figures, are con-
sidered in the moderate contamination scheme. To obtain the contaminated samples,
we have first generated a sample ui ∼ U(0, 1) for 1 ≤ i ≤ n, and then, we introduce
large values on the responses as

yi,c =
{

yi if ui ≤ 0.90
y�
i if ui > 0.90,

(24)

where y�
i = log(k)+ η̃(xi )+ εi , with εi ∼ log(Γ (3, 1)), η̃(xi ) = η(xti β

⊥
0 ) where β⊥

0
is the unit vector orthogonal to the true single-index parameter β0 and k = 3, 4 and 5
under M1, M2 and M3, respectively.

The second scheme accounts for more severe contaminations, labelled S1, S2 and
S3 in all Tables and Figures, and we expect that its effect on the classical estimators
would be more dramatic. To obtain the contaminated samples, the observations are
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Fig. 1 Generated sample when η0(u) = sin(2πu) and β0 = (1/
√
2, 1/

√
2)t under the central and con-

taminated models

generated as in (24) where now y�
i = log(k)+εi where as above εi ∼ log(Γ (3, 1)) but

k = 100, 500 or 1000, respectively. Figure 1 illustrates the considered contaminations
in a generated sample.

Table 1 summarizes the results along the N = 1000 replications. The reported
results show the great stability of the robust procedure against moderate and severe
contaminations. As expected, when there is no contamination the classical estimators
achieve the lowest square errors for both the parametric and nonparametric compo-
nents. Nevertheless, the performance of the robust estimators is very satisfactory under
C0 since the loss of efficiency is very small. Focusing on the parametric component,
under any of the contaminated schemes, the performance of the classical estimator is
very poor. Table 1 exhibits that the mean square error of the single-index parameter
increases more than forty times under the moderate contaminations and more than
200 times under the severe ones, while the robust estimator remains very stable in all
considered scenarios.

Since an important goal in this framework is to capture the direction of the single-
index parameter β0, instead of presenting the traditional boxplots of the estimates, in
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Table 1 Mean square errors for the estimators of β0, Mean over replications of (1/n)
∑n

i=1(η0(β
t
0xi ) −

η̂(̂β
txi ))2 and Median over replications of mediani=1:n(η0(β

t
0xi ) − η̂(̂β

txi ))2 denoted MSE (̂η) and
MedSEη̂ , respectively

MSE
̂β

MSEη̂ MedSEη̂

̂βcl
̂βr η̂cl η̂r η̂cl η̂r

C0 0.005 0.005 0.041 0.046 0.020 0.021

M1 0.209 0.008 0.294 0.061 0.164 0.031

M2 0.357 0.007 0.408 0.060 0.226 0.030

M3 0.534 0.007 0.521 0.058 0.287 0.028

S1 1.064 0.013 5.393 0.059 4.510 0.024

S2 1.098 0.008 13.282 0.057 13.282 0.023

S3 1.106 0.006 18.057 0.053 17.436 0.022
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Fig. 2 Classical and robust estimators of the single-index parameter under C0. The red arrow represents
the true direction β0 = (1/
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2)t, while the grey arrows are the estimates
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Fig. 3 Classical and robust estimators of the single-index parameter under M1, M2 and M3. The red arrow
represents the true direction β0 = (1/

√
2, 1/

√
2)t, while the grey arrows are the estimates
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Fig. 4 Classical and robust estimators of the single-index parameter under S1, S2 and S3. The red arrow
represents the true direction β0 = (1/

√
2, 1/

√
2)t, while the grey arrows are the estimates

Figs. 2, 3 and 4wepresent a two-dimensional graph that reflects the skill of the classical
and robust estimators to get the true direction β0, for the clean and contaminated sam-
ples. In these plots, the red arrow represents the true direction β0 = (1/

√
2, 1/

√
2)t,

that corresponds to an angle θ0 = π/4 and the grey ones to the estimated direc-
tions. These figures show that under C0 the performance of the robust estimator of
the parametric component is similar to that of the classical estimator since the robust
estimates are more or less spread as the classical estimator around the target direc-
tion. It also becomes evident that in contaminated samples the robust estimator of
the parametric component is very stable under all the contaminated scenarios, while
the classical estimator is completely spoiled. Indeed, under M1 to M3, the classical
estimates of the single-index parameter tend to be concentrated not only on directions
close to the true value β0 but also to its orthogonal direction β⊥

0 , showing the impact
of the contaminated points. On the other hand, under the severe contaminations S1 to
S3 the classical estimates cover almost all possible directions in the first and second
quadrants, becoming completely unreliable.

Regarding the estimation of the nonparametric component, Table 1 shows the large
effect of the considered contaminations on the classical estimator of the nonparametric
component, where the mean square error increases at least seven times under the
moderate contaminations. Under the severe contaminations S1 to S3, the effect of the
outliers on the classical estimator is devastating,while it is quite harmless for the robust
estimator. It is worth noticing that under all the contamination schemes, the reported
values of MedSEη for the classical estimator, which is a more resistant measure based
on the median, are very close to the corresponding values of MSEη, making evident
that in most replications the classical estimator of the nonparametric component is
completely spoiled.

In order to give a full picture of the performance of both classical and robust
estimators of η0, Figs. 5, 6 and 7 display their functional boxplots which are a very
useful graphical tool introduced by Sun and Genton (2011). Since the covariate x is

123



Robust estimates in single index models with unimodal errors 879

Classical Method Robust Method

0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

ξT
i β0

0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

ξT
i β0

Fig. 5 Classical and robust estimators of η0 under C0
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Fig. 6 Classical and robust estimators of η0 under M1, M2 and M3

random, in order to obtain comparable estimations for η0, we consider a fixed grid of
points ξ j , j = 1, . . . , 100 in [0, 1] × [0, 1]. Thus, for each replication, we estimate

η0(β
t
0ξ j ) using the classical and robust procedures. In the functional boxplots, the

area in light blue represents the central region, the dotted red lines correspond to
outlying curves, the black line indicates the deepest curve, while the purple line is
the true nonparametric function η0. It is worth noticing that, for the contaminated
settings, due to the effect of the outliers, some curves are out of range when using the
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Fig. 7 Classical and robust estimators of η0 under S1, S2 and S3

classical procedure. For that reason, the functional boxplots of the classical estimators
are plotted in a reduced range to allow a clear visualization of the central area. Figure 5
shows that the classical and robust nonparametric estimators of η0 are quite similar
under C0, while Figs. 6, 7 exhibit the devastating effect of the contaminating points,
even themoderate ones, on the classical estimator. The impact of the contaminations on
the classical estimates is reflected either in the presence of a great number of outlying
curves and also in the enlargement of the width of the bars of the functional boxplots.
With respect to the robust estimates, despite the fact that a few outlying curves appear,
the range of variation of the curves is almost the same than underC0, the central region
in light blue of all the boxplots always contains the true function η0 and most curves
follow the pattern introduced by the sine function. In general terms, the functional
boxplots show the stability of the robust estimates of η0 which are reliable under the
contaminated scenarios as well as the strong effect of the considered contaminations
on the classical estimators of the nonparametric component.

A careful study of the bandwidth behaviour is beyond the scope of the paper;
however in order to have a deeper insight of the performance of the selectors under
C0 and the considered contaminations, we give a brief analysis of the data-driven
parameters obtained in this numerical experiment. Table 2 reports, for both estimators,
the median over replications of the cross-validation data-driven bandwidths to be used
in Steps 1 and 3 denoted̂h1 and̂h2, respectively. On the other hand, in Figs. 8, 9 and
10 we present the bagplots corresponding tôh1 and̂h2 selected through the classical
and robust cross-validation criteria. Under C0, both criteria lead to similar data-driven
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Table 2 Median over replications of cross-validation data-driven bandwidths to be used in Steps 1 and 3
denoted̂h1 and̂h2, respectively

Method C0 M1 M2 M3 S1 S2 S3

Classical ̂h1 0.175 0.225 0.250 0.250 0.325 0.325 0.325
̂h2 0.175 0.238 0.250 0.250 0.350 0.300 0.338

Robust ̂h1 0.175 0.175 0.175 0.175 0.175 0.200 0.200
̂h2 0.188 0.188 0.188 0.188 0.188 0.188 0.188
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Fig. 8 Bagplots for (̂h1,̂h2) chosen according the classical and robust cross-validation criteria under C0
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ĥ 2

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

ĥ1
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Fig. 9 Bagplots for (̂h1,̂h2) chosen according the classical and robust cross-validation criteria under M1,
M2 and M3
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ĥ1
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Fig. 10 Bagplots for (̂h1,̂h2) chosen according the classical and robust cross-validation criteria under S1,
S2 and S3

smoothing parameters.However, the lack of robustness of the classical cross-validation
criterion under contaminations becomes evident from these plots. The classical cross-
validation criterion under contaminations tends to choose greater bandwidths, and
this becomes evident, for instance, from the behaviour of their medians reported in
Table 2. The poor behaviour of the classical data-driven bandwidths leads towards
over-smoothing which may explain the results reported in Table 1. On the other hand,
except for a few cases, the selected bandwidths obtained with the robust criterion
remain stable in all circumstances.

7 Hospital Costs Data: an exploratory analysis

Marazzi and Yohai (2004) consider a data set related to the costs of patients that suffer
from back problems (APDRG 243) in the Centre Hospitalier Universitaire Vaudois in
Lausanne, Switzerland, in 1999. The data correspond to 100 patients, and among other
binary variables, they contain information about the cost of stay, z, (cost, in Swiss
francs) and the following two numerical variables: length of stay in days and age.
Our goal is to perform an exploratory analysis to study the nature of the relationship
between the cost of stay and these two numerical variables. Cantoni and Ronchetti
(2006) fitted the complete data set under a conditional Gammamodel for the responses
by assuming a log link function. Taking into account that they encountered several
outliers and the sensitivity of the classical approach that became evident from our
simulations, it is sensible to analyse the data by means of a robust procedure. In our
analysis, we choose as covariates x1 and x2 the standardized variables length of stay
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Fig. 11 Hospital Cost Data: bagplot for (x1, x2)
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Fig. 12 Hospital Cost Data: On the left panel, the scatter plot of̂β
txi vs. yi = log(zi ) in black and in blue

filled circles the fitted values η̂
̂β,̂h2

(xi ). Red squares correspond to identified outliers. On the right panel,

adjusted boxplot of the residuals

in days and age, since this standardization does not affect the shape of the function g.
Both variables are centred with their median and scaled using their mad.

In a first step, we examine the data graphically. Figure 11 gives the bagplot corre-
sponding to the two covariates and shows that in the two-dimensional plane (x1 vs.
x2) there are no isolated points.

In order to inquire about the relationship between the response variable, cost of
stay, and the two explanatory variables of interest, length of stay and age, we propose
the model

yi = log(zi ) = η(β1x1i + β2x2i ) + εi
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where εi ∼ log(Γ (γ0, 1)) and γ0 is unknown. We consider the same robust stepwise
estimators as in our numerical example, and the smoothing parameters were chosen
as described in Sect. 5 using a 5-fold cross-validation procedure. The resulting band-
widths parameters are h1 = 0.6 and h2 = 0.975. The left panel of Fig. 12 corresponds

to the scatter plot of̂β
t
xi versus yi = log(zi ) (in black). The fitted values according

to η̂
̂β,̂h2

, in the notation of Sect. 5, are drawn as blue filled circles. Besides, in the
left panel, we show the skewed-adjusted boxplot (see Hubert and Vandervieren 2008)
of the residuals log(zi ) − η̂

̂β,̂h2
(xi ), where four outliers are identified. These atypical

residuals correspond to observations 44 , 63, 84 and 99, which are highlighted as red
filled squares in the scatter plot of the left panel. The points labelled 44 and 63, suspi-
cious from being outliers in our analysis, were also detected by Cantoni and Ronchetti
(2006). Moreover, the fitted values exhibit a curvature which suggests that a nonlinear
trend is still present between the responses and the explanatory variables.
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A Appendix

A.1 Proof of Theorem 1

a) For any ε > 0, let X0 be a compact set such that P(x /∈ X0) < ε. Then, we have
that

sup
β,b∈S1;a∈K

∣

∣Δn(β, η̂b,a, a) − Δn(β, ηb,a, a)
∣

∣

≤ sup
b∈S1,a∈K

‖η̂b,a − ηb,a‖0,∞‖τ‖∞‖φ′‖∞ + 2‖φ‖∞
1

n

n
∑

i=1

I(xi /∈X0)τ (xi )

and so, using (10), the fact that P(x /∈ X0) < ε and the strong law of large numbers,
we get that

sup
β,b∈S1;a∈K

∣

∣Δn(β, η̂b,a, a) − Δn(β, ηb,a, a)
∣

∣

a.s.−→ 0 .

Therefore, it remains to show that sup
β,b∈S1;a∈K

∣

∣Δn(β, ηb,a, a) − Δ(β, ηb,a, a)
∣

∣

a.s.−→ 0.

Define the following class of functionsH = { fβ(y, x) = φ(y, ηb,a(β
tx), a)τ (x) , β,

b ∈ S1, a ∈ K}. Using Theorem 3 from Chapter 2 in Pollard (1984), the com-
pactness of K, A1, the continuity of ηβ,α(u) given in A6 and analogous arguments
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to those considered in Lemma 1 from Bianco and Boente (2002), we get that
sup

β,b∈S1;a∈K

∣

∣Δn(β, η̂b,a, a) − Δ(β, ηb,a, a)
∣

∣

a.s.−→ 0 and a) follows.

b)Let̂βk be a subsequenceof̂β such that̂βk → β∗,whereβ∗ lies in the compact setS1.

Let us assume, without loss of generality, that̂β
a.s.−→ β∗. Then, A7, the continuity of

ηβ,α , the consistency of α̂r and a) entail that Δn(̂β, η̂
̂β,α̂r

, α̂r)−Δ(β∗, η0, α0)
a.s.−→ 0

and Δn(β0, η̂̂β,α̂r
, α̂r) − Δ(β0, η0, α0)

a.s.−→ 0, since ηβ0,α0
= η0. Now, using that

Δn(β0, η̂̂β,α̂r
, α̂r) ≥ Δn(̂β, η̂

̂β,α̂r
, α̂r) and Δ(β, η0, α0) has a unique minimum at

β0, we conclude the proof. ��

A.2 Proof of Proposition 1

a) The single-index parameter estimation related to Step LG2 is obtained by means
of the minimization with respect to β of

n
∑

i=1

ρ

⎛

⎜

⎜

⎝

√

d
(

yi , η̂β

(

βtxi
))

c

⎞

⎟

⎟

⎠

τ(xi ),

among the vectors of length one, where, at the same time, η̂β(u) is defined as

η̂β(u) = argmin
a∈R

n
∑

i=1

ρ

(√
d(yi , a)

c

)

Wh(u,βtxi ).

Hence, if we denote B(θ) = θ/‖θ‖, we have that ̂βε = ̂θε/‖̂θε‖ = B(̂θε) wherêθε

is the solution of

argmin
θ

1 − ε

n

n
∑

i=1

ρ

⎛

⎜

⎜

⎝

√

d
(

yi , η̂ε
B(θ)

(B(θ)txi
)

)

c

⎞

⎟

⎟

⎠

τ(xi )

+ ε ρ

⎛

⎜

⎜

⎝

√

d
(

y0, η̂ε
B(θ)

(B(θ)tx0
)

)

c

⎞

⎟

⎟

⎠

τ(x0).

Then,̂θε satisfies

0 =
(

I − B (

̂θε

)B (

̂θε

)t
)

[

(1 − ε)

n

n
∑

i=1

ψ
(

yi , η̂
ε

B(̂θε)
(B(̂θε)

txi ), c
)

ν̂ε
i

(B(̂θε),B(̂θε)xi
)

τ(xi )

+ ε ψ
(

y0, η̂
ε

B(̂θε)
(B(̂θε)

tx0), c
)

ν̂ε
0

(B(̂θε),B(̂θε)x0
)

τ(x0)

]

,
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where

ψ(y, a, c) = ∂

∂a
φ(y, a, c) = 1

2c
Ψ

(√
d(y, a)

c

)

1 − exp(y − a)√
d(y, a)

as defined in (11), Ψ stands for the derivative of ρ and ν̂ε
i (b, t) are given by

ν̂ε
i (b, t) = ∂

∂β
η̂ε

β(s)|(β,s)=(b,t) + ∂

∂s
η̂ε

β(s)|(β,s)=(b,t) xi .

Using that̂βε = B(̂θε), we get that the estimator̂βε verifies

0 =
(

I −̂βε
̂β
t
ε

)

[

(1 − ε)

n

n
∑

i=1

ψ
(

yi , η̂
ε
̂βε

(̂β
t
εxi ), c

)

ν̂ε
i (
̂βε,

̂β
t
εxi )τ (xi )

+ ε ψ
(

y0, η̂
ε
̂βε

(̂β
t
εx0), c

)

ν̂ε
0(
̂βε,

̂β
t
εx0)τ (x0)

]

and η̂ε
β(u) is the solution of

(1 − ε)

n

n
∑

i=1

ψ
(

yi , η̂
ε
β(u), c

)

Wh(u,βtxi ) + ε ψ
(

y0, η̂
ε
β(u), c

)

Wh(u,βtx0) = 0 .

(A.1)
Then, if we call

λ(ε) = (1 − ε)

n

n
∑

i=1

ψ
(

yi , η̂
ε
̂βε

(̂β
t
εxi ), c

)

ν̂ε
i (
̂βε,

̂β
t
εxi )τ (xi )

+ ε ψ
(

y0, η̂
ε
̂βε

(̂β
t
εx0), c

)

ν̂ε
0(
̂βε,

̂β
t
εx0)τ (x0)

we get that, for any 0 ≤ ε < 1, ̂βε satisfies 0 =
(

I −̂βε
̂β
t
ε

)

λ(ε). Therefore,

differentiating with respect to ε and evaluating at ε = 0 and using that λ(0) = 0, we
obtain that

0 = ∂

∂ε

[(

I −̂βε
̂β
t
ε

)

λ(ε)
]∣

∣

∣

ε=0
= ∂

∂ε

[(

I −̂βε
̂β
t
ε

)]∣

∣

∣

ε=0
λ(0) +

(

I −̂β̂β
t
) ∂

∂ε
λ(ε)|ε=0

=
(

I −̂β̂β
t
) ∂

∂ε
λ(ε)|ε=0 . (A.2)

Henceforth, in order to compute (∂λ(ε)/∂ε)|ε=0 and to simplify the presentation, we
consider the following functions:

h(ε,β, u) = η̂ε
β(u) , hβ(ε,β, u) = ∂

∂β
η̂ε

β(u) , hu(ε,β, u) = ∂

∂u
η̂ε

β(u)
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and their corresponding derivatives with respect to ε

Hi = ∂

∂ε
h(ε,̂βε,

̂β
t
εxi )

∣

∣

∣

∣

ε=0
, Hβ,i = ∂

∂ε
hβ(ε,̂βε,

̂β
t
εxi )

∣

∣

∣

∣

ε=0
,

Hu,i = ∂

∂ε
hu(ε,̂βε,

̂β
t
εxi )

∣

∣

∣

∣

ε=0
.

Thus, we have that

∂

∂ε
λ(ε)

∣

∣

∣

∣

ε=0
= −1

n

n
∑

i=1

ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

ν̂i (̂β,̂β
t
xi )τ (xi )

+ 1

n

n
∑

i=1

{

χ
(

yi , η̂̂β
(̂β

t
xi ), c

)

Hi ν̂i (̂β,̂β
t
xi )

+ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

(Hβ,i + xi Hu,i )
}

τ(xi )

+ ψ
(

y0, η̂̂β
(̂β

t
x0), c

)

ν̂0(̂β,̂β
t
x0)τ (x0).

Since λ(0) = 0, we obtain that

∂

∂ε
λ(ε)

∣

∣

∣

∣

ε=0
= 1

n

n
∑

i=1

{

χ
(

yi , η̂̂β
(̂β

t
xi ), c

)

Hi ν̂i (̂β,̂β
t
xi )

+ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

(Hβ,i + xi Hu,i )
}

τ(xi )

+ ψ
(

y0, η̂̂β
(̂β

t
x0), c

)

ν̂0(̂β,̂β
t
x0)τ (x0). (A.3)

It remains to compute the functions Hi , Hβ,i and Hu,i . Straightforward arguments
lead to

Hi = ∂

∂ε
h(ε,̂βε,

̂β
t
εxi )

∣

∣

∣

∣

ε=0

= ∂

∂ε
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )
+ ∂

∂β
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )

∂

∂ε
̂βε

∣

∣

∣

∣

ε=0

+ ∂

∂u
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )

∂

∂ε
̂βε

∣

∣

∣

∣

ε=0
xi ,

where ŝi = (̂β,̂β
t
xi ). Then, we get that

Hi = EIF(̂ηβ(u))
∣

∣

(β,u)=̂si
+ ∂η̂β(u)

∂β

∣

∣

∣

∣

(β,u)=̂si

EIF(̂β) + ∂η̂β(u)

∂u

∣

∣

∣

∣

(β,u)=̂si

EIF(̂β)xi

= EIF(̂ηβ(u))
∣

∣

(β,u)=̂si
+ ν̂i (̂si ) .
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Analogously, we have that

Hβ,i = ∂

∂ε
hβ(ε,̂βε,

̂β
t
εxi )

∣

∣

∣

∣

ε=0

= ∂

∂ε

∂

∂β
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )
+ ∂

∂β

∂

∂β
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )

∂

∂ε
̂βε

∣

∣

∣

∣

ε=0

+ ∂

∂u

∂

∂β
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )

∂

∂ε
̂βε

∣

∣

∣

∣

ε=0
xi ,

so

Hβ,i = EIF

(

∂

∂β
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

+ ∂2η̂β(u)

∂2β

∣

∣

∣

∣

∣

(β,u)=̂si

EIF(̂β) + ∂2η̂β(u)

∂u∂β

∣

∣

∣

∣

∣

(β,u)=̂si

EIF(̂β)xi .

Finally, in a similar way, we obtain that

Hu,i = ∂

∂ε
hu(ε,̂βε,

̂β
t
εxi )

∣

∣

∣

∣

ε=0

= ∂

∂ε

∂

∂u
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )
+ ∂

∂β

∂

∂u
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )

∂

∂ε
̂βε

∣

∣

∣

∣

ε=0

+ ∂

∂u

∂

∂u
h(ε,β, u)

∣

∣

∣

∣

(ε,s)=(0,̂si )

∂

∂ε
̂βε

∣

∣

∣

∣

ε=0
xi ,

which implies that

Hu,i = EIF

(

∂

∂u
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

+ ∂2η̂β(u)

∂β∂u

∣

∣

∣

∣

∣

(β,u)=̂si

EIF(̂β)

+ ∂2η̂β(u)

∂2u

∣

∣

∣

∣

∣

(β,u)=̂si

EIF(̂β)xi .

Using the previous expressions, we deduce that

Hβ,i + xi Hu,i = EIF

(

∂

∂β
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

+ EIF

(

∂

∂u
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

xi

+
⎡

⎣

∂2η̂β(u)

∂2β

∣

∣

∣

∣

∣

(β,u)=̂si

+ ∂2η̂β(u)

∂2u

∣

∣

∣

∣

∣

(β,u)=̂si

xixti

+ ∂2η̂β(u)

∂u∂β

∣

∣

∣

∣

∣

(β,u)=̂si

xti + ∂2η̂β(u)

∂β∂u

∣

∣

∣

∣

∣

(β,u)=̂si

xti

⎤

⎦EIF(̂β) .
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Now, replacing in (A.3) Hi , Hβ,i and Hu,i with the obtained expression, we have that

∂

∂ε
λ(ε)

∣

∣

∣

∣

ε=0
= 1

n

n
∑

i=1

χ
(

yi , η̂̂β
(̂β

t
xi ), c

)

τ(xi ) EIF(̂ηβ(u))
∣

∣

(β,u)=̂si
ν̂i (̂β,̂β

t
xi )

+ 1

n

n
∑

i=1

χ
(

yi , η̂̂β
(̂β

t
xi ), c

)

τ(xi ) ν̂i (̂β,̂β
t
xi )̂νi (̂β,̂β

t
xi )t EIF(̂β)

+ 1

n

n
∑

i=1

ψ
(

yi , η̂̂β
(̂β

t
xi ), c

)

τ(xi )

{

EIF

(

∂

∂β
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

+ EIF

(

∂

∂u
η̂β(u)

)∣

∣

∣

∣

(β,u)=̂si

xi

+
⎡

⎣

∂2η̂β(u)

∂2β

∣

∣

∣

∣

∣

(β,u)=̂si

+ ∂2η̂β(u)

∂2u

∣

∣

∣

∣

∣

(β,u)=̂si

xixti +
∂2η̂β(u)

∂u∂β

∣

∣

∣

∣

∣

(β,u)=̂si

xti

+ ∂2η̂β(u)

∂β∂u

∣

∣

∣

∣

∣

(β,u)=̂si

xti

⎤

⎦EIF(̂β)

⎫

⎬

⎭

+ ψ
(

y0, η̂β(̂β
t
x0), c

)

ν̂0(̂β,̂β
t
x0)τ (x0).

Recall that

V(̂si ) =
⎡

⎣

∂2η̂β(u)

∂2β

∣

∣

∣

∣

∣

(β,u)=̂si

+ ∂2η̂β(u)

∂2u

∣

∣

∣

∣

∣

(β,u)=̂si

xixti + ∂2η̂β(u)

∂u∂β

∣

∣

∣

∣

∣

(β,u)=̂si

xti

+ ∂2η̂β(u)

∂β∂u

∣

∣

∣

∣

∣

(β,u)=̂si

xti

⎤

⎦ .

Then, we get that

∂

∂ε
λ(ε)

∣

∣

∣

∣

ε=0
= �n + Mn EIF(̂β),

where �n ∈ R
q and Mn ∈ R

q×q are defined in (20) and (21). Replacing in (A.2), we
have that

0 =
(

I −̂β̂β
t
)

(�n + Mn EIF(̂β)).

It is worth noticing that since ‖̂βε‖2 = 1, differentiating with respect to ε and evalu-
ating at ε = 0, we have that

123



890 C. Agostinelli et al.

0 = ∂

∂ε
̂β
t
ε
̂βε

∣

∣

∣

∣

ε=0
= 2̂β

t
EIF(̂β)

which, taking into account that̂β = eq , implies that EIF(̂β)q = 0. Therefore, we only
have to compute EIF(̂β) j for j = 1, . . . , q − 1.

Using again that̂β = eq , we obtain that

(

I −̂β̂β
t
)

=
(

Iq−1 0
0 0

)

.

Hence, we have that the left superior matrix of
(

I −̂β̂β
t
)

Mn equals the matrix

Mn,1 ∈ R
(q−1)×(q−1), so that 0 =

(

I −̂β̂β
t
)

(�n + Mn EIF(̂β)) implies

0 = �
(q−1)
n + Mn,1 EIF(̂β

(q−1)
). (A.4)

Therefore, from (A.4) we get that EIF(̂β
(q−1)

) = −M−1
n,1�

(q−1)
n .

It is worth noticing that �n and Mn involve EIF(̂ηβ(u))
∣

∣

(β,u)=̂si
,

EIF(∂η̂β(u)/∂β)
∣

∣

(β,u)=̂si
and EIF(∂η̂β(u)/∂u)

∣

∣

(β,u)=̂si
.

b) Let us derive EIF(̂ηβ(u)). Since η̂ε
β(u) is the solution of (A.1), we have that

(1 − ε)

n

n
∑

i=1

Kh(β
txi − u)ψ

(

yi , η̂
ε
β(u), c

)

+ε Kh(β
tx0 − u)ψ

(

y0, η̂
ε
β(u), c

)

=0.

Differentiating with respect to ε and evaluating at ε = 0, we obtain that

EIF(̂ηβ(u)) = − Kh(β
tx0 − u)ψ

(

y0, η̂β(u), c
)

1

n

∑n

i=1
Kh(β

txi − u)ψ
(

yi , η̂β(u), c
)

. (A.5)

Analogously, differentiating first with respect to β on both sides of Eq. (A.1) and
then, with respect to ε and evaluating at ε = 0, we can obtain an expression for
EIF(∂η̂β(u)/∂β)

∣

∣

(β,u)=̂si
. Alternatively, we may differentiate (A.5) with respect to β

to obtain

EIF

(

∂η̂β (u)

∂β

)

= −
1
h K

′
h(βtx0 − u)ψ

(

y0, η̂β (u), c
)

x0 + Kh(βtx0 − u)χ
(

y0, η̂β (u), c
) ∂

∂β
η̂β (u)

1

n

∑n

i=1
Kh(βtxi − u)ψ

(

yi , η̂β (u), c
)

+ Kh(βtx0 − u)ψ
(

y0, η̂β (u), c
)

{

1

n

∑n

i=1
Kh(βtxi − u)ψ

(

yi , η̂β (u), c
)

}2

⎡

⎣

1

n

n
∑

i=1

1

h
K ′
h(βtxi − u)ψ

(

yi , η̂β (u), c
)

xi

+ 1

n

n
∑

i=1

Kh(βtxi − u)χ
(

yi , η̂β (u), c
) ∂

∂β
η̂β (u)

⎤

⎦ .
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Similar arguments lead to the expression for EIF(∂η̂β(u)/∂u)
∣

∣

(β,u)=̂si
.

Finally, note that η̂β(u), satisfies

n
∑

i=1

K

(

βtxi − u

h

)

ψ
(

yi , η̂β(u), α
) = 0. (A.6)

Hence, differentiating with respect to β equation (A.6), we get that

0 = 1

h

n
∑

i=1

K ′
(

βtxi − u

h

)

ψ
(

yi , η̂β(u), α
)

xi

+
n
∑

i=1

K

(

βtxi − u

h

)

χ
(

yi , η̂β(u), α
) × ∂

∂β
η̂β(u),

which implies that

∂

∂β
η̂β(u) = −1

h

[

n
∑

i=1

K

(

βtxi − u

h

)

χ
(

yi , η̂β(u), α
)

]−1

n
∑

i=1

K ′
(

βtxi − u

h

)

ψ
(

yi , η̂β(u), α
)

xi .

On the other hand, differentiating (A.6) with respect to u, we obtain that

0 = −1

h

n
∑

i=1

K ′
(

βtxi − u

h

)

ψ
(

yi , η̂β(u), α
)

+
n
∑

i=1

K

(

βtxi − u

h

)

χ
(

yi , η̂β(u), α
) × ∂

∂u
η̂β(u)

which entails that

∂

∂u
η̂β(u) = 1

h

[

n
∑

i=1

K

(

βtxi − u

h

)

χ
(

yi , η̂β(u), α
)

]−1

n
∑

i=1

K ′
(

βtxi − u

h

)

ψ
(

yi , η̂β(u), α
)

. �
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