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Abstract
In this article, I explore in a unified manner the structure of uniform slash and  
�-slash distributions which, in the continuous case, are defined to be the distribu-
tions of Y / U and Y

�
∕U1∕� where Y and Y

�
 follow any distribution on ℝ+ and, inde-

pendently, U is uniform on (0, 1). The parallels with the monotone and �-monotone 
distributions of Y × U and Y

�
× U

1∕� , respectively, are striking. I also introduce dis-
crete uniform slash and �-slash distributions which arise from a notion of negative 
binomial thinning/fattening. Their specification, although apparently rather different 
from the continuous case, seems to be a good one because of the close way in which 
their properties mimic those of the continuous case.

Keywords Binomial thinning · Monotone density · Negative binomial fattening · 
Uniform random variable

1 Introduction

The seminal early robustness study of Andrews et  al. (1972) introduced the slash 
distribution, sometimes now called the canonical slash distribution, which is the dis-
tribution of Z/U where Z is standard normal and, independently, U is uniform on 
(0, 1) (Kafadar 2006); henceforth, the latter is written U ∼ U(0, 1) . The name ‘slash’ 
presumably refers to the division sign. In this article, I shall use the term ‘uniform 
slash distribution’ to mean the distribution of X = Y∕U where Y follows any abso-
lutely continuous distribution with density g on ℝ+ and, independently (and spe-
cifically), U ∼ U(0, 1) . The restriction to ℝ+ is for convenience only: similar results 
occur on ℝ , where one might also prefer to replace U by 2U−1.

I look at the structure of the densities of uniform slash distributions in Sect.  2, 
along with a pre-existing extension to what I will call ‘ �-slash’ distributions [some-
times called ‘standard slash distributions’: a uniform slash distribution is a 1-slash 

 * M. C. Jones 
 m.c.jones@open.ac.uk

1 School of Mathematics and Statistics, The Open University, Walton Hall, 
Milton Keynes MK7 6AA, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-019-00708-4&domain=pdf


646 M. C. Jones 

1 3

distribution; �-slash distributions, though not under that name, were considered in the 
case Y = Z by Rogers and Tukey (1972)]. If it is desired to construct a distribution with 
at most, say, r (positive integer) moments, then a very good candidate—which can be 
constructed using a suitable g from a wide palette of possibilities—is an �-slash dis-
tribution based on g, with � closely related to r (see Sect. 2.2). Reasons for this desire 
might include simulation studies or sensitivity analyses; data analysis with heavy-tailed 
distributions is a potential use of such distributions too. My development is parallel 
to the equivalent development when the division signs underlying this paragraph are 
replaced by multiplication signs. The latter, known, work, which centres on monotone 
densities, is briefly summarised in ‘Appendix A’.

There are also versions of the monotonicity results just mentioned for discrete distri-
butions on ℕ0 = 0, 1,… . These, based on Steutel (1988), are summarised in ‘Appendix 
B’. Prior to the current article, there was no such thing as a discrete slash (or discrete 
�-slash) distribution: these are proposed and investigated in Sect. 3. As (continuous) 
multiplication by a value between 0 and 1 can be translated to (discrete) binomial thin-
ning (Steutel and van Harn 1979), so (continuous) division by a value between 0 and 
1, or multiplication by a value larger than 1, can be translated to what, in Sect. 3, I call 
‘negative binomial fattening’. And then everything from the continuous case in Sect. 2 
has a nice analogue in the discrete case, as given in Sect. 3. In particular, as in the con-
tinuous case, discrete �-slash distributions can be constructed to accommodate heavy 
tails as defined by existence of specified moments, and for the same types of potential 
application too.

The article is rounded off with some concluding remarks in Sect. 4.

2  The univariate continuous case

2.1  When is a distribution a uniform slash distribution?

Regardless of which g is chosen, the distribution of X = Y∕U where Y ∼ g is extremely 
heavy-tailed in the sense that its distribution has no (positive integer) moments. This is 
because E(1∕Ur) does not exist for any r = 1, 2,… . But is this the defining character-
istic of such a uniform slash distribution? Well, not quite. More precisely, the density, f, 
of X satisfies

so that

and hence

(1)f (x) =
1

x2 ∫
x

0

yg(y)dy

f �(x) = −
2

x
f (x) +

1

x
g(x)

(2)g(y) = 2f (y) + yf �(y).
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Validity of g as a density on ℝ+ therefore requires that the uniform slash density, f, 
satisfies

the inequality being strict except where g(y) = 0 . Indeed, f has a very heavy tail: 
from (1), even if g has finite mean �g , then f (x) ≈ �g∕x

2 as x → ∞ , which implies 
non-existence of moments of f. Infinite �g cannot change this state of affairs, of 
course. Inequality (3) can be utilised to check whether any existing (heavy-tailed) 
distribution is a uniform slash distribution and, if so, (2) can be used to identify the 
distribution of Y.

Examples of uniform slash distributions

(a) By way of one example of direct construction, suppose that g(y) = e−y , y > 0 . 
The uniform slash exponential distribution is then the distribution with density 
f (x) = {1 − (1 + x)e−x}∕x2, x > 0 . This distribution has no (positive integer) 
moments. Its density can be shown to be monotone decreasing.

(b) The hal f -Cauchy dist r ibut ion is  a  uniform s lash dist r ibu-
tion on ℝ+ :  i t  has density f (x) = 2∕{�(1 + x2)} ,  x > 0 ,  so that 
(log f )�(x) = − 2x∕(1 + x2) = − 2∕(x +

1

x
) > −2∕x , and the density of Y is 

g(y) = 4∕{�(1 + y2)2} which is a scaled half-t3 distribution.
(c) When is the F distribution a uniform slash distribution? The scaled F2a,2b distri-

bution has log-density of the form log f (x) = K + (a − 1) log x −(a + b) log(1 + x) 
so that (log f )�(x) = {a − 1 − (b + 1)x}∕x(1 + x)≥ − 2∕x if a + 1≥ (b − 1)x for 
all x > 0 , which requires b ≤ 1.

The cumulative distribution functions (c.d.f.’s) F and G, associated with f and g, respec-
tively, are readily shown to be related by

2.2  ̨ ‑slash distributions

A popular extension of the uniform slash distribution is to replace U by a power of 
U, that is, to consider the distribution of X

�
= Y

�
∕U1∕� , 𝛼 > 0 , where Y

�
 follows any 

distribution with density g
�
 , say, on ℝ+ and, independently, U ∼ U (0, 1) . Equivalently, 

X
�
= Y

�
∕B

�
 where Y

�
 follows a distribution with density g

�
 and, independently, B

�
 

follows a beta distribution with parameters � and 1; henceforth B
�
∼ Be(�, 1) . I shall 

call the distribution of X
�
 an �-slash distribution and note that this means that X�

�
 fol-

lows a uniform slash distribution. A 1-slash distribution is, of course, a uniform slash 
distribution.

The development of Sect. 2.1 for uniform slash distributions works through in simi-
lar fashion for �-slash distributions. The density, f

�
 , of X

�
 satisfies

(3)(log f )�(x) ≥ −
2

x
, for all x > 0,

G(x) = F(x) + xf (x).

f
�
(x) =

�

x1+� ∫
x

0

y�g
�
(y)dy
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so that

Validity of g
�
 as a density therefore requires that the �-slash density satisfies

strict inequality holding except where g
�
(y) = 0 . Immediately, for 0 < 𝛼 ≤ 1 , an �

-slash distribution is also a slash distribution. Also, in an obvious notation,

This formula and some related ones can be found for the case G
�
= Φ , the standard 

normal c.d.f., in Rogers and Tukey (1972).

Examples of �-slash distributions

(a) Following on from (a) in my examples of uniform slash distributions, the �-slash 
exponential distribution is the distribution with density f

�
(x) = ��(x;1 + �)∕x1+� , 

x > 0 , where �(⋅;⋅) is the incomplete gamma function. This distribution 
has r < 𝛼 moments. The following argument, using the standard inequality 
(1 + �)�(x;1 + �) ≥ x�(1 − e−x) [e.g. (8.10.2) of Olver et al. (2010)], shows that 
f
�
 is nonincreasing for all 𝛼 > 0 : 

(b) When is the half-t
�
 distribution an �-slash distribution on ℝ+ ? Suit-

ably scaled, its densities are proportional to (1 + x2)−(�+1)∕2 , 𝜈 > 0 , so that 
(log f )�(x) = −(� + 1)x∕(1 + x2)≥ − (1 + �)∕x if (� − �)x2 ≥ − (1 + �) for all 
x > 0 , which requires � ≤ �.

(c) When is the F2a,2b distribution an �-slash distribution? Following (c) 
in my examples of uniform slash distributions, (log f )�(x) = {a − 1−

(b + 1)x}∕x(1 + x)≥ − (1 + �)∕x if a + � ≥ (b − �)x for all x > 0 , which requires 
b ≤ �.

The rth moment of U−1∕� exists for r < 𝛼 . Since E(Xr
�
) = E(Yr

�
) × E(U−r∕�) , it fol-

lows that X
�
 will also possess r < 𝛼 moments, provided g

�
 is chosen to have r or more 

moments. Heavier-tailed g
�
 can only make the number of existing moments of f

�
 

fewer, not greater, of course. A related argument supposes that limx→∞ xr+1f
�
(x) = 0 

which is a necessary condition for the existence of the rth moment of f
�
 . Then, using 

integration by parts and (4),

�g
�
(y) = (1 + �)f

�
(y) + yf �

�
(y).

(4)(log f
𝛼
)�(x) ≥ −

1 + 𝛼

x
, for all x > 0,

�G
�
(x) = �F

�
(x) + xf

�
(x).

f �
�
(x) =

�

x�+2

{
x�+1e−x − (1 + �)�(x;1 + �)

}

≤ �

x�+2

{
x�+1e−x − x�(1 − e−x)

}

=
�

x2
{(1 + x)e−x − 1} ≤ �

x2
(exe−x − 1) = 0.

∫
∞

0

xrf
𝛼
(x) dx = −

1

1 + r ∫
∞

0

xr+1f �
𝛼
(x) dx <

1 + 𝛼

1 + r ∫
∞

0

xrf
𝛼
(x) dx,
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that is, it must be the case that r < 𝛼 . A third argument with the same outcome is the 
following. When Eg

�

(Y
�
) is finite, the tail of f

�
 behaves as f

�
(x) ≈ �Eg

�

(Y
�
)∕x�+1 , 

x → ∞ , which implies existence of the rth moment of X
�
 only if r < 𝛼 . And infinite 

Eg
�

(Y
�
) again changes tailweight in a way that can lead only to fewer moments, not 

more. Of course, if r < 𝛼 , then E(U−r∕�) = �∕(� − r).
So, a good way to generate a random variable with precisely r (integer) moments, 

for the purposes of a simulation study checking out a theory in which the number 
of assumed moments is important, for example, is to generate a random variable 
with an �-slash distribution, for any convenient � satisfying r < 𝛼 ≤ r + 1 ; choice of 
any g

�
 with r or more moments enables the investigator to be able to try out many 

such distributions. Random variate generation from an �-slash distribution is itself 
straightforward by using its defining construction in terms of division of random 
variables, especially if it is easy to generate from g

�
.

3  The univariate discrete case

Transfer of monotonicity properties from the continuous to the discrete case takes 
place via an appropriate replacement for multiplication by a real number between 0 
and 1 while remaining on support ℕ0 . In this section, it will be shown how a simi-
lar replacement for division by a real number between 0 and 1 while remaining on 
support ℕ0 leads to the transfer of slashness properties from the continuous to the 
discrete case.

3.1  Discrete uniform slash distributions

To reduce a discrete value m by a factor of 0 < u < 1 while maintaining sup-
port ℕ0 , the key (Steutel and van Harn 1979) is to choose a value from 0, 1,… ,m 
( m = 0, 1,…) according to the binomial distribution with parameters m and u. Nota-
tionally, the binomially thinned quantity u◦m is defined such that u◦m ∼ Bi(m, u) . 
(The binomial distribution with parameters 0 and u has mass 1 at value 0.) The 
parallels between X = U × Y  in the continuous case and N = U◦M ∼ Bi(M,U) 
in the discrete case are then compelling (Steutel 1988; Jones 2018; see ‘Appen-
dix B’). How, on the other hand, does one increase m by a factor of 1∕u > 1 while 
maintaining support ℕ0 ? Well, m = 0 should remain m = 0 . And I suggest that, for 
m = 1, 2,… , one should choose a value from m,m + 1,… according to the negative 
binomial distribution with parameters m and u, starting from m. Without adding on 
m, this is what is no longer so accurately called ‘negative binomial thinning’ (Ristić 
et al. 2009), but when m is added back in, it seems clear that it can be called ‘nega-
tive binomial fattening’.

So, like u◦m , the negative binomially fattened quantity u ∙ m is defined through 
its distribution: the p.m.f. of u ∙ m is that of L + m where L follows the negative 
binomial distribution with parameters m and u, starting from zero. (As in the 
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binomial case, the negative binomial distribution with parameters 0 and u has 
mass 1 at value 0.) The required p.m.f. is therefore

the p.m.f. of U ∙ m is then, on n = m,m + 1,… ,

where q0(0) = 1 ; and finally, the discrete uniform slash distribution is defined as the 
distribution of N = U ∙M where

The p.m.f. qm(n) at (5) can be recognised as the � = 1 special case of that of the 
(Yule or) Yule–Simon distribution [as in Johnson et al. (2005), Section 6.10.3], trun-
cated to start at m rather than at 1 when m = 2, 3,…

Note that, like its 1/U-based continuous counterpart, the distribution with 
p.m.f. qm , and therefore the discrete uniform slash distribution, has no (positive 
integer) moments. It is easy to see that the p.m.f. of the discrete uniform slash 
random variable N is

and, conversely, that

where, of course, p(−1) = 0 . Therefore, a p.m.f. p is that of a discrete uniform slash 
distribution if

the inequality being strict except where q(m) = 0 . Much as in the continuous case, 
p has a very heavy tail: if qm has finite mean �q , then p(n) ≈ �q∕n

2 as n → ∞ . This 
ties in, of course, with non-existence of moments.

Examples of discrete uniform slash distributions

(a) The Katz family of distributions (e.g. Johnson et al. 2005, Section 2.3.1) is 
defined by p(n + 1)∕p(n) = (a + bn)∕(1 + n) for suitable a and b, by which 

(
n − 1

m − 1

)
um(1 − u)n−m, n = m,m + 1,… ;

(5)

(
n − 1

m − 1

)
∫

1

0

um(1 − u)n−mdu =

(
n − 1

m − 1

)
B(m + 1, n − m + 1)

(where B(⋅, ⋅) is the beta function)

=
m

n(n + 1)
= qm(n), say,

(6)N|M = m ∼ qm(n), M ∼ q.

p(n) =

⎧
⎪⎨⎪⎩

q(0) n = 0,

1

n(n + 1)

n�
m=1

mq(m), n = 1, 2,… ,

q(m) = (m + 1) p(m) − (m − 1) p(m − 1), m = 0, 1,… ,

p(n + 1)

p(n)
≥ n

n + 2
for all n = 0, 1,… ,
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choice it covers binomial, negative binomial and Poisson distributions. No Katz 
distribution is a discrete uniform slash distribution, however, because that would 
require b > 1 , which is not allowed.

(b) The general Yule–Simon distr ibution on n = 0, 1,… , has p.m.f. 
�B(n + 1, � + 1) for parameter 𝜌 > 0 [(6.121) of Johnson et  al. (2005)]. 
When is the Yule–Simon distribution a uniform slash distribution? Well, 
p(n + 1)∕p(n) = (n + 1)∕(n + � + 2)≥ n∕(n + 2) for all n = 0, 1,… , when � ≤ 1.

(c) By way of a novel very heavy-tailed discrete distribution, the uniform slash 
Poisson distribution has p.m.f. 

where � (⋅;⋅) is the complementary incomplete gamma function. This distribu-
tion can be seen to have no (positive integer) moments. Examples of uniform 
slash Poisson p.m.f.’s are shown in Fig. 1. The shapes of the p.m.f.’s are dis-
cussed in ‘Appendix C’.

(d) Similarly, the uniform slash geometric distribution has p.m.f. 

again, of course, no (positive integer) moments. The uniform slash geometric 
p.m.f. is decreasing for every value of its parameter 0 < p < 1 . To see this, first 

(7)p(n) =

⎧
⎪⎨⎪⎩

e−� n = 0,

�e−�

n(n + 1)

n−1�
j=0

�
j

j!
=

�� (�;n)

(n + 1)!
, n = 1, 2,… ,

p(n) =

⎧
⎪⎨⎪⎩

p n = 0,
(1 − p){1 − (1 + np)(1 − p)n}

n(n + 1)p
, n = 1, 2,… ;

0 5 10 15
0

0.1

0.2

0.3

0.4

p(
n)

n

Fig. 1  The diamonds are values of p(n) for uniform slash Poisson distributions, joined by broken lines for 
clarity: dashed line corresponds to � = 1 , dotted line to � = 2 , dot-dashed line to � = 4



652 M. C. Jones 

1 3

note that p(0) − p(1) = p(1 + p)∕2 > 0 . Then, observe that, for all n = 1, 2,… , 
the difference p(n) − p(n + 1) ∝ 2 − Tp(n), where 

this quantity can readily be shown to be a decreasing function of p, its supre-
mum being 2, corresponding to p ↓ 0 . Examples of uniform slash geometric 
p.m.f.’s are shown in Fig. 2.

In the discrete case, the c.d.f.’s, defined as, for example, P(n) = Prob(N ≤ n) , can 
be shown to be related by

3.2  Discrete ̨ ‑slash distributions

It is now natural to define a discrete �-slash distribution to be that of N
�
≡ U1∕� ∙M

�
 

when M
�
∼ q

�
 on ℕ0. On n = m,m + 1,… , the p.m.f. of U1∕� ∙ m

�
 is

where � (⋅) is the gamma function and q
�,0(0) = 1 ; q

�,m(n) is, by construction, a spe-
cial form of beta-negative binomial distribution.

Tp(n) ≡ (1 − p)n
{
n(n + 1)p2 + 2np + 2

}
;

Q(n) = P(n) + np(n).

�

(
n − 1

m − 1

)
∫

1

0

um+�−1(1 − u)n−mdu = �

(
n − 1

m − 1

)
B(m + � + 1, n − m + 1)

= �

(n − 1)!� (� + m)

(m − 1)!� (� + n + 1)

= q
�,m(n), say,

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p(
n)

n

Fig. 2  The diamonds are values of p(n) for uniform slash geometric distributions, joined by broken lines 
for clarity: dashed line corresponds to p = 0.75 , dotted line to p = 0.5 , dot-dashed line to p = 0.25
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It follows that the p.m.f. of the discrete �-slash distribution is

Also,

so that a p.m.f. p
�
 is that of a discrete �-slash distribution if

the inequality again being strict except where q
�
(m) = 0 . A discrete �-slash distribu-

tion is also a discrete uniform slash distribution when 0 < 𝛼 ≤ 1.

Examples of discrete �-slash distributions
(a) The Yule–Simon distribution on n = 0, 1,… , is a discrete �-slash distribu-

tion whenever p(n + 1)∕p(n) = (n + 1)∕(n + � + 2)≥ n∕(n + � + 1) for all 
n = 0, 1,… . This requires, for any 𝛼 > 0 , � to satisfy � ≤ � , strict inequality in 
most places making no difference to this requirement.

(b) The Waring distribution on n = 0, 1,… , (Johnson et al. 2005, Section 6.10.4) 
has probability ratios p(n + 1)∕p(n) = (n + a)∕(n + � + 2) , where a, 𝜌 > 0 ; its 
a = 1 special case is the Yule–Simon distribution. The Waring distribution is 
therefore discrete �-slash if �≤ � + a − 1.

For discrete �-slash distributions, the c.d.f.’s are related by

A direct proof of this fact can be given, but a more immediate verification is pro-
vided by its reduction on differencing to the p.m.f. relationship (8).

The result of the multiplication-based arguments given at the end of Sect.  2 in 
the continuous case concerning the existence of moments continues to apply in the 
discrete case because, conditional on m and u, all moments of the negative bino-
mial distribution exist, and its rth moment depends on powers of 1/u up to 1∕ur (e.g. 
Johnson et al. 2005, Section 5.4). That is, a discrete �-slash distribution has r < 𝛼 
moments, provided q

�
 has at least r moments. In fact, provided the appropriate fac-

torial-type moment of q
�
 exists, the tail of p goes as n−(�+1) as n → ∞ . So, as in the 

continuous case, it is this control over tails and hence moments that is the potential 
practical raison-d’être for discrete �-slash distributions.

As in the continuous case, random variate generation from a discrete �-slash distri-
bution can conveniently be performed by using its defining construction: random vari-
ables from uniform, negative binomial and q

�
 distributions are required. That said, a 

referee reminds me that the usual direct method for discrete distributions of generating 

p(n) =

⎧
⎪⎨⎪⎩

q
�
(0) n = 0,

�

(n − 1)!

� (� + n + 1)

n�
m=1

� (� + m) q
�
(m)

(m − 1)!
, n = 1, 2,… .

(8)�q
�
(m) = (m + �)p

�
(m) − (m − 1) p

�
(m − 1), m = 0, 1,… ,

p
�
(n + 1)

p
�
(n)

≥ n

n + � + 1
for all n = 0, 1,… ,

�Q
�
(n) = �P

�
(n) + np

�
(n).
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U = u from U(0, 1) and setting N
�
= n if P

𝛼
(n − 1) < u ≤ P

𝛼
(n) is available (here 

P
�
(−1) = 0 ). This is easily programmed and potentially speedier in many cases.
Finally, a few words on estimation in discrete �-slash distributions should they be 

fitted to data. The method of moments is inappropriate for obvious reasons, but likeli-
hood and Bayesian methods are available. These can be straightforwardly implemented 
using standard general approaches and, indeed, software since the distributions in ques-
tion have just a few parameters, typically two, their precise number depending on the 
specification of q

�
 . I have found nothing specifically interesting enough to provide in 

detail in the paper in terms of explicit estimates, simplified properties of estimators, 
conjugate prior distributions, etc.; formulae for likelihoods, score equations, informa-
tion matrices, posterior distributions, etc., can, of course, be written out if and when 
required.

4  Concluding remarks

The literature is already replete with documents detailing properties and applications 
of individual special cases of continuous univariate slash distributions (and of continu-
ous multivariate slash distributions, a topic to which I have nothing to contribute here). 
The current article is unusual in its general investigation of common features of slash 
distributions. The term ‘slash distribution’ has also been used for distributions of ratios 
with other divisors, such as exponential random variables and powers thereof. In this 
author’s view, particular multipliers/divisors of random variables with general distri-
butions are interesting only in as much as they embue the resulting distributions with 
some worthwhile general property or properties. In this regard, Be(�, 1) multipliers are 
interesting for the monotonicity (or, on ℝ , unimodality) properties they imply, while 
Be(�, 1) divisors are interesting for the moment-controlled heavy-tailed properties they 
give rise to. I have been surprised, however, at the extent to which these apparently 
quite different properties arise from such closely parallel developments.

Discrete univariate slash (and �-slash) distributions are a new invention, but their 
specification, although apparently rather different from the continuous case, seems 
to be a good one because of the close way in which their properties mimic those of 
the continuous case.

Acknowledgements I am grateful to the reviewers for suggestions that have improved the quality of this 
article.

Appendix A The continuous case: monotone densities

Consider the density, f, of the distribution of Z = Y × U where Y follows any distri-
bution with density h > 0 on ℝ+ and, independently, U ∼ U(0, 1) . Then, f satisfies

so that

f (z) = ∫
∞

z

1

y
h(y)dy
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Validity of h as a density therefore requires that f �(z) < 0 for all z > 0 and hence 
that f is a monotone decreasing density (on ℝ+ ). This is a version of Khintchine’s 
theorem (Khintchine 1938; Feller 1971). The corresponding c.d.f.’s are related by 
H(x) = F(x) − xf (x). Relaxing the traditional positivity constraint on h to nonnega-
tivity, gaps in the support of h correspond to constant patches in f.

The distribution of Z
�
= Y

�
× U1∕� where Y

�
 follows a distribution with density 

h
�
≥ 0 on ℝ+ and, independently, U ∼ U(0, 1) is that of an �-monotone distribution, in 

which case Z�

�
 has a monotone density (Olshen and Savage 1970; Dharmadhikari and 

Joag-Dev 1988; Bertin et al. 1997). The �-monotone density f
�
 satisfies

so that

and

A density f
�
 is, therefore, �-monotone iff

Here, the inequality is strict except when h
�
(z) = 0 . Also, �H

�
(x) = �F

�
(x) − xf

�
(x).

Appendix B The discrete case: monotone probability mass functions

On ℕ0 , consider the p.m.f. p, of the distribution of N = U◦M where M follows any dis-
tribution with p.m.f. q and, independently, U ∼ U(0, 1). Recall that, for fixed 0 < u < 1 
and m = 0, 1,… , u◦m ∼ Bi(m, u) . It then follows that the distribution of U◦m is dis-
crete uniform, U(0, 1,… ,m) , and, finally, a discrete Khintchine’s theorem states that p 
is monotone nonincreasing iff N ∼ p can be written as

In fact,

(Steutel 1988); see also Jones (2018). In terms of c.d.f.’s, Q(n) = 
P(n) − (n + 1)p(n + 1).

h(y) = − yf �(y).

f
�
(z) = �z�−1 ∫

∞

z

1

y�
h
�
(y)dy

f �
�
(z) =

(� − 1)

z
f
�
(z) −

�

z
h
�
(z)

�h
�
(y) = (� − 1)f

�
(y) − yf �

�
(y).

(log f
𝛼
)�(z) ≤ (𝛼 − 1)

z
, for all z > 0.

N|M = m ∼ U(0, 1,… ,m), M ∼ q.

p(n) =

∞∑
m=n

q(m)

m + 1
, q(m) = (m + 1) {p(m) − p(m + 1)}
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Steutel (1988) went on to discuss discrete �-monotonicity which corresponds to 
replacing U by U1∕� above. The distribution of U1∕�

◦m
�
 turns out to be the beta-bino-

mial distribution with parameters m
�
, � and 1 on n = 0, 1,… ,m

�
 . This gives rise to 

Steutel’s (1988) formulae

and

From the latter, it can be concluded that discrete �-monotonicity corresponds to p 
having the property that

the inequality being strict whenever q
𝛼
(m) > 0 . Also, 

�Q
�
(n) = �P

�
(n) − (n + 1)p

�
(n + 1). See Jones (2018) for further discussion.

Appendix C On the shape of the uniform slash Poisson probability 
mass function

Consider the p.m.f. of the uniform slash Poisson distribution on n = 0, 1,… , 
given by (7). First, p(0) − p(1) = e−𝜆(2 − 𝜆)∕2 > (=) < 0 as 𝜆 < (=) > 2. Sec-
ond, p(1) − p(2) = 𝜆e−𝜆(2 − 𝜆)∕6 > (=) < 0 as 𝜆 < (=) > 2 also. Third, 
p(2) − p(3) = 𝜆e−𝜆

(
2 + 2𝜆 − 𝜆

2
)
∕24 > (=) < 0 as 𝜆 < (=) > 1 +

√
3 ≃ 2.732. And 

for n = 3, 4,… ,

This is positive whenever 𝜆 < 1 +
√
2n−1 , the upper bound being greater than or 

equal to 1 +
√
5 ≃ 3.236. The p.m.f. of the uniform slash Poisson distribution is 

therefore proven to be decreasing for 0 < 𝜆 < 2 , to have p(0) = p(1) = p(2) and then 
to decrease for � = 2 , and to be unimodal with mode at 2 for 2 < 𝜆 < 1 +

√
3 , and 

with equal modes at 2 and 3 when � = 1 +
√
3.

From numerical evidence, I conjecture but cannot prove that p remains unimodal for 
all larger values of � with its mode, occasionally shared over two consecutive values of 
n, at or a little greater than �.

p
�
(n) = �

� (n + �)

n!

∞∑
m=n

m! q
�
(m)

� (m + � + 1)

�q
�
(m) = (m + �)p

�
(m) − (m + 1)p

�
(m + 1).

p
�
(n + 1)

p
�
(n)

≤ n + �

n + 1
, n = 0, 1,… ,

p(n) − p(n + 1) ∝ (n + 2)

n−1∑
j=0

𝜆
j

j!
− n

n∑
j=0

𝜆
j

j!
= 2

n−1∑
j=0

𝜆
j

j!
−

𝜆
n

(n − 1)!

>

{
2(n − 1) + 2𝜆 − 𝜆

2
} 𝜆

n−2

(n − 1)!
.
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