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Abstract
We revisit the problem of testing for multivariate reflected symmetry about an unspec-
ified point. Although this testing problem is invariant with respect to full-rank affine
transformations, among the few hitherto proposed tests only a class of tests studied in
Henze et al. (J Multivar Anal 87:275–297, 2003) that depends on a positive parameter
a respects this property. We identify a measure of deviation Δa (say) from symmetry
associated with the test statistic Tn,a (say), and we obtain the limit normal distribution
of Tn,a as n → ∞ under a fixed alternative to symmetry. Since a consistent estimator
of the variance of this limit normal distribution is available, we obtain an asymptotic
confidence interval for Δa . The test, when applied to a classical data set, strongly
rejects the hypothesis of reflected symmetry, although other tests even do not object
against the much stronger hypothesis of elliptical symmetry.

Keywords Test for reflected symmetry · Fixed alternatives · Affine invariance ·
Weighted L2-statistic · Elliptical symmetry

1 Introduction

Testing for symmetry of a univariate distribution about a specified or unspecified
point has been a topic of intensive research, see e.g., Section 3 of Quessy (2016). In
the multivariate case, this problem is more complex, since different notions of sym-
metry are available. Among these are, in increasing order of specialization, reflected
(diagonal) symmetry, elliptical symmetry, and spherical symmetry, see, e.g., Meinta-
nis and Ngatchou-Wandji (2012) or Serfling (2006) for an account on the importance
of the assumption of symmetry and a survey on these concepts and corresponding
goodness-of-fit tests.
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742 N. Henze, C. Mayer

In this paper, we consider testing for reflected symmetry. To be specific, let
X , X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) d-
dimensional random (column) vectors, defined on some common probability space
(Ω,A, P), and assume d ≥ 1. Thus, the univariate case is deliberately not excluded

in what follows. Writing
D= for equality in distribution, the problem is to test the

hypothesis

H0 : X − μ
D= μ − X for some (unknown) μ ∈ R

d , (1)

of reflected (diagonal) symmetry about an unspecified point, against general alterna-
tives.

The technically less demanding problem of testing for reflected symmetry about a
specified point has been considered in Aki (1993) and, in the special case d = 2, in
Dyckerhoff et al. (2015) and Einmahl and Gan (2016). For distributions concentrated

on the unit circle, the hypothesis “X
D= −X” is called circular reflective symmetry,

see (Ley and Verdebout 2014) and the references therein. Symmetry of a bivariate
distribution about a given line is studied in Madhava Rao and Raghunath (2012).

Notice that if a test of H0 rejects the hypothesis of reflected symmetry, it is forced
to also reject the stronger hypotheses of elliptical or spherical symmetry. Thus, any
test of H0 is in this sense a “necessary test” for elliptical or spherical symmetry, and
even for multivariate normality.

There is a further basic issue inherent in the testing problem (1). Suppose X −μ
D=

μ − X , and let A be a regular (d × d)-matrix and b ∈ R
d . Then,

AX + b − (Aμ + b)
D= Aμ + b − (AX + b).

This means that the problem of testing for reflected symmetry about an unspecified
point is invariant with respect to full-rank affine transformations of X . As a conse-
quence, any genuine test of H0 based on X1, . . . , Xn should respect this property.
Hence, if Tn = Tn(X1, . . . , Xn) is a test statistic based on X1, . . . , Xn , we should
have affine invariance of Tn , i.e.,

Tn(AX1 + b, . . . , AXn + b) = Tn(X1, . . . , Xn)

for each nonsingular A ∈ R
d×d , and each b ∈ R

d . Among the few attempts to tackle
problem (1) of testing for reflected symmetry with unknown centre (see Székely and
Sen 2002; Heathcote et al. 1995; Henze et al. 2003; Neuhaus and Zhu 1998; Ngatchou-
Wandji 2009 and Section 2.1 ofMeintanis and Ngatchou-Wandji (2012)), only the test
of Henze et al. (2003)— henceforth termed the HKM test—is affine invariant. It is the
purpose of this paper to revisit this test, which has the desirable properties of being
affine invariant, easy to use, consistent against general alternatives, and able to detect
alternatives that approach the hypothesis at the rate n−1/2. We sum up these (and
more) properties in Sect. 2. In Sect. 3, we consider a fixed alternative distribution to
H0 and identify a measure of deviation Δa (say) from symmetry associated with the
test statistic of Henze et al. (2003). Moreover, we prove that the test statistic has a
limit normal distribution under a fixed alternative distribution to H0. In Sect. 4, we
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More good news on the HKM test for multivariate symmetry 743

present a consistent estimator of the variance of this limit distribution, which yields an
asymptotic confidence interval for Δa . Section 5 presents examples, whereas Sect. 6
applies the test to a data set from a health survey of paint sprayers in a car assembly
plant. Section 7 contains some concluding remarks. For the sake of readability, all
proofs are deferred to Sect. 8.

2 The HKM test

The test ofHenze et al. (2003) shares a similar spirit with theBHEP test formultivariate
normality, see (Henze and Wagner 1997). It rejects H0 for large values of the test
statistic

Tn,a =
∫
Rd

⎛
⎝ 1√

n

n∑
j=1

sin
(
t�Yn, j

)⎞⎠
2

exp
(
−a‖t‖2

)
dt,

where a > 0 is some fixed parameter. Here, � denotes transposition of vectors and
matrices, ‖ · ‖ is the Euclidean norm in R

d ,

Yn, j = S−1/2
n (X j − Xn), j = 1, . . . , n, (2)

are the scaled residuals of X1, . . . , Xn , and Xn = n−1 ∑n
j=1 X j , Sn = n−1 ∑n

j=1

(X j − Xn)(X j − Xn)
� denote the sample mean and the sample covariance matrix of

X1, . . . , Xn , respectively. The matrix S−1/2
n is the unique symmetric square root of

S−1
n . To ensure the almost sure invertibility of Sn , we make the basic tacit assumptions

that the distribution of X (henceforth abbreviated by P
X ) is absolutely continuous

with respect to the Lebesgue measure, and that n ≥ d + 1, see (Eaton and Perlman
1973). In addition, we will adopt the (minimal) moment assumption E‖X‖2 < ∞.
This assumption guarantees that the covariance matrix Σ (say) of X exists, and that
Sn converges almost surely to Σ as n → ∞.

An alternative representation of Tn,a is

Tn,a = πd/2

2nad/2

n∑
i, j=1

[
exp

(
− 1

4a
‖Yn,i − Yn, j‖2

)
− exp

(
− 1

4a
‖Yn,i + Yn, j‖2

)]

(see display (1.4) ofHenze et al. (2003)),which is amenable to computational purposes.
Notice that Tn,a is a function ofY�

n,i Yn, j = (Xi−Xn)
�S−1

n (X j−Xn), i, j = 1, . . . , n,
and is thus affine invariant, see also Section 2 of Henze (2002). Besides, it is not
necessary to compute the square root of S−1

n .
A further representation of Tn,a is (see Proposition 2.1 of Henze et al. (2003))

Tn,a = n(2π)d

4

∫
Rd

(
f̂n,a(x) − f̂n,a(−x)

)2
dx, (3)
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744 N. Henze, C. Mayer

where

f̂n,a(t) = 1

n

n∑
j=1

1

(2πa)d/2 exp

(
−‖t − Yn, j‖2

2a

)
, t ∈ R

d . (4)

Notice that f̂n,a(x) figuring in (3) is a nonparametric kernel density estimator with
Gaussian kernel (2π)−d/2 exp(−‖t‖2/2) and bandwidth a1/2, applied to the standard-
ized data Yn,1, . . . ,Yn,n . Since f̂n,a(−x) is the same density estimator, applied to the
data after reflection at the origin, representation (4) may be regarded as an L2-distance
between two nonparametric kernel density estimators, and the role of a is that of a
smoothing parameter. However, in contrast to density estimation where the bandwidth
depends on the sample size n, we keep a fixed in order to achieve positive asymptotic
power with respect to alternatives that approach H0 at the rate n−1/2. In the spirit of
density estimation, it would be tempting to let a = an depend on n and have an → 0
as n → ∞. In view of results of Gürtler (2000) in connection with the test of Bowman
and Foster (1993) for testing for multivariate normality (see also Section 7 of Henze
(2002)), we conjecture that such a test would lose positive asymptotic power against
“n−1/2-close alternatives”, and that the limit distribution of Tn,an under H0, after a
suitable normalization, would be normal.

Some more light on the role of a is cast by the relation

lim
a→∞ ad/2+3 Tn,a

n
= πd/2

96
· (2bn,1 + 3bn,2

)
(5)

(see Proposition 2.2 of Henze et al. (2003)). Here, the limit is elementwise on the
underlying probability space, and

bn,1 = 1

n2

n∑
i, j=1

(
Y�
n,i Yn, j

)3
, bn,2 = 1

n2

n∑
i, j=1

Y�
n,i Yn, j

∥∥Yn,i
∥∥2 ∥∥Yn, j

∥∥2

denote empirical multivariate skewness in the sense of Mardia (1970) and Móri et al.
(1993), respectively. Thus, for large values of a, the test statistic Tn,a , apart from a
scaling factor, is approximately a linear combination of two measures of skewness. In
the univariate case bn,1 and bn,2 coincide, and (5) specializes to give

lim
a→∞ a7/2

Tn,a

n
= 5

√
π

96
·
⎛
⎝1

n

n∑
j=1

(
X j − Xn

sn

)3
⎞
⎠

2

, (6)

where s2n = n−1 ∑n
i=1(Xi − Xn)

2. Hence, apart from a factor, the “limit statistic”
lima→∞ a7/2Tn,a is just squared sample skewness in the univariate case. A corre-
sponding result for the limit of a measure of asymmetry associated with Tn,a will be
given in Theorem 3.
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More good news on the HKM test for multivariate symmetry 745

Under the more stringent moment assumptionE‖X‖4 < ∞, we have (see Theorem
3.2 of Henze et al. (2003))

Tn,a
D−→

∫
Rd

W2(t) exp
(
−a‖t‖2

)
dt,

under H0, where
D−→ denotes convergence in distribution, and W is some centred

Gaussian process in the Hilbert space L2 = L2(Rd ,Bd , exp(−a ‖t‖2)) of (equiva-
lence classes of) measurable functions f : R

d → R that are square integrable with
respect to the measure exp(−a ‖t‖2)dt .

Under a triangular array Xn,1, . . . , Xn,n, n ≥ d + 1, of row-wise i.i.d. random
vectors with density

fn(x) = f0(x)

(
1 + h(x)√

n

)
, x ∈ R

d ,

where f0 is a density symmetric about 0, and h is a bounded measurable function
satisfying

∫
Rd h(x) f0(x)dx = 0, we have

Tn,a
D−→

∫
Rd

(W(t) + s(t))2 exp
(
−a‖t‖2

)
dt

(see Theorem 3.2 of Henze et al. (2003)), where

s(t) =
∫
Rd

[
sin

(
t�x

)
− t�ψ(t)x

]
h(x) f0(x) dx, ψ(t) =

∫
Rd

cos(t�x) f0(x) dx .

Hence, the test has positive asymptotic power against close alternatives that approach
the null hypothesis at the rate n−1/2, provided that the function s(·) does not vanish.

Since both the finite-sample and the limit null distribution of Tn,a depend on the
unknown distribution of X , the test is carried out as permutation test. To this end, let
U1,U2, . . . be a sequence of i.i.d. random variables, independent of X1, X2, . . ., such
that P(Uj = 1) = P(Uj = −1) = 1/2. Conditionally on Yn, j = y j , j = 1, . . . , n,
let Z j = Uj y j , j = 1, . . . , n and put Zn = n−1 ∑n

j=1 Z j . Henze et al. (2003) shows
that the permutation statistic

T P
n,a =

∫
Rd

(
W P

n (t)
)2

exp(−a‖t‖2) dt,

which is based on the so-called permutation process

W P
n (t) = 1√

n

n∑
j=1

Uj

{
sin(t�y j ) −

(
1

n

n∑
k=1

cos(t�yk)

)
t�y j

}
,
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746 N. Henze, C. Mayer

takes the form

T P
n,a = πd/2

2ad/2n

n∑
i, j=1

⎡
⎣
⎛
⎝2 + ‖Zn‖2

2a
−

{
1 + (Zi − Z j )

�Zn

2a

}2
⎞
⎠ exp

(
−‖Zi − Z j‖2

4a

)

+
⎛
⎝‖Zn‖2

2a
−

{
1 + (Zi + Z j )

�Zn

2a

}2
⎞
⎠ exp

(
−‖Zi + Z j‖2

4a

)⎤
⎦ .

Moreover, by Theorem 4.2 of Henze et al. (2003), the limit distribution of T P
n,a under

H0 is the same as that of Tn,a for almost all sample sequences X1, X2, . . .. Under a fixed
alternative distribution satisfying E‖X‖2 < ∞ (which, in view of affine invariance,
is assumed to have zero expectation and unit covariance matrix), we have

lim
n→∞ P(Tn,a > cPn,a(α)) = 1,

where cPn,a(α) denotes the (1 − α)-quantile of the distribution of the permutation
statistic T P

n,a , see Theorem 5.1 of Henze et al. (2003). Since

lim inf
n→∞

Tn,a

n
≥

∫
Rd

(
E[sin(t�X)]

)2
exp

(
−a‖t‖2

)
dt (7)

almost surely (see display (5.1) of Henze et al. (2003)), and since the right-hand side
of (7) is strictly positive if the distribution of X is not reflectedly symmetric, we have
limn→∞ Tn,a = ∞ almost surely for any such distribution. In view of the fact that
cPn,a(α) is bounded in probability almost surely, the test based on Tn,a is consistent
against such an alternative.

We stress that although rejecting H0 for large values of Tn,a yields a globally
consistent test for each fixed a > 0, this property is “lost in the limit a → ∞”, i.e., if
one considers the test statistic 2bn,1 + 3bn,2 figuring on the right-hand side of (5).

To carry out the test in practice, one generates M independent pseudo-random vec-
tors (U1, . . . ,Un),whereU1, . . . ,Un are i.i.d.with auniformdistributionon {−1,+1},
and calculates the corresponding realizations T P

n,a( j), 1 ≤ j ≤ M (say), of the per-
mutation statistic T P

n,a . The hypothesis H0 is rejected at level α, if the value of Tn,a

exceeds the empirical (1− α)-quantile of T P
n,a( j), 1 ≤ j ≤ M . In Section 6, we used

M = 100000 to assess whether the 6-dimensional data set is skew, and the p values
given in Table 8 are based on M = 1000 pseudo-random vectors.

3 Behaviour under fixed alternatives

In this section, we assume that the distribution of X is not symmetric. In view of
affine invariance, we further assume without loss of generality that E[X ] = 0 and
E[XX�] = Id , where Id stands for the unit matrix of order d (recall the standing
assumption E‖X‖2 < ∞). In what follows,
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More good news on the HKM test for multivariate symmetry 747

R(t) = E

[
cos(t�X)

]
, I(t) = E

[
sin(t�X)

]
, t ∈ R

d , (8)

denote the real and the imaginary part of the characteristic function of X , respectively.
The first result shows that the almost sure lower bound of Tn,a/n figuring in (7) is

the almost sure limit of Tn,a/n.

Theorem 1 We have

Tn,a

n
a.s.−→ Δa as n → ∞,

where

Δa =
∫
Rd

I(t)2 exp
(
−a‖t‖2

)
dt . (9)

Interestingly, there is an alternative expression for the measure of distanceΔa from
symmetry figuring in (9).

Theorem 2 We have

Δa = 1

4ad

∫
Rd

(
E

[
exp

(
−‖x − X‖2

2a

)
− exp

(
−‖ − x − X‖2

2a

)])2

dx . (10)

The next result complements the finite-n-limit (6) and sheds even more light on the
measure Δa of asymmetry.

Theorem 3 Suppose that d = 1, and that E|X |3 < ∞. We then have

lim
a→∞ a7/2Δa = 5

√
π

96
·
(
E[X3]

)2
.

Notice that, because of E(X) = 0 and E(X2) = 1, the right-hand side is a factor times
squared skewness in the sense of Pearson.

To state a result on the limit distribution of Tn,a under fixed alternatives, it will be
convenient to introduce the R

d -valued functions

C(t) = E

[
X cos

(
t�X

)]
, S(t) = E

[
X sin

(
t�X

)]
t ∈ R

d . (11)

Theorem 4 If E‖X‖4 < ∞, we have

√
n

(
Tn,a

n
− Δa

)
D−→ N

(
0, σ 2

a

)
,

where

σ 2
a = 4

∫
Rd

∫
Rd

K (s, t) I(s)I(t) exp
(
−a(‖s‖2 + ‖t‖2)

)
dsdt (12)
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748 N. Henze, C. Mayer

and

K (s, t) = E

[
sin

(
s�X

)
sin

(
t�X

)]
− I(s)I(t) − R(t)t�S(s) − R(s)s�S(t)

+R(s)R(t)s�t − 1

2
t�E

[
sin

(
s�X

)
XX�]

C(t) + 1

2
I(s)t�C(t)

− 1

2
s�

E

[
sin

(
t�X

)
XX�]

C(s) + 1

2
I(t)s�C(s)

+ 1

2
s�R(s)E

[
Xt�XX�]

C(t) + 1

2
t�R(t)E

[
Xs�XX�]

C(s)

+ 1

4

{
C(s)�E

[
XX�st�XX�]

C(t) − s�C(s)t�C(t)
}

, s, t ∈ R
d .

Remark 1 Whereas the moment assumption E‖X‖4 < ∞ suffices to show asymptotic
normality of Tn,a for each a > 0 under a fixed alternative to H0, the asymptotics
for the “limit statistic” 2bn,1 + 3bn,2 figuring on the right-hand side of (5) require
the stronger assumption E‖X‖6 < ∞, see Theorem 2.1 of Henze (1997b). The same
holds for the asymptotics of bn,1 and bn,2, which are given in Baringhaus and Henze
(1992) and Henze (1997a), respectively.

4 Estimation of �2
a

Theorem 4 paves the way to an asymptotic confidence interval for Δa provided
that a consistent estimator σ̂ 2

n,a = σ̂ 2
n,a(X1, . . . , Xn) of the variance σ 2

a figuring
in (12) is available. Since Theorem 4 requires E(X) = 0 and E(XX�) = Id ,
we base such an estimator on the empirically standardized data defined in (2),
where we put Y j = Yn, j for the sake of brevity in what follows. Moreover, let
wa(s, t) = exp

(−a(‖s‖2 + ‖t‖2)). Such an estimator is

σ̂ 2
n,a = 4

∫
Rd

∫
Rd

Kn(s, t) In(s)In(t) wa(s, t) dsdt . (13)

Here, Kn(s, t) is the empirical version of K (s, t) figuring in the statement of Theorem
4. This version originates from K (s, t) by replacing the functions R(·), I(·), C(·) and
S(·) defined in (8) and (11) with their respective empirical counterparts

Rn(t) = 1

n

n∑
j=1

cos
(
t�Y j

)
, In(t) = 1

n

n∑
j=1

sin
(
t�Y j

)
,

Cn(t) = 1

n

n∑
j=1

Y j cos
(
t�Y j

)
, Sn(t) = 1

n

n∑
j=1

Y j sin
(
t�Y j

)
, t ∈ R

d ,

and doing the same with each of the five explicitly designated expectations figuring
in the definition of K (s, t). Thus, for example, E

[
sin

(
s�X

)
sin

(
t�X

)]
is replaced
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More good news on the HKM test for multivariate symmetry 749

with n−1 ∑n
j=1 sin(s

�Y j ) sin(t�Y j ), etc. To give an expression of σ̂ 2
n,a that does not

involve any integration and is thus amenable to computational purposes, we put

ρ1,a(u, v) :=
∫
Rd

sin(u�t) sin(v�t) exp(−a‖t‖2) dt,

ρ2,a(u, v) :=
∫
Rd

t cos(u�t) sin(v�t) exp(−a‖t‖2) dt, u, v ∈ R
d .

These integrals can be evaluated to give

ρ1,a(u, v) = 1

2

(π

a

)d/2
(
exp

(
−‖u − v‖2

4a

)
− exp

(
−‖u + v‖2

4a

))
,

ρ2,a(u, v) = 1

4a

(π

a

)d/2
(

(v − u) exp

(
−‖v − u‖2

4a

)

+(v + u) exp

(
−‖v + u‖2

4a

))
.

Notice that the function ρ2,a takes values in R
d . Suppressing the dependence on a, let

Vn,r := 1

n2

n∑
i, j=1

ρr ,a(Yi ,Y j ), V n,r (y) := 1

n

n∑

=1

ρr ,a(y,Y
), y ∈ R
d , r ∈ {1, 2},

Σn := 1

n2

n∑
i,k=1

ρ1,a(Yi ,Yk)YiY
�
i , Γn := 1

n2

n∑
i,
=1

ρ2,a(Yi ,Y
)Y
�
i ,

a computationally feasible expression for σ̂ 2
n,a is given as follows.

Proposition 1 We have

σ̂ 2
n,a = 4

n

n∑
j=1

V n,1(Y j )
2 − 4V 2

n,1 − 8

⎛
⎝1

n

n∑
j=1

V n,1(Y j )Y j

⎞
⎠

�
Vn,2 + 4

∥∥Vn,2
∥∥2

− 4 tr

⎛
⎝Σn

⎛
⎝1

n

n∑
j=1

V n,2(Y j )Y
�
j

⎞
⎠

⎞
⎠ + 4Vn,1

1

n

n∑
j=1

Y�
j V n,2(Y j )

+ 4V�
n,2

⎛
⎝ 1

n2

n∑
j,k=1

Y jY
�
j YkY

�
j V n,2(Yk)

⎞
⎠

+ 1

n

n∑
j=1

(
Y�
j ΓnY j

)2 −
(
1

n

n∑
i=1

Y�
i V n,2(Yi )

)2

.

The next result shows that σ̂ 2
n,a defined in (13) is a consistent estimator of σ 2

a defined
in (12).
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750 N. Henze, C. Mayer

Theorem 5 If E‖X‖4 < ∞, we have

σ̂ 2
n,a

P−→ σ 2
a .

The proof is extremely tedious but in principle straightforward. A similar problem
was encountered in Gürtler (2000) in the context of estimating the variance of the
limit normal distribution of the BHEP test for multivariate normality under a fixed
alternative distribution. Details are given in the final Section 8.

From Theorem 5 and Theorem 4, we obtain the following asymptotic confidence
interval for Δa .

Corollary 1 For α ∈ (0, 1), let z1−α/2 be the (1−α/2)-quantile of the standard normal
distribution. Then,

In,a,α =
[Tn,a

n
− σ̂n,a√

n
z1−α/2,

Tn,a

n
+ σ̂n,a√

n
z1−α/2

]
(14)

is an asymptotic confidence interval forΔa at level1−α, i.e., we have limn→∞ P(In,a,α


 Δa) = 1 − α if E‖X‖4 < ∞.

5 Discussion and Examples

5.1 1a as ameasure of asymmetry

Since the distribution of a d-dimensional random vector X is symmetric with respect
to the origin if, and only if, the imaginary part of its characteristic function vanishes,

Δa =: Δa(X) (say) defined in (9) is zero if, and only if, we have X
D= −X . Thus,

Δa , without any assumption on the distribution of X , may be regarded as a measure
of deviation from reflected symmetry with respect to the origin. In what follows, we
almost exclusively confine to the case d = 1. As an example, consider a random
variable with the normal distribution N(μ, σ 2). Some straightforward algebra shows
that, for this distribution, Δa takes the value

√
π

2
√
a + σ 2

(
1 − exp

(
− μ2

a + σ 2

))
.

In particular, as may have been anticipated, the degree of asymmetry with respect to
0 increases with increasing |μ| and, for fixed μ, it decreases as σ 2 increases.

Now suppose, as in the previous sections, thatE‖X‖2 < ∞, and that the covariance
matrix Σ of X is not degenerate. Furthermore, put μ = E(X). If one computes Δa

for the standardized random vector Y := Σ−1/2(X −μ), thenΔa(Y ) = 0 if, and only
if, the distribution of X is reflectedly symmetric around μ. Since the test statistic Tn,a

is affine invariant, we will (as before) assume without loss of generality μ = 0 and
Σ = Id .
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For the sake of illustration, we will by analogy with (Partlett and Prakash 2017)
consider several asymmetric univariate distributions. In contrast to Partlett and Prakash
(2017), however, our distributions are standardized. The distributions under discussion
are an exponential distribution (denoted by E), an adjusted lognormal distribution
(denoted byLN), and amodified folded normal distribution, denoted by |N|.Moreover,
analogously to Partlett and Prakash (2017), we consider the following normal mixture,
in order to investigate cases of fairly weak asymmetry. Since there is not much extra
work involved, we present this mixture for a general d ≥ 1. Suppose that

X
D= TY1 + (1 − T )Y2,

where T ,Y1,Y2 are independent, P(T = 1) = p = 1 − P(T = 0), 0 ≤ p < 1/2,

Y1
D= N(e1, Id − p

1−p e1e
�
1 ) and Y2

D= N(−p/(1 − p)e1, Id − p
1−p e1e

�
1 ), where

e1 = (1, 0, . . . , 0)� is the first canonical unit vector in R
d . In view of T 2 = T and

independence, we have

E(X) = E(T )E(Y1) + (1 − E(T ))E(Y2) = 0,

E(XX�) = E(T )E(Y1Y
�
1 ) + (1 − E(T ))E(Y2Y

�
2 ) = Id .

The addition theorem for the sine function gives

sin(t�X)
D= sin(T t�Y1) cos((1 − T )t�Y2) + cos(T t�Y1) sin((1 − T )t�Y2),

and conditioning on T it follows that

I(t) = E[sin(t�X)] = pE[sin(t�Y1)] + (1 − p) E[sin(t�Y2)].

Writing t = (t1, . . . , td)�, we have

t�Y1
D=N

(
t1, ‖t‖2 +

(
1 − 2p

1 − p
− 1

)
t21

)
,

t�Y2
D=N

(
−pt1/(1 − p), ‖t‖2 +

(
1 − 2p

1 − p
− 1

)
t21

)
.

Since the characteristic function of the normal distribution N(μ, σ 2
a ) is exp(iξμ −

σ 2
a ξ2/2), ξ ∈ R, it follows that

I(t) = exp

⎛
⎝−

‖t‖2 +
(
1−2p
1−p − 1

)
t21

2

⎞
⎠

(
p sin t1 − (1 − p) sin

(
pt1

1 − p

))
.
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Thus,

Δa = p2
∫
Rd

sin2(t1) exp

(
−(1 + a)‖t‖2 −

(
1 − 2p

1 − p
− 1

)
t21

)
dt

+(1 − p)2
∫
Rd

sin2
(

pt1
1 − p

)
exp

(
−(1 + a)‖t‖2 −

(
1 − 2p

1 − p
− 1

)
t21

)
dt

−2p(1 − p)
∫
Rd

sin(t1) sin

(
pt1

1 − p

)
exp

(
−(1 + a)‖t‖2 −

(
1 − 2p

1 − p
− 1

)
t21

)
dt .

Since
∫ ∞
−∞ exp(−(1+ a)ξ2) dξ = √

π/(1 + a), the computation of Δa boils down to
the calculation of integrals of the type

∫ ∞

−∞
sin(αξ) sin(βξ) exp(−γ ξ2)dξ =

√
π

2
√

γ

×
(
exp

(
− (α − β)2

4γ

)
− exp

(
− (α + β)2

4γ

))
,

whereα, β ∈ R and γ > 0. After tedious but straightforward calculations, one obtains

Δa =
(

π

a + 1

)(d−1)/2 √
π

γa

[
p2

2

(
1 − exp

(
− 1

γa

))

+ (1 − p)2

2

(
1 − exp

(
− p2

(1 − p)2γa

))

−p(1 − p)

(
exp

(
− (1 − 2p)2

4(1 − p)2γa

)
− exp

(
− 1

4(1 − p)2γa

))]
,

where γa = a + (1 − 2p)/(1 − p). For the following comparison, we choose the
values p = 0.25 and p = 0.4. The resulting normal mixtures are denoted with N1 and
N2, respectively. The values of Δa for the distributions E, LN and |N| were computed
using numerical integration. The results are given in Table 1 for different values of a.

Suppose that random vectors X and Y have distributions P and Q, respectively.
Writing P <a Q if Δa(X) < Δa(Y ), i.e., if the distribution of X is less asymmetric
than that of Y , when measured by in terms of Δa , Table 1 exhibits the ordering

N1 <a N2 <a |N | <a E <a LN (15)

of asymmetry, at least if a ∈ {0.01, 0.1, 4}. On the other hand, Δa(E) is a bit larger
than Δa(LN) if a = 1. Ordering (15) is mostly compatible with an intuitive notion of
the strength of asymmetry of a distribution, as seen from Figure 1 and 2. These figures
display the densities of the distributions N1, N2, |N| , E, and LN. Furthermore, we
plotted corresponding histograms based on 10 000 000 samples in order to enhance
the impression of asymmetry.
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Table 1 Values of Δa ,
a ∈ {0.01, 0.1, 1, 4}, for N1, N2,
|N|, LN and E

a = 0.01 a = 0.1 a = 1 a = 4

N1 0.01039 0.00713 0.00061 0.00002

N2 0.05062 0.02889 0.00115 0.00002

|N| 0.19063 0.11333 0.00972 0.00034

E 0.55786 0.29080 0.01961 0.00084

LN 1.14876 0.45110 0.01912 0.00104

N1

de
ns

ity

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

N2

de
ns

ity

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 1 Densities and histograms: N1 (left) and N2 (right)
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Fig. 2 Densities and histograms: |N| (left), E (middle) and LN (right)

5.2 Confidence intervals for1a

Using the above normal mixture with p = 0.25 and p = 0.4 in the case d = 1, we
investigated whether the estimator Tn,a/n ofΔa is useful for practical purposes. Since
the normal mixture exhibits fairly weak asymmetry, we studied the performance of
Tn,a/n also on centred Exp(1) distributed samples, which represent a much stronger
degree of asymmetry. To obtain a reasonable conclusion, we computed the underlying
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Table 2 Estimated values based on 1000 samples of the distributions N1, N2 and E, a = 0.01

n ∅Tn,a/n ∅σ̂ 2
n,a σ̂ 2

n,a < 0 estimated 1 − α Relative MSE

N1 40 0.1945 1.4770 1 93.7 4.3572

80 0.1022 0.6431 1 96.6 1.0978

100 0.0846 0.4946 0 96.3 0.7377

250 0.0391 0.1986 0 97.9 0.1221

500 0.0240 0.1211 0 98.0 0.0344

N2 40 0.2355 1.9090 1 97.0 1.0283

80 0.1465 1.0602 0 98.4 0.3180

100 0.1300 0.9362 0 98.2 0.2428

250 0.0798 0.6020 0 97.7 0.0579

500 0.0641 0.5073 0 95.9 0.0218

E 40 0.7120 6.2629 0 98.4 0.2087

80 0.6442 5.1665 0 97.2 0.1095

100 0.6244 4.9267 0 97.7 0.0771

250 0.5866 4.5024 0 97.2 0.0288

500 0.5726 4.3538 0 96.8 0.0134

value of σ 2
a for the latter distribution by means of numerical integration and made use

of the results of the previous subsection.
Regarding the choice of the parameter a, note that small values of a entail bigger

values for both Δa and Tn,a/n, and likewise for σ 2
a and σ̂ 2

n,a . To bypass computational
inaccuracies and to avoid negative values of σ̂ 2

n,a that sometimes show up in small
samples, we used mainly small values for a, which seems to have no disadvantages at
all. Nevertheless, the qualitative behaviour of the estimates is similar if the sample size
is big enough. To judge the effect of a, the outcome of the simulation study is displayed
in Table 2 for a = 0.01 and in Table 3 for a = 0.1. For each combination of the sample
sizen, the parametera, and the underlyingdistribution,weperformed1000 simulations
and computed the sample mean of Tn,a/n (denoted by ∅Tn,a/n) and of the sample
variance σ̂ 2

n,a (denoted by ∅σ̂ 2
n,a) as estimates of Δa and σ 2

a , respectively. Thereby,
using (14) with α = 0.05, we calculated an approximation for the (1− α)-confidence
interval and observed how often the interval contained Δa . The average number per
100 samples is displayed in the columns called “estimated 1 − α”. Furthermore, we
highlighted the total number of negative estimates for σ 2 as “σ̂ 2

n,a < 0”. Finally, the
relative mean squared error of Tn,a/n, i.e.,

1
1000

∑1000
j=1

(
Tn
n − Δa

)

Δa
,

is denoted as “relative MSE”. In Table 2, the true values of Δa are Δa = 0.0104
for N1, Δa = 0.0506 for N2 and Δa = 0.5577 for E. Furthermore, the value of
σ 2
a is 3.0409 for the distribution E. Since there is no known formula to represent σ 2

a
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Table 3 Estimated values based on 1000 samples of the distributions N1, N2 and E, a = 0.1

n ∅Tn,a/n ∅σ̂ 2
n,a σ̂ 2

n,a < 0 Estimated 1 − α Relative MSE

N1 40 0.0436 0.1452 14 95.6 0.4535

80 0.0240 0.0800 6 98.0 0.1104

100 0.0220 0.0733 3 98.0 0.0895

250 0.0130 0.0422 2 95.3 0.0213

500 0.0100 0.0327 1 91.5 0.0087

N2 40 0.0614 0.2721 24 95.0 0.1897

80 0.0488 0.2086 11 92.1 0.0791

100 0.0475 0.2066 3 91.9 0.0694

250 0.0344 0.1554 1 92.1 0.0188

500 0.0321 0.1491 0 93.2 0.0153

E 40 0.3052 0.9429 1 91.9 0.0190

80 0.3026 0.9135 0 94.0 0.0113

100 0.2994 0.9028 0 94.7 0.0084

250 0.2949 0.8679 0 95.5 0.0033

500 0.2941 0.8541 0 95.2 0.0017

as a composition of sums, the exact computation is time-consuming and is therefore
omitted. In Table 3, the true values of Δa are Δa = 0.0071 for N1, Δa = 0.0289
for N2 and Δa = 0.2908 for the centred standard exponential distribution E. For the
latter distribution, the value of σ 2

a is σ 2
a = 0.8875.

As each table indicates, the desired properties can also be seen in practical appli-
cations. Even for small sample sizes, the computed intervals maintain the nominal
level, and the estimator Tn,a/n quantifies the departure from symmetry for fixed a.
Furthermore, the relative mean squared error decreases quickly as the sample size
increases.

5.3 An alternative test procedure

We now assess whether the hypothesis of symmetry can be rejected or accepted by
looking at the confidence interval In,a,α for Δa , as given in (14). To this end, one
might think of testing for symmetry by rejecting the hypothesis H0 in (1) if 0 /∈ In,a,α .
Our study was carried out using the distributions of Subsection 5.1. Furthermore,
we applied the method on the standard normal distribution N(0,1) and on a uniform
distribution in [−1 ,1], denoted by U[−1 ,1], to check whether the nominal level
was maintained. The same reasoning as in Sect. 5.2 led to the choices a = 0.01
and a = 0.1. Again, we performed 1000 simulations and used the sample sizes n =
40, n = 60, n = 80, n = 100 and n = 250. As Tables 4 and 5 indicate, this test
procedure shows quite good results. To compare the procedure to the permutation test,
as studied in Henze et al. (2003), we expanded the simulations of Henze et al. (2003)
by a simulation study for d = 1 and the choices a = 1 and a = 4. The results of
Tables 6 and 7 indicate that it depends on the underlying distribution whether the test
based on the confidence interval or the permutation test is more favourable.
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Table 4 Percentages of rejection
of H0 based on 1000 samples,
a = 0.01 (confidence interval
procedure)

n = 40 n = 60 n = 80 n = 100 n = 250

N(0,1) 5.9 5.3 5.5 4.1 3.5

U[−1 ,1] 3 2.9 2.5 3.1 4.1

N1 74.9 94.7 98.3 99.8 100

N2 63.1 68.9 72.8 81 95.4

|N| 22.7 30.2 57.2 71.8 99.8

LN 39.4 58.3 76.7 87.1 99.2

E 45.1 69 86.9 95.4 100

Table 5 Percentages of rejection
of H0 based on 1000 samples,
a = 0.1 (confidence interval
procedure)

n = 40 n = 60 n = 80 n = 100 n = 250

N(0,1) 5 4.2 3.3 2.8 1.6

U[−1 ,1] 2.5 1.9 1.7 2 4.1

N1 0.3 16 71.3 90.8 100

N2 19 27.2 33.5 44.1 72.8

|N| 18 39.8 46.8 61.4 99.6

LN 58.6 72 83.2 91.5 100

E 50.9 73 89.3 96 100

Table 6 Percentages of rejection
of H0 based on 1000 samples,
a = 1 (permutation test)

n = 40 n = 60 n = 80 n = 100 n = 250

N(0,1) 5.6 5.6 6.9 6.4 4.1

U[−1 ,1] 4.2 3.9 5.2 6.2 5.4

N1 8.3 13.9 12.2 15.1 37.1

N2 14.4 19.6 25 29.6 64

|N| 74.9 89 97.1 100 100

LN 99.5 100 100 100 100

E 97.1 100 100 100 100

Table 7 Percentages of rejection
of H0 based on 1000 samples,
a = 4 (permutation test)

n=40 n = 60 n = 80 n = 100 n = 250

N(0,1) 5.5 5.5 6.5 6.6 4.2

U[−1 ,1] 3.5 3.9 5.2 5.9 5.2

N1 8.2 13.2 11.9 15.6 40

N2 12.9 17.4 21.8 27.2 60

|N| 74.7 89.8 97.6 100 100

LN 99.5 100 100 100 100

E 97.2 100 100 100 100
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6 A real data example

In Henze et al. (2003), the HKM test was suggested, and several mathematical proper-
ties have been obtained. In what follows, we apply the test to a data set that originated
from a health survey of paint sprayers in a car assembly plant. This data set, which
is given in Royston (1983), contains 103 observations, each consisting of 6 variates,
namely:

1. haemoglobin concentration,
2. PCV packed cell volume,
3. white blood cell count,
4. lymphocyte count,
5. neutrophil count,
6. serum lead concentration.

As is a common procedure for haematological data (see, e.g., Royston (1983)), we
applied a logarithmic transformation to each of the variates 3.–6., since these exhibit
skewed distributions. Royston (1983) first investigated whether the transformed data
arise from a normal distribution. Since three observations seem to be outliers, they
were removed. By applying a multivariate generalization of the Shapiro–Wilk test for
univariate normality, Royston deduced that the 6-dimensional data showed significant
departures from normality, although such a conclusion could not be drawn for any of
the bivariate marginal distributions.

From an application of a covariance-matrix-based Wald test to the transformed full
data set, Schott (2002) arrived at the same result. Since a test for elliptical symmetry,
applied to the same data set, gave a p value of 0.11, Schott argued that it is not
unreasonable to assume that the sample originates from an elliptical distribution.

Using a Chi-square type statistic for testing for elliptical symmetry, Batsidis et al.
(2014) even obtained a p value larger than 0.9 and thus did not find any evidence
for rejecting the hypothesis of elliptical symmetry. The latter findings are in stark
contrast to the results that originate when applying the HKM test to the full data set.
Astonishingly, the test rejected the hypothesis of central symmetry with a p value of
7 · 10−5 using a = 1. Taking a = 0.5, a = 2 and a = 4 leads to p values of a similar
magnitude. Since central symmetry is a necessary condition for elliptical symmetry,
we can also strongly reject the hypothesis of elliptical symmetry of the 6-variate full
data set.

To investigate whether the declared outliers are responsible for rejecting symmetry,
we removed these values (observations 21, 47, and 52 in the data set given in Royston
(1983)) and applied the HKM test. Again taking a = 0.5, a = 1, a = 2, and a = 4, we
obtained p values of magnitude 10−3. Consequently, also the remaining data exhibit
strong asymmetry.

We finally addressed the question whether any bivariate combination of the 6-
dimensional logarithmically transformed data (without outliers) is compatible with the
hypothesis of reflected symmetry. Looking at the two plots in Fig. 3, both combinations
seem to be equally symmetric or rather skew. However, taking a = 1 we obtained
the p values given in Table 8. Apparently, the desired 5% level of significance is
only exceeded for the combinations “haemoglobin concentration—white blood cell
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Fig. 3 Scatterplots of haemoglobin concentration— neutrophil count (left) and PCV packed cell volume—
serum lead concentration (right)

Table 8 p values of the bivariate
HKM test with parameter a = 1

p.c.v. w.b.c. count l. count n. count s.l. con.

haem. con. 0.158 0.027 0.227 0.028 0.111

p.c.v. 0.252 0.694 0.531 0.699

w.b.c. count 0.164 0.076 0.286

l. count 0.732 0.381

n. count 0.645

count” and “haemoglobin concentration—neutrophil count”. Consequently, there is no
evidence of departure from symmetry for the right-hand combination in Fig. 3,whereas
the left-hand one is certainly skew.We stress that these results only serve for descriptive
purposes. Using a false discovery rate controlling procedure, e.g., the Bonferroni
correction or theBenjamini–Hochberg procedure, see (Benjamini andYekutieli 2001),
we did not obtain any rejection.

7 Concluding remarks

Like with many other goodness-of-fit tests, also the HKM test for reflective symmetry
contains an element of arbitrariness. In this case, it is the parameter a. Although the
test is consistent for each fixed a > 0, power may sometimes depend heavily on
a. From the results of a small simulation study given in Henze et al. (2003) for the
case n ∈ {20, 40, 60, 80}, d ∈ {2, 4, 6} and a ∈ {1, 2, 3, 4}, the choice a = 1 and
a = 4 seems to be promising, and it seems that smaller values of a generally do not
increase power. On the other hand, small values of a, such as a = 0.1 or a = 0.01,
lead to reliable confidence intervals for Δa . In this respect, much more simulation
work is needed. As for a “good choice of a”, it may also be tempting to let a depend
on X1, . . . , Xn . However, a basic issue with any goodness-of-fit test is that it has a
preference for some finite-dimensional space of alternatives, and there is no test which
pays equal attention to an infinite number of orthogonal alternatives, see, e.g., Janssen
(2000). Thus, also a “data driven test” will have its limitations.
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8 Proofs

8.1 Proof of Theorem 1

Putting

T̃n,a =
∫
Rd

⎛
⎝ 1√

n

n∑
j=1

sin
(
t�X j

)⎞⎠
2

exp
(
−a‖t‖2

)
dt,

we have

T̃n,a

n
=

∥∥∥∥∥∥
1

n

n∑
j=1

sin
(
•�X j

)∥∥∥∥∥∥
2

L2

,

where ‖ · ‖L2 denotes the norm in L2. The strong law of large numbers in Banach
spaces yields

lim
n→∞

∥∥∥∥∥∥
1

n

n∑
j=1

sin
(
•�X j

)
− E

[
sin

(
•�X

)]∥∥∥∥∥∥
2

L2

= 0

P-almost surely, whence

lim
n→∞

T̃n,a

n
= Δa (16)

P-almost surely. Since

∣∣∣∣∣∣
1

n

n∑
j=1

sin
(
t�X j

)
+ 1

n

n∑
j=1

sin
(
t�Yn, j

)∣∣∣∣∣∣ ≤ 2,

it follows that

|T̃n,a − Tn,a |
n

≤ 2
∫
Rd

∣∣∣∣∣∣
1

n

n∑
j=1

sin
(
t�X j

)
− 1

n

n∑
j=1

sin
(
t�Yn, j

)∣∣∣∣∣∣ exp
(
−a‖t‖2

)
dt .

Putting
Δn, j = Yn, j − X j = S−1/2

n (X j − Xn) − X j , (17)

the inequalities | sin a − sin b| ≤ |a − b| and |t�z| ≤ ‖t‖ · ‖z‖ give

|T̃n,a − Tn,a |
n

≤ 2

⎛
⎝1

n

n∑
j=1

‖Δn, j‖
⎞
⎠

∫
Rd

‖t‖ exp(−a‖t‖2) dt .
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Writing tr(A) for the trace of a square matrix A, we have

1

n

n∑
j=1

‖Δn, j‖2 = tr

⎛
⎝(S−1/2

n − Id)
2 1

n

n∑
j=1

X j X
�
j

⎞
⎠

−2X
�
n S

−1/2
n (S−1/2

n − Id)Xn + X
�
n S

−1
n Xn .

Since S−1/2
n

a.s.−→ Id and Xn
a.s.−→ 0, it follows that

1

n

n∑
j=1

‖Δn, j‖2 a.s.−→ 0. (18)

In view of (16) and the Cauchy–Schwarz estimate

1

n

n∑
j=1

‖Δn, j‖ ≤
⎛
⎝1

n

n∑
j=1

‖Δn, j‖2
⎞
⎠

1/2

,

we have
1

n

n∑
j=1

‖Δn, j‖ a.s.−→ 0. (19)

Invoking (16), the proof is completed. ��

8.2 Proof of Theorem 2.

Denote the right-hand side of (10) by Δ̃a . From (3), we have

Tn,a

n
= (2π)d

4

∫
Rd

(
f̂n,a(x) − f̂n,a(−x)

)2
dx .

We show limn→∞ E[Tn,a/n] = Δ̃a and limn→∞ V(Tn,a/n) = 0, where V denotes
variance. Since a constant stochastic limit is uniquely determined, the assertion fol-
lows. Fubini’s theorem gives

E

[
Tn,a

n

]
= (2π)d

4

∫
Rd

E

[(
f̂n,a(x) − f̂n,a(−x)

)2]
dx .

Using (4) and expanding the round bracket, we obtain

f̂n,a(x)
2 = 1

(2πa)d

1

n2

n∑
i, j=1

exp

(
−‖x − Yn,i‖2

2a

)
exp

(
−‖x − Yn, j‖2

2a

)
.
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Taking expectations, symmetry arguments, the inequality exp(−ξ) ≤ 1, ξ ≥ 0, almost
sure convergence of Yn, j to X j for fixed j , dominated convergence and independence
yield

lim
n→∞ E

[
f̂n,a(x)

2
]

= 1

(2πa)d
E

[
exp

(
−‖x − X‖2

2a

)]2
.

The other terms are treated similarly, and thus limn→∞ E[Tn,a/n] = Δ̃a . To prove
limn→∞ V(Tn,a/n) = 0, start with

(
Tn,a

n

)2

=
∫
Rd

∫
Rd

(
f̂n,a(x) − f̂n,a(−x)

)2 (
f̂n,a(y) − f̂n,a(−y)

)2
dx dy

and use the techniques indicated above to show that limn→∞ E[(Tn,a/n)2] = Δ̃2
a .

Hence, limn→∞ V(Tn,a/n) = 0, and the assertion follows. ��

8.3 Proof of Theorem 3.

The proof uses the following Abelian theorem for Laplace transforms (see Widder
1959, p. 182): Suppose g : [0,∞) → R is a measurable function that is integrable
over compact intervals. Assume further that

∫ ∞
0 g(t)e−atdt is finite for each a > 0.

If for some γ ≥ 0 and some real constant A

lim
s→0

Γ (γ + 1)

sγ

∫ s

0
g(t)dt = A, (20)

then

lim
a→∞ aγ

∫ ∞

0
g(t)e−atdt = A. (21)

Notice that (20) holds if

lim
u→0

Γ (γ )g(u)

uγ−1 = A. (22)

We use the above result in the following way: Starting with (9), the fact that I(t) =
E[sin(t X)] satisfies I(t) = I(−t) and a change of variable yield

Δa =
∫ ∞

0
g(u)e−au du,

where

g(u) = I2(
√
u)√
u

, u > 0,
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and g(0) := 0. From Taylor’s theorem, we have

sin x = x − cos(ϑx)

6
· x3, x ∈ R,

where ϑ = ϑ(x) and |ϑ | ≤ 1. Hence,

sin(t X) = t X − cos(Θt X)

6
· t3X3,

whereΘ is a random variable that depends on t X and satisfies |Θ| ≤ 1. SinceE(X) =
0, Lebesgue’s dominated convergence theorem yields

I(t) = E[sin(t X)] = − t3E(X3)

6
+ o(t3)

as t → 0 and hence

g(u) = u5/2
(
E[X3])2
36

+ o
(
u5/2

)

as u → 0. It follows that (22) holds with γ = 7/2 and A = 5
√

π(E[X3])2/96, as
was to be shown. ��

8.4 Proof of Theorem 4.

We use Theorem 1 of Baringhaus et al. (2017), with I(t) corresponding to z(t) in that
paper. Putting

Wn(t) := 1√
n

n∑
j=1

(
sin

(
t�Yn, j

)
− I(t)

)
, t ∈ R

d ,

we will show that Wn(·) D−→ W (·) in L2, where W (·) is a centred Gaussian random
element of L2 having covariance kernel K (s, t) figuring in the statement of Theorem
4. Denoting by 〈·, ·〉 the inner product in L2 and observing that, with I(·) defined in
(8),

√
n

(
Tn,a

n
− Δa

)
= 2〈Wn, I〉 + 1√

n
‖Wn‖2L2 ,

the continuous mapping theorem yields 〈Wn, I〉 D−→ 〈W , I〉 as well as ‖Wn‖2L2
D−→

‖W‖2L2 , whence

√
n

(
Tn,a

n
− Δa

)
D−→ 2〈W , I〉.
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More good news on the HKM test for multivariate symmetry 763

The distribution of 2〈W , I〉 is the required normal distribution N(0, σ 2
a ). The proof of

Wn(·) D−→ W (·) will only be sketched since it closely parallels the proof of Theorem
3.1 of Henze et al. (2003). Let

Wn(t) := 1√
n

n∑
j=1

(
sin

(
t�X j

)
+ t�Δn, j cos(t

�X j ) − I(t)
)

,

W ∗
n (t) := 1√

n

n∑
j=1

(
sin

(
t�X j

)
− I(t) − t�R(t)X j − 1

2
t�

(
X j X

�
j − Id

)
C(t)

)
,

where Δn, j is given in (17). Since Wn = (Wn − Wn) + (Wn − W ∗
n ) + W ∗

n , the main
steps of the proof are to show

∥∥Wn − Wn
∥∥L2 = oP(1),

∥∥Wn − W ∗
n

∥∥L2 = oP(1) and

W ∗
n

D−→ W in L2. The details are omitted. Notice that the convergence W ∗
n

D−→ W
follows from the Lindeberg–Lévy type central limit theorem in separable Hilbert
spaces (see, e.g., Bosq 2000), since the summands comprising W ∗

n are i.i.d. centred
random elements of L2. ��

8.5 Proof of Proposition 1.

In what follows, ρ j is shorthand for ρ j,a , j ∈ {1, 2}. Starting with (13), the proof
follows from straightforward but tedious calculations and symmetry arguments using

∫∫
1

n

∑
j

sin(s�Y j ) sin(t
�Y j ) In(s)In(t) wa(s, t) dsdt

= 1

n3
∑
j,k,


ρ1(Y j ,Yk)ρ1(Y j ,Y
) = 1

n

∑
j

V n,1(Y j )
2,

∫∫
I2n(s)I

2
n(t)wa(s, t) dsdt =

⎛
⎝ 1

n2
∑
j,k

ρ1(Y j ,Yk)

⎞
⎠

2

= V 2
n,1,

∫∫
Rn(t)t

�Sn(s)In(s)In(t)wa(s, t) dsdt

=
⎛
⎝ 1

n2
∑
j,k

ρ1(Y j ,Yk)Y j

⎞
⎠

�⎛
⎝ 1

n2
∑
i,


ρ2(Yi ,Y
)

⎞
⎠=

⎛
⎝1

n

∑
j

V n,1(Y j )Y j

⎞
⎠

�
Vn,2,

∫∫
Rn(s)Rn(t)s

�t In(s)In(t)wa(s, t) dsdt =
∥∥∥ 1

n2
∑
i,k

ρ2(Yi ,Yk)
∥∥∥2 = ‖Vn,2‖2,

∫∫
t� 1

n

∑
i

sin(s�Yi )YiY�
i Cn(t)In(s)In(t) wa(s, t) dsdt
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= 1

n4
∑

i, j,k,


ρ1(Yi ,Yk)Y
�
i Y jY

�
i ρ2(Y j ,Y
) = tr

⎛
⎝Σn

⎛
⎝1

n

∑
j

V n,2(Y j )Y
�
j

⎞
⎠

⎞
⎠ ,

∫∫
In(s)t

�Cn(t)In(s)In(t)wa(s, t) dsdt

=
⎛
⎝ 1

n2
∑
i,k

ρ1(Yi ,Yk)

⎞
⎠

⎛
⎝ 1

n2
∑
j,


Y�
j ρ2(Y j ,Y
)

⎞
⎠ = Vn,1

1

n

∑
j

Y�
j V n,2(Y j ),

∫∫
s�Rn(s)

1

n

∑
j

Y j t
�Y jY

�
j Cn(t)In(s)In(t) wa(s, t) dsdt

=
⎛
⎝ 1

n2
∑
i,


ρ2(Yi ,Y
)

⎞
⎠

� ⎛
⎝ 1

n3
∑
j,k,m

Y jY
�
j YkY

�
j ρ2(Yk,Ym)

⎞
⎠

= V�
n,2

⎛
⎝ 1

n2
∑
j,k

Y jY
�
j YkY

�
j V n,2(Yk)

⎞
⎠ ,

∫∫
Cn(s)

� 1

n

∑
j

Y jY
�
j st

�Y jY
�
j Cn(t) In(s)In(t) wa(s, t) dsdt

= 1

n

∑
j

(
Y�
j ΓnY j

)2
,

and

∫∫
s�Cn(s)t

�Cn(t) In(s)In(t) wa(s, t) dsdt =
⎛
⎝ 1

n2
∑
i,k

Y�
i ρ2(Yi ,Yk)

⎞
⎠

2

.

Here, summation is from 1 to n for each of the indices, and each integral is over R
d . ��

8.6 Proof of Theorem 5.

The first observation is the following: Again suppressing the dependence on a, put

σ̂ 2
n,0 = 4

∫
Rd

∫
Rd

K 0
n (s, t) I0n(s)I

0
n(t) wa(s, t) dsdt,

where K 0
n (s, t) originates from K (s, t) by replacing the functions R(·), I(·), C(·) and

S(·) with their respective “estimator-free” empirical counterparts

R0
n(t) = 1

n

n∑
j=1

cos
(
t�X j

)
, I0n(t) = 1

n

n∑
j=1

sin
(
t�X j

)
,
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More good news on the HKM test for multivariate symmetry 765

C0
n(t) = 1

n

n∑
j=1

X j cos
(
t�X j

)
, S0n(t) = 1

n

n∑
j=1

X j sin
(
t�X j

)
, t ∈ R

d ,

and do the same with each of the five explicitly designated expectations figur-
ing in the definition of K (s, t). Hence, E

[
sin

(
s�X

)
sin

(
t�X

)]
is replaced with

n−1 ∑n
j=1 sin(s

�X j ) sin(t�X j ) etc. It is then straightforward to see that

σ̂ 2
n,0

P−→ σ 2
a . (23)

For example, apart from the factor 4, the contribution of the first summand of the
representation of K (s, t) to σ 2

a is

J :=
∫∫

E

[
sin(s�X) sin(t�X)

]
I(s)I(t) wa(s, t) dsdt

(say). For the empirical version

Jn =
∫∫

1

n

∑
i

sin(s�Xi ) sin(t
�Xi ) I

0
n(s)I

0
n(t) wa(s, t) dsdt

(say), Fubini’s theorem gives

E(Jn) = 1

n3
∑
i, j,k

∫∫
E

[
sin(s�Xi ) sin(t

�Xi ) sin(s
�X j ) sin(t

�Xk)
]

wa(s, t) dsdt .

If all indices are different, then, by symmetry and independence, the expecta-
tion beneath the integral sign is E[sin(s�X) sin(t�X)]I(s)I(t). Since the case that
at least two of the three indices coincide are asymptotically negligible, we have

limn→∞ E(Jn) = J . Likewise, limn→∞ V(Jn) = 0 and thus Jn
P−→ J . Since the

other terms can be treated similarly, (23) follows.
The much more difficult part of the proof is to show

σ̂ 2
n,a − σ̂ 2

n,0
P−→ 0. (24)

In view of the definitions of σ̂ 2
n,a and σ̂ 2

n,0, this boils down to prove

∫∫ (
Kn(s, t)In(s)In(s) − K 0

n (s, t)I0n(s)I
0
n(s)

)
wa(s, t) dsdt

P−→ 0.

To this end, we have to consider each term of the various summands comprising
Kn(s, t) and compare this with the corresponding term in K 0

n (s, t). As an example,
we choose the empirical versions of thefirst summandof K (s, t) that involvesmoments
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of X which, apart form the minus sign and the factor 1/2, is t�E[sin(s�X)XX�].
Putting

Ln(s, t) = t� 1

n4
∑

j,k,
,m

sin(s�Y j )Y jY
�
j Yk cos(t

�Yk) sin(s�Y
) sin(t
�Ym),

L0
n(s, t) = t� 1

n4
∑

j,k,
,m

sin(s�X j )X j X
�
j Xk cos(t

�Xk) sin(s
�X
) sin(t

�Xm),

we have to prove

∫∫ (
Ln(s, t) − L0

n(s, t)
)
wa(s, t) dsdt

P−→ 0.

Notice that

∫∫
Ln(s, t) wa(s, t) dsdt = 1

n4
∑

j,k,
,m

D(Y j ,Y
) E(Y j ,Yk,Ym),

where

D(Y j ,Y
) =
∫

sin(t�Y j ) sin(s
�Y
) exp(−a‖s‖2) ds,

E(Y j ,Yk,Ym) =
∫

t�Y jY
�
j Yk cos(t

�Yk) sin(t�Ym) exp(−a‖t‖2) dt .

Likewise,

∫∫
L0
n(s, t) wa(s, t) dsdt = 1

n4
∑

j,k,
,m

D(X j , X
) E(X j , Xk, Xm),

where

D(X j , X
) =
∫

sin(t�X j ) sin(s
�X
) exp(−a‖s‖2) ds,

E(X j , Xk, Xm) =
∫

t�X j X
�
j Xk cos(t

�Xk) sin(t
�Xm) exp(−a‖t‖2) dt .

It follows that

∫∫ (
Ln(s, t) − L0

n(s, t)
)
wa(s, t) dsdt = Kn,1 + Kn,2,

where
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Kn,1 = 1

n4
∑

j,k,
,m

(
E(Y j ,Yk,Ym) − E(X j , Xk, Xm)

)
D(Y j ,Y
),

Kn,2 = 1

n4
∑

j,k,
,m

E(X j , Xk, Xm)
(
D(Y j ,Y
) − D(X j , X
)

)
.

We first prove Kn,2
P−→ 0. Putting

cν :=
∫

‖t‖ν exp(−a‖t‖2) dt, ν ∈ {1, 2},

the fact that | cos(t�Xk) sin(t�Xm)| ≤ 1 and the Cauchy–Schwarz inequality yields

|E(X j , Xk, Xm)| ≤ c1 ‖X j‖2 ‖Xk‖.

Since sin(t�Y j ) = sin(t�X j )+ξ j t�Δ j , where |ξ j | ≤ 1 (and likewise for sin(t�Y
)),
the Cauchy–Schwarz inequality gives

|D(Y j ,Y
) − D(X j , X
)| ≤
∫ (‖t‖(‖Δ j‖ + ‖Δ
‖) + ‖t‖2‖Δ j‖‖Δ
‖

)
e−a‖t‖2dt

= c1
(‖Δ j‖ + ‖Δ
‖

) + c2‖Δ j‖‖Δ
‖.

We therefore have

|Kn,2| ≤ 1

n4
∑

j,k,
,m

c1‖X j‖2‖Xk‖
(
c1(‖Δ j‖ + ‖Δ
‖) + c2‖Δ j‖‖Δ
‖

)
.

Since n−1 ∑n
j=1 ‖X j‖ν = OP(1) if ν ∈ {1, 2, 3, 4} (recall the assumption E‖X‖4 <

∞) and

1

n

n∑
j=1

‖X j‖2‖Δ j‖ ≤
⎛
⎝1

n

n∑
j=1

‖X j‖4 · 1
n

n∑
j=1

‖Δ j‖2
⎞
⎠

1/2

,

Kn,2
P−→ 0 follows from (18) and (19).

As for Kn,1, first notice that |D(Y j ,Y
)| ≤ c1 and thus

|Kn,1| ≤ c1
n4

∑
j,k,
,m

|E(Y j ,Yk,Ym) − E(X j , Xk, Xm)|.

Next, we have

Y jY
�
j Yk = X j X

�
j Xk + Δ̃ j,k,
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where

Δ̃ j,k = X jΔ
�
j Xk + X j X

�
j Δk + X jΔ

�
j Δk + Δ j X

�
j Xk

+Δ jΔ
�
j Xk + Δ j X

�
j Δk + Δ jΔ

�
j Δk .

Therefore,

E(Y j ,Yk,Ym) − E(X j , Xk, Xm)

=
∫

t�X j X
�
j Xk

(
cos(t�Yk) sin(t�Ym) − cos(t�Xk) sin(t

�Xm)
)
e−a‖t‖2dt

+
∫

t�Δ̃ j,k cos(t
�Yk) sin(t�Ym)e−a‖t‖2dt . (25)

Since

‖Δ̃ j,k‖ ≤ ‖X j‖‖Δ j‖‖Xk‖ + ‖X j‖2‖Δk‖ + ‖X j‖‖Δ j‖Δk‖ + ‖Δ j‖‖X j‖‖Xk‖
+‖Δ j‖2‖Xk‖ + ‖Δ j‖‖X j‖‖Δk‖ + ‖Δ j‖2‖Δk‖,

the inequality | cos(t�Yk) sin(t�Ym)| ≤ 1 and the same reasoning as above show that

1

n4
∑

j,k,
,m

∣∣∣∣
∫

t�Δ̃ j,k cos(t
�Yk) sin(t�Ym)e−a‖t‖2dt

∣∣∣∣ = oP(1).

Regarding the term figuring in (25), we have

| cos(t�Yk) sin(t�Ym) − cos(t�Xk) sin(t
�Xm)|

≤ ‖t‖(‖Δk‖ + ‖Δm‖) + ‖t‖2‖Δk‖‖Δm‖,

and it follows by the same reasoning as above that

1

n4
∑

j,k,
,m

∣∣∣∣
∫

t�X j X
�
j Xk

(
cos(t�Yk) sin(t�Ym)−cos(t�Xk) sin(t

�Xm)
)
e−a‖t‖2dt

∣∣∣∣

is asymptotically negligible. Consequently, Kn,1 = oP(1). Since all the other sum-
mands comprising Kn and K 0

n can be tackled in the same way, (24) follows. ��
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