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Abstract
Variable selection for multivariate nonparametric regression models usually involves
parameterized approximation for nonparametric functions in the objective function.
However, this parameterized approximation often increases the number of parameters
significantly, leading to the “curse of dimensionality” and inaccurate estimation. In this
paper, we propose a novel and easily implemented approach to do variable selection
in nonparametric models without parameterized approximation, enabling selection
consistency to be achieved. The proposed method is applied to do variable selection
for additive models. A two-stage procedure with selection and adaptive estimation
is proposed, and the properties of this method are investigated. This two-stage algo-
rithm is adaptive to the smoothness of the underlying components, and the estimation
consistency can reach a parametric rate if the underlying model is really parametric.
Simulation studies are conducted to examine the performance of the proposedmethod.
Furthermore, a real data example is analyzed for illustration.

Keywords Nonparametric regression · Variable selection · Nonparametric additive
model · Adaptive estimation

1 Introduction

For multivariate nonparametric regression models with many predictors, even with
moderate number of predictors, estimation can be very inefficient, see Härdle (1990).
Therefore, when the model is sparse, it is necessary to select “active” predictors and
remove “inactive” ones fromaparsimoniousworkingmodel such that further statistical
analysis can be performed efficiently. “Active predictors” refer to those components
Xi of X = (X1, . . . , X p)

� that have an effect on the response variable Y . “Inactive
predictors” are the other components Xi that are not in the model and do not have
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effect on Y . For parametric models, the most promising methodologies use various
penalized objective functions for simultaneous selection and estimation. Among them,
the proven effective methods are LASSO (Tibshirani 1996), SCAD (Fan and Li 2001),
and Dantzig selector (Candés and Tao 2007).

There have been several efforts attempts to apply or extend these methods to han-
dle multivariate nonparametric models. However, when the number (or dimension)
of predictors is large, these methods can become inefficient for simultaneous variable
selection and estimation. This is because of the following reasons. To obtain the resid-
uals needed to construct an objective function, there must be some approximation of
the underlying nonparametric regression function. Any approximation is a parameter-
ization of a nonparametric regression function, and thus its approximation accuracy
merely depends on the extent of data denseness in the space and the smoothness of
the regression function. As the dimension increases, the number of parameters will
increase dramatically and the model fitting may not be sufficiently accurate, which
would seriously affect the accuracy of further variable selection and estimation. That
is, ameaningful nonparametric approximation is often not possible. Thus, both Lin and
Zhang (2006) and Storlie et al. (2011) effectively focused on the additivemodel and the
two-way interaction model, rather than purely multivariate nonparametric regression
models. Another strategy is to use ranking and screening to reduce the dimensionality
to a relatively low level. Several nonparametric sure screening approaches based on
different correlations between the response and every predictor have been reported
(Zhu et al. 2011; Li et al. 2012; Lin et al. 2013). These selected models still contain
many inactive predictors, and so iterative algorithms combined with existing penalty-
based selection methods are required. Fan et al. (2011) proposed the nonparametric
independent screening (NIS) method for sparse ultra-high-dimensional additive mod-
els. In this method, a B-spline is used to parameterize the nonparametric component
functions before screening, and only marginal regression is considered.

All methods described in the literature have a common feature: A nonparametric
smoothing approach is used to linearize the component functions f j (·), and then an
objective function with a penalty, such as the group LASSO (Yuan and Lin 2006), is
applied to select and estimate groups of variables. For example, Lin and Zhang (2006)
proposed the component selection and smoothing operator (COSSO) method when
p is fixed where p is the dimension of the predictors X = (X1, . . . , X p)

�. This is
an extension of the group LASSO and is applicable in cases where p is less than the
sample size n. Meier et al. (2009) investigated variable selection in additive models
for which p � n with a “sparsity-smoothness penalty.” This is another group LASSO
after model parameterization. Cui et al. (2013) similarly used the idea of nonparamet-
ric approximation and group variable selection. Fan et al. (2011) extended the sure
independent screening method to sparse ultra-high-dimensional additive models. In
all these methods, the nonparametric f j (·) are approximated by groups of variables
and are selected through an all-in-all-out fashion. The original p-dimensional space
is enlarged to an p̃ := ∑p

j=1 k j -dimensional space when the corresponding approx-
imation of each function has k j unknown parameters. To guarantee the consistency
of estimates, the k j must go to infinity as the sample size n goes to infinity, which
is required by the consistency of nonparametric estimation (Härdle 1990). In other
words, it becomes more difficult to handle large p scenarios.
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To attack this difficulty,we propose direct variable selectionmethod formultivariate
nonparametric models. Enlightened by the sufficient dimension reduction theory (see,
e.g., Li 1991; Cook 1998, and so on), a selection algorithm without any nonparamet-
ric approximation is recommended. After “active” variables have been selected, any
estimation method for low-dimensional nonparametric models can be easily applied.
As an application, we study the variable selection problem for nonparametric additive
models (Hastie and Tibshirani 1986). A two-step approach is proposed for direct non-
parametric variable selection, and then an adaptive estimation followed. The impact
of violating some of the conditions is discussed, and an ad hoc method is proposed
for practical implementation.

The remainder of this paper is organized as follows. The selection procedure is
introduced in Sect. 2, and its application to additive models is studied in Sect. 3.
Simulations are described in Sect. 4, and real data analysis is presented in Sect. 5.
We give some discussions on the limitations of our method and also raise some issues
that deserve further studies in Sect. 6. The proofs of the theorems are given in the
appendix.

2 Selection procedure

For the response Y and the column predictor vector X = (X1, . . . , X p)
� with fixed

p < n, a general multivariate nonparametric model has the form

E(Y |X) = G(X). (1)

Assume that

Y⊥⊥XAc |XA, (2)

where XA = {Xi : i ∈ A} is the set of relevant Xi such that A is the index set. XAc

is the complement of XA in X. That is, G(X) = G(XA). Only XA have effect on Y
throughG(·); thus, they are defined as “active,” andXAc are “inactive.” Let d = |A| be
the cardinality of A. When d is relatively small, andXA can be identified, we can then
efficiently estimate the regression functionG(·). This model is very general, including
Y = G(X) + G1(X)ε and Y = G(X, ε) as special cases, where ε is independent of
X. Throughout this paper, we assume, without loss of generality, that A = {1, . . . , d}
and XA = {X1, . . . , Xd}. When there is no possibility of confusion, we denote XA =
(X1, . . . , Xd)

�. As long asXA can be identified and selected correctly, the subsequent
estimation for the regression function is relatively easy. The key is tomake the selection
without any nonparametric approximation. In this paper, we propose the following
linear least-squares sparse (LLSS) solution to identify XA.

2.1 Linear least-squares sparse solution

Assume {xi , yi }ni=1 is the sample from (1). Without loss of generality, assume X =
(X1, . . . , X p)

� is centered. X = (x1, . . . , xn)� is the n × p design matrix. � is the
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covariance matrix ofX. Let Ii be the p-dimensional column vector whose i th element
is 1 and all others are zero. For each li ∈ A, there is a corresponding vector Ili . Denote
a p× d matrix by Ad = (Il1 , . . . , Ili , . . . , Ild ) = (I1, . . . , Id). Then, I�

li
X = Xli , and

A�
d X = XA. The conditional independence in (2) can be rewritten as Y⊥⊥X|A�

d X.
Note thatAd is not unique because for any d×d orthogonal matrixD,AdD can also

make the conditional independence hold. This is because G(A�
d X) can also be written

as G̃(D�A�
d X). Thus, it is sufficient to estimate AdD. To achieve this, we use the

sufficient dimension reduction (Li 1991; Cook 1998) technique. Sufficient dimension
reduction approaches estimate the column subspace of Ad with the minimum dimen-
sion,which is denoted bySY |X. The spaceSY |X is called the central subspace (CS,Cook
1998). The dimension d of SY |X is the structural dimension. There are a number of
methods of identifying and estimating SY |X, such as the sliced inverse regression
(SIR, Li 1991), the sliced average variance estimation (SAVE, Cook and Weisberg
1991), the directional regression (DR, Li and Wang 2007) and the discretization-
expectation estimation (DEE; Zhu et al. 2010), and so on. We are also interested in
identifying the indices Ili themselves correctly. The column vectors in the central sub-
space SY |X cannot be used directly. To solve this problem, we suggest the following
method.

Before proceeding the discussion, let us define some notations. A1 = ∑d
i=1 Ii is

a p × 1 vector whose first d components are 1, and other components are 0. In other
words, to select the active predictors, it is sufficient to identify A1. Let Z = �−1/2X,
and η = �1/2Ad . It is easy to see that η consists of columns of �1/2 corresponding
to Ad , and AT

d X = ηTZ. Further, define η1 = �1/2A1, B1 is a p × (p − 1) matrix
orthogonal to η1/‖η1‖ and B = (B1, η1/‖η1‖) is an orthogonal matrix, where ‖η1‖2
is A�

1 �A1. The following theorem provides a sparse solution ofX in the least squares
formulation.

Theorem 1 (Sparse solution) Assume that � is positive definite. Then, almost surely

E(B�
1 Z|Y ) = 0 (3)

is necessary and sufficient for any function h(·) on the response Y , and E(Xh(Y )) �= 0,
there exists some constant ch such that

�−1Cov
(
X, h(Y )

) = ch A1 =: γh (4)

provided that it is finite where ch depends on h and ch = A�
1 E

(
Xh(Y )

)
/‖η1‖2 =

E(
∑d

i=1 Xih(Y ))/‖η1‖2.
Remark 1 A sufficient condition is that the distribution of X is elliptically symmetric,
which includes normality as a special case. This condition is widely used in suffi-
cient dimension reduction theory (Li 1991). In this paper, it can be considered as a
mild condition. Because Hall and Li (1993) proved a very useful result: when p tends
to infinity, the projections A�

d X approximately follow elliptical symmetry. Thus, the
proposed method can be theoretically valid when condition (3), including elliptical
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symmetry as a special case, holds, and is more applicable in practice when the dimen-
sion is high. Li and Duan (1989) provide some detailed discussions on the elliptically
symmetric condition. Our result gives a partial solution to relax the elliptical symmetry
constraint.

Remark 2 E(Xh(Y )) �= 0 is an identification condition. That is, if E(Xh(Y )) = 0,
γh is not identifiable. When E(X |Y ) = 0, E(Xh(Y )) = 0. This is the problem SIR
encounters so that the corresponding central subspace cannot be identified. SAVE is
proposed to attack this problem using the conditional variance instead of the condi-
tional mean. Inspired by SAVE, in practice, if E(Xh(Y )) = 0, we might use higher
orders of covariance E(Xkh(Y )). Thus, in Example 1 in Sect. 4.2, we suggest an ad
hoc method for practical use.

Remark 3 For function h(·), there are a number of choices. The simplest option is the
identity function h(y) = y, such that E(Xh(Y )) becomes a real least-squares solution
for a pro forma linear model. That is, the formula (4) in Theorem 1, when ch �= 0, is
the coefficient in the following ordinary linear model:

Y = c + γ �X + e, (5)

where E(ex) = 0. In the following, we take h(y) = y for sake of simplicity. In the
simulations in Sect. 4.1, we also consider some monotonic transformations.

Note that γh is proportional to A1 = (1, . . . , 1, 0, . . . , 0)�, which takes a value
of 1 in the first d elements. Then, the first d components of γh should be nonzero,
while the others are zero. Elements with nonzero values indicate the active predictors
Xi . Thus, a very simple, but efficient, way to identify the active predictors Xi is
through the nonzero elements of γh . By selecting the “active elements” (nonzero) of
γ , we can identify the corresponding active predictors Xi . Therefore, we successfully
transfer the variable selection for the nonparametric regression model (2) to variable
selection of the linear model (5). This is a sparse least-squares solution.We call this the
“Linear Least Squares Sparse” (LLSS) solution. LLSS is rather simple and efficient,
and very different from existing methods that select the active predictors and estimate
the corresponding regression functions simultaneously. It is obvious that this sparse
solution of γ in model (5) makes any successful variable selection approach for linear
models feasible, for example, LASSO. For given data points {xi , yi }ni=1, the LASSO
estimate is defined as

γ̂ (λ) = argmin
γ

⎧
⎨

⎩

n∑

i=1

(yi − c − γ �xi )2 + λ

p∑

j=1

|γ j |
⎫
⎬

⎭
, (6)

where λ ≥ 0 controls the amount of regularization applied to the estimate. λ = 0
changes LASSO to the ordinary least-squares method. Because the selection is exactly
the same as that for linear models, the selection consistency holds. Therefore, we will
not provide a proof of the following theorem.
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Theorem 2 (Selection consistency) In addition to the condition in Theorem 1, assume
ch �= 0 and the conditions designed in Zhao and Yu (2006) hold. Then,

lim
n→∞ P(sgn(γ̂ ) = sgn(γ )) = 1, (7)

where sgn(·) is the sign function componentwise. Let d̂ = #{k : γ̂k �= 0} that is an
estimate of the true number d of nonzero components in model (9). Then,

lim
n→∞ P(d̂ = d) = 1. (8)

Remark 4 Combined with Theorem 1, LASSO can select the true active predictorsXA

in model (2) with a probability approaching 1. When the conditions in Zhao and Yu
(2006) are not satisfied, the adaptive LASSO can be applied, see Zou (2006).

In practice, LLSS is ready to be applied to high-dimensional nonparametric models
with p ≥ n and the sparse condition d � n. Note that LLSS can be realized by
LASSO to choose the variables. When p ≥ n, LLSS can first be conducted by sure
independent screening (Fan and Lv 2008) to reduce the dimension to a value p′ that is
less than n, and then to select active variables by LLSS as above.We call this algorithm
SLLSS.

3 Application to additive models

Consider the following additive model, which is a special case in the class of nonpara-
metric models:

yi = μ +
p∑

j=1

f j (xi j ) + εi , i = 1, . . . , n, (9)

where {xi , yi }ni=1 are the sample of (X,Y ), p is the dimension of X, μ is an inter-
cept term, xi j is the j th component of xi , and f j (x· j ) is the additive nonparametric
component on [0, 1]. The error terms ε1, . . . , εn are independent and identically dis-
tributed with mean 0 and variance σ 2. Further, the function f j (x· j ) is normalized so

that
∫ 1
0 f j (u)du = 0 tomake themodel identification possible. Suppose that model (9)

has d nonzero component functions, where d � n, and all the others are all zero func-
tions. Identifying those “active” variable components that are involved in the nonzero
component functions is then equivalent to identifying those nonzero function compo-
nents. Based on this feature, we perform the model selection for the additive model
through variable selection using LLSS and then estimating every nonzero component
function. In this section, we propose a two-step method to do both.

For notational convenience, assume that the first d components f1(·), . . . , fd(·) are
nonzero, and fd+1(·) = · · · = f p(·) ≡ 0, d < p, and p (p < n) is fixed. That is, the
parsimonious model is actually
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yi = μ +
d∑

j=1

f j (xi j ) + εi , i = 1, . . . , n. (10)

To select and estimate model (10), we first use LLSS to select the “active” variables
XA = (X1, . . . , Xd)

� and thenuse an adaptivemethod to estimate f j (·) corresponding
to XA. The estimation is adaptive to the smoothness of the underlying function such
that the convergence rate is faster than the usual optimal nonparametric rate when the
function is smooth enough. When the vector XA is obtained, d̂ is the number of the
components in XA. By Theorem 2, d̂ is consistent for d. In the following estimation
procedure, we assume d is known.

3.1 Adaptive estimation

Define an initial estimate and consider the orthogonal decomposition of a reproducing
kernel Hilbert space (RHKS) F, as in Lin and Zhang (2006). Let H j be a function
space of functions on x j over [0, 1] such that H j = {1} ⊕ H̄ j . For additive models,
the responses lie in the direct sum of d orthogonal subspaces H j . Further details
on the RKHS and their reproducing kernels are given in Wahba (1990). The second-
order Sobolev-Hilbert space S2 is most commonly used in practice. Following Lin and
Zhang (2006), we use this in our implementation. A special case with the second-order
Sobolev space of periodic functions can be written as t = {1} ⊕ T̄ , where

T̄ =
{

f : f (t) =
∞∑

ν=1

aν

√
2 cos 2πνt +

∞∑

ν=1

bν

√
2 sin 2πνt,

with
∞∑

ν=1

(a2ν + b2ν)(2πν)4 < ∞
}

.

For a sufficiently large value M , a good approximate subspace of T is TM = {1}⊕ T̄M
with

T̄M =
⎧
⎨

⎩
f : f (t) =

M/2−1∑

ν=1

aν

√
2 cos 2πνt +

M/2−1∑

ν=1

bν

√
2 sin 2πνt + aM/2 cosπMt

⎫
⎬

⎭
.

M should depend on n and tend to infinity as n tends to infinity. In principle, different
values of M can be used for different components f j (·). For simplicity of implemen-
tation, we use the sameM . According to the above approximation, denote {ql(t)} as the
groupwith the {sin, cos}orthogonal basis {√2 cos 2π t,

√
2 sin 2π t, . . . ,

√
2 cosπMt}

with coefficients (aν, bν), denoted as β. Using this orthogonal decomposition, the
initial estimates for μ and f j (x j ), denoted by μ̃ an f̃ j (x j ) = ∑M

l=1 β̃ jlql(x j ), respec-
tively, can be obtained by minimizing, over μ and β jl :
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1

n

n∑

i=1

{

yi −
(

μ +
d∑

m=1

M∑

l=1

β jlql(xi jm )

)}2

.

Here, ql(u) are the basis functions taken as stated above, which satisfy

∫ 1

0
ql(u)du = 0,

∫ 1

0
ql(u)qs(u)du =

{
1, for l = s

0, otherwise.

The initial estimation used as plug-in in the following step is obtained by least squares.
In particular, the estimation can be solved by (5) in Lin and Zhang (2006) with λ = 0.

Plugging in the initial estimate, each initial component estimate, say f̃1(x1), is
adjusted by a semiparametric form f̃1(x1)ξ(x1) or f̃1(x1) + ζ(x1), where ξ(x1) and
ζ(x1) are the adjustment factor and the adjustment shift, respectively, which will be
specified later. To determine ξ(x1) and ζ(x1), motivated by Lin et al. (2009), a local
L2-fitting criterion is defined as

r1(t1, ξ) = 1

h
E

(

K

(
x1 − t1

h

)[
f1(x1) − f̃1(x1)ξ

]2
)

, (11)

where K (·) is a kernel function satisfying certain regularity conditions and h is a
bandwidth depending on n. The minimizer over all ξ is defined as ξ(t1). We also use
the minimizer of the following criterion to define ζ(t1):

r2(t1, ζ ) = 1

h
E

(

K

(
x1 − t1

h

)[
f1(x1) − ( f̃1(x1) + ζ )

]2
)

. (12)

It is easy to show that the minimizers have the following respective closed forms:

ξ(t1) = E
(
K
( x1−t1

h

)
f1(x1) f̃1(x1)

)

E
(
K
( x1−t1

h

)
f̃ 21 (x1)

) , ζ(t1) = E
(
K
( x1−t1

h

)[ f1(x1) − f̃1(x1)]
)

E
(
K
( x1−t1

h

)) .

ξ(·) and ζ(·) can be estimated, respectively, using Y − μ̃−∑d
j=2 f̃ j (x j ) to replace f1,

and the sample averages to the expectations, where μ̃ and f̃ j are the initial estimates
of μ and f j for j ≥ 2:

ξ̂ (x1) =
∑n

i=1

{
Yi − μ̃ − ∑d

j=2 f̃ j (xi j )
}
f̃1(xi1)K

( xi1−x1
h

)

∑n
i=1 f̃ 21 (xi1)K

( xi1−x1
h

) ,

ζ̂ (x1) =
∑n

i=1

{
Yi − μ̃ − ∑d

j=2 f̃ j (xi j )
}
K
( xi1−x1

h

)

∑n
i=1 K

( xi1−x1
h

) .
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Finally, the second-stage estimates of f1 are respectively attained as

f̂1(x1) = f̃1(x1)

∑n
i=1

{
Yi − μ̃ − ∑d

j=2 f̃ j (xi j )
}
f̃1(xi1)K

( xi1−x1
h

)

∑n
i=1 f̃ 21 (xi1)K

( xi1−x1
h

) , (13)

f̌1(x1) = f̃1(x1) +
∑n

i=1

{
Yi − μ̃ − ∑d

j=2 f̃ j (xi j )
}
K
( xi1−x1

h

)

∑n
i=1 K

( xi1−x1
h

) . (14)

For the other additive components f j (·), j = 2, . . . , d, the construction scheme is
given by substituting f1(·) for f j (·), j = 2, . . . , d; the details are omitted here.

3.2 Asymptotics

In this part, we discuss the adaptivity properties for f̂ j (·) and f̌ j (·) in (13) and (14). As
the result is similar to that in Lin et al. (2009), we only present a brief description and
explanation. Assuming that the regression function f j ∈ T̄ , it can be approximated by
a function f jM ∈ T̄M . Let r jM (x j ) = f j (x j )− f jM (x j ) and denote the second-order

derivative of r jM (x j ) by r ′′
jM (x j ). Write σ 2

K = ∫ 1
−1 u

2K (u)du, JK = ∫ 1
−1 K

2(u)du
and let p j (x j ) be the density function of x j . K (·) on the support [−1, 1] is Lipschitz
continuous and

∫ 1
−1 K (u)du = 1 and

∫ 1
−1 uK (u)du = 0, and p j (x j ) > 0 for x j ∈

[0, 1]. We list two conditions below:

C1 For any f j (x j ), there are β0
jl ∈ Θ such that

f j (x j ) =
∞∑

l=1

β0
jlql(x j ).

C2 There exist nonzero functions e jk(x j ), k = 0, 1, 2, j = 1, . . . , d such that

limM→∞ Mγ j0r jM (x j ) = e j0(x j ), limM→∞ Mγ j1r ′
jM (x j ) = e j1(x j ),

limM→∞ Mγ j2r ′′
jM (x j ) = e j2(x j ), j = 1, . . . , d,

where γ j2 ≤ γ j1 ≤ γ j0 and γ j0 > 0.

Condition C1 is almost necessary because any smooth function can admit an orthog-
onal decomposition (Lin et al. 2009). Condition C2 requests convergence rates of the
remainder terms and their derivatives, which are also related to the smoothness of
f j (·). The decreasing relationship between the rates described by γ j2 ≤ γ j1 ≤ γ j0
is mild. For example, if the basis functions are chosen to be trigonometric functions
or polynomial functions, the remainder term has this property. Let h = O(n−b) and
M = O(nδ) for 0 < b < 1, 0 < δ < 1. The following theorem gives the details.

Theorem 3 (Adaptivity) Assume that Conditions C1 and C2 hold as n → ∞. For
x1 ∈ (0, 1), the bias and variance of the estimates in (13) and (14) have the following
representations:
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bias( f̂1(x1)) = 1

2
h2σ 2

Kr
′′
1M (x1) + o(h2M−γ12) + O(M−γ10) + O(n−1M),

bias( f̌1(x1)) = 1

2
h2σ 2

Kr
′′
1M (x1) + o(h2M−γ12) + O(M−γ10) + O(n−1M),

var( f̂1(x1)) = σ 2 JK
nhp1(x1)

+ O(n−1) + O(n−2h−2),

var( f̌1(x1)) = σ 2 JK
nhp1(x1)

+ O(n−1) + O(n−2h−2).

The proof of the theorem is similar to that of Theorem 1 in Lin et al. (2009). We
give a sketch of the proof in the appendix. f̂ j (·) and f̌ j (·), j = 2, . . . , d have the
same properties. For simplicity, we take f1(·) as an example. The theorem shows that
although the variance is the same as that of the common kernel estimation, the bias
can be adaptive to the smoothness of the underlying function f1(·). More precisely,
as the value of |r ′′

1M (x1)| describes the smoothness of f1(·), the smoother the function
f1(·) is, the smaller the value of |r ′′

1M (x1)| will be, and consequently, the smaller the
bias in (13) and (14). Furthermore, when f1(·) is sufficiently smooth, |r ′′

1M (x1)| → 0
as n → ∞, where M is dependent on n and the biases of the estimates are of order
smaller than h2. In this case, the estimates are super-consistent in the sense that the
convergence rate in mean squared error (MSE) is faster than the standard order of
n−4/5. In particular, if f1(·) satisfies h2|r ′′

1M (x1)| = O(n−1/2), the estimates can
achieve the convergence rate n−1 of parametric estimation. Properties of MSE can
further be obtained for f̂1(x1) and f̌1(x1). For details, readers are referred to Lin et al.
(2009) Corollary 1 and Remark 2.

3.3 Bandwidth selection

To select the bandwidth h, cross-validation (CV) is applied. Let us take the estima-
tion procedure of f1(x1) as an example. Assume that the parameter μ and functions
f j (x j ), j = 2, . . . , d are known. Then, model (9) can be rewritten as a one-
dimensional nonparametric regression:

yi − μ −
d∑

j=2

f j (xi j ) = f1(xi1) + εi , i = 1, . . . , n.

Denote f̂i1(·) as the leave-one-out estimator of f1(·). That is, f̂i1(·) is obtainedwithout
the i th sample (xi , yi ). Then, the CV function with bandwidth h is defined as

CV(h) = n−1
n∑

i=1

⎧
⎨

⎩

⎛

⎝yi − μ −
d∑

j=2

f j (xi j )

⎞

⎠ − f̂i1(xi1)

⎫
⎬

⎭

2

w(xi1), (15)

where w(·) is a weight function, which is commonly taken as a Gaussian or constant
function. For better choices of weight function and further details, please refer to Lin
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et al. (2009). Let hc = arg infh∈Hn CV(h), where the interval Hn = (h, h̄), and h and
h̄ satisfy the regularity conditions in Härdle and Marron (1985) so that the choice is
based on the following criterion:

lim
n→∞

d(m̂h,m)

infh∈Hn d(m̂h,m)
= 1, (16)

where m is a nonparametric function, m̂h is the kernel estimate with bandwidth h,
and d is the averaged squared error. The obtained hc depends on the parameter μ

and the functions f j (x j ), j = 2, . . . , d, which are in fact unknown. We replace the
unknown parameter μ and the function f j (x j ), j = 2, . . . , d, respectively, by their
leave-one-out forms μ̃i and f̃i j (x j ) and define

C̃V(h) = n−1
n∑

i=1

⎧
⎨

⎩

⎛

⎝yi − μ̃i −
d∑

j=2

f̃i j (xi j )

⎞

⎠ − f̂i1(xi1)

⎫
⎬

⎭

2

w(xi1), (17)

h̃c = arg inf
h∈Hn

C̃V(h). (18)

C̃V(h) = CV(h) + o(1), a.s., see Lin et al. (2009).

3.4 Algorithm

The proposed two-step method can be conducted through the following algorithm:

1. Use LASSO for model (5) with the original dataset {xi , yi }ni=1. γ̂λ is the LASSO
estimate according to λ which is chosen by BIC or CV.

2. Find the locations of the nonzero components { j : γ̂ j �= 0} =: Ω and the number
of nonzero components d̂ = #{ j : γ̂ j �= 0} =: |Ω|.

3. Corresponding to each j ∈ Ω , estimate f j (·), j ∈ Ω by the adaptive method. This
step includes two substeps: (1) provide initial estimates μ̃ and f̃ j (x j ), j ∈ Ω; (2)
adjust them to be adaptive estimates using (13) and (14).

Remark 5 In step 1 of the algorithm, LASSO is not necessary. It can be substituted for
another variable selection method for linear models that can shrink their coefficients
for “inactive” variables to zero, such as SCAD (Fan and Li 2001) or adaptive LASSO
(Zou 2006). When p ≥ n or p � n, sure independent screening (SIS, Fan and Lv
2008) and the iterated sure independent screening (ISIS) can also be used in step 1.
The other steps are the same. We denote this method as “SLLSS.”

4 Numerical studies

The following simulation studies are discussed. Example 1 considers variable selection
for purely nonparametric models. An ad hoc method is proposed when there are
symmetric terms in the models. Example 2 investigates variable selection for additive
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models. In Case I, p < n and the performance of the two-step method in Sect. 3 is
examined. For simplicity, we still call it the “LLSS” method. In Case II, p ≥ n and
screening is used before LLSS, i.e., “SLLSS.” Specifically, comparisons are made
with nonparametric independent screening (NIS) method for additive models (Fan
et al. 2011), and the penalized method for additive models (penGAM; Meier et al.
2009). Example 3 concerns a classical additive model that has frequently been used in
numerical studies (Lin and Zhang 2006). All the results are based on 100 replications.
The following three quantities are used to measure the selection accuracy: (1) MS,
the mean value of model size (the number of selected components); (2) TP, the mean
value of the true positive variables selected; (3) FP, the mean value of the false positive
variables missed. Their standard deviations are also reported. For convenience, in
Example 2, the initial estimates are obtained by COSSO without any penalty (the
tuning parameter λ = 0), and the bandwidth selection is based on fivefold CV.

4.1 Nonparametric regressionmodels

In this subsection, we examine the performance of the LLSSmethod for nonparametric
models without an additive structure.

Example 1 Consider the following models:

Y = exp
{ X1 + · · · + X5√

5

}
+ ε, (19)

Y =
(

5

[

X3
1 + X3

2 + 1

4
(X1 + X2)

2 − 1

4
(X1 − X2)

2
])3/5

+ ε, (20)

Y =
(
5X1 + 5X2 + 10X2

3 + 10X2
4

)3/5 + ε, (21)

where X = (X1, X2, . . . , X p)
�, the samples are {xi , yi }ni=1. The errors εi , i =

1, . . . , n follow the normal distribution N (0, σ 2)with variance σ 2 such that the signal-
to-noise ratio is 3 : 1. The sample size is n = 100, p = 10, 30. Model (19) has d = 5
significant predictors; model (20) has an interaction term with d = 2, because it has

another expression Y =
(
5[X3

1 + X3
2 + X1X2]

)3/5 + ε. This model is designed to

examine the model identification problem. Model (21) has d = 4 and contains two
square functions that are symmetric about 0. To show the performance of distribu-
tion violations, xi are generated independently from N (0, var),U (−1, 1), and χ2(2)
distributions; in each cases, var is set so as to make each component comparable.
LASSO is used in LLSS with the tuning parameter λ selected by the CV method. The
results are reported in Table 1, where the standard deviation is given in parentheses.

Various phenomena can be identified in Table 1. First, the distribution of X does
indeed have an effect on the results. χ2(2) does not satisfy the condition required
for Theorem 1, whereasU (−1, 1) gives comparable results to the normal distribution.
Second, p does not havemuch of and effect on the results. Third, the LLSSmethod can
select the true “active” variables in models (19) and (20) correctly (almost) with a very
small false positive value. However, in model (21), X3 and X4 cannot be identified.
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Table 1 Performance of Example 1

p = 10 p = 30

MS TP FP MS TP FP

Model (19)

N (0, 0.1) 5.14 (0.377) 5 (0) 0.14 (0.377) 5.26 (0.824) 5 (0) 0.26 (0.824)

U (−1, 1) 5.07 (0.256) 5 (0) 0.07 (0.256) 5.13 (0.441) 4.99 (0.1) 0.14 (0.427)

χ2(2) 1.01 (0.1) 0.98 (0.2) 0.03 (0.171) 1.01 (0.1) 0.95 (0.621) 0.06 (0.239)

Model (20)

N (0, 1) 2 (0.141) 1.99 (0.1) 0.01 (0.1) 2 (0.142) 1.99 (0.1) 0.01 (0.1)

U (−1, 1) 2.06 (0.312) 2 (0) 0.06 (0.312) 2.04 (0.243) 2 (0) 0.04 (0.243)

χ2(2) 1.95 (0.297) 1.93 (0.256) 0.02 (0.141) 1.84 (0.420) 1.82 (0.386) 0.02 (0.141)

Model (21)

N (0, 0.1) 2.08 (0.367) 2.05 (0.261) 0.03 (0.171) 2.03 (0.171) 2.03 (0.171) 0 (0)

U (−1, 1) 1.87 (0.393) 1.85 (0.359) 0.02 (0.141) 1.84 (0.615) 1.76 (0.429) 0.08 (0.394)

χ2(2) 2.4 (0.898) 2.28 (0.587) 0.12 (0.456) 2.19 (0.506) 2.11 (0.345) 0.08 (0.339)

Table 2 Performance for Model (19) and (20)

Model (19) Model (20)

MS TP FP MS TP FP

Identity 5.11 (0.373) 5 (0) 0.11 (0.373) 2.02 (0.245) 1.99 (0.1) 0.03 (0.222)

Fn 5.09 (0.351) 5 (0) 0.09 (0.351) 1.99 (0.1) 1.99 (0.1) 0 (0)

Logistic 5.07 (0.293) 5 (0) 0.07 (0.293) 2.03 (0.223) 2 (0) 0.03 (0.223)

Φ 5.16 (0.465) 5 (0) 0.16 (0.465) 2.03 (0.171) 2 (0) 0.03 (0.171)

Table 2 reports the results with different choices of h(·). Because LLSS failed to
work for model (21), we only report the results for models (19) and (20). The settings
are the same as described above, the predictor is normally distributed and p = 10.
h(y) is chosen to be identity function (Identity), the empirical cumulative distribution
function(Fn(y)), exp(y)/(1+exp(y)) (Logsitic), or the standard normal distribution’s
cumulative distribution function (Φ). We will discuss an ad hoc method in the next
subsection.

4.2 An ad hocmethod

As discussed in Remark 2, we suggest an ad hoc approach. Note that LLSS transfers
the original model to a linear model Y = a + b�

1 X + e and then checks whether
any component Xi significantly affects Y . If E(X |Y ) = 0, then E(XY ) = 0, and
LLSS fails to work. We then consider using higher-order covariances in practice.
We consider determining whether a polynomial term of Xi has any effect on Y . For
instance, a second-order polynomial Y = a + b�

1 X+ b�
2 X

2 + e is considered, where
X2 = (X2

1, X
2
2, . . . , X

2
p)

�. Higher-order polynomial terms such as the third and fourth
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Table 3 Performance of the ad hoc approach for Model (21), n = 100, p = 10

Order N (0, 0.1) U (−1, 1)

MS TP FP MS TP FP

Square 5.95 (1.546) 3.9 (0.362) 2.05 (1.431) 4.59 (0.9) 4 (0) 0.59 (0.9)

Cubic 5.69 (1.548) 3.85 (0.411) 1.84 (1.383) 4.42 (0.843) 4 (0) 0.42 (0.843)

Fourth 5.36 (1.618) 3.76 (0.553) 1.6 (1.363) 4.4 (0.752) 4 (0) 0.4 (0.752)

order could also be considered. The predictor component Xi is selected as “active” if,
in model Y = a + b�

1 X+ b�
2 X

2 + b�
3 X

3 + b�
4 X

4 + e, any coefficient corresponding

to X j
i , j = 1, 2, 3, 4, is nonzero under LASSO. This ad hoc selection is different

from the group LASSO in both purpose and procedure although they look very sim-
ilar. For example, X1 is selected as long as any one of the coefficients of the terms
X1, X2

1, X
3
1, X

4
1 is nonzero rather than all of these coefficients are nonzero, which

is the procedure of the group LASSO in an all-in-all-out fashion to select X1. This
difference comes from the purpose of using higher-order covariances in our method
to avoid the non-identification with E(Xh(Y )) = 0 when only the first order term
of X1 is used. The ad hoc method just aims at selecting variables, not estimation.
The adaptive estimation in the second step can provide better estimation. Based on
experience, this ad hoc method with order 2 or 3 in practice seems to work well. It is
clear that the theoretical investigation deserves a further study.

In Table 3, we present the results of the ad hoc approach formodel (21)with p = 10.
“Square” means that a+b�

1 X+b�
2 X

2 is used. Similarly, “Cubic” and “Fourth” mean
that the first third- and fourth-order polynomial terms of X are involved.

From Table 3, we find that the ad hoc method can determine X3 and X4 and select
all four active components with almost 100% accuracy. For simplicity, the “square”
case performs better. For the other two models in Example 1, the ad hoc method has a
similar performance to the regular LLSS shown (Table 1), so the simulation results are
omitted. When p > n, LLSS can be used after some screening methods. We present
some examples of variable selection for additive models in the following subsection.

4.3 Application to additive models

The following examples consider p = 10, p = 100, and 500 as the dimensions of X.
The sample size is n = 100. In case 1, p < n and LLSS is compared with COSSO
(Lin and Zhang 2006). In case 2, p ≤ n and the sure independent screening (SIS; Fan
and Lv 2008) is used before implementing LLSS, which is denoted as “SLLSS.” As
COSSO does not suit this case, we compare SLLSS with greedy NIS and iterative NIS
(Fan et al. 2011), and penGAM (Meier et al. 2009). Example 3 is an additive model
from Lin and Zhang (2006) for the use of COSSO. We compare the results of LLSS,
LLSS with order 2, and COSSO.
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Example 2 The model is

Y = f1(X1) + f2(X2) + f3(X3) +
p∑

j=4

f j (X j ) + ε, (22)

where f1(x) = 5(x − 1), f2(x) = 20(x − 0.5)Φ(−|x − 0.5|), f3(x) = −4x3 + 1,
and f j (X j ) = 0, j = 4 . . . , p, p = 10. The sample data xi = (xi1, . . . , xip)T

are independent and identically distributed according to the following two distri-

butions: (1). Trimmed AR(1): W1, . . . ,Wp
def= ∼i .i .d. N (0, 1), and X1 = W1,

X j = ρX j−1 + (1 − ρ2)1/2Wj , j = 2, . . . , p. Trim X j in [−2.5, 2.5] and scale
to [0, 1]. (2). Compound symmetry: W1, ..,Wp , U ∼ Uniform (0, 1) i.i.d., let
X j = (Wj + tU )/(1 + t). Therefore, corr(X j , Xk) = t2/(1 + t2), j �= k. Addi-
tionally, the errors εi , i = 1, . . . , n, follow the normal distribution N (0, σ 2), where
σ 2 is chosen according to the standard deviation of the signal-to-noise ratio around
3:1. In the simulations, ρ = 0, 0.5, and t = 0, 1. As estimation is involved, we then
report ISE to measure the estimation accuracy. Here, ISE = E[ f̂ (xi ) − f (xi )]2,
which is estimated by 1000 testing points generated from the same distribution
as the training points, where f (xi ) = ∑p

j=1 f j (xi j ) is the true conditional mean
function.

Case I (p < n): The results reported in Table 4 are based on p = 10, n = 100. From
the results, LLSS gives smaller ISE and FP than COSSO, which tends to select more
variables than LLSS such that its MS is larger. Both methods can find X1, X2, X3 with
100% accuracy and with MS close to the true value of 3. Weak correlation between
the independent variables does not have a significant effect on the results.

When the condition (2.3) of LLSS is violated, the performance is not satisfactory.
Table 5 presents the results from COSSO, LLSS, and LLSS with order 2 when X is
χ2(2) distributed or the error follows χ2(2). Here, the performance of both COSSO
and LLSS has deteriorated. The ad hoc method failed here because it is used for
violation of E(Xh(Y )) = 0, not for the elliptical distribution condition. When the
errors are not normally distributed, the performance of LLSS and LLSS with the ad
hoc method is better than COSSO, with smaller FP value and closer to the true value
of MS. We can see that, when using COSSO, MS is larger than the true value of 3,
and FP is much larger than when using LLSS and LLSS with the ad hoc method. In
other words, COSSO selects about four variables, but often wrongly selects variable
that should not be active.

Case II (p ≥ n): In this case, p = 100, 500. SIS is used before LLSS. Because this is
a high-dimensional case, the greedy NIS(g-NIS), iterative NIS(INIS), and penGAM
method are compared. Consider the case where xi are independent, that is, trimmed
AR(1) with ρ = 0. The results of these four methods are reported in Table 6. We
also considered some other settings, but the details are omitted because they produce
similar performance.

It is clear from Table 6 that all four methods can select X1, X2, and X3 correctly.
penGAM and INIS tend to select more variables, so they have larger MS and FP.
Because LLSS is used after SIS, the dimension can be reduced to an appropriate

123



842 Z. Feng et al.

Ta
bl
e
4

M
ea
su
re
m
en
ts
fo
r
m
od
el
(2
2)

C
as
e
I

M
et
ho
d

IS
E
(s
d)

M
S
(s
d)

T
P
(s
d)

FP
(s
d)

IS
E
(s
d)

M
S
(s
d)

T
P
(s
d)

FP
(s
d)

T
ri
m
m
ed

A
R
(1
),

ρ
=

0
C
om

po
un

d
sy
m
m
et
ry
,t

=
0

C
O
SS

O
0.
05

3
(0
.0
25

)
3.
72

0
(1
.1
47

)
3.
0
(0
)

0.
72

0
(1
.1
47

)
0.
10

7
(0
.0
57

)
3.
71

0
(1
.1
92

)
3.
0
(0
)

0.
71

0
(1
.1
92

)

L
L
SS

0.
04

1
(0
.0
17

)
3.
08

0
(0
.3
07

)
3.
0
(0
)

0.
08

0
(0
.3
07

)
0.
09

1
(0
.0
52

)
3.
07

0
(0
.2
93

)
3.
0
(0
)

0.
07

0
(0
.2
93

)

T
ri
m
m
ed

A
R
(1
),

ρ
=

0.
5

C
om

po
un

d
sy
m
m
et
ry
,t

=
1

C
O
SS

O
0.
01

0
(0
.0
04

)
3.
59

0
(1
.0
55

)
3.
0
(0
)

0.
59

0
(1
.0
55

)
0.
02

3
(0
.0
11

)
3.
85

0
(1
.4
45

)
3.
0
(0
)

0.
85

0
(1
.4
45

)

L
L
SS

0.
00

8
(0
)

3.
03

0
(0
.1
71

)
3.
0
(0
)

0.
03

0
(0
.1
71

)
0.
01

8
(0
.0
08

)
3.
03

0
(0
.1
71

)
3.
0
(0
)

0.
03

0
(0
.1
71

)

123



Nonparametric variable selection for additive models 843

Ta
bl
e
5

M
ea
su
re
m
en
ts
fo
r
m
od
el
(2
2)

C
as
e
I
w
ith

di
ff
er
en
ts
et
tin

gs

M
et
ho

d
X

∼
χ
2
(2

)
ε

∼
χ
2
(2

)

IS
E
(s
d)

M
S
(s
d)

T
P
(s
d)

FP
(s
d)

IS
E
(s
d)

M
S
(s
d)

T
P
(s
d)

FP
(s
d)

C
O
SS

O
0.
06

1
(0
.0
32

)
4.
16

(1
.9
73

)
2.
76

(0
.4
29

)
1.
4
(1
.8
48

)
1.
15

5
(0
.2
19

)
3.
96

(1
.6
45

)
3
(0
)

1.
96

(1
.6
45

)

L
L
SS

0.
09

5
(0
.0
89

)
2.
43

(0
.6
70

)
2.
34

(0
.4
97

)
0.
09

(0
.3
51

)
1.
24

3
(0
.3
93

)
2.
93

(0
.4
32

)
2.
88

(0
.3
56

)
0.
05

(0
.2
19

)

L
L
SS

(o
rd
er

2)
0.
13

5
(0
.4
27

)
2.
87

(1
.3
23

1)
2.
48

(0
.5
02

)
0.
39

(1
.0
63

)
1.
22

5
(0
.3
82

)
2.
96

(0
.4
48

)
2.
9
(0
.3
33

)
0.
06

(0
.2
78

)

123



844 Z. Feng et al.

Ta
bl
e
6

M
ea
su
re
m
en
ts
fo
r
m
od
el
(2
2)

C
as
e
II

M
et
ho

d
p

=
10

0
p

=
50

0

IS
E
(s
d)

M
S
(s
d)

T
P
(s
d)

FP
(s
d)

IS
E
(s
d)

M
S
(s
d)

T
P
(s
d)

FP
(s
d)

SL
L
SS

0.
09

4
(0
.0
06

)
3
(0
)

3
(0
)

0
(0
)

0.
06

4
(0
.0
05

)
3
(0
)

3
(0
)

0
(0
)

g-
IN

IS
6.
63

2
(0
.6
17

)
3.
99

(0
.1
)

3
(0
)

0.
99

(0
.1
)

0.
81

7
(0
.0
45

)
3.
01

(0
.1
)

3
(0
)

0.
01

(0
.1
)

IN
IS

9.
60

8
(0
.9
20

)
7.
95

(0
.5
)

3
(0
)

4.
95

(0
.5
)

1.
36

6
(0
.0
56

)
4.
99

(0
.1
)

3
(0
)

1.
99

(0
.1
)

pe
nG

A
M

5.
43

2
(0
.4
26

)
14

.9
8
(0
.2
)

3
(0
)

11
.9
8
(0
.2
)

1.
31

2
(0
.0
24

)
22

.8
5
(1
.5
)

3
(0
)

19
.8
5
(1
.5
)

123



Nonparametric variable selection for additive models 845

number, and then the two-stage selection and adaptive estimation can be performed.
In this example, SLLSS works well.

Example 3 Following Lin and Zhang (2006), we generate data from the following
additive model:

Y = 5g1(X1) + 2g2(X2) + 4g3(X3) + 6g4(X4) + √
1.74ε, (23)

where g1(x) = x , g2(x) = (2x−1)2, g3(x) = sin(2πx)
2−sin(2πx) , and g4(x) = 0.1 sin(2πx)+

0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3. The covariates X =
(X1, . . . , X p)

� are simulated with the same settings as in Example 2: trimmed AR(1),
ρ = 0, 1; compound symmetry, t = 0, 1, ε ∼ N (0, 1). n = 100, p = 10. We report
the results of COSSO, LLSS, and LLSS with order 2 in Table 7.

From the results, we can see that LLSS does not perform well, especially when the
predictor variable X is correlated. The ad hocmethod can help to select more variables
into the model, but it also wrongly selects some inactive variables. Specifically, LLSS
tends to miss some active variables with TP smaller than 4, but with the help of the ad
hoc method, most of the missing variables can be selected at the cost of some inactive
variables being included. It is noticed that functions g3 and g4 contain symmetric
patterns. Thus, overall LLSS is comparable in this example.

5 Real data example

We applied our method to the Hitters’ salary data, which were first presented in the
1988 ASA Graphics Poster Session. The main topic of this session was “why they
make what they make.” Chaudhuri et al. (1994) considered a tree model, and Li et al.
(2000) used a dimension reduction approach to fit a semiparametric model. In detail,
the data set consists of the numbers of times at bat(X1), hits (X2), home runs (X3),
runs (X4), runs batted in (X5) and walks (X6) in 1986, years in major leagues (X7),
times at bat (X8), hits (X9), home runs (X10), runs (X11), runs batted in (X12), and
walks (X13) during their entire career up to 1986, annual salary (Y ) in 1987, putouts
(X14), assistances (X15), and errors (X16). Let X = (X1, . . . , X16)

�.
In a nonparametric regression structure, p = 16 is too large to have an efficient

nonparametric estimation with a sample of size n = 255. Therefore, there have been
several attempts to work on estimation. Sufficient dimension reduction (Li 1991; Cook
1998) is a promising way to approach estimation via the selection of some representa-
tive predictors or the linear combinations of the predictors to establish the underlying
model. When SIR (Li 1991) with a BIC-type structural dimension determination (Zhu
et al. 2006) is applied, two linear combinations of the 16 predictors are determined.

As there is no specific prior information about themodel structure, we first fitted the
data nonparametrically. For this purpose, the LLSSmethod in Sect. 2was used to select
active predictors. Tomake the analysis robust,we repeated abootstrap experiment 1000
times to examine the stability of the variable selection through the frequencies of the
variables selected into the model. For each experiment, n = 255 independent data
were sampled from the original dataset with equal probability. The frequencies of all
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Table 8 Frequencies (out of 1000 times) selected by LLSS

Variable X1 X2 X3 X4 X5 X6 X7 X8

LLSS 659 736 38 49 371 680 754 147

LLSS (order 2) 161 987 245 244 312 981 1000 907

Variable X9 X10 X11 X12 X13 X14 X15 X16

LLSS 38 75 986 19 15 358 42 46

LLSS (order 2) 722 724 969 570 161 985 555 339

Numbers in bold have larger values than 600

variables are listed in Table 8. On average, LLSS identified five important variables,
whereas the ad hoc method selected more. The sample covariance matrix shows that
there are four separate groups of all predictors: {X1, . . . , X6}, {X7}, {X8, . . . , X13},
and {X14, X15, X16}.Within the groups, the predictors are highly positively correlated,
with correlation coefficients of around 0.8, whereas between the groups, they are
positively, but weakly, correlated, with correlation coefficients of around 0.2. Thus,
X1, X2, X6 are representatives of the first group, and X11 could be regarded as the
representatives of the third group. It seems that X14 is only identified by the ad hoc
method and belongs to group 4. Finally, according to the results, we decided to use
variables X1, X2, X6, X7, X11, X14 in the working model. These variables are related
to a player’s performance in the year 1986; his experience (years in major leagues);
the comprehensive performance up to year 1986; and his bad performance.

For comparison, SIR was also used to select projection indices for the purpose of
sufficient dimension reduction. To be fair, we select the first two dimension reduction
directions corresponding to the first two largest eigenvalues of the SIR matrix and the
two variables with the highest selected frequencies in LLSS, i.e., (X7, X11). Nonpara-
metric regression models were fitted with these predictors (indices). To compare the
performance, we list the selected predictors (indices), the regression coefficients, and
R2 in Table 9.

Both SIR and LLSS show that the set {X14, X15, X16}makes very little contribution
to the response Y . However, LLSS with order 2 identifies X14. This means that X14
would affect Y in a quadratic term. When SIR is applied, the large loadings of γ̂1
correspond to X1 and X2, X11). Thismeans the first direction corresponds to a contrast
between X1 and (X2, X11), whereas γ̂2 would be a contrast between X8 and X9.
However, note that the pairs (X1, X2) and (X8, X9) have highly positive correlations,
with correlation coefficients of around 0.8. It is difficult to explain why such contrasts
could happen. The proposed LLSS method provides a better fitted model with a larger
R2 value and, more importantly, is more interpretable.

We now examine whether a better model could be fitted according to model fitting
and interpretability. We consider fitting an additive model. The prediction accuracy
can be checked by splitting the dataset into a training set with n1 = 200 to estimate the
component functions f j (·) and a testing set with n2 = 55. The residual sum of squares
(RSS) defined as

∑n2
i=1(yi − ŷi )2, and the regression coefficient of determination R2

is reported in Table 10. We list the results for COSSO, LLSS, and LLSS with order 2
for additive models.
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Table 9 The indices selected by
the SIR, the predictors selected
by LLSS

Method SIR R2 = 0.72 LLSS R2 = 0.81

Index γ̂1 γ̂2 γ̂1 γ̂2

X1 0.38 0.0 0 0

X2 − 0.67 − 0.06 0 0

X3 − 0.02 0.01 0 0

X4 0.15 − 0.04 0 0

X5 0.07 − 0.04 0 0

X6 − 0.21 0.00 0 0

X7 − 0.09 − 0.17 1 0

X8 − 0.02 − 0.79 0 0

X9 0.03 0.45 0 0

X10 − 0.25 − 0.04 0 0

X11 − 0.45 0.22 0 1

X12 0.13 0.27 0 0

X13 0.19 0.04 0 0

X14 − 0.10 0.03 0 0

X15 − 0.06 0.01 0 0

X16 0.02 0.01 0 0

Numbers in bold have larger values than 0.3

Table 10 Model fitting of the two methods

Method RSS R2 d Variables

COSSO 3.74 0.89 8 {X2, X6, X7, X8, X9, X11, X12, X14}
LLSS 5.35 0.85 5 {X1, X2, X6, X7, X11}
LLSS (order 2) 3.81 0.89 8 {X2, X6, X7, X8, X9, X10, X11, X14}
Final Model1 4.54 0.87 3 {X2, X7, X11}
Final Model2 5.19 0.85 3 {X1, X7, X11}
Final Model3 5.92 0.83 3 {X6, X7, X11}

In Table 10, all three methods have larger R2 values than those in Table 9. This
suggests that additive models would be appropriate, while a purely nonparametric
model suffers from the typical estimation problem although it is more general. We can
also see that COSSO has a slightly larger R2 and smaller RSS than LLSS and LLSS
with order 2.

However, among these predictors, we find that X1, X2, X6 are positively correlated,
with large correlation coefficients of around 0.8, and thus, any one could be the repre-
sentative of the group X1, . . . , X6. Similarly, among X8, . . . , X13, we may only need
a single representative. Further, X14, X15, X16 make very little contribution to salary
and, more importantly, their effect on salary is very difficult to explain. Thus, taking
this information into consideration, it would be interesting to see whether we can use a
more parsimonious model. Thus, we considered model fitting with one of X1, X2, X6;
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Fig. 1 Estimated components by LLSS

X7; and X11. The final model with X2, X7, X11 has the largest R2 = 0.87 and the
smallest RSS = 4.54 among the three models. Thus, this model is recommended,
although the values of the two criteria are still not as large/small as those of the model
obtained by COSSO and LLSS with order 2.

Figure 1 shows scatter plots ofY against X2, X7, X11. It is clear that these predictors
have positive effects for salary Y . That means that salary increases with better perfor-
mance in year 1986 (X1, . . . , X6) and overall performance to year 1986 (X8, . . . , X13).
Years in major leagues (X7) can be viewed as a substitution for age of a player. Salary
increases with experience at first, but decreases after a peak. This bell-shaped curve
explains the salary change with age and coincides with common sense.

Figure 2 shows that the models given by COSSO and LLSS, combined with an
interpretable manual selection, both fit the data well.

6 Discussion

In this paper, we have studied variable selection and estimation methods for purely
nonparametric models that are applied to additive models. We proposed a least-
squares-based variable selection method without any nonparametric approximation
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for nonparametric regression functions. This method has the advantages of easy
implementation and computational efficiency, with fewer problems caused by dimen-
sionality. The cost is that the proposed method places some regularity conditions that
may be regarded as restrictive conditions. A sufficient and special case of Condition
(2.3) is the elliptical symmetric distribution assumption for predictor X. This condi-
tion is often used in the sufficient dimension reduction and is approximately satisfied
in practice. Recently, Guan et al. (2017) weakened these conditions and gave some
systematic studies on the necessary and sufficient conditions. Further, another trade-
off to use such a very simple method for such a general model is that in some cases,
E(Xh(Y )) could be zero and then the identification of the direction in the central sub-
space becomes a problem. Because E(Xh(Y )) is the key to well identify the variables
we want to select, so we propose an ad hoc method that can somehow improve the
performance. The relevant theoretical investigations are ongoing.
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Appendix

Proof of Theorem 1 Recall the definition of η, Z, and Ad
TX = ηTZ. A1 is a p-

dimensional vector whose first d elements are 1, otherwise 0. We have

�−1E(Xh(Y )) = �−1/2(B1, η1/‖η1‖)(B1, η1/‖η1‖)�E (Zh(Y ))

= �−1/2B1B�
1 E (Zh(Y )) + �−1/2η1η

�
1 E (Zh(Y )) /‖η1‖2

= �−1/2B1B�
1 E (Zh(Y )) + A1A

�
1 E (Xh(Y )) /‖η1‖2

=: �−1/2B1E
(
E(B�

1 Z|Y )h(Y )
)

+ ch A1. (24)

It is obvious that the first term is equal to zero when the condition E(B�
1 Z|Y ) = 0

almost surely. Thus, (3) implies (4). On the other hand, when (4) holds, the first term
in (24) is zero. For any transformation h(·),�−1/2B1E

(
E(B�

1 Z|Y )h(Y )
) = 0, implies

E(B�
1 Z|Y ) = 0 almost surely. (4) implies (3).When the distribution ofZ is elliptically

symmetric, the Eq. (4) can be proved similarly in Li and Duan (1989). ��
Proof of Theorem 3 Here, we give the sketch of proof of Theorem 3, which is Theo-
rem 1 in Lin et al. (2009). For details please refer to Lin et al. (2009).

To proof Theorem 3, two lemmas are needed.

Lemma 1 Suppose the conditions of Theorem 3 hold and denote

f̂1M (x1) = f1M (x1)

∑n
i=1{Yi − μ − ∑d

j=2 f jM (xi j )}
∫ si
si−1

K
( t−x1

h

)
f1M (t)dt

∫ 1
0 K

( t−x1
h

)
( f1M (t))2dt

,

where f1M (x j ) are defined in Sect. 3.1. si , i = 0, . . . , n are defined as s0 = 0,
si = (xi1 + x(i+1)1)/2, i = 1, . . . , n − 1, sn = 1, 0 ≤ x11 < x21 < · · · < xn1 ≤ 1
ordered. Then, as h → 0 and n → ∞, the bias and variance of f̂1M (x1) can be
expressed, respectively, as

bias( f̂1M (x1)) = 1

2
h2σ 2

K M−γ12e21(x1) + O(n−1) + o(h2M−γ12) + O(M−γ0),

var( f̂1M (x1)) = σ 2 JK
nhp1(x1)

+ O(n−1) + O(n−2h−2),

where γ0 = min{γ j0; j = 1, 2, . . . , d}, e21(x1) is defined in condition C2, and satis-
fying limM→∞ Mγ j2r ′′

jM (x j ) = e j2(x j ), j = 1, . . . , d.

Lemma 2 Let the conditions of Theorem 3 hold and let

f̌1M (x1) = f1M (x1)

+
∑n

i=1

{
Yi − μ − ∑d

j=2 f jM (xi j )
} ∫ si

si−1
K
( t−x1

h

)
dt − ∫ 1

0 K
( t−x1

h

)
f1M (t)dt

∫ 1
0 K

( t−x1
h

) .
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Then as h → 0 and n → ∞, the bias and variance of f̌1M (x1) can be expressed,
respectively, as

bias( f̌1M (x1)) = 1

2
h2σ 2

K M−γ12e21(x1) + O(n−1) + o(h2M−γ12) + O(M−γ0),

var( f̌1M (x1)) = σ 2 JK
nhp1(x1)

+ O(n−1) + O(n−2h−2),

where γ0 = min{γ j0; j = 1, 2, . . . , d}, e21(x1) is defined in condition C2, and satis-
fying limM→∞ Mγ j2r ′′

jM (x j ) = e j2(x j ), j = 1, . . . , d.

To proof Theorem 3, in Sect. 3.2, we defined that r jM (x j ) = f j (x j ) − f jM (x j );
here, we define that

RM (x) =
d∑

j=1

f j (x j ) −
d∑

j=1

M∑

l=1

β0
jlql(x j ).

Then, the first stage estimators of f j (x j ) can be expressed as

f̃ j (x j ) = f jM (x j ) + 1

n

n∑

i=1

PA(xi )(εi + RM (xi )), j = 1, . . . , d,

where PA(xi ) is the summation components in equation (A1) in Lin et al. (2009).
And using Taylor expansion, f̂1(x1)− f̂1M (x1) can be expanded at f1M (x1); then, we
can get

f̂1(x1) − f̂1M (x1) = B1(x1)( f̃1(x1) − f1M (x1))

+B2(x1)

⎧
⎨

⎩
μ̃ − μ0 +

d∑

j=2

( f̃ j (x j ) − f jM (x j ))

⎫
⎬

⎭
+ op(hn

−1M),

where B1(x1) = η1/η2+ f1(x1)η3/η2−2 f1(x1)η1/η24, and B2(x1) = − f1(x1)η5/η2
with η1 = ∑n

i=1{Yi − μ0 − ∑d
j=2 f jM (xi j )}

∫ si
si−1

K ( t−x1
h ) f1M (t)dt , η2 =

∫ 1
0 K ( t−x1

h ) f 21M (t)dt , η3 = ∑n
i=1{Yi − μ0 −∑d

j=2 f jM (xi j )}
∫ si
si−1

K ( t−x1
h )dt , η4 =

∫ 1
0 K ( t−x1

h ) f1M (t)dt , η5 = ∑n
i=1 Yi

∫ si
si−1

K ( t−x1
h ) f1M (t)dt .

From the results above, we have

E{η1( f̃1(x1) − f1M (x1))} = O(hM−γ0+1) + O(hn−1M).

And similarly E{η3( f̃1(x1) − f1M (x1))} = O(hM−γ0+1) + O(hn−1M). So,

E{B1(x1)( f̃1(x1) − f1M (x1))} = O(M−γ0+1) + O(n−1M).
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And E{B2(x1)[μ̃ − μ + ∑d
j=2( f̃ j (x j ) − f jM (x j ))]} = O(M−γ0+1) + O(n−1M).

Combining these results with Lemma 1 and conditions C1 and C2 leads to the final
expression of bias( f̂1(x1)) and var( f̂1(x1)) in Theorem 3.

The second part of the proof is similar, and so we omitted it here. ��
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