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1 Appendix1: Detailed simulation design and results

In this appendix, we describe the simulation study mentioned in Section 4 in
detail. We illustrate the performance of the proposed method in cases where
MICE-FCS cannot draw from a Bayesian joint model. The situations consid-
ered are (i) linear regression with a quadratic term, (ii) linear regression with
an interaction term, (iii) the Cox proportional hazards models, and (iv) logis-
tic regression with a binary covariate. Throughout the simulation studies, we
consider the situation outcomes of the substantive model y to be univariate.
For simplicity, we also assume y contains no missing components; however, im-
puting from the predictive distribution (as in Step 8 in the MCMC algorithm
in Section 3) allows us to address the case y contains missing components in
a straightforward manner.

We consider the following throughout the simulation study: N = 400, the
number of completely observed covariates v (q = 1), and the number of incom-
pletely observed covariates w (p = 2). In order to compare the performance
with MICE-FCS and SMC-FCS even when the normality assumptions are vio-
lated, we consider three cases, where the covariates xi = (wi,1, wi,2, vi,1)

′
have

a different data generating process from (a) a multivariate normal distribu-
tion, (b) a multivariate log-normal distribution, or (c) a multivariate normal
mixture distribution. For (a), namely, the multivariate normal distribution,
xi is generated as MVN(0,Σx) for i = 1, ..., N , where Σx denotes the co-
variance structure with diagonal elements set to 1, and the pairwise off di-
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agonal elements corr(xir, xir′ ) (r = 1, 2, 3) are set to ρ|r−r
′
|

x
. ρx is simulated

from the uniform distribution over the interval [0.2, 0.8]. For (b), namely, the
multivariate log-normal distribution, the missing variable wi is simulated by
exponentiating a draw from case (a). For (c), namely, the multivariate normal
mixture distribution, xi is generated from MVN(0.5,Σ1

x) with probability
0.5 and from MVN(−0.5,Σ2

x) with probability 0.5, where Σ1
x and Σ2

x are
independently drawn in the same way as Σx.

We also assume the MAR missing mechanism. The elements of y are trans-
formed to λi,j = Ui,j−logit−1(yi) (j = 1, 2), where Ui,j are i.i.d. uniform dis-
tributions over the interval [0, 1], and the corresponding case of wi,j to the
highest (χ/2)% of each λi,1 and λi,2 are converted to be missing. We consis-
tently set χ = 30. For each simulation study setting, the missing components of
wi,j are first imputed by wi ∼ N(Γ̂MLE

l vi, Φ̂
MLE
l ), where Γ̂MLE

l and Φ̂MLE
l

represents the maximum likelihood estimators of the complete case analysis.

We adopt the same default choices for hyperparameters as in Chung and
Dunson (2009), namely, L = 20, µα0 = 0, σ2

α0
= 1, µψk

= 0, σ2
ψk

= 100, and
Ω∗
km are 50 equally spaced grid points in (−3.5, 3.5), except for exponentiated

wi,1 in each simulation Scenario (b), where Ω∗ are 50 equally spaced grid
points in (0, 10). In this simulation study, the MCMC algorithm was run for
8,000 iterations, with the first 4,000 iterations excluded as a burn-in period.
We confirmed the convergence using a diagnostic proposed by Geweke (1992).

In order to confirm the performance of the proposed SB-MI under dif-
ferent model setups, we compare it with the MICE-FCS, SMC-FCS, NP-MI,
and missForest algorithms (Since NP-MI is developed to deal with categorical
variable imputation and set up of Simulation-(i) do not include categorical
variable, only simulation-(i) does not include NP-MI). For FCS imputation
approaches, we simulate 100 imputed datasets, and the estimates are com-
puted using Rubin’s rules. We employ, as FCS, a linear regression covariate
model for continuous incomplete covariates and a logistic regression for binary
ones. For NP-MI, MCMC algorithm was run for 8,000 iterations, with the
first 4,000 iterations discarded, and we simulated 100 imputed datasets. The
estimates from 100 datasets are integrated by Rubin’s rules.

1.1 Linear regression with quadratic term

1.1.1 Simulation setup

First, we simulate the case where the substantive model is a linear regres-
sion with normally distributed error terms, in which the covariates include
a quadratic effect term. In this setting, the standard covariate model speci-
fication of MICE-FCS is incompatible. We specify the substantive model as
follows:

y = Γ0 + Γ1w1 + Γ2w2 + Γ3w
2
2 + Γ4v
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with Γ0 = 1, Γ1 = 1, Γ2 = −1, Γ3 = 1, Γ4 = 1, and ϵ ∼ iid N(0, 0.5). These
true coefficients are chosen as we consider a U-shaped association between the
outcome y and missing variable w through the quadratic covariate effects.

In this simulation setup, the acceptance probability of the missing compo-
nents discussed in Equation (2) can be written as

min

exp
{
− 1

2σ2
ϵ
(yi − ΓTxci )

2
}

exp
{
− 1

2σ2
ϵ
(yi − ΓTxi)2

} , 1


where Γ = (Γ0, Γ1, Γ2, Γ3, Γ4)
T , xi = (1, w1i, w2i, w

2
2i, v1i), and xci is the vector

xi whose missing components are replaced by the candidate value. The missing
values of w2

2 are passively imputed as the squared of the imputed values of w2.

1.1.2 Results

Table A1 describes the results of the simulation, namely, the empirical mean,
standard deviation, the coverage of nominal 95% CIs of the estimate, and
the MSE from the true value of Γ. The last row in each scenario shows each
sum of the MSE ratio for MICE-FCS. With Scenario (a), namely, normally
distributed covariates, SMC-FCS, missForest, and SB-MI give smaller MSEs
for all Γ s. Also, the CI coverage of SMC-FCS and SB-MI is very close to
0.95, although missForest results in poor CIs. However, since the imputaion
model is not compatible with the substantive model, as expected, MICE-FCS
results in biased estimates, not only for the quadratic term coefficient Γ3 but
also for the other coefficients. CI coverages are also slightly poor for all Γ s.
With Scenario (b), namely, log-normally distributed missing covariates, MICE-
FCS, once again, results in severely biased estimates and poor empirical CI
coverages. SMC-FCS gives comparatively correct estimates and CI coverage.
missForest and SB-MI provide better estimates from the viewpoint of error
from the true value, but the CI coverages of missForest are far from 0.95.
Estimates of Γ2 by SMC-FCS are more variable than those of SB-MI. With
Scenario (c), namely, mixture of normally distributed covariates, MICE-FCS
results in very biased estimates, and the CIs shows coverage of only 0.17−0.82.
SMC-FCS also provides slightly biased results for some Γ s since the specified
distributions for the covariates are incorrect. CI coverages are also smaller
than 0.95 for several Γ s. SB-MI gives the smallest MSE and CI coverages are
very close to 0.95 for all Γ s. This indicates that the SB-MI is more robust to
the complicated missing mechanism than SMC-FCS as well as MICE-FCS.

1.2 Linear regression with an interaction term

1.2.1 Simulation setup

Next, we simulate the case where the substantive model is a linear regression
with normally distributed error terms and the covariates include the cross-term
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effect. In this setting, the standard covariate model specification of MICE-FCS
is incompatible. We consider the case where one of the incompletely observed
covariates w1 is binary, where wi,1 = 1 if the latent variable (which is simulated
in each three case) w∗

i,1 > 0 and wi,1 = 0 if the latent variable w∗
i,1 ≤ 0. Since

w1 is a binary, we do not exponentiate w∗
i,1 in the study for Scenario (b). We

specify the substantive model as follows.

y = Γ0 + Γ1w1 + Γ2w2 + Γ3w1w2 + Γ4v1 + ϵ

with Γ0 = 1, Γ1 = 1, Γ2 = 1, Γ3 = 1, Γ4 = 1, and ϵ ∼ iid N(0, 0.5).
In this simulation setup, the acceptance probability of the missing compo-

nents discussed in Equation (2) can be written as

min

exp
{
− 1

2σ2
ϵ
(yi − ΓTxci )

2
}

exp
{
− 1

2σ2
ϵ
(yi − ΓTxi)2

} , 1


where Γ = (Γ0, Γ1, Γ2, Γ3, Γ4)
T , xi = (1, w1i, w2i, w1iw2i, v1i), and xci is the

vector xi whose missing components are replaced by the candidate value.

1.2.2 Results

Table A2 describes the results of the simulation, including the empirical mean,
standard deviation, the coverage of nominal 95% CIs of the estimate, and the
MSE from the true value of Γ. The last row of each scenario describes each
sum of the MSE ratio for MICE-FCS. With Scenario (a), namely, the normally
distributed covariates, SMC-FCS and SB-MI give the correct estimates. Both
show empirical CI coverages of approximately 0.95. The MSEs are also similar
to each other. Since the imputation model is incompatible with the substantive
model, as expected, MICE-FCS, once again, results in biased estimates, and
CI coverages are also considerably poor for all Γ s. NP-MI also gives biased
results with poor CIs. With Scenario (b), namely, the log-normally distributed
missing covariates, MICE-FCS continues to be biased with incorrect empiri-
cal CI coverage. SMC-FCS gives biased estimates, with CI coverage of only
0.46 − 0.89. NP-MI provides 18 times large MSE than the proposed. SB-MI
provides the estimate closest to the ”true” value, the CI coverage being very
close to 0.95. SB-MI seems to be more robust in situations where the distribu-
tion is skewed. With Scenario (c), namely, the mixture of normally distributed
covariates, MICE-FCS and NP-MI again continues to give biased estimates
ending in poor empirical CI coverages. SMC-FCS also provide slightly biased
results for some Γ s since the specified distributions for the covariates are in-
correct. CI coverages are also slightly smaller than 0.95 for several Γ s. On the
other hand, SB-MI gives estimates closely match the ”true” value, and the CI
coverages are also very close to 0.95 for all Γ s. The estimates from missForest
show somewhat larger MSEs. The results of the simulation for case (ii) indi-
cates that the proposed SB-MI method is more robust than SMC-FCS and
MICE-FCS in situations where the normality assumption is violated.
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1.3 Proportional hazards models

1.3.1 Simulation setup

Next, we simulate a case where the substantive model is the proportional
hazards models. In this setting, the standard covariate model specification of
MICE-FCS is incompatible. We consider the case where one of the incom-
pletely observed covariates w1 is binary, where wi,1 = 1 if the latent variable
(which is simulated in each three case) w∗

i,1 > 0 and wi,1 = 0 if the latent
variable w∗

i,1 ≤ 0. Since w1 is binary, we do not exponentiate w∗
i,1 in the study

for Scenario (b). We specify the substantive model of the hazard function as
follows:

h(t|w, v) = 0.002 exp(Γ1w1 + Γ2w2 + Γ3v1)

with Γ1 = 1, Γ2 = 2, and Γ3 = 4. We generate censoring times from an
exponential distribution with hazard λ = 0.002.

In this simulation setup, we assume a Weibull distribution for the hazard
function, and the acceptance probability of the missing components discussed
in Equation (2) can be written as

min

(
exp

{
d
[
ΓTxci + log(λα) + (α− 1) log(λt)

]
− exp

(
ΓTxci

)
(λt)α

}
exp {d [ΓTxi + log(λα) + (α− 1) log(λt)]− exp (ΓTxi) (λt)α}

, 1

)

where Γ = (Γ0, Γ1, Γ2, Γ3)
T , xi = (w1i, w2i, v1i), and xci is the vector xi whose

missing components are replaced by the candidate value.

1.3.2 Results

Table A3 shows the simulation results, including the empirical mean, standard
deviation, coverage of nominal 95% CIs of the estimate, and MSE from the
true value of Γ are described. The last row of each scenario in Table A3 pro-
vides each sum of the MSE ratio on MICE-FCS. With Scenario (a), namely,
normally distributed covariates, SMC-FCS and SB-MI result in estimates with
the smallest MSE for all Γ s. Also, the CI coverage in both case is very close
to 0.95. The MSE of SB-MI is somewhat smaller than that of SMC-FCS. On
the other hand, MICE-FCS results in biased estimates for all the coefficients
owing to the violation of model compatibility. Hence, CI coverages are also
poor for all Γ s. missForest gives relatively smaller MSEs, but the empirical
coverages are very poor. With Scenario (b), namely, log-normally distributed
missing covariates, MICE-FCS again shows severely biased estimates and poor
empirical coverages. SMC-FCS gives biased estimates, and the CI coverages of
Γs are much lower than 0.95. These biased results arise from the model incom-
patibility on FCS. missForest, once again, shows poor empirical coverages. Of
all these results, SB-MI gives the most valid estimates, with the CI coverage
being closest to 0.95. The MSEs from SB-MI are much smaller than those
from SMC-FCS. With Scenario (c), namely, a mixture of normally distributed
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covariates, where FCS does not satisfy the model compatibility assumption,
the results are similar to Scenario (b). Throughout this simulation study, NP-
IV estimates are severely biased and MSE is at most 60 times larger than the
proposed because the analysis model (proportional hazards model) is thought
to be uncongenial to nonparametric imputation model.

We also provide Figure A1, which presents the boxplot of biases in the
estimates of coefficient Γ2 compared with those of the ”true” value Γ2 = 2.
Figure A1 indicates that the simulation using the proposed SB-MI method
gives estimates most similar to the complete data for all scenarios.

1.4 Logistic regression with a binary covariate

1.4.1 Simulation setup

Lastly, we simulate the case where the substantive model is a logistic regression
with a binary outcome, in which the incomplete covariates include a binary
variable. In this setting, the standard covariate model specification of MICE-
FCS is incompatible and incapable of drawing from a Bayesian joint model.
We consider the case where one of the incompletely observed covariates w1 is
binary, where wi,1 = 1 if the latent variable (which is simulated in each three
case) w∗

i,1 > 0 and wi,1 = 0 if the latent variable w∗
i,1 ≤ 0. Since w1 is binary,

we do not exponentiate w∗
i,1 in the study for Scenario (b). In addition, the

outcome y is also binary; hence, the substantive model is a logistic regression.
We specify the substantive model as follows:

logit(y = 1) = Γ0 + Γ1w1 + Γ2w2 + Γ3v1 + ϵ

with Γ0 = 1, Γ1 = 2, Γ2 = −2, and Γ3 = 3.
In this simulation setup, the acceptance probability of the missing compo-

nents discussed in Equation (2) can be written as

min

({
exp(ΓTxci )/

[
1 + exp(ΓTxci )

]}yi {
1/
[
1 + exp(ΓTxci )

]}1−yi
{exp(ΓTxi)/ [1 + exp(ΓTxi)]}yi {1/ [1 + exp(ΓTxi)]}1−yi

, 1

)

where Γ = (Γ0, Γ1, Γ2, Γ3)
T , xi = (1, w1i, w2i, v1i), and xci is the vector xi

whose missing components are replaced by the candidate value.

1.4.2 Results

The results and discussions are described in the main paper and Table 1. In
this supplementary material, we additionally provide Figure A2. Figure A2
presents the boxplot of biases in the estimates of coefficient Γ0 compared with
those of the ”true” value Γ0 = 1.

As can be seen from the figure, complete case analysis in the logistic re-
gression model does not have any bias. The robustness of logistic regression
model to the complete case is proven by Vach and Blettner (1991). However,
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its efficiency is inferior to the proposed imputation method due to the decrease
in sample size. Therefore, the MSE of the proposed method is smaller than
the complete case analysis (see also Table 1 in the main manuscript).

Figure A2 also indicates that the simulation using the proposed SB-MI
method gives estimates most similar to the complete data for all scenarios.
The sum of MSEs of the proposed method are 1,24, 1,41, 1.35 times as large
as the complate data (full sample) estimates for Scenario (a), Scenario (b),
and Scenario (c), respectively.

2 Appendix2: Acceptance rate of missing values

In our MCMC algorithm in Step 8, we use Metropolis-Hastings algorithm.
Table A4 describes the average acceptance rate of the missing values. Since
we employ p(w|v,ϑm) as a proposal density and this seems to close to the
desired distribution, the algorithm attains comparatively efficient sampling.

3 Appendix3: Sensitivity analysis on hyperparameters

We adopted the default choices for the hyperparameters according to the rec-
ommendation of Chung and Dunson (2009), which considered a variable se-
lection problem. We partially introduced structure from Chung and Dunson
(2009) to consider the dependence of stick-breaking weight on the covariate.
Therefore, our model is not relevant to the hyperparameters on the variable
selection. However, it is important to confirm the sensitivity to the hyperpa-
rameters, and we conducted sensitivity analysis.

Our predetermined hyperparameters are µψk
= 0, σ2

ψk
= 100, µα0

= 0, and

σ2
α0

= 1. Since µψk
= 0, σ2

ψk
= 100 are set to be an uninformative prior on ψlk,

they are reasonable. µα0 = 0 is also set to be uninformative, but σ2
α0

= 1 seems
to be arbitrary. Then, we conducted sensitivity analysis for various values of
σ2
α0
. Under simulation (ii)-(c) setting, we confirmed 6 types of hyperparameter

settings, σ2
α0
=0.5, 1(default), 2, 5, 10, and 100 from 500 datasets with 8,000

iterations, with the first 4,000 iterations discarded as a burn-in. The results
are described in Table A5. It tells us that the estimates are very similar each
other even if we vary the value of σ2

α0
, indicating our model is robust to the

changes in hyperparameter σ2
α0
.
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