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Abstract
The cross ratio function (CRF) is a commonly used tool to describe local dependence
between two correlated variables. Being a ratio of conditional hazards, the CRF can
be rewritten in terms of (first and second derivatives of) the survival copula of these
variables. Bernstein estimators for (the derivatives of) this survival copula are used to
define a nonparametric estimator of the cross ratio, and asymptotic normality thereof
is established. We consider simulations to study the finite sample performance of our
estimator for copulas with different types of local dependency. A real dataset is used to
investigate the dependence between food expenditure and net income. The estimated
CRF reveals that families with a low net income relative to the mean net income will
spend less money to buy food compared to families with larger net incomes. This
dependence, however, disappears when the net income is large compared to the mean
income.

Keywords Asymptotic distribution · Bernstein estimation · Copula · Cross ratio
function · Hazard rate

1 Introduction

To analyze familial tendency in disease incidence, Clayton (1978) defined the cross
ratio function
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θ(t1, t2) = λ(t1 | T2 = t2)

λ(t1 | T2 > t2)
(1)

where for a pair (T1, T2) of absolutely continuous variables, e.g., infection times in
infectious disease epidemiology, failure times in survival analysis, or lifetimes in
reliability theory, λ(· | T2 = t2) and λ(· | T2 > t2) are the conditional hazard rate
functions for T1 given T2 = t2 and T2 > t2, respectively. The function θ(t1, t2) is
symmetric in the sense that it is also equal to the ratio of the hazard of T2 at t2 given
T1 = t1, to the hazard of T2 at t2 given T1 > t1. Independence between T1 and T2
corresponds to θ(t1, t2) ≡ 1, and positive association corresponds to θ(t1, t2) > 1.
See also Oakes (1982, 1986, 1989) for a further discussion thereon and for details on
semiparametric inference.

In the disease incidence context considered in Clayton (1978), T1 is the time at
which the son experiences the disease of interest and T2 the time at which the father
experiences this disease. Clayton (1978) considers the case θ(t1, t2) ≡ θ + 1, for
which θ = 0 corresponds to independence and θ > 0 implies positive association. In
terms of copulas (see Sect. 2), this model corresponds to the bivariate Clayton copula
Cθ (u, v) = (u−θ + v−θ − 1)−1/θ , θ ≥ 0.

Nowadays the cross ratio function is a commonly used measure to describe local
dependence between correlated failure times (Sect. 4.1.4 in Duchateau and Janssen
2008; Sect. 6.4 in Wienke 2010). Classical measures of dependence are global mea-
sures (e.g., Kendall’s tau). The cross ratio function, being a local dependence measure,
can, however, detect association characteristics that cannot be captured by any global
dependence measure. In this context, it is interesting to note that the cross ratio can be
rewritten in terms of a local version of Kendall’s τ and has a local odds ratio interpre-
tation, and that it can be used as a diagnostic tool for testing independence; see Oakes
(1982, 1989) and Sect. 4.2.6 in Duchateau and Janssen (2008) for details.

The cross ratio has been estimated parametrically by Nan et al. (2006) using a
partition of the sample space in rectangular regions with edges parallel to the variable
axes, while assuming the cross ratio to be constant in each rectangular region. Time-
varying cross ratios have been estimated using copula models, thereby making strong
assumptions about the functional form of the bivariate copula (see, e.g., Li and Lin
2006; Li et al. 2008).Hu et al. (2011) considered a parametric polynomialmodel for the
log-transformed cross ratio function applied to right-censored bivariate survival data
and using a pseudo-partial likelihood approach. Hsu and Prentice (1996) proposed a
crude nonparametric estimator for the cross ratio function for which the performance
was explored in the constant Clayton setting. Several authors considered the cross
ratio function in the context of diagnostics to assess the frailty distribution or copula
function used to describe dependence in bivariate survival data. Viswanathan and
Manatunga (2001) used a kernel smoothing approach to have an implicit estimator, and
Chen and Bandeen-Roche (2005) considered an empirical estimator based on binning
of the survival time space producing a piecewise constant estimator, in both cases
relying on the Archimedean copula model family. Glidden (2007) implicitly proposed
a nonparametric estimator for the cross ratio function, albeit that the estimator is of
little practical use due to its rough behavior. More specifically, he defined residuals
for pairwise dependence diagnostics, depending on an estimator for the cross ratio
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Nonparametric estimation of the cross ratio function 773

function and used these residuals to do model checking for both frailty and copula
models.

In this paper, we propose a smooth nonparametric Bernstein-based estimator for the
cross ratio function without relying on a parametric functional form or specific family
of copula functions. In Sect. 2, we rewrite the conditional hazards defining the cross
ratio function in terms of the survival copula, describing the dependence between T1
and T2, and its partial derivatives. Using Bernstein estimators for the survival copula
and its derivatives, we obtain Bernstein-based estimators for the conditional hazards
and a nonparametric estimator for the cross ratio function θ(t1, t2). The reason for using
a Bernstein copula-based estimator for the cross ratio function is motivated from the
results in the papers by Sancetta and Satchell (2004), Leblanc (2012), Janssen et al.
(2012, 2014, 2016) and Bouezmarni et al. (2009, 2013). Simulations in these papers
show that, compared to its nonparametric competitors (including kernel estimators),
Bernstein-based estimators for the copula and copula derivatives are superior. These
papers also show that, compared to standard kernel estimators, the asymptotic variance
of Bernstein estimators has smaller order and that the bias is uniform, i.e., Bernstein
estimators do not show boundary effects. The asymptotic normality of the Bernstein
estimator for λ(t1 | T2 = t2) is studied in detail in Sect. 3. In Sect. 4, the asymptotic
behavior of this estimator is compared to that of existing nonparametric competitors. In
Sect. 5, we study the asymptotic normality of the Bernstein-based cross ratio estimator
defined in (7) of Sect. 2. Given the symmetry of θ(t1, t2), a corresponding estimator
should preserve this property.We therefore include an interesting asymptotic normality
result for a symmetrized version of estimator (7). Efficient computational formulas
are given in Sect. 6 which are important for the simulation study described in Sect. 7
and the real data example presented in Sect. 8. Proofs are given in the Appendix.

2 The estimator

Let (T1, T2) be a randompair of variables (T1 ≥ 0, T2 ≥ 0)with absolutely continuous
marginal distribution functions F1 and F2 and density functions f1 and f2. Denote the
marginal survival functions by S1 = 1 − F1 and S2 = 1 − F2.

According to Sklar’s theorem (Sklar 1959; Nelsen 2006), there exists a unique
copula function C that links the joint survival function of (T1, T2) to the marginal
survival functions, i.e.,

S(t1, t2) = P(T1 > t1, T2 > t2) = C[S1(t1), S2(t2)]
or, since S1 and S2 are continuous

C(u1, u2) = S[S−1
1 (u1), S

−1
2 (u2)]

with S−1
1 and S−1

2 the inverses of S1 and S2. The conditional hazard rate functions
appearing in expression (1) for θ(t1, t2) can be expressed in terms of the copula C and
its derivatives C (1) and C (2), where, for i = 1, 2,

C (i)(u1, u2) = ∂

∂ui
C(u1, u2).
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Indeed, it is easily verified that with S(i)(t1, t2) = ∂

∂ti
S(t1, t2) for i = 1, 2, we have:

λ(t1 | T2 = t2) = lim
Δ→0

1

Δ
P(t1 < T1 ≤ t1 + Δ | T1 > t1, T2 = t2)

=
− ∂

∂t1
S(2)(t1, t2)

S(2)(t1, t2)
=

− ∂

∂t1
C (2)[S1(t1), S2(t2)]

C (2)[S1(t1), S2(t2)] , (2)

λ(t1 | T2 > t2) = lim
Δ→0

1

Δ
P(t1 < T1 ≤ t1 + Δ | T1 > t1, T2 > t2)

=
− ∂

∂t1
S(t1, t2)

S(t1, t2)
=

− ∂

∂t1
C[S1(t1), S2(t2)]

C[S1(t1), S2(t2)] . (3)

Nonparametric estimation of these two quantities will be done by first constructing
nonparametric estimators for the corresponding cumulative hazard functions

Λ(t1 | T2 = t2) =
∫ t1

0

−dsC (2)[S1(s), S2(t2)]
C (2)[S1(s), S2(t2)] , (4)

Λ(t1 | T2 > t2) =
∫ t1

0

−dsC[S1(s), S2(t2)]
C[S1(s), S2(t2)] , (5)

followed by kernel smoothing.
Suppose now that (T11, T21), . . . , (T1n, T2n) is a random sample from (T1, T2). As

an estimator for the copula function C(u1, u2), we will use the Bernstein estimator.
In Janssen et al. (2012), the Bernstein estimator is defined as

Cm,n(u1, u2) =
m∑

k=0

m∑
�=0

Cn

(
k

m
,

�

m

)
Pm,k(u1)Pm,�(u2)

with, for k = 0, 1, . . . ,m and 0 ≤ u ≤ 1,

Pm,k(u) =
(
m
k

)
uk(1 − u)m−k

representing binomial probabilities. The natural number m is called the order, and we
typically assume that m → ∞ as n → ∞. Cn is the empirical copula given by

Cn(u1, u2) = Sn
[
S−1
1n (u1), S

−1
2n (u2)

]
,

where, with I the indicator function,

Sn(t1, t2) = 1

n

n∑
i=1

I (T1i > t1, T2i > t2),
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S1n(t1) = 1

n

n∑
i=1

I (T1i > t1),

S2n(t2) = 1

n

n∑
i=1

I (T2i > t2).

The Bernstein estimator for C (2)(u1, u2) needed in (4) is defined as

C (2)
m,n(u1, u2) = ∂

∂u2
Cm,n(u1, u2).

Therefore, with S1n(s−) the left-hand limit of S1n at s, appropriate estimators for the
quantities in (4) and (5) are

Λ̂m(t1 | T2 = t2) =
∫ t1

0

−dsC
(2)
m,n[S1n(s), S2n(t2)]

C (2)
m,n[S1n(s−), S2n(t2)]

,

Λ̂m(t1 | T2 > t2) =
∫ t1

0

−dsCm,n[S1n(s), S2n(t2)]
Cm,n[S1n(s−), S2n(t2)] , (6)

and by smoothingwith a given probability density kernel K0 and a bandwidth sequence
bn → 0, we obtain estimators for λ(t1 | T2 = t2) and λ(t1 | T2 > t2):

λ̂m(t1 | T2 = t2) = 1

bn

∫ ∞

0
K0

(
t1 − s

bn

)
Λ̂m(ds | T2 = t2)

= 1

bn

∫ ∞

0
K0

(
t1 − s

bn

) −dsC
(2)
m,n[S1n(s), S2n(t2)]

C (2)
m,n[S1n(s−), S2n(t2)]

,

λ̂m(t1 | T2 > t2) = 1

bn

∫ ∞

0
K0

(
t1 − s

bn

)
Λ̂m(ds | T2 > t2)

= 1

bn

∫ ∞

0
K0

(
t1 − s

bn

) −dsCm,n[S1n(s), S2n(t2)]
Cm,n[S1n(s−), S2n(t2)] .

Finally, the proposed estimator for the cross ratio function θ(t1, t2) in (1) is given by

θ̂m(t1, t2) = λ̂m(t1 | T2 = t2)

λ̂m(t1 | T2 > t2)
. (7)

In Sect. 3, we deal with the asymptotic normality for the numerator in (7) which is
a Bernstein-based estimator for the conditional hazard rate function λ(t1 | T2 = t2).
From this result and using our considerations in Sect. 4 on the order behavior of the
denominator in (7), we obtain the asymptotic normality of θ̂m(t1, t2).
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3 Asymptotic normality of the conditional hazard rate function
estimator

The function λ(t1 | T2 = t2) given in (2) has a more familiar interpretation. It is indeed
easily checked that

C (2)[S1(t1), S2(t2)] = P(T1 > t1 | T2 = t2) = 1 − Ft2(t1) = St2(t1)

where Ft2(t1) = P(T1 ≤ t1 | T2 = t2) is the conditional distribution function of T1
given T2 = t2. Similarly,

∂

∂t1
C (2)[S1(t1), S2(t2)] = − ft2(t1)

where ft2(t1) is the conditional density function of T1 given T2 = t2. Note that we use
throughout Ft2(t1) and ft2(t1) as shorthand notation for the more common notation
FT1|T2(t1 | t2) and fT1|T2(t1 | t2), respectively. Hence,

λ(t1 | T2 = t2) = ft2(t1)

1 − Ft2(t1)
.

Furthermore,

C (2)
m,n[S1n(t1), S2n(t2)] = 1 − F̂t2(t1)

and

dt1C
(2)
m,n[S1n(t1), S2n(t2)] = −dF̂t2(t1)

where F̂t2(t1) is precisely the Bernstein estimator studied in Janssen et al. (2016).
Hence, expression (6) can be written as

Λ̂m(t1 | T2 = t2) =
∫ t1

0

dF̂t2(s)

1 − F̂t2(s−)

and

λ̂m(t1 | T2 = t2) = 1

bn

∫ ∞

0
K0

(
t1 − s

bn

)
dF̂t2(s)

1 − F̂t2(s−)
.

Theorem 1 Assume that the following conditions hold.

(a) The copula C has fourth-order partial derivatives in (0, 1)2.
(b) f1(t1) is twice continuously differentiable in an open neighborhood U of t1 and

∂4

∂3u∂v
C(u, v) exists and is continuous on (u, v) ∈ S1(U ) × (0, 1).
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(c) K0 is a continuous probability density function of bounded variationwith bounded
support [−L, L], K0(−L) = K0(L) = 0 and

μ1(K0) =
∫ L

−L
tK0(t)dt = 0.

(d) The order m and the bandwidth bn satisfy the relations, for n → ∞,

n1/2m−5/4b−1/2
n → 0

n−1/2m5/6b−1/2
n (ln n)1/2(ln ln n)1/2 → 0

nm−1/2b5n → C1 ≥ 0,

where C1 is some finite constant.

Then, for all (t1, t2) such that 0 < F1(t1) < 1, 0 < F2(t2) < 1, 0 < Ft2(t1) < 1,

(nm−1/2bn)
1/2 [̂λm(t1 | T2 = t2) − λ(t1 | T2 = t2)]

d→ N

(
β(t1, t2); ‖K0‖2

2
√

πF2(t2)(1 − F2(t2))

λ(t1 | T2 = t2)

1 − Ft2(t1)

)
,

where

β(t1, t2) = 1

2
C1/2
1 λ′′(t1 | T2 = t2)μ2(K0), (8)

‖K0‖2 =
∫

K 2
0 (t)dt and μ2(K0) = ∫

t2K0(t)dt .

The reader is referred to the Appendix for the proof of Theorem 1.

4 Discussion on Theorem 1

In this section, we discuss several aspects of the estimator in Theorem 1: a comparison
with other nonparametric estimators for the conditional hazard function (Sect. 4.1), a
remark on the boundary effect (Sect. 4.2), a comparison of the required assumptions
(Sect. 4.3) and an expression for the mean-squared error (Sect. 4.4).

4.1 Nonparametric estimators for the conditional hazard function

There are several results in the literature dealing with nonparametric estimation of the
conditional hazard rate function based on complete or censored data. References can be
found inVanKeilegomandVeraverbeke (2001) andSpierdijk (2008). These twopapers
are also representative for the two typical methods of constructing an estimator: (1)
replacing the conditional density and conditional survival function by nonparametric
estimators, or (2) smoothing a nonparametric estimator for the cumulative conditional
hazard function. The two just mentioned papers deal with censored data, but it is
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778 S. Abrams et al.

easy to take out the censoring in order to compare with the results in Theorem 1. In
Spierdijk (2008), an estimator of type (1) with local linear smoothing of numerator and
denominator is studied, while the estimator in Van Keilegom and Veraverbeke (2001)
is of type (2). These authors applied kernel smoothing to a nonparametric cumulative
conditional hazard estimator. Our new estimator for λ(t1 | T2 = t2) is also of type (2).
The Bernsteinmethod is used to estimate the cumulative conditional hazard. The result
of Van Keilegom and Veraverbeke (2001) is formulated for a fixed covariate design.
Replacing the Gasser–Müller weights by the Nadaraya–Watson weights results in the
appearance of the design density f2(t2) in the denominator of the expression for the
asymptotic variance.Hence, the asymptotic variance of the estimators inVanKeilegom
and Veraverbeke (2001) and Spierdijk (2008) is

1

nhnbn

‖K0‖2‖K‖2
f2(t2)

λ(t1 | T2 = t2)

1 − Ft2(t1)
, (9)

with K the kernel used for the cumulative hazard estimator, while the asymptotic
variance of our new estimator in Theorem 1 is given by

1

nm−1/2bn

‖K0‖2
2
√

πF2(t2) [1 − F2(t2)]

λ(t1 | T2 = t2)

1 − Ft2(t1)
. (10)

Further note that the order O((nm−1/2bn)−1) in (10) is smaller than the order
O((nhnbn)−1) in (9), when making the usual identification hn = m−1 as proposed
by Sancetta and Satchell (2004) or Leblanc (2012). This improved order is due to the
Bernstein method.

A further remark is that the density f2(t2) in the denominator of (9) is replaced by√
F2(t2) [1 − F2(t2)] in (10). A comparison of these two factors can be made using

a result of Parzen (1979); see also Remark 5 in Janssen et al. (2016). It follows that√
F2(t2) [1 − F2(t2)] is asymptotically (as t2 → ∞) larger than f2(t2) for all T2 with

medium tails (e.g., exponential, Weibull, and normal) and long tails (e.g., Cauchy and
Pareto).

Note that asymptotically (t2 → ∞) the scale of T2 does not play any role in this
comparison. Indeed, with σ 2 = Var(T2), T̃2 = T2/σ , we can easily see that the
distribution function of F̃2 and the density function f̃2 of T̃2 satisfy

f̃2(t̃2)√
F̃2(t̃2)[1 − F̃2(t̃2)]

= σ f2(t2)√
F2(t2)[1 − F2(t2)] ,

with t̃2 = t2/σ . Since t2 → ∞ is equivalent to t̃2 → ∞, we have that the right-hand
side tends to zero whenever the left-hand side does. So asymptotically as t2 → ∞,
the value of σ has no influence.

Non-asymptotically, however, there is of course the question of ‘how large’ t2 has
to be in order to have that f (t2) is smaller than

√
F2(t2)[1 − F2(t2)]. This can only

be checked in concrete cases. For instance, if T2 is exponentially distributed with
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Nonparametric estimation of the cross ratio function 779

parameter 1/σ , then the above inequality is satisfied for all t2 > l = σ ln
(
1 + 1

σ 2

)
.

For σ = 1: l = 0.7, for σ = 10: l = 0.1. Note that l decreases with σ .

4.2 Boundary effect

The definition of λ̂(t1|T2 = t2) is obtained by kernel smoothing of the empirical
cumulative hazard function. It is a well-known fact that such estimator can suffer from
some boundary effect at t1 = 0. The remedies are well described in the literature. We
mention: (1) the use of a boundary kernel (Müller andWang 1994), (2)mirror reflection
(Gijbels and Mielniczuk 1990), (3) shrinkage of the bandwidth (Omelka et al. 2009),
and (4) various transformation methods (Ruppert and Cline 1994; Swanepoel and van
Graan 2005). To avoid the related technicalities, we restrict our attention to interior
points.

4.3 Required conditions

The conditions of Theorem 1 are in line with the conditions in Van Keilegom and
Veraverbeke (2001) and Spierdijk (2008). Conditions (a) and (b) of Theorem 1 are
very close to the assumptions (iv) and (v) of the parallel result in Spierdijk (2008).
Starting from the relationC (2) [S1(t1), S2(t2)] = 1−Ft2(t1), it is easily seen that there
is a correspondence between the third-order derivative of Ft2(t1) and the fourth-order
partial derivatives of the copulaC , together with the second derivative of f1. Condition
(c) is of course standard in kernel smoothing. Finally, the relations between the order
m and the bandwidth bn are needed to take care of a remainder term and also to control
a bias term. Similar relations appear, for example, in Theorem 4 of Van Keilegom and
Veraverbeke (2001).

4.4 Asymptotic mean-squared error

From (11) and (17), both in the proof of Theorem1 in theAppendix,we have an explicit
expression for the asymptotic mean-squared error of λ̂m(t1 | T2 = t2), namely

1

nm−1/2bn

‖K0‖2
2
√

πF2(t2) [1 − F2(t2)]

λ(t1 | T2 = t2)

1 − Ft2(t1)

+
[
1

2
b2nλ

′′(t1 | T2 = t2)μ2(K0) + 1

2
m−1φ(t1, t2)

]2
,

with φ(t1, t2) defined in (17) of the proof of Theorem 1. Minimizing with respect to
m and bn provides that the optimal choices are of the form bn = O(n−1/6) and m =
O(n1/3) and that the asymptoticmean-squared error has order O(n−2/3). Furthermore,
λ̂m(t1 | T2 = t2) − λ(t1 | T2 = t2) = Op(n−1/3).
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780 S. Abrams et al.

5 Asymptotic normality of the cross ratio function estimator

We first prove a result on the behavior of the denominator in the estimator θ̂m(t1, t2)
given in (7).

Theorem 2 Assume that the conditions of Theorem 1 hold, together with the extra
relation m1/2bn → ∞. Then, for all (t1, t2) such that C(S1(t1), S2(t2)) > 0,

(nm−1/2bn)
1/2 [̂λm(t1 | T2 > t2) − λ(t1 | T2 > t2)] P→ 0.

Combining the results of Theorems 1 and 2, it leads to the asymptotic normality for
the cross ratio estimator θ̂m(t1, t2).

Theorem 3 Assume that the conditions of Theorem 2 hold.
Then, for all (t1, t2) such that 0 < F1(t1) < 1, 0 < F2(t2) < 1, 0 < Ft2(t1) < 1,

0 < C[S1(t1), S2(t2)],

(nm−1/2bn)
1/2[θ̂m(t1, t2) − θ(t1, t2)]

d→ N

(
β(t1, t2)

λ(t1 | T2 > t2)
; ‖K0‖2
2
√

πF2(t2)[1 − F2(t2)]
θ2(t1, t2)

ft2(t1)

)
.

Note that the estimator θ̂m(t1, t2) in (7) is not symmetric in the pair (T1, T2). However,
this is in contrast to the function θ(t1, t2) defined in (1) which has the symmetry
property that θ(t1, t2) = θ∗(t2, t1) where

θ∗(t2, t1) = λ(t2 | T1 = t1)

λ(t2 | T1 > t1)
,

which is a direct application of Bayes’ rule. Since our estimator θ̂m(t1, t2) does not
preserve this property, we define the following symmetrized version

ϑ̂m(t1, t2) = 1

2

[
θ̂m(t1, t2) + θ̂∗

m(t2, t1)
]
,

where θ∗
m(t2, t1) and its estimator θ̂∗

m(t2, t1) are obtained by reversing the roles of T1
and T2 in the definition of θ(t1, t2) and the estimator in (7), respectively. The next
theorem provides the asymptotic normality result for ϑ̂m(t1, t2).

Theorem 4 Assume that the conditions of Theorem 2 hold and

(b∗) f2(t2) is twice continuously differentiable in an open neighborhood V of t2 and
∂4

∂3u∂v
C(u, v) exists and is continuous on (u, v) ∈ (0, 1) × S2(V ).

Then, we have for all (t1, t2) such that 0 < F1(t1) < 1, 0 < F2(t2) < 1, 0 <

C [S1(t1), S2(t2)] < 1,

(nm−1/2bn)
1/2[ϑ̂m(t1, t2) − θ(t1, t2)] d→ N (B(t1, t2); V (t1, t2)) ,
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Nonparametric estimation of the cross ratio function 781

where

B(t1, t2) = 1

2

[
β(t1, t2)

λ(t1 | T2 > t2)
+ β∗(t2, t1)

λ(t2 | T1 > t1)

]
,

V (t1, t2) = 1

4
‖K0‖2θ2(t1, t2)

[
1

2 ft2(t1)
√

πF2(t2) [1 − F2(t2)]

+ 1

2 ft1(t2)
√

πF1(t1) [1 − F1(t1)]

]
,

with β(t1, t2) defined in (8) and

β∗(t2, t1) = 1

2
C1/2
1 λ′′(t2 | T1 = t1)μ2(K0).

The proof of this theorem is given in the Supplementary Material.

Remark 1 Note that the asymptotic variance of ϑ̂m(t1, t2) is essentially 1/4 of the sum
of the asymptotic variances of the two estimators θ̂m(t1, t2) and θ̂∗

m(t2, t1). The proof
indeed shows that the covariance terms are of lower order.

Remark 2 We have the following expression for the asymptotic mean-squared error
of ϑ̂m(t1, t2):

V (t1, t2)

nm−1/2bn
+ 1

4

{
1
2b

2
nλ

′′(t1 | T2 = t2)μ2(K0) + 1
2m

−1φ(t1, t2)

λ(t1 | T2 > t2)

+
1
2b

2
nλ

′′(t2 | T1 = t1)μ2(K0) + 1
2m

−1φ∗(t1, t2)
λ(t2 | T1 > t1)

}2

,

with φ(t1, t2) defined in (17) of the proof of Theorem 1 and

φ∗(t1, t2) = b∗(2)[S1(t1), S2(t2)]
1 − Ft1(t2)

f2(t2),

b∗(u, v) = (1 − 2u)C (1,1)(u, v) + u(1 − u)C (1,1,1)(u, v)

+ v(1 − v)C (1,2,2)(u, v).

Remark 3 In Theorem 4, we take the same bandwidth bn for θ̂m(t1, t2) (smoothing
over t1) and θ̂∗

m(t2, t1) (smoothing over t2), which is a natural choice when T1 and T2
have a similar scale. In Sect. 7 (simulations), we briefly discuss the non-similar scale
case.

6 Computational formulas

For the random sample (T11, T21), . . . , (T1n, T2n) let, for i = 1, 2, Ti(1) ≤ Ti(2) ≤
. . . ≤ Ti(n) denote the ordered Ti j -values; let Ri j denote the rank of Ti j , j = 1, . . . , n.
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For computational convenience, the empirical version of the marginal survival func-
tions used in the computational formulas is

S̃1n(t1) = n

n + 1
S1n(t1)

and S̃2n(t2) = n

n + 1
S2n(t2).

The empirical estimator for the survival copula of (T1, T2) is:

Cn(u1, u2) = 1

n

n∑
j=1

I [S̃1n(T1 j ) < u1, S̃2n(T2 j ) < u2]

= 1

n

n∑
j=1

I

(
R1 j

n + 1
>

n

n + 1
− u1,

R2 j

n + 1
>

n

n + 1
− u2

)
.

In terms of Cm,n , C
(1)
m,n , C

(2)
m,n , C

(1,2)
m,n , the Bernstein estimators for the copula C and its

first-order and second-order partial derivatives, the proposed estimator for the cross
ratio function given in (7) can be written as:

θ̂m(t1, t2) = λ̂m(t1 | T2 = t2)

λ̂m(t1 | T2 > t2)
,

where

λ̂m(t1 | T2 = t2) = 1

(n + 1)bn

n∑
j=1

K0

(
t1 − T1( j)

bn

) C (1,2)
m,n

[
n − j

n + 1
, S̃2n(t2)

]

C (2)
m,n

[
n − j + 1

n + 1
, S̃2n(t2)

] ,

λ̂m(t1 | T2 > t2) = 1

(n + 1)bn

n∑
j=1

K0

(
t1 − T1( j)

bn

) C (1)
m,n

[
n − j

n + 1
, S̃2n(t2)

]

Cm,n

[
n − j + 1

n + 1
, S̃2n(t2)

] ,

with

Cm,n(u1, u2) =
m∑

k=0

m∑
l=0

Cn

(
k

m
,
l

m

)
Pm,k(u1)Pm,l(u2),

C (1)
m,n(u1, u2) = m

m−1∑
k=0

m∑
l=0

[
Cn

(
k + 1

m
,
l

m

)
− Cn

(
k

m
,
l

m

)]
Pm−1,k(u1)Pm,l(u2),

C (2)
m,n(u1, u2) = m

m∑
k=0

m−1∑
l=0

[
Cn

(
k

m
,
l + 1

m

)
− Cn

(
k

m
,
l

m

)]
Pm,k(u1)Pm−1,l(u2),
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C (1,2)
m,n (u1, u2) = m2

m−1∑
k=0

m−1∑
l=0

Pm−1,k(u1)Pm−1,l(u2)

×
[
Cn

(
k + 1

m
,
l + 1

m

)
− Cn

(
k

m
,
l + 1

m

)

−Cn

(
k + 1

m
,
l

m

)
+ Cn

(
k

m
,
l

m

)]
.

See Janssen et al. (2012, 2014, 2016) for more details.
In order to have an estimator which is also smooth in the t2-direction, we replace

in the simulations and the data example the empirical survival function S̃2n(t2) in the
Bernstein estimator for θ(t1, t2) by:

˜̃S 2n(t2) = 1

n + 1

n∑
i=1

K0

(
T2(i) − t2

bn

)
,

where K0 is the integrated kernel

K0(t) =
∫ t

−∞
K0(u)du.

For computational efficiency, we use the following equivalent formulas (see Janssen
et al. 2017 Remark 5, for similar formulas in the context of conditional density esti-
mation):

Cm,n(u1, u2) = 1

n

n∑
j=1

m∑

k=
⌊
m(n−R1 j )

n+1

⌋
+1

Pm,k(u1) ×
m∑

l=
⌊
m(n−R2 j )

n+1

⌋
+1

Pm,l(u2),

C (1)
m,n(u1, u2) = m

n

n∑
j=1

P
m−1,

⌊
m(n−R1 j )

n+1

⌋(u1) ×
m∑

l=
⌊
m(n−R2 j )

n+1

⌋
+1

Pm,l(u2),

C (2)
m,n(u1, u2) = m

n

n∑
j=1

m∑

k=
⌊
m(n−R1 j )

n+1

⌋
+1

Pm,k(u1) × P
m−1,

⌊
m(n−R2 j )

n+1

⌋(u2),

C (1,2)
m,n (u1, u2) = m2

n

n∑
j=1

P
m−1,

⌊
m(n−R1 j )

n+1

⌋(u1) × P
m−1,

⌊
m(n−R2 j )

n+1

⌋(u2).

123



784 S. Abrams et al.

7 Simulations

Based on simulations, we show the finite sample performance of θ̂m(t1, t2), θ̂∗
m(t2, t1)

and ϑ̂m(t1, t2), our unsymmetrized and symmetrized estimators of the cross ratio
function θ(t1, t2). To quantify the impact of the choice of the kernel bandwidth bn
and the Bernstein order m, we use an approximation of the MISEθ̂m

, the mean inte-
grated squared error for which a formal definition can be found in the Supplementary
Material. We now define for θ̂m(t1, t2) the quantities needed to study this impact.
For θ̂∗

m(t2, t1) and ϑ̂m(t1, t2), similar expressions are obtained by replacing θ̂m(t1, t2)
by the estimator under consideration. The integrated squared error on the rectangle[
a∗
1 , b

∗
1

]× [
a∗
2 , b

∗
2

] ⊂ [0, 1] × [0, 1], ISEθ̂m
, is defined as

ISEθ̂m
=
∫ b∗

1

a∗
1

∫ b∗
2

a∗
2

{
θ̂m[F−1

1 (u1), F
−1
2 (u2)] − θ [F−1

1 (u1), F
−1
2 (u2)]

}2

× dF−1
1 (u1)dF

−1
2 (u2).

Note that, with
[
a∗
1 , b

∗
1

]× [
a∗
2 , b

∗
2

] ≡ [F1(a1), F1(b1)] × [F2(a2), F2(b2)]

ISEθ̂m
=
∫ b1

a1

∫ b2

a2

[
θ̂m(t1, t2) − θ(t1, t2)

]2
dt1dt2.

Using a bivariate grid of N1 × N2 equally spaced grid points in
[
a∗
1 , b

∗
1

] × [
a∗
2 , b

∗
2

]
,

we approximate ISEθ̂m
by

Iθ̂m =Δ1Δ2

N1∑
k=1

N2∑
l=1

wkl

{
θ̂m[F−1

1 (u1[k]), F−1
2 (u2[l])] − θ [F−1

1 (u1[k]), F−1
2 (u2[l])]

}2
,

where Δ1 = (b∗
1 − a∗

1)/(N1 − 1), Δ2 = (b∗
2 − a∗

2)/(N2 − 1), u1[k] = a∗
1 + (b∗

1 −
a∗
1)(k − 1)/(N1 − 1) and u2[l] = a∗

2 + (b∗
2 − a∗

2)(l − 1)/(N2 − 1), k = 1, . . . , N1,
l = 1, . . . , N2; the weights wkl are equal to (dF−1

1 (u1)/du1)(dF
−1
2 (u2)/du2) evalu-

ated in (u1[k], u2[l]). The MISEθ̂m
is then approximated by averaging over M = 100

simulation runs (denoted by MIθ̂m ):

MIθ̂m = 1

M

M∑
r=1

I (r)
θ̂m

,

where I (r)
θ̂m

is the approximation of the ISE based on the r -th simulated dataset. In our

simulations, we take
[
a∗
1 , b

∗
1

] = [
a∗
2 , b

∗
2

] = [0.01, 0.99] and N1 = N2 = 99.
On top of that, since themean integrated squared error can be decomposed into vari-

ance and (squared) bias components (see SupplementaryMaterial formore details), we
provide approximations of the integrated variance IVARθ̂m

and the integrated squared
bias ISBIASθ̂m

, whichwill be denoted by IVθ̂m
and ISBθ̂m

, respectively, from this point
onwards, and for which expressions are provided in the Supplementary Material.
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7.1 Simulation procedure

We generate n pairs of event times (t1 j , t2 j ), j = 1, . . . , n using the ‘copula’ package
in R version 3.3.2. More specifically, random samples (u1 j , u2 j ) are drawn from three
different copula functions with various tail dependencies (Clayton, Gumbel and Frank
copulae) after which dependent exponential event times are obtained with constant
hazard functions λ1 = 0.03 and λ2 = 0.05, as follows:

ti j = − ln(1 − ui j )

λi
.

The Clayton copula captures lower tail dependence, while the Gumbel copula captures
upper tail dependence; theFrank copula family has no (upper or lower) tail dependence.
In our simulation study, we generate simulation sets of sample size n = 500 and
n = 800. Additional simulation results for varying sample sizes are provided in
SupplementaryMaterial. The proposed estimator works globally well for sample sizes
of at least 300 pairs. Depending on the shape of the cross ratio surface, smaller sample
sizes can still provide a useful estimator (see SupplementaryMaterial formore details).

For K0, we take the standard normal density. To investigate the effect of the
kernel bandwidth bn and the Bernstein order m on the performance of our esti-
mators θ̂m(t1, t2), θ̂∗

m(t2, t1) and ϑ̂m(t1, t2), we explore a range of values B =
{1, 2.7, 7.4, 20.1, 54.6} for bn , i.e., the bandwidths values are chosen equidistant on
a logarithmic scale, and a range A = {25, 50, 100} for the Bernstein order m. The
bandwidths chosen in B are equidistant on the log-scale to have more small candidate
values than large ones, since large bandwidths typically yield very similar smooth
estimates. The order m is typically chosen as a fraction of n (see Janssen et al. 2016).
Furthermore, note that T1 takes values in the range [0, 100] with probability 0.95,
thereby explaining the maximal range of the grid.

Remark 4 Note that, although T1 and T2 have different scales (the scale ratio is
λ1/λ2 = 0.6), we use in the simulations the same bandwidth for θ̂m(t1, t2) and
θ̂∗
m(t2, t1). Simulations (for n = 300, see Tables 4–6 in the Supplementary Mate-
rial) in which we choose bandwidths bn1 for θ̂m(t1, t2) and bn2 = cbn1 for θ̂∗

m(t2, t1),
where, in each simulation run, we take for c the estimated scale ratio for T1 and T2,
give the same optimal choices for the smoothing parameter. Hence, the selection of
the bandwidth is not sensitive to this size of the scale difference.

Also note that, if working with two different bandwidths, bn2 = cbn1 is a simple
and workable choice in relation to condition (d). Theorem 4 can easily be adapted to
this choice.

7.2 Clayton copula function

First, we consider the Clayton copula function (θ > 0):

Cθ (u1, u2) =
{
max

[
u−θ
1 + u−θ

2 − 1, 0
]}−1/θ
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with parameter θ = 0.5. The true underlying cross ratio function takes constant
value 1 + θ = 1.5. In Table 1, we show the approximated mean integrated squared
errors, integrated variances and integrated squared biases for the symmetrized estima-
tor ϑ̂m(t1, t2) for various choices of bn ,m and n. As the performances are very similar,
the simulation results for the unsymmetrical estimators θ̂m(t1, t2) and θ̂∗

m(t2, t1) can be
found in the Supplementary Material. Since the true cross ratio function is constant,
large bandwidths bn are preferred based on the minimization of MIϑ̂m

. In Fig. 1, we
graphically show a heat plot of the difference between the estimated cross ratio values
ϑ̂m(t1, t2) averaged over the M replications and the true values θ(t1, t2) (left upper
panel), and the estimated cross ratio function ϑ̂m(t1, t2) (black solid lines in the other
panels) as a function of one time component by fixing the other (t1 = F−1

1 (0.5) in the
right upper panel, or t2 = F−1

2 (0.5) in the left lower panel, respectively, and b̂n = 54.6,
m = 100 and n = 800). Pointwise 95% simulation-based confidence intervals (gray
dash-dotted lines) and true cross ratio values (red dashed lines) are included as well.
In the right lower panel, we plot the cross ratio function ϑ̂m[F−1

1 (u), F−1
2 (u)] against

u ∈ (0, 1).
In the left panel of Fig. 2, we illustrate the fact that the asymptotic variance of the

symmetrized estimator ϑ̂m(t1, t2) is essentially equal to (1/4) times the sum of the
asymptotic variances of θ̂m(t1, t2) and θ̂∗

m(t2, t1) based on the simulation results.

7.3 Gumbel copula function

Second, a Gumbel copula function is considered with parameter θ = 1.5 to induce
time-varying associations among the event times, i.e., for θ ∈ [1,∞):

Cθ (u1, u2) = exp
(
− {[− ln(u1)]

θ + [− ln(u2)]
θ
}1/θ)

.

The expression for the true cross ratio function is given by:

θ(t1, t2) = 1 + (θ − 1)
({− ln [S1(t1)]}θ + {− ln [S2(t2)]}θ

)−1/θ
.

The results in Table 1 show that small values for the bandwidth bn are preferred in
the Gumbel setting in order to minimize the mean integrated squared error. Since the
surface is peaked in the lower left corner, smaller bandwidths are needed to capture
the peak. In Fig. 3, we graphically depict the difference between the average estimated
cross ratio function ϑ̂m(t1, t2) and the true cross ratio function (heatplot in left upper
panel). Intersections of the averaged estimated cross ratio function (black solid lines)
are shown together with pointwise 95% simulation-based confidence intervals (gray
dash-dotted lines) for b̂n = 1, m = 25 and n = 800. Although the nonparametric
estimator generally performs well, θ(t1, t2) is slightly underestimated for small values
of (t1, t2) in the lower left corner of the surface.

In the right panel of Fig. 2, we again show the relation between the asymptotic vari-
ance of the symmetrized estimator ϑ̂m(t1, t2) (black dashed line) and the asymptotic
variances of θ̂m(t1, t2) and θ̂∗

m(t2, t1) based on simulation results.
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Table 1 MIϑ̂m , IVϑ̂m
and ISBϑ̂m

for different choices of bn , m and n and different assumptions regarding
the dependence between the event times; Clayton, Gumbel and Frank copula functions with parameters
θ = 0.5, 1.5 and 3.0, respectively

m/b̂n n = 500 n = 800

1 2.7 7.4 20.1 54.6 1 2.7 7.4 20.1 54.6

Clayton copula (θ = 0.5)

25

MIϑ̂m 3.928 3.914 3.903 3.929 4.156 3.826 3.823 3.825 3.861 4.120

IVϑ̂m
0.382 0.333 0.269 0.176 0.094 0.236 0.206 0.172 0.120 0.067

ISBϑ̂m
3.546 3.581 3.634 3.753 4.062 3.590 3.617 3.653 3.741 4.053

50

MIϑ̂m 3.828 3.541 3.357 3.146 3.266 3.161 3.033 2.955 2.881 3.126

IVϑ̂m
1.600 1.333 1.059 0.649 0.347 0.972 0.819 0.664 0.443 0.242

ISBϑ̂m
2.228 2.208 2.298 2.497 2.919 2.189 2.214 2.291 2.438 2.884

100

MIϑ̂m 7.880 5.816 4.504 3.420 2.983 5.115 4.122 3.560 2.874 2.640

IVϑ̂m
5.392 4.102 2.887 1.683 0.841 3.439 2.735 2.141 1.330 0.688

ISBϑ̂m
2.488 1.714 1.617 1.737 2.142 1.676 1.387 1.419 1.544 1.952

Gumbel copula (θ = 1.5)

25

MIϑ̂m 1.209 1.275 1.403 1.623 1.878 1.006 1.122 1.282 1.539 1.844

IVϑ̂m
0.365 0.294 0.232 0.151 0.086 0.197 0.163 0.131 0.085 0.048

ISBϑ̂m
0.844 0.981 1.171 1.472 1.792 0.809 0.959 1.151 1.454 1.796

50

MIϑ̂m 2.258 2.008 1.981 1.999 2.029 1.696 1.640 1.713 1.833 1.954

IVϑ̂m
1.255 0.959 0.745 0.463 0.258 0.845 0.664 0.528 0.340 0.194

ISBϑ̂m
1.003 1.049 1.236 1.536 1.771 0.851 0.976 1.185 1.493 1.760

100

MIϑ̂m 8.086 5.692 4.608 3.538 2.746 4.629 3.732 3.388 2.931 2.470

IVϑ̂m
4.829 3.417 2.435 1.325 0.687 2.827 2.123 1.633 0.995 0.542

ISBϑ̂m
3.257 2.275 2.173 2.213 2.059 1.802 1.609 1.755 1.936 1.928

Frank copula (θ = 3.0)

25

MIϑ̂m 0.395 0.315 0.272 0.304 0.517 0.249 0.206 0.190 0.258 0.502

IVϑ̂m
0.321 0.257 0.203 0.132 0.075 0.199 0.162 0.131 0.088 0.053

ISBϑ̂m
0.075 0.058 0.068 0.172 0.442 0.049 0.044 0.059 0.169 0.449
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Table 1 continued

m/b̂n n = 500 n = 800

1 2.7 7.4 20.1 54.6 1 2.7 7.4 20.1 54.6

50

MIϑ̂m 1.799 1.294 1.028 0.796 0.752 1.061 0.816 0.681 0.588 0.679

IVϑ̂m
1.256 0.947 0.721 0.446 0.260 0.792 0.626 0.497 0.328 0.197

ISBϑ̂m
0.543 0.346 0.3073 0.349 0.491 0.269 0.190 0.184 0.261 0.483

100

MIϑ̂m 14.612 5.023 3.602 2.396 1.608 3.786 2.685 2.185 1.547 1.159

IVϑ̂m
12.019 3.558 2.460 1.423 0.792 2.635 1.951 1.525 0.916 0.501

ISBϑ̂m
2.593 1.465 1.142 0.974 0.816 1.151 0.734 0.660 0.631 0.658

Minimum MIϑ̂m -values are highlighted in bold
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Fig. 1 Clayton copula with b̂n = 54.6,m = 100 and n = 800: heatplot representing the difference between
the estimated cross ratio function ϑ̂m (t1, t2) averagedover theM replications and the true cross ratio function
θ(t1, t2) (left upper panel) and intersections of the estimated cross ratio surface given t1 = F−1

1 (0.5)

(right upper panel; black solid line), t2 = F−1
2 (0.5) (left lower panel) and F−1

1 (u) = F−1
2 (u) (right

lower panel) with pointwise 95% simulation-based confidence intervals (gray dash-dotted lines). True cross
ratio curves are graphically depicted in red dashed lines
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Fig. 2 Empirical variance of ϑ̂m [F−1
1 (u), F−1

2 (u)] (black dashed line) compared to (1/4) times the sum

of the asymptotic variances of θ̂m [F−1
1 (u), F−1

2 (u)] and θ̂∗
m [F−1

1 (u), F−1
2 (u)] for the Clayton simulation

setting with b̂n = 54.6, m = 100 and n = 800 (left panel) and the Gumbel simulation setting with b̂n = 1,
m = 25 and n = 800 (left panel)
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Fig. 3 Gumbel copula with b̂n = 1, m = 25 and n = 800: heatplot representing the difference between the
estimated cross ratio function ϑ̂m (t1, t2) averaged over the M replications and the true cross ratio function
θ(t1, t2) (left upper panel) and intersections of the estimated cross ratio surface given t1 = F−1

1 (0.5)

(right upper panel; black solid line), t2 = F−1
2 (0.5) (left lower panel) and F−1

1 (u) = F−1
2 (u) (right

lower panel) with pointwise 95% simulation-based confidence intervals (gray dash-dotted lines). True cross
ratio curves are graphically depicted in red dashed lines
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7.4 Frank copula function

Finally, a Frank copula function is considered with parameter θ = 3. The copula
function is defined as

Cθ (u1, u2) = −θ−1 ln

{
1 +

[
exp(−θu1) − 1

] [
exp(−θu2) − 1

]
exp(−θ) − 1

}
,

for (−∞,∞) \{0}. After some calculus, the expression for the true cross ratio function
takes the form:

θ(t1, t2) = φ
ln
(
1 + φ−1 {exp [−θ S1(t1)] − 1} {exp [−θ S2(t2)] − 1})

{exp [−θ S1(t1)] − 1} {exp [−θ S2(t2)] − 1} ,

where φ = [
exp(−θ) − 1

]
. In Fig. 4, similar plots are presented for b̂n = 7.4,m = 25

and n = 800. Compared to the Clayton copula setting, smaller bandwidth values are
selected for both the Gumbel and Frank copulae based on the minimization of MIθ .
This is mainly due to the shape of the cross ratio surface which is non-constant for
the latter copulae, thereby requiring a smaller kernel bandwidth to allow for more
flexibility when estimating the surface.

8 Real data examples

A dataset on recurrent asthma attacks in children (Duchateau et al. 2003) and a dataset
on the relationship between food expenditure and net income (Family Expenditure
Survey, 1968–1983, Härdle (1990)) illustrate the use of our novel nonparametric esti-
mator for the cross ratio function. The analysis of the asthma data (event times) is
given in the Supplementary Material. In this section, we discuss the food expenditure
dataset.

A random subsample of size n = 500 is selected; this dataset is used in our anal-
ysis. In Fig. 5, we graphically depict food expenditure (T2) versus net income (T1) in
multiples of the expenditure sample mean, respectively, the net income sample mean.
Summary statistics for the selected subsample are in Table 7 of Sect. 5 of Supple-
mentary Material, which also contains a link to the used dataset. From this Table 7, it
follows that T1 and T2 have similar scales.

In order to select appropriate values for the bandwidths bn andm, we use an ad hoc
procedure inspired by the work of Sen and Xu (2015). For more details, the reader
is referred to the Supplementary Material. Based on the selected values, a heatplot of
the estimated cross ratio surface ϑ̂m(t1, t2) is plotted in the upper panel of Fig. 6. To
visualize the variability of the estimates, we include bootstrap-based pointwise 95%
bootstrap-percentile confidence intervals for the cross ratio function at values of T1
corresponding to the empirical quartiles (25%, 50% and 75%). Figure 6 shows that the
degree of dependence is stronger for low net incomes relative to the mean net income.
More specifically, when families have a low relative net income T1 = t1 they tend
to spend less money on food as compared to families with a net income exceeding
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Fig. 4 Frank copula with b̂n = 7.4, m = 25 and n = 800: heatplot representing the difference between the
estimated cross ratio function ϑ̂m (t1, t2) averaged over the M replications and the true cross ratio function
θ(t1, t2) (left upper panel) and intersections of the estimated cross ratio surface given t1 = F−1

1 (0.5)

(right upper panel; black solid line), t2 = F−1
2 (0.5) (left lower panel) and F−1

1 (u) = F−1
2 (u) (right

lower panel) with pointwise 95% simulation-based confidence intervals (gray dash-dotted lines). True cross
ratio curves are graphically depicted in red dashed lines

T1 > t1. For families with a net income which is large relative to the average (t1-
values larger than 1), the cross ratio values are approximately equal to one, implying
that there is no longer dependence between food expenditure and net income.

9 Discussion

In this paper, we propose a Bernstein-based nonparametric estimator for the cross ratio
functionwhich is commonly used to describe local dependence between two correlated
variables. As explained in Sect. 1, there is some earlier work on cross ratio estimation,
but the study of a fully nonparametric estimator is new. Our estimator uses Bernstein
estimators for the survival copula and its derivatives to estimate conditional cumulative
hazards in a nonparametricway.Kernel smoothing is then used to obtain nonparametric
estimators for the conditional hazards in the numerator and the denominator of the
cross ratio function. The asymptotic distributional behavior of the new estimator and
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Fig. 5 Food expenditure versus
net income data application:
scatterplot of the food
expenditure (y-axis) versus net
income (x-axis) expressed in
multiples of the expenditure
sample mean, respectively, the
net income sample mean. Family
Expenditure Survey
(1968–1983)
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Fig. 6 Food expenditure and net income data application: heatplot of the estimated cross ratio surface
ϑ̂m (t1, t2) and cross ratio curves for t1 equal to the empirical quartiles (25%, 50% and 75%, i.e., 0.5, 0.9
and 1.2, respectively) (black solid lines) with pointwise 95% bootstrap-percentile confidence intervals (gray
dash-dotted lines)
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of its symmetrized version is studied. Simulations show the overall good performance
of the proposed estimators for n ≥ 300. An example on the relation between net
income and food expenditure shows how the estimator gives local information on the
relation between these two variables.

A couple of interesting further questions emerge from our findings. On the theoreti-
cal side, it would be nice to study the bootstrap consistency. An interesting problem on
the applied side is to obtain a data-driven method to determine the kernel bandwidth
bn and the Bernstein order m. These are challenging open problems. Even for more
simple Bernstein-based estimators, e.g., for the conditional density, these problems
are unsolved.
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Appendix: Proofs of Theorems 1–3

In this appendix, we present the proofs of Theorems 1–3 in the main text.

Proof of Theorem 1

λ̂m(t1 | T2 = t2) − λ(t1 | T2 = t2)

= 1

bn

∫ [
Λ̂m(t1 − bnu | T2 = t2) − Λ(t1 − bnu | T2 = t2)

]
dK0(u)

+ 1

bn

∫
Λ(t1 − bnu | T2 = t2)dK0(u) − λ(t1 | T2 = t2)

= (A) + (B).

The non-random term (B) equals

(B) = 1

2
b2nλ

′′(t1 | T2 = t2)μ2(K0) + o(b2n) (11)

where μ2(K0) = ∫ t2K0(t)dt . This is because λ(t1 | T2 = t2) is twice continuously
differentiable with respect to t1.

For the integrand in (A), we first note that

Λ̂m(t1 | T2 = t2) − Λ(t1 | T2 = t2)

=
∫ t1

0

dF̂t2(s)

1 − F̂t2(s)
−
∫ t1

0

dFt2(s)

1 − Ft2(s)
+ O

(m
n

)
a.s.

Indeed, for n sufficiently large,

∣∣∣∣
∫ t1

0

dF̂t2(s)

1 − F̂t2(s−)
−
∫ t1

0

dF̂t2(s)

1 − F̂t2(s)

∣∣∣∣ ≤ 4

[1 − Ft2(t1)]2
O
(m
n

)
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because themaximal jump of F̂t2(·) is O
(m
n

)
a.s. (see Janssen et al. 2016) and because

F̂t2(t1) converges to Ft2(t1). Hence, the term (A) can be written as

(A) = 1

bn

∫ t1+bn L

t1−bn L
ln

[
1 − F̂t2(s)

1 − Ft2(s)

]
dK0

(
t1 − s

bn

)
+ O

(
m

nbn

)
a.s.

By the mean value theorem, we obtain that

ln

[
1 − F̂t2(s)

1 − Ft2(s)

]
= − F̂t2(s) − Ft2(s)

1 − Ft2(s)
− 1

2

[F̂t2(s) − Ft2(s)]2
[1 − θn(s)]2

for some θn(s) between Ft2(s) and F̂t2(s). Hence,

(A) = 1

bn

∫ L

−L

F̂t2(t1 − bnu) − Ft2(t1 − bnu)

1 − Ft2(t1 − bnu)
dK0(u)

+ Rn(t1, t2) + O

(
m

nbn

)
a.s., (12)

where

Rn(t1, t2) = 1

2bn

∫ L

−L

[F̂t2(t1 − bnu) − Ft2(t1 − bnu)]2
[1 − θn(t1 − bnu)]2 dK0(u).

From Theorem 3 of Janssen et al. (2016) and the first part of the proof of Lemma 7
available in Electronic Supplementary Material provided by Janssen et al. (2016), we
conclude that

sup
s

|F̂t2(s) − Ft2(s)| = O
(
m1/4n−1/2(ln n)1/2

)
+ O(n−1/2(ln n)1/2 + m−1

+ m1/2n−3/4(ln n)1/2(ln ln n)1/4 + m13/12n−1(ln n)1/2(ln ln n)1/2) a.s.

= O
(
m1/4n−1/2(ln n)1/2

)
a.s., (13)

by applying the assumptions in condition (d) of the theorem.
Since we assume that K0 is a continuous density function of bounded variation,

there exist two non-decreasing bounded and continuous functions K01 and K02 such
that K0(u) = K01(u)− K02(u). Assume that K01 and K02 are supported on [−L, L1]
and [L1, L], respectively, for some −L ≤ L1 ≤ L . Hence, K01(−L) = K02(−L) =
0 = K01(L) = K02(L) and K01(L1) = −K02(L1). Therefore,

|Rn(t1, t2)| ≤ 1

2bn

∫ L1

−L

[F̂t2(t1 − bnu) − Ft2(t1 − bnu)]2
[1 − θn(t1 − bnu)]2 dK01(u)

+ 1

2bn

∫ L

L1

[F̂t2(t1 − bnu) − Ft2(t1 − bnu)]2
[1 − θn(t1 − bnu)]2 dK02(u).
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Furthermore, since sup
s

|F̂t2(s)−Ft2(s)| → 0 a.s., we have that sup
s

|θn(s)−Ft2(s)| →
0 a.s.; hence, for some constant C > 0,

|Rn(t1, t2)| ≤ 2C

bn[1 − Ft2(t1)]2
[
sup
s

|F̂t2(s) − Ft2(s)|
]2

K01(L1)

= O

(
m1/2

nbn
ln n

)
a.s.,

by using (13). Therefore, under the conditions in (d) we conclude that

(nm−1/2bn)
1/2Rn(t1, t2) → 0 a.s. (14)

By the mean value theorem, the first term in the expression of (A) given in (12)
becomes

1

bn
[
1 − Ft2(t1)

]
∫ L

−L

[
F̂t2(t1 − bnu) − Ft2(t1 − bnu)

]
dK0(u)

+
∫ L

−L

u
[
F̂t2(t1 − bnu) − Ft2(t1 − bnu)

]
ft2 [θ(u)]{

1 − Ft2 [θ(u)]
}2 dK0(u)

=: (A11) + R̃n(t1, t2), (15)

for some θ(u) between t1 and t1 − bnu.
As above, we have that for some constant C > 0,

|R̃n(t1, t2)| ≤ C ft2(t1)

[1 − Ft2(t1)]2
[
sup
s

|F̂t2(s) − Ft2(s)|
] ∫ L

−L
|u|d [K01(u) + K02(u)]

= O
(
m1/4n−1/2(ln n)1/2

)
a.s.

Under the conditions in (d), we have

(nm−1/2bn)
1/2 R̃n(t1, t2) → 0 a.s. (16)

For (A11) in Eq. (15), we write

(A11) = 1

bn
[
1 − Ft2(t1)

]
∫ L

−L

{
F̂t2(t1 − bnu) − E[F̂t2(t1 − bnu)]} dK0(u)

+ 1

bn
[
1 − Ft2(t1)

]
∫ L

−L

{
E[F̂t2(t1 − bnu)] − Ft2(t1 − bnu)

}
dK0(u)

=: (A111) + (A112).

For (A112), which contributes to the bias, note that E[F̂t2(t1−bnu)]−Ft2(t1−bnu) =
−{E[Ŝt2(t1 − bnu)] − St2(t1 − bnu)}. In line with Remark 3 in Janssen et al. (2016),
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we have

E[Ŝt2(t1 − bnu)] − St2(t1 − bnu) = −1

2
m−1b [S1(t1 − bnu), S2(t2)] + o(m−1),

where

b(u, v) = (1 − 2v)C (2,2)(u, v) + u(1 − u)C (1,1,2)(u, v) + v(1 − v)C (2,2,2)(u, v).

Using partial integration, we obtain that

(A112) = 1

2
m−1φ(t1, t2) + o(m−1), (17)

where

φ(t1, t2) = b(1) [S1(t1), S2(t2)]

1 − Ft2(t1)
f1(t1),

with b(1)(u, v) = ∂
∂u b(u, v). For the first term we have, after partial integration,

(A111) = 1

1 − Ft2(t1)

{
f̂t2(t1) − E[ f̂t2(t1)]

}
, (18)

where f̂t2(t1) is precisely the Bernstein estimator for a conditional density function
studied in Janssen et al. (2017).

The proof of the theorem follows directly from (11)–(18) and the Theorem in
Janssen et al. (2017) by simply replacing Y by T1 and X by T2 in the aforementioned
paper.

Also note that the term 1
2m

−1φ(t1, t2) in the bias vanishes after multiplication with

(nm−1/2bn)1/2. This is because (nm−1/2bn)1/2m−1 ≤ n1/2m−5/4b−1/2
n → 0 by the

first relation in (d). This proves Theorem 1. ��
Proof of Theorem 2 Write

λ̂m(t1 | T2 > t2) − λ(t1 | T2 > t2)

= 1

bn

∫ [
Λ̂m(t1 − bnu | T2 > t2) − Λ(t1 − bnu | T2 > t2)

]
dK0(u)

+ 1

bn

∫
Λ(t1 − bnu | T2 > t2)dK0(u) − λ(t1 | T2 > t2)

= ( Ã) + (B̃).

For the non-random term (B̃) we have, similar to (11),

(B̃) = O(b2n). (19)
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For ( Ã), we perform analogous operations as we did in the proof of Theorem 1. This
gives, in analogy with (12),

( Ã) = 1

bn

∫ L

−L

Cm,n[S1n(t1 − bnu), S2n(t2)] − C[S1(t1 − bnu), S2(t2)]
C[S1(t1 − bnu), S2(t2)] dK0(u)

+ R̃n(t1, t2) + O

(
m1/2

nbn

)
a.s., (20)

where

R̃n(t1, t2) = 1

2bn

∫ L

−L

{Cm,n[S1n(t1 − bnu), S2n(t2)] − C[S1(t1 − bnu), S2(t2)]}2
[1 − θ̃n(t1 − bnu)]2 dK0(u)

for some θ̃n(t1 − bnu) between Cm,n[S1n(t1 − bnu), S2n(t2)] and C[S1(t1 −
bnu), S2(t2)]. The O

(
m1/2

nbn

)
term in (20) comes from the replacement of S1n(s−)

by S1n(s).
Indeed, for n sufficiently large, we have for some constant M > 0:

∣∣∣∣
∫ t1

0

{
1

Cm,n[S1n(s−), S2n(t2)] − 1

Cm,n[S1n(s), S2n(t2)]
}
dsCm,n[S1n(s), S2n(t2)]

∣∣∣∣

≤ M

C2[S1(t1), S2(t2)] sups
m∑

k=1

m∑
�=1

Cn

(
k

m
,

�

m

)
Pm,�[S2n(t2)]

n

∣∣∣∣P ′
m,k

(
S1n(s) + 1

n

)∣∣∣∣

= O

(
m1/2

n

)
a.s., using Lemma 1 in Janssen et al. (2014).

Using that Cm,n[S1n(s), S2n(t2)] → C[S1(s), S2(t2)] a.s. and the fact that K0 is of
bounded variation we can make an argument completely analogous to the one used
for Rn(t1, t2) in (12). This gives the following bound for R̃n(t1, t2):

R̃n(t1, t2) = O

(
1

bn

{
sup
s

| Cm,n[S1n(s), S2n(t2)] − C[S1(s), S2(t2)] |
}2)

a.s.

Now,

| Cm,n[S1n(s)), S2n(t2)] − C[S1(s), S2(t2)] |
≤ | Cm,n[S1n(s), S2n(t2)] − C[S1n(s), S2n(t2)] |

+ | S1n(s) − S1(s) | + | S2n(s) − S2(s) |

by the Lipschitz continuity of C (see Nelsen 2006).
The supremum of the first term on the right-hand side is O(n−1/2(ln ln n)1/2+m−1/2)

a.s. (see the proof of Theorem 1 in Janssen et al. (2012)) and the supremum of the
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other two terms is O(n−1/2(ln ln n)1/2) a.s. So the bound for R̃n(t1, t2) is

O

(
n−1 ln ln n

bn
+ m−1

bn

)
a.s.

Combining this with (19) and (20), we obtain

λ̂m(t1 | T2 > t2) − λ(t1 | T2 > t2)

= 1

bn

∫ L

−L

Cm,n[S1n(t1 − bnu), S2n(t2)] − C[S1(t1 − bnu), S2(t2)]
C[S1(t1 − bnu), S2(t2)] dK0(u)

+ O

(
n−1

bn
ln ln n + m−1

bn
+ m1/2

nbn
+ b2n

)
a.s.

For the first term in the right-hand side, we write

Cm,n[S1n(t1), S2n(t2)] − C[S1(t1), S2(t2)]
= {

Cm,n[S1(t1), S2(t2)] − C[S1(t1), S2(t2)]
}

+ C (1)
m,n[θ1n(t1), θ2n(t2)] [S1n(t1) − S1(t1)]

+ C (2)
m,n[θ1n(t1), θ2n(t2)] [S2n(t2) − S2(t2)] ,

with (θ1n(t1), θ2n(t2)) denoting an intermediate point between (S1n(t1), S2n(t2)) and
(S1(t1), S2(t2)). Now using similar ideas as in Lemma 3 of Janssen et al. (2012) and
the convergence rate of the Bernstein approximation given in (5) of the same paper,
we obtain

Cm,n[S1n(t1), S2n(t2)] − C[S1(t1), S2(t2)]

= 1

n

n∑
i=1

Ymi [S1(t1), S2(t2)] + OP (m−1) + oP (n−1/2)

where theYm(u1, u2) are independent zeromean randomvariableswhich are bounded.
With this

λ̂m(t1 | T2 > t2) − λ(t1 | T2 > t2)

=
n∑

i=1

Win + OP

(
n−1

bn
ln ln n + m−1

bn
+ m

nbn
+ b2n + n−1/2

bn

)
,

where

Win = 1

nbn

∫
Ymi [S1(t1 − bnu), S2(t2)]
C[S1(t1 − bnu), S2(t2)] dK0(u).
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Now

Var

(
n∑

i=1
Win

)
=

∫ ∫
E{Ymi [S1(t1 − bnu1), S2(t2)]Ymi [S1(t1 − bnu2), S2(t2)]}
nb2nC[S1(t1 − bnu1), S2(t2)]C[S1(t1 − bnu2), S2(t2)] dK0(u1)dK0(u2)

= O

(
1

nb2n

)

by the boundedness of the Ymi and the fact that K0 is of bounded variation.
Hence,

n∑
i=1

Win = OP

(
n−1/2

bn

)

and

λ̂m(t1 | T2 > t2) − λ(t1 | T2 > t2)

= OP

(
n−1/2

bn
+ m−1

bn
+ m1/2

nbn
+ b2n

)
.

The imposed conditions in (d) of Theorem 1 and the extra condition m1/2bn →
∞ imply that all the terms in the right-hand side vanish after multiplication with
(nm−1/2bn)1/2. ��
Proof of Theorem 3 Linearization of the ratio gives that θ̂m(t1, t2) − θ(t1, t2) has the
same limiting distribution as

1

λ(t1 | T2 > t2)
[̂λm(t1 | T2 = t2) − λ(t1 | T2 = t2)]

− λ(t1 | T2 = t2)

λ2(t1 | T2 > t2)
[̂λm(t1 | T2 > t2) − λ(t1 | T2 > t2)].

Multiplication with (nm−1/2bn)1/2 gives that the second term is oP (1) (by Theorem 2)
and that the first term is asymptotically normal (by Theorem 1). ��
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