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1. APPENDIX

1.1. Assumptions

We begin this section by listing the conditions needed in the proofs of our asymptotic results.

(C1) E[XY) < ccfors =1,...,q, E[Z}] < oo forr = 1,...,p, and the matrices Ty,
A used in Theorem 1 and I'y, o in Proposition 1 are all positive definite and finite.
Moreover, E[| In(Y)|"] < oo for some r > 3.

(C2) E(X|B4Z = u), E(Z|B4Z = u) and the density function fa, (u) of the random
variable ﬁgZ are twice continuously differentiable with respect to u. Their second-
order derivatives are uniformly Lipschitz continuous on € = {u = ,BgZ tz €2 C
RP,By € Gy, }, where Z is a compact support set, and &, 5, = {84 € By :
1B — Bg, || < con™1/2F1} for some positive constant ¢y and ¢; € [0,0.05). More-
over, g(u) has two bounded and continuous derivatives on u € € and ;relfe fa,(u) > 0.

(C3) The kernel function K (+) is a symmetric bounded density function supported on [— A, A],
satisfying a Lipschitz condition. K (-) also has second-order continuous bounded deriva-
tives, satisfying K/)(£A4) =0, = 0,1,2, and [ s>K (s)ds # 0.

(C4) As n — oo, the bandwidth h satisfies W — 0 for some s > 0, and nh* — 0.

(C5) Forall ; j = 1,...,p+¢q¢—1, ¢ — 0, /n(; — oo as n — 0o, Moreover,
liminfnﬁooliminfu%wp’cj (w)/¢; > 0.

1.2. A Technical Lemma

Lemma 1 Suppose E(W|,8£Z = u) = m(u) and its derivatives up to second order are
bounded for all B4 € 6nﬂ¢, where S,, g is defined in condition (C2), and that E|W|" exists
for some v > 3. Let (Z;,W;), i = 1,2,...n be an independent and identically distributed
(logn)*+eo

(i.i.d.) sample from (Z,W). Let 7, ), = { h
n

1/2
} + h3 for some 5o > 0. Given
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that h = n=7 for some 0 < j < 1, if conditions (C1)-(C4) hold, we have,

uee| M

T, \¢
sup|— ZKh ,3¢ —u) (ﬁZhu> W; — fgq&(u)m(u)pigd

—{fp, (Wm(u)} pr.a41h — %{fﬁd, (w)ym(u)} px ayoh®| = O(To 1), a.s.,

where jircq = [ K(v)vidv, d=0,1,2.

Proof. From condition (C2), we know that 3 satisfies || 3, — Be | < con~1/?+e1 for some
0

positive constants c¢g and c¢;. Then, Lemma 1 can be proved by using similar arguments of

Lemma 6.1 of Xia (2006) or Theorem B in Silverman (1986).

1.3. Proof of Theorems 1-2

Proof Define

N, (n)
= [ Ve (~a"Xi — 38520 m) + Y, exp (a7 X+ 585 Zim) )|

i=1

2§(8xz;,
X, + 9(54; n)

Ja
| 2aBsZim)
o
Note that 91,, (7)) = 0. Taylor expansion entails that
1~ 1 0N, (n) .
e =[= — Al
\/ﬁmn (TIO) |"ﬂ an "I’]:T]* [\/ﬁ (77 770)] ) ( )

where ¢, is between qZ) and ¢,.
Define G, (1) = E [[m(Y) —aTX|{Z — 2}|B5Z = u} fa, (), Kj(u) = LK (u/h).
Using conditions (C2)-(C4), we have

[8(;’) Toai1, (B4 2, "7)] (A.2)
Z.

- ZE[K;(ﬁizi ~B42) 05 ( o z) (BeZi — By2)"

i=1

x[In(Y;) — aTX]b}

+ % Y E [Kh(g;{zi — Bp2) Iy (Zi — 2) (B Z; — Byz)"

i=1

< I{l, > 1} In(Y;) — aTX]lz}

2
i +v v 14w
= _Z 11)! TG (B2 T ey, 1 Il v > 1}

l v - v
+Z 1J$Gl(2n )hl1 1+ MK,ll—1+vI{l1 > 1}+O(hll+2)7



where G’l(:)n(u) = 2 Gl(:)n( ), bi,s = Jt°K(t)dt, and I{u} is the indicator function.
Similar to the proof of Theorem 3.1 in Fan and Gijbels (1996) and Lemma A.5 in Zhang
et al. (2014), together with (A.2) and Lemma 1, we have

20(8sZ0 )
an n=mn.

~mx (83, Z;) 2, [(ogn)ti=
= h k3
(o1, it s 20 ) * o (5

+ Op(|n. —moll),

(A3)

where mx (u) = E[X|,8£OZ = u] and mz(u) = E[Z\,B;F,OZ = u]. Moreover, using

Lemma 1, and similar to the proof of Theorem 3.1 in Fan and Gijbels (1996), we also have

~ 12 h ”
9B, Zimg) = 9By, Zi)+ 29" (B}, Z)) (A4)
1 Z;— By Z;
+ T ZK Ba2s .21 In(e;)
nhis, (B, Zi) = h
1 1+4+s
o <h2+ (logn) ) .
nh
Using (A.3)-(A4) and E(c — ¢"'|X, Z) = 0, as nh* — 0 and 95", 0 Taylor
expansion and the U-statistic (Serfling; 1980) entail that
1 ~
—=N, (ny) (A.5)

n
_ % S { [—ccexp (9083, 20) — (83, Z.mo))|

i=1

X+ ag(ﬁéom

+ e exp (385, Zimo) - 9(83,2) ) | } 04(8% Zimo)
T gy

I X )
= \/EZ( i€ ) < J;Fo |:Zi ,mz(ggozi)_ g’(ﬂgozi)
Ly (a+e) ¢ K<M> In(e;
+\fznhfﬁ¢ (84,2 )Z h “

Jj=1

X; —mx(,@¢ i)
<J¢ [Z mz (85 Z )} (ﬂggzi)>+9%,1,

__1 Y € — € " Xi_mX(ﬁ;EOZi)

. - X;—mx (B Z:)

— N El(eg+et ;
+ \/ﬁz {(e +e ) ( Jgo [Zi _ mz(ggozi)} g/(lgg()Zi) >
+Rn,1 +OP(1)7

ﬂ:l;o Zi } ID(EZ‘)



January 10, 2019

where
iRn,l
_ uzmh Z )" (8" 7:) Xi—mx(ﬁgozi)
wTIN I3, |2 - ma85,20)] 985, 2:)
1 1+s0
T Op(nt/2)0p(nt + L8 Og:})l )
log n)1+so
= Op(n'/?h2) + Op(n"/?)Op <h4 + %) — op(1).
And also,
100 o) st g
n Ong
where

Sp1 = Z{QGXP( /3¢0 i) — Q(ﬁgozz‘ﬂ?o))

T ®2
69 ﬁ i7 ”

- A 0
vite (o 2m) -0 20) || pgen 2% |
Iy

and,

:M—*

fj{[ ciexp (985, 2:) — (83, Z.m0) )|

+ [e Vexp (3085, Zim0) — 9(63,2) )| }

82.@(/65021'7 770) 62g(ﬁ£0 Zia 770)

% dagdag " DOy
029(Bg, Zi,m0) 9%3(Bg,Zi,m0)
R R T

Using Lemma 1 and (A.3), similar to (A.5), as nh* — 0 and % — 0, we have

®2
- 1 n ‘ . Xl_mX(/Bg(’Z’L)
877,71 - E z:(ez + €i ) < Jgg |:Z7, — mz(ﬁgozl)} gl(ﬁgozz) (A6)

®2
PP XN X~ mx(B, 2
+T E (Ei —€)g (/B%Zl) ( Jgo |:Zi *mz(ﬁgozi)] g/(ﬁgozi)

i=1

+ Op(Tu,n) =To+op(1).

Similar to the analysis of (A.3) and (A.5), using Lemma 1 and E(e — e }| X, Z) = 0, we

have 8,2 = op(1). Together with (A.6), as nh* — 0, W — Oand 1, £, 10, We



have %%n(")’ P, Ty. From (A.1), (A.5) and (A.6), we have

(7= m0) = - limglﬁ]n_m] —= % (o) (A7)

B

= *1L et Xi _mx(ﬁgozi)
= FO \/ﬁ Z(ﬁz € ) ( J’ql;U |:Zz - mZ(ﬁgozl)] g/(ﬁgozl) > + OP(l)

I . Xi—mx(ﬂ;EOZi) T
-T; 7 ;E {(Q +e ) ( gt [Zi 3 mz(ﬁgozi)} /(85 7) Be,Zi
xln(ei)

L5 N (0p14-1,T5 ' ST 1) .

According to (A.7), the proof of Theorem 1 has been completed. The proof of Theorem 2 is
completed by using the multivariate delta-method. We omit the details.

1.4. Proof of Theorem 3

Proof In this section, we consider to prove Theorem 3. For any (t1,%2)T € R?, we define

an(sl,SQ) (A8)
. T
" T X BpZi—u
= ZKh(ﬁézi — u){ — Y, exp ( —atX, — s — 52%)
i=1

AT 1
+Y lex (dTXv +51+s L&Zi —u> 5T
i Y % 1 2 n ﬁ&le*u )

and,

B, (s1,52) (A.9)
AT

n R N ZZ _
= ZKh(ﬁgZi — u){YZ exp ( —at X, — s — SQM)

i=1 h

. ) ®2
_ ~T ,B&Zl — U R
+Y; 1exp(a Xi+31+52h)} I@}izl_u
h
Note that 2,, (g1, (u, 7)), hg' ;. (u, 7)) = 0, similar to (A.1), we have
h ’ 1 ’
=\ 5 % (9(u), hg'(w)) = | =By (g4(u), hy's(u)) (A.10)
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where (g, (u), hg', (u)) is between (§r,(u, 7)), hg' (u, 7)) and (g(u), hg'(u)). We have
2, (g(u), hg'(u)) (A.11)
\/ZZ { — €; €XpP ( op — &)TXZ' +g(,@£0Zi) — g(u)

—g'(0)(ByZi — )

+e; ! exp ((07 — o)t X, + g(u) + 9/(“)(Bgzi —u)

<.

1
T AT, AT
—g(ﬁ%Zi)) }Kh(%zz —uw) | B2 —u
h
1
'8¢ AT
= Z ‘Zi—u
\/ < ( h %T
+ Rn,l + Rn,2 + Rn,3-
Using Taylor expansion, we have
n AT 1
1 _ BypZi—u .
mZ(ﬁi—Ei YK (h ) ﬁiZi—u (A.12)
=t h
1 - —1 /Bgozl —u 1
=7 Z(Q‘—Ei VK B — ;ﬁozi—u + Dp1+ Dnp
i=1
h
+Op( _1h_2),
where
n T 1
1 1 ,3¢ Z;—u
D, = nhZ(el_ i )K/< . h BEUZ77U
1=1
h
7 (B¢ — 54,0) h=l 4 Op(n~th~2)
= Op(n Y2 Y4+ 0p(n~*h™2) = 0p(1),
and
n T 0
_ 1 1 ,3¢0Zz u T
Dia = =3 )K< d 2% (3, 8y)
a h
= Op(n_l/Qh_l) Op(l)
Similar to analysis of (A.12), we have
1 n BTZ 1
_ -1 pLi U AT
R, = %;(eﬁ-ei VK (h ) B3z, —u (A.13)
= h



Similar to (A.12), using Lemma 1 and Taylor expansion, we have

1
LR (A.14)
1 & o (BoZi—u !
(B2 ()
=1 h
(985, 2:) = 9(w) — ¢ (W)(8}, Zi —w)
X e
n T Zz _ 1
+n—1h Zl(eﬁe:l)K <ﬂ¢°hu> ( By, Zi—u )
= h
/ ZT 2.
xg w2 (Zd’ By,) +Op(n~'h™?)
g//(u) ; E(E + e*1|18£OZ = u)fg¢0 (u),qu
N 2 h% (fg% (u)E(e + e_1|ﬁ£0Z = u)) JutK (u)du

+Op(h* +7nn) + Op(n™"h™?) + Op(n™"?h=2 4 n= /2071,

Moreover, similar to the analysis of (A.12)-(A.14), we have

Rn,3

n 3z, 1
Z (¢h ) BYZ, (A.15)

h
((ao — &)TX 4985, Z) — () — g (1) By 2 — )
+op(h* +n7Y) = Op(h* + n™Y) + Op(n™3/2h~Y) + Op(n=/2h3).

From (A.11)-(A.14), as nh — oo, we have

\/Zﬁn (o) g/ (1) (A1
,6 1
h
" E(e+e 8L Zz = w)fp, (W)pK2
— Va9 (u) %o o
2 ( d (f%( VE(c+c V8% Z ))fu4K(u)du

+ Op(l).

Similar to the analysis of (A.16), we have

B, (g2 (), g () (A1)
[ Bl e85, Z = w)a,, (1) Or(h)
Op(h) E(e+e By, Z = u)fa,, (WK

+O0p(h? + T +n712).
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Together with (A.10), (A.16) and (A.17), we obtain that

2

1 n = ﬂiOZi —u
v zmlaTa <h>
B E(e+eB4,Z = u)fa, (u)

Vnh (fm(uyﬁ) —g(u) - Wﬂ““) (A.18)

+ Op(l).

Directly using (A.18), we have completed the proof of Theorem 3.

1.5. Proof of Propositions 1-2

Proof The proof of Proposition 1 is similar to Cui et al. (2011), we outline the main steps
here. Similar to (A.8), we have gy, (ﬁgoz n,) and gA’L(ﬂgoz, 1) satisfies

> Ku(By,Zi — By, z) (A.19)

i=1

X{ —Yjexp ( - aoTXz‘ - QL(BEOZ;UO) - gA’L(ﬁioz,no)(ﬂiozi - ﬂiOZ))
+Y, Lexp (aoTXi +90(Bg,2:m0) + 9'1.(Bo, 7 M0) (Bg, Zi — ﬂiﬁ)) }

Define é7,; = Y; exp ( —ag Xi — 31(Bg,7m0) — 9'1.(Bg, 2 10) By, Zi — ﬁioz)), i=
1,...,n. Taking derivative with respect to ay on both side of (A.19), we have

9.(8Y, 7. )

1 — R -
B - > Kn(By,Zi — By, ) (Eri+ k) (A.20)

i=1
1 & R -
= > Kn(Bg, Zi— By, z) e+ k)X
=1

g’ (B, z, ox0)

1 ¢ T T _\/» ~—1y/ 4T T
- ; Kn(Bg,Zi — By, ) (€L, + €1 ) (Bg, Zi — By, Z) e
= Un, +Cn,2-

The asymptotic expressions of gy, (Bgoz 1,) and g L(ﬁgoz, 1) are the same as (A.16) and
(A.17), thus, we have

%Zn:Kh(ﬁgnzi ~ B, %) (€L +€0}) (A21)
=1
= E(c+¢|83 Z = 85, 2) fs,, (B3, 2) + Op <h2 + “gr’f) ,
Cop = —E((e+¢ )X, Z = By, 2) fa,, (B,2) (A22)
+O0p <h2 - <logn)1+s°> , (A.23)
nh
Cpnao=0p <h2 +h (log:)1”> )



Using (A.21)-(A.23), we have

agL (ﬁgoza aO)
 day s

B+ X18,2=84,2) ) ()0, [(ogn)y=o
E(e—|—e—1\,6$0Z:,8£Uz) r n ’

Taking derivative with respect to ¢, on both side of (A.19), we have

O3L(Bg, 2z, 0) 1 & L
#g Y Kn(By,Zi — By ) er: +éry) (A.25)
0 =1

1 & R 1N

= > Kn(By,Zi — B4, 2w+ e )a' (B4, 7. m0) T §(Zi — 2)
i=1

1 = ~ ~ a.é\/L(IBTozvao)

- Z Kn(Bg,Zi— By 2)(eLi+¢.5) By, Zi — 5;,@#

=1
1 n
- K83, 2~ B ) en — )T 5(Zi — 2)
=1
= “n3 + Cn,4 + Cn,5~

Using (A.16) and (A.17), we have

Cos = ¢(By,2)fa,, <ﬂ’£oz)J£{zE (<185, 2 = 8, (4.26)
1+so
_BE {(6+ Efl)zwgoz = ﬁgoz} } + Op <h2 + %) .

And,
_ 2 (logn)!+so _ (logn)!+so
Cn,4 =Op (h +h 3 ,Cnyg) =Op e .

Together with (A.21), we have

091 (Bg, % Bo)
e (A.27)
_ g’(ﬁgoz) T “1\aT  _ AT
“ gLz gL e R ]
— B[(c+e7)2185,Z = 85, 2] } +0p <h2 Ty okt +>

oo Elrvsm
CORER T B 85,2 = 6,2)

logn)1+so
ERENIC RN
+Op < + 13 >

The proof of Proposition 2 is similar to the proof of Theorem 1 by directly using the asymp-

totic expressions in Proposition 1. We omit the details.
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1.6. Proof of Theorems 4-7
Proof Under the null hypothesis (3.1), we have b = An,. From (3.3), we obtain that
iy — Mo (A.28)
-1
=iy~ ()] AT [a{m@) " AT] an - an),
From (A.6), we have that n_li/))vtn(ﬁ) £, T'y. Together with (A.7), we have
Vn (fig — 1) (A.29)
1 - -1 1 - -1
Lyvos = |20, 0)] a7 [A { o} AT] A
x v/n () — 1)
= {Ip+q1 ~TI;tAt (AFJIAT)_l A} Vn (7 = ng) + op(1)
LN <0p+q,1, Qorglzorglng) .

If the model error € is independent of (X, Z), the asymptotic variance of (A.29) reduces to

55[2:7:3122]1_[01&6 lﬂg. We have completed the proof of Theorem 4.

From (A.28)-(A.29), we have

VA (g —1) = —V/nA(f)—mnq) (A.30)
L

N <0k, ArglzorglAT) .
Under the null hypothesis Hy and (A.28), we have Any = b, together with (A.30), we have
1 14T\ Y2 L
(Arg >l A ) Vi (AR — b) 5 N (04, 1) (A31)
The continuous mapping theorem entails that
. T -1 141\t - L 2
n (Af — b) (AFO ;A ) (A7 — b) 5 2. (A32)

Similar to (A.6), we have n =190, (7)) — Lo, n~1&,,(f) —— S0, then the Slutsky’s Theo-
rem with (A.32) entails that T,, —= x2.
From (A.3), we have

= ‘n:f? (A.33)
—mx By, Zi log n)1+s0
- ( 75 2 - mzm(ijozn])g/(ﬁiozi) ) Hor <h2 ! (gnh)3>
+Op (11— moll),
Using (A.33), as ) = ny + Op(n~'/?), we have
R ) -
A= ; 03(8L Zfzfln) - L5 Ao. (A.34)

el

10



Using Lemma 1, (A.4) and Theorem 1, we have

pur 2l o

1BsZui) = 985,20 + Mg (85, 20) (A.35)
1 1+so
+0p ( W:;) +0p(i7 = mol).

Using the model (1.1) and (A.35), as h — 0 and W — 0, we have

oy = {i zn: Viexp (—6"X; -3 (B3 2:7)) (A.36)
i=1

2
1 n 3 . A AT .
IS e (0 () |

L [E(e) + E(e M.

And also,

Cng = 7112: { _Yexp (—dTXi " (ﬂizn)) (A37)

Y exp (dTXi +g (Bgzi, n)) }2
i> E [(6_1 — 6)2:| .

: ~—1 P [E(ete D)? :
Together with (A.36)-(A.37), we have K~ — Ble—e=T)? - Using (A.32) and (A.34), we

have Tiq, N X%- We have completed the proof of Theorem 5.
Under the local alternative hypothesis 31, b = An, — n~1/2¢c. From (3.3), we have

R =My = T —T1g (A.38)
~[] " ar[a ) AT s ang
L2 [ﬁn(f;)}_l AT [A {zﬁn(ﬁ)}_lAT]lc
{Ip+q_1 ;AT (argtaT) A} (71— 110)
—nl2p AT (ArglAT)fl ¢+ op(n~1?).

The asymptotic results of 1) under J{;,, are obtained by using (A.38). We have completed
the proof of Theorem 6.
From (A.38), we have

VA (g —n) = —VnA@H—mny) —c (A.39)
LN (fc, ArglzorglAT) .

Under the local alternative hypothesis J(y,,, together with (A.39), we have
—-1/2
(Arg'=org'AT) " VRA (g —0) (A40)

—1/2
LN (— (ArglzorglAT) c, Ik) .

11



January 10, 2019

Using (A.40), the continuous mapping theorem and Slutsky’s theorem entail that T, N

X2 (7o), where X2 (7o) is a noncentral chi-squared distribution with k degrees of freedom and
-1

noncentrality parameter 7 = ¢’ (Al"a 1201"5 1AT c. The asymptotic distribution of

Jid,» under the local alternative hypothesis is obtained similarly, we omit the details. We
have completed the proof of Theorem 7.

1.7. Proof of Theorem 8

Proof Step 1. In this step, we establish the asymptotic order of minimizer estimator (}5 p-
Define

Lp(n) = i {K exp (—aTXi -3J (ﬁgziﬂ?))
= p+q—-1

+Yi_1 exp (aTXi +g (5521,17)) } +n Z pgs(
s=1

nsl)-

Let

)0 £ 0}, a0, (00, # 0}

at = maX{ magq{p’gj (lao,; 1<j<p

1<j
Letd, = n_1/2+a;ku 81= (51,5 Sq)T» 82 = (Sq+1,- - S;DJrqfl)T, 8= (51,--+, 5q+p71)T
with ||s|| = Cy. Furthermore, define a(n) = ag + 6,81, ¢(n) = @y + onS2, N(n) =

(@) (SN, By = (VI B (B(n)7) ,and

n

Doy = Z{mexp(—(a(n»TXi—g(ﬂ&n)zi,n(n)))

"‘le exp ((a(n))TXz +9 ('Bg(n)z“n(n))) }
B Z {m exp (~al X, 3 (85, Zimo) )

+Y; exp (af X+ (85, Z0m,)) }

q0

Dpo = —nY {pe,(lao; +ns;l) — pe, (Jao 1)}
j=1
po—1
=Y {pc,s; (1605 + 0nsqss]) — pe,., (160,5)}-
=1

Using (A.4), (A.33) and Taylor expansion, we have

B X; - mx(ﬁg Z;)
Dp1 = —0y i—e st o A4l
,1 Z(G €; )S ( J’i‘o I:Zl . mz(ﬁgo Zz):| g/(ﬁgozl) > ( )

®2
52 & o X —mx(By, Z:)

—+— € +€ )8 S
> (e ( Ty, |2 - m2(83,2.)] 985, 2)

+ O0p(Vnh4)|s|.

12



As a = Op(n~'/?), we have 6, = Op(n~'/?) and the asymptotic expression (A.41)
entails that the first argument of D,, ; is Op(1)Cy and dominated by the second argument of
%5,% C?2 in probability. Taylor expansion and Cauchy-Schawz inequality entail that

|Dn2| < nv/po + qodna, || sl| + nda;"|1s]|* < Condi{vpo + a0 + a"Co}.

where

*x i ) ) 1 ) )
ay’ = max {fg?gq{pgj(IaoJD,ao,g # 0}, 1S1}1§;<_1{p4m(|¢o,g|)7 bo,; # 0}} ~

Furthermore, D,, 5 is bounded by nd2C? in probability. Thus, as a’* tends to 0 and Cp
sufficiently large, D,, ; dominates D,, ». As a consequence, for any given 0 < £ < 1, there
exists a large constant C such that

where § = {s : ||s|| = Co}. We conclude that 7} is Op(n~"/?).
Step 2. Let 0} satisfies ||} — 0 1]| = Op(n~1/?). Similar to the proof of Lemma 1 in Fan
and Li (2001), we can show that

Lp ((ni",01)T) =minLp (7", m3")"). (A42)

where, D* = {||n3|| < D*n~'/2} and D* is a positive constant. We omit the details for the
proof in this step.

Step 3. Denote that 7)p 4 is the penalized least squares estimator of 77;. In addition, we
denote that X', consists of the first ¢go components of X ; corresponding to g 1, and Zq;
consists of the first py components of X; corresponding to (59,1, ¢ 1). Define L3 (ny) =
Lp ((n1,0T)T). Taylor expansion entails that

9Lp(m)

(A.43)
ony

711:171:,1

- M (g1 .
= Malmo) +nRe, + (317 S 4 03¢, | (Apa —M0a) + Op (),
0,1

where v, = nH'ﬁP,l - "70,1”2 and

n

N, (770,1) = Z

=1

— Y, exp (*aOTJXu - ﬁ(ﬁgmzliv 770,1))

+Y;  exp (aoT)lei + 9(650,1Z1i’ 770,1)) ]
24(8 Z1i,M01)
X1+ %'laa :
X 8@(,3?£UY1Z1“770,1)
0bo1

The asymptotic results of Theorem 8(b) has been completed by using (A.43) and the analysis
of (A.1). We have completed the proof of Theorem 8.
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1.8. Proof of Theorems 9-10

Proof As nh® — 0 and 128 3212 — 0, we have

n

Rp(u) = %Z(eifq_l)]{(sTSi <u}

_% Sle+eh)(@-a

St [o (Bhz.n) -

o) X I{6%S; < u}

- 0(85,2.)] 1(57 S, < u)
n —1 +h4+ (logn)1+50>
nh

/\ﬂl

+O0p
= RY () — R () — R4 (w) + 0p(n ).
Using Theorem 1 and E(e — e 1| X, Z) = 0, we have
R o(u)=FE {(6 +e HI{s's < u}XT} (& — ) + op(n~1/?). (A.44)
Using (A.33) and (A.35), we have
R 3( ) (A45)

- - Z i+ )9 (85, Z0)1Zi — mz (85, 20| Ty, (&~ ¢0) 11678 < u}

Z e +e )[mx ﬂq&o )" (@ - a)

71 // 6¢ )I{(sTSS'U/}
" (6 e I8 S < ) ﬁi Zj_ﬂg Z;
ZZ : K\ ——— In(e;) + op(n~'/?).
z:l J=1 f5¢0 ('6¢0 )
Together with (A.44) and (A 45), using U-statistic (Serfling; 1980), as nh* — 0and (&m0
0, we have
- Z e HI{6"S; <u} (A.46)
-E [(e + e H{8TS < uHX —mx (85, Z:)}"] (& - o)
(e + e {8"S <ulg (85, Z){Z ~ mz(8},2)}"| T4,
(o-a)
oY B[+ IETS: < )83, 2] nei) + on(n ),
From (A.46), we have
(A47)

*Z e V{87 S; < u} — [A(u)]" (7 — o)

- ZE [(q + e HI{8TS, < u}\ﬁgozz} In(e;) + op(n~12),

14



where A(u) is defined in Theorem 9. Together with (A.7) and (A.48), we have completed
the proof of Theorem 9.

Next, we consider the local alternative hypothesis 3(7,,. In the following, we define
M(X:,Z;) =m(Xi, Z:)—af Xi—g(Bg Zi).i=1,...,nand M(X, Z) = m(X, Z)—
at X — g(ﬂ¢ Z). Similar to the analysis of (A.2) and (A.3), using Taylor expansion for
In(Y;) under H7,,, we have

3§(ﬁ£Zi,n)‘ (A.48)
on n=1.

—mx By, Z:)
N ( J g, [Zi - mz(ﬂgozi)} 9By, Zi)+n 2T Q(X,, Zy) )

logn)1+so -
+ Op <h2 + (nh)3> + Op([n. —moll) +Op(n 1)’

where
27Z’L
d
= (dE{eXp (X Z))|,@¢ Z= }f ﬁgoz) Zi
d
+{ |ZiE{exp(M (X5, 2:))|8}, Zi} — B{Z:exp(M (X5, Z:)) |8}, Z:}]|
fh, (Bg,Z:)
T T o
- [{Zi - mz(ﬁ%zi)}E{eXP(M(Xi’Zi))‘ﬁ%zi}} }fﬁzo(ﬂgozi)
—|—E{exp(M(Xi7Zi))wgozi}mlz(ﬁgozi)'
Moreover,
é(ﬂgo Zi,mo) (A4
= 9(6,20) + n Bl (M (X, Z0)165, 20} + P2 (0 7)

N’K, h2n71/2 7
+ B2 [ Blexp(M(X, 2))183,Z = t}] |i—p, 2,

2
e En:K (ﬁg"zj _ ﬂg”zi> In(e;)
T h J
nhf'8¢o (’B‘ﬁozz) Jj=1
1 1+s
+op <h2+ 7(0g;z})l 0) .

15
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Similar to (A.5), under H,,, as nh* — 0, we have

My (10) (A.50)

__i 3 6'—5*1 XlimX(IBgOZZ)
— \/HZ:( i )( T [Zi—mz(ﬁgozz‘)} g/(ggozi) )

1 & 1 X?ﬁ*mX(ﬁgoZi)
+\/EZE{<EZ+€i ) < Jgo [Zz_mZ(ﬁgoZZ)} g/(ﬁgozi) >
X ln(ei)

—Fo+op(1),

By, Zi }

where

_ -1 X - mX(Bg()Z)
Fo = E{(€+€ ) ( Jgo |:Z — mz(ﬁgozl)} gl(ﬁgoz) )

X {exp(M(X, Z)) -~ E [exp(M(X, Z))’ﬁgoz}} }

Similar to (A.6), under H7,,, we have %%ﬂ“’) ’ L, T'y. From (A.50), we have
n=n,
1M, (n) T
o n \T] s
V(i —mg) = — | - =M, (n (A51)
(=) non nen.| a0

Ly N (D50, Tyt S0Tp )

Next, we consider the asymptotic expression of R,, (u) under the local alternative hypothesis.

3

in (& — & I{8"S: < u} (A.52)



Using Taylor expansion and (A.51), we have

—fi - . —1 Tg. T A
Ho1 = \/ﬁ;(ez e {078 S upXi (& — ) (A.53)
1 n » - o ) .
~n Z(ei +e )I{6"Si <u} (9(5&521‘777) - 9(16¢Ozi7770))

8040

~r AT ) T
Ze+e )I{57S; <u}<XZ+(Mﬂ%Z“W> (& — o)

0985 Zimy)\ -
=S TS <) (%’”) (® - )
+O0p(n~1/2)

__ N L Ve X, —mx(By, Z:)
= [A(U)] FO n Z(ez €; ) ( Jgo |:Zz _mz(ﬂgozi)} g/(ﬂgozi) )

Tp—1 1 XZ_mX(ﬁgozl)
+[A@)'T, ﬁZlE{ ( T4, |2i - m2(83,2)] 98}, 2.) )

X(Q + 6;1) ﬁgozl} ll’l(q)

— [A@]'Ty" Fo +op(1).

Define w(u) = £ ((e + e Vexp(M(X,Z)I{6"S < u}) . As nh* — 0, we have

Hno = —% i(a +e; NI{8S; < u} (f/(ﬁEOZi,no) - g(ﬁiozi))
_ _;2 e H)IHETS: < uE{exp(M (X, Z.))|81, Z:)
b zn:E {(ei +eHI{8"s; < u}‘ﬂgozi} In(e;) 4+ op(1)
H,s = = Z (e + € V) exp(M (X, Z:))I{6"S; < u}
x { exp (a0 — &)X, + 985, Z:) — 5By Z:.7))

+exp ( (g — &)X (5¢, )+§(B£Zz-,f7)) }
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Under H3,,, using (A.52)-(A.53), as nh* — 0, we have

- X; —mx(Bg, Z:)
_ Tr 0
° ' Z i ( Jgo [Zi - mz(ﬁgozi)] g’(,@iozi) )

- Xi—mx(ﬁgozi)
AT ZE{ ( 73,2 - ma(8}, 2] 985,20 )

x (e; + ei_l) ﬂgozz} In(e;)

-F {(61' +6 NI{8"S; < uyE{exp(M(X;, Z,))|Bg, Zi}}
1< .

- ;E {(q +eHI{8"s; < u}‘ﬁgozi} In(e;)

+w(u) — [A(u)]" T o+ op(1).

We have completed the proof of Theorem 10.
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