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Abstract

Estimation and hypothesis test for partial linear single-index multiplicative models are
considered in this paper. To estimate unknown single-index parameter, we propose a
profile least product relative error estimator coupled with a leave-one-component-
out method. To test a hypothesis on the parametric components, a Wald-type test
statistic is proposed. We employ the smoothly clipped absolute deviation penalty to
select relevant variables. To study model checking problem, we propose a variant of
the integrated conditional moment test statistic by using linear projection weighting
function, and we also suggest a bootstrap procedure for calculating critical values.
Simulation studies are conducted to demonstrate the performance of the proposed
procedure and a real example is analyzed for illustration.
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1 Introduction

Let (X, Z, Y) be arandom vector, we assume that (X, Z) and Y satisfy the following
partial linear single-index multiplicative model (PLSiMM):

Y =exp (agX+g(ﬂgZ)) €, (D

where Y is the response variable, X = (X1, ..., Xq)T eRY, Z=(Zy,..., Zp)T €
RP, g(-) is an unknown smooth link function, g and B are two unknown parameters.
Both Y and € considered in model (1) are positive variables, and the model error €
satisfies E(In(e)|X, Z) = 0 and also E(e — ¢ !|X, Z) = 0. It is easily seen that
In(Y) = och + g(ﬂgl) + In(e). To make link function g(-) unique, the condition
E(In(e)|X, Z) = 0 is used to identify the unknown link function g(-). The other
condition E(e — e ~!|X, Z) = 0 is used for the least relative error estimation (Chen
et al. 2016). The parameter B is an unknown index vector which belongs to the
parameter space B = {8 = (B1. B2, .... Bp)T € RP, ||l =1, B > 0}.

Model (1) is an important generalization of the multiplicative linear regression
models or the accelerated failure model with an unknown single-index link function.
When g = 0, model (1) reduces to the single-index multiplicative model, which
has been studied in Zhang et al. (2018), Liu and Xia (2018). By taking logarithmic
transformation, model (1) with Y* = In(Y) and €* = In(€) becomes a classical partial
linear single-index models or single-index models (eg = 0), see for example, Xia and
Hiérdle (2006), Xia et al. (2002), Liang et al. (2010), Lian et al. (2015), Lian and Liang
(2016), Li et al. (2015), Lai et al. (2013), Liang and Wang (2005), Li et al. (2014),
Ichimura (1993), Cui et al. (2011), Peng and Huang (2011) and Bindele et al. (2018).
Due to the theoretical and computational simplicity, such logarithmic transformation is
reasonable in some cases. As Chen et al. (2010, 2016) claimed, a linear relationship in
the transformed model is not linear in the original one, and one also needs to transform
the analysis results back into the original measurement scale. So, it is more tenable to
use the original model rather than the transformed model.

To estimate the parameter («g, () and link function g(u), we propose the profile
least product relative error criterion by considering to minimize the least product rel-
ative error criterion (Chen et al. 2016, LPRE) Z?:l (|osf1 — 1] x |&; — 1]), which is
equivalent to minimize Z?:l (¢, Ty €;). We can see that the LPRE criterion function
is infinitely differentiable and strictly convex. Chen et al. (2010) proposed the least
absolute relative error (LARE) estimation by minimizing y 7_, (le; o 11+ |e; — 11).
The LARE estimation enjoys the robustness and scale-free property; however, this
criterion function is unsmooth and the computation is very complicated. The resulting
LARE estimate of parameter can be asymptotically normal with a complex asymp-
totic covariance matrix, which involves the density of the error € (Chen et al. 2010).
Although the covariance matrix of the LARE estimator can be estimated, the esti-
mation accuracy like confidence intervals of parameters would be affected when
sample size is small or moderate. So, we consider to use least product relative error
criterion and propose a profile least product relative error estimation for (e, f),
coupling with a leave-one-component-out method for single-index parameter. This
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Partial linear single-index multiplicative models 701

profile least product relative error method will obtain efficient estimators than the
logarithmic transformation method (Liang et al. 2010) in some cases. To estimate
unknown link function g(u), a local least product relative error estimation is pro-
posed. After estimating unknown parameter, it is natural to construct hypothesis tests
to assess the appropriateness of the linear constraint hypothesis. We test whether
the true parameters satisfy some linear combinations or not. A Wald-type statistic
under the null hypotheses is proposed. We show that the limiting distribution of the
test statistic under the null hypothesis is a centered Chi-squared distribution. More-
over, a restricted estimator of parameter is proposed associated with its asymptotic
properties.

In data analysis, the true model is often unknown; this allows the possibility of
selecting an underfitted (or overfitted) model, which leads to the biased (or inefficient)
estimators and predictions. Traditional variable selection methods, such as best subset
variable selection or stepwise regression, do not work effectively for the semipara-
metric model. Variable selection for model (1) is challenging because it involves both
nonparametric and parametric parts. The strictly convex of the least product relative
error criterion motivates to use the penalized methods to shrink the estimated coef-
ficients of superfluous variables to zero. In this paper, we adopt to use the smoothly
clipped absolute deviation approach (Fan and Peng 2004, SCAD) that not only selects
important variables consistently, but also produces parameter estimators as efficient as
if the true model were known even in a high-dimensional setting, a property not pos-
sessed by the least absolute shrinkage and selection operator (Tibshirani 1996, lasso).
We employ the least product relative error estimation approach to obtain the SCAD
estimators for parameter (o, B). We demonstrate that the resulting SCAD-based
solution is selection consistent.

Lastly, we aim to develop a lack-of-fit test for checking the adequacy of partial
linear single-index multiplicative models. We propose a variant of integrated condi-
tional moment (ICM) test using linear projection weighting function but choosing the
projection direction by fitting a single-index model from the estimated squared relative
model error against all the covariates. It will be shown that the proposed method has
good theoretical properties such as consistency, and has higher power than ICM test
for the partial linear single-index model by taking logarithmic transformation on the
response variable. Monte Carlo simulation experiments are conducted to examine the
performance of the proposed test procedure.

This paper is organized as follows. In Sect. 2, we propose the least product rela-
tive error estimation procedure for parameter (ao, ) as well as the link function
g(u), introduce the algorithms and present the asymptotic results. In Sect. 3, we
provide a Wald-type test statistic for the testing whether the true parameters sat-
isfy some linear combinations, give a restricted estimator under the null hypothesis
and obtain its theoretical properties. In Sect. 4, a penalized estimator based on
SCAD penalty is proposed for variable selection. In Sect. 5, we develop a ICM
test statistic for checking the adequacy of partial linear single-index multiplicative
models and study theoretical properties of the test statistic. In Sect. 6, we report the
results of simulation studies. In Sect. 7, statistical analysis of a real data is reported.
All technical proofs of asymptotic results are given in the online “Supplementary
Material.”
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702 J.Zhang et al.

2 Estimation methodology
2.1 Estimation of a,, By and g(-)

For notation clarity, we rewrite the parameter space B as a (p — 1)-dimensional space:
Bs={B=Bs=(1—1817.6DT: ¢ =(Ba..... 80", I0II> =X/, 87 < 1}
which is used to ensure that the single-index pararneter B and the link function g (-) can
be uniquely defined. This is a commonly used assumption for single-index parameter.
See, for example, Cui et al. (2011), Li et al. (2014). In the following, we use ¢ instead
of B and use ,B¢ instead of B for the true value. We also define A®? = AAT for any
matrix or vector A.

Suppose that we have an i.i.d. sample {X i» Z;i, Y;}!_, from model (1), where X; =
(0. STR q,)T and Z;, = (Zy;, ..., p,) . The estlmatlon procedure is summarized
as follows.

(1) Transform model (1) into In(Y) = oth + g(ﬂgZ) + In(e). Initially, a local
linear smoothing technique is used to estimate the nonparametric function g (u).
Approximate g(u) by g(uy) + g’ (ux)(u — u,) in a neighborhood of u. For given
7 = (&, ¢), the local linear estimator of (g(u), g’(u)) is obtained by minimizing
(2) with respect to (bg, do),

n 2
> e - oTXi b0~ do (B3 Zi — 0] KuByZi—w. @)

i=1

where Kh(ﬂg i—u)=h"lK (ﬂ¢ d u) with K () being a kernel function and

h being a bandwidth. Let bo be the minimizer of (2), and denote it as g(u, ).
Then, the estimator of g(u) is obtained as

g(u,n) = by 3)
Tuo0(, )Ty 01, n) — To10C, 1) Tn 11(u, n)
To00(t, )T 20(u, ) — T2 o (e, ) ’

where Ty, 5, (u, ) = Y1 lKh(ﬂ¢Z — u)(}3¢Z —w)[In(Y;) — aTX;12 for
[1=0,1,2,1b =0,1.

(2) To estimate the true value 5y = (otg, ¢E)T, we propose the profile least product
relative error estimation (PLPRE):

. 7 AT\T
i=(a"9) *
n
. T spT
=arg min Y; exp (—oc Xi—gB Z',ﬂ))
aeRq,¢T¢<1§{ ' ' o

+Y; exp (OCTXi +8(B4Zi, 7])) }
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Apply the equation 81 = /1 — ”4’0 ||2 to estimate By, /§1 =41- ||<i)||2, and the

N A~ AT\T
estimator of B, is B = <ﬂ1,¢ ) .
T

T
(3) After obtaining (&T, By ) . we re-estimate the unknown function g(u) by using
local least product relative error (LPLPRE) estimation:

i Ky (ﬁgli — u) {Y,- exp (—&TXi —ag — a1(3£li — u)) 5)
i=1

_ . AT
+Y; 1 exp ((xTX,- +ag + al(ﬂq;Z,- — u)) }

The LPLPRE estimator of g(u) is obtained as gy (u, ) = ap.

Algorithm

The minimization algorithm for (4) can be implemented by using the Newton—
Raphson approximation. Meanwhile, a consistent initial value for (e, ¢p) can make
the Newton—Raphson algorithm converge fast. One can use the dimension-reduction
method for the transformed data {X;, Z;, ln(Y,-)};’:1 , see for example Xia and Hirdle
(2006), Zhang et al. (2018). After we obtain the initial values, we then update 5y =
(ocg, qﬁg )T by the Newton—Raphson approximation:

A ol ¥ 2 _1 T n
Mnew = TMold — [S)ﬁn (ﬂold)] Ny, (”old) ’ ©®)
My, (ﬁold)
) ®2
n - Bg(ﬂgzi,ﬂ)
=" oo + & 5atio) || | 5aear
' i,0 old i,old \"lold 8g(ﬂ¢zia 77) =4 ’
P I N=Mold
¢
My (ﬁold)
8§(ﬁ£zi,ﬂ)
X":[ o o T e
= —Gi,old(”old)+Ei_,old(r’01d):| 25(BLZ; ’
— M 1=Tlo1q
¢
~ ~ v 5(Br ] € J
where € old(o1g) = Yiexp (_“gldXi _g(ﬂtioldzi’ﬂ"ld))’ and Gi’(}ld(%]d) -

_ ~ A AT A .
Y exp (agldx,- + 4By, Zi. "old))s i=1,....n
According to Li et al. (2011) and Cui et al. (2011), the two arguments M, (f;old)
and N, (f1q) are equivalent to
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704 J.Zhang et al.

n

(f1o1a) Z €i,old(Tlo1q) + €; Old(ﬂold)} (7N

i=1

n=ow

— iy (B} Z)) 2
mz(ﬂ¢Z )| &85z

(fo1a) Z [ €i0ld(Mo1a) + €; old("old)i| 8)

i=1
X — iy (ByZ)
15|z -z 8320|885z ) |,y |

where §'(u) is the local linear estimator do from (2), i x (u) is the local linear esti-
S bni )X
S b M2 )

is the local linear estimator of E[Z |ﬂ£0Z = u] and it is defined as mz(u) =
i (WZ;

RO i) = Kn(ByZi — w[Tua0,m) = (BZi — w)Twrolw, m]. I

is noted that the arguments 91, (flo1g) and N, (flo1g) defined in (7)~(8) are dif-

ferent from Wang et al. (2017) for estimating the single-index parameter ¢. In

stead of Jg [Zi - th(X,-m;Z,-)] g’(ﬁgzi) in (7)~(8), Wang et al. (2017) used
JT VAY 4 (ﬁgl ) in their Newton—Raphson algorithm. Li et al. (2011), Cui et al. (2011)

mator of E[XlﬂiOZ = u] and it is defined as myx(u) =

proved that (3'1 )convergesto J¢{z E[Z|ﬂ¢Z ﬂ¢z]}g (ﬂ¢z) As aresult, the

argument J¢ [Z,- —mz(X; |ﬁ¢Zi)] (ﬂ¢Z,-) used in our algorithm (7)—(8) is more
reasonable and tenable.

2.2 Asymptotic results
Here we list the conditions needed in asymptotic results.

(C1) E[X?] <oofors=1,...,q, E[Zf] <ooforr =1,..., p,and the matrices
I'g, Ap used in Theorem 1 and I'z o in Proposition 1 are all positive definite
and finite. Moreover, E[|In(Y)|"] < oo for some r > 3.

(C2) E(X]ﬂgl = u), E(Z|,B£Z = u) and the density function fg, (u) of the random
variable ﬂ;Z are twice continuously differentiable with respect to u. Their
second-order derivatives are uniformly Lipschitz continuous on € = {u =
ﬂ;Z 1z €Z CRP By € S,p,}, where Z is a compact support set, and
6,1,5(# ={By € By : 1By — ﬁ¢0|| < con™1/7*¢1} for some positive constant ¢
and c; € [0, 0.05). Moreover, g(u) has two bounded and continuous derivatives
onu € Cand iggfﬂ"’(u) > 0.

(C3) The kernel function K (-) is a symmetric bounded density function supported on
[—A, A], satisfying a Lipschitz condition. K (-) also has second-order contin-
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Partial linear single-index multiplicative models 705

uous bounded derivatives, satisfying KU (+A) = 0 with KUV (1) = STij(t),
j=0,1,2,and [ s’K(s)ds # 0.
(C4) As n — o0, the bandwidth & satisfies

nh* — 0.
(C5) Forallg; j=1,...,p+q—1,¢; = 0,/nfj — oo as n — oo, moreover,
liminfnﬁooliminfuﬂmpéi (w)/¢; > 0.

(log n)2+2x0

R — 0 for some s¢p > 0, and

Condition (C1) is the moments of the covariates, and the technique condition of
(I, Ap) is imposed to ensure that it is invertible in Theorem 1. Condition (C2) is
typical assumptions in the nonparametric smoothing literature, which are also found
in Liang et al. (2010), Xia and Hérdle (2006), Li et al. (2014), Boente and Rodriguez
(2012). Condition (C3) is the common condition for the kernel function K (¢). The
Epanechnikov kernel satisfies this condition. Condition (C4) is generally required for
bandwidth 4 in single-index semiparametric models, see for example Liang et al.
(2010), Peng and Huang (2011). The detailed bandwidth selection will be discussed
in Theorem 2. Condition (C5) is a technique condition involved in the SCAD variable
selection procedure (Fan and Peng 2004).

—oT /. /1 = 2
We define J ¢, = ( ¢0/ = ligol ), where I,_ is an (p — 1)-dimensional

I,
identity matrix, and X = X — E[X|,3$OZ], Z=(Z- E[Z|/3$OZ])g’(,3$OZ),

X ®2 X ®2
Ag=E <J£Z> , IT'o=FE (€+€_l)<J£Z> ’
0 0

DN

y y ®2
_ -1 X -1 X T
=E ((e—e )(1502)—E|:(e+e )(1302)‘ﬁ¢02:|1n(e))

Theorem 1 Under the conditions (C1)—(C4), as n goes to infinity, we have
N L _ _
V(i = m9) <> N (0pig-1, T3 Zol5")

El(e — e H)?]

m , we have

If € is independent of (X, ZT)T, let &k =

v (it = o) N (0p+q—1”‘Aal)-

After applying the logarithmic transformation on the response variable, we use the
profile least squares method (Liang et al. 2010) to estimate 3. Denote that #j is the
transformation profile least squares estimator (TPLSE). Based on Theorem 1 in Liang
et al. (2010), under the independence condition between (X T ZT)T and €, we have

(e —ng) —L> N (0p+q_1, Var(ln(e))Aal>. Comparing with Theorem 1, we find
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706 J.Zhang et al.

that the PLPRE estimator # is more efficient than §; when & < Var(In(¢)) and vice
versa. If € follows from exp(N (0, 02)), a direct calculation entails that
O.4s+2

K —_—
— 2s + 1!

Nlb—i

{exp(o2) —exp(—o )} =02+

Moreover, Var(In(¢)) = E[ln(€)]*> = o2 < k. This shows that the TPLSE
estimator )t is more asymptotically efficient than the PLPRE estimator # when
€ ~ exp(N (0, 02)) and € is independent of (X, Z). If € follows from exp(U[—a, a])
for any a € (0, 1], where U[—a, a] is a uniform distribution. Then,

4 {exp(2a) — exp(—2a)} — 24> 2 Y001 e Q)™
exp(2a) + exp(—2a) — 2 ZS 1 <2A),(Za) S

A direct calculation shows that k¥ < ﬁ = E[ln(e)]? = Var(In(¢)) when a € (0, 1].
Then, we have that the PLPRE estimator 1 is more asymptotically efficient than the
TPLSE estimator 77 when ¢ is independent of (X, Z) and € ~ exp(U[—a, a]) for any
a € (0, 1].

~T\T
The asymptotic result of (&T, B (;5) can be obtained by using a simple application

L. I,, _ .
of the multivariate delta method. Let I;, = < a0 Ogxp-1) ) where I, is an
. . . . . 0 Opxq’ J¢0
g-dimensional identity matrix.

Theorem 2 Under the conditions of Theorem 1, we have
a— oo L _ 1
\/ﬁ<ﬁ ) > N (0p1g- 114, T3 Zol5' 17, ).

Further, if € is independent of (X T ZT)T, we have

o — o L 14T
f(% —13¢o> - <0”+q’“J¢'OA0 IJ¢o)'

Remark 1 1t is worthwhile to point out that condition (C4) requires nh* — 0. To
meet this requirement, we use the order of O~y x n=/5 = 0(n='/3) for the
bandwidth /4. In detail, we define the LPRE cross-validation score

n
. . AT .
CV(h) = Z {Yi exp (—a(T_i)Xi — 8By, Zis WH)))

i=1

B . R AT .
+Y; Pexp (oc(T_i)Xi + g(_i)(ﬂ‘;(_i)ziv "(*i))> }
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Partial linear single-index multiplicative models 707

where #(_;), &i)(u, §_;)) are computed from the data with the ith observation

A

deleted. Let hopy = arg mhinCV(h), then the bandwidth / is chosen as & = fzopt *

n~2/13_ This bandwidth choice is fairly effective and easy to implement in practice.
Our numerical experience suggests that the numerical results in Sect. 6 were stable
when we shifted several values around this data-driven bandwidth.

Next, we present the asymptotic results for the estimator gz (u, 7).

Theorem 3 Under the conditions (CI1)—(C3), as h — 0, nh — 00, we have

T2
E —] 2 T _ )
i> N (O, [(e — 1 ) |.3 2” 1234 )
(Bt 1185, 2 = 0 gy, )

M(ém(u,ﬁ)—g(u) 12l ))

If € is independent of (X, Z1)T, we have

2
Vnh <§L<u, M — g — Mg”(u)) Lon (o, 2EE2 )
2 S84, )

where g o = [2K(t)dt and pg> = [ K>(t)dt.

The asymptotic results of Theorem 3 are the same as Theorem 3.1 obtained in Liu and
Xia (2018). Directly using the asymptotic results of Theorem 1 in Li et al. (2014), we
have

(00 e~ 2525 ) s o, 20
nh\ 8(u, i) — ) — ———g"(u) Fay, @0

where vo(u) = E ([ln(e)] |ﬂ¢ ) If € is independent of (XT, Z"T, the term

vo () reduces to Var(In(e)). It is seen that the asymptotic biases of g7 (u) and g (u, 7))
are the same, while the main difference is the asymptotic variances. Both two local lin-
ear estimators behave locally as well as the oracle estimate because TPLSE estimator
#ir and PLPRE estimator # are both root-n consistent, faster than the root-(nh) conver-
gence rate. The comparison of the efficiency between two estimators can be obtained
locally through the asymptotical variance or globally through asymptotic integrated
mean squared error (AIMSE). The asymptotic results of Theorem 3 can also be used
to construct the simultaneous confidence bands of g(u) for various inference tasks (Li
et al. 2014). These deserve further study.

We estimate 7 in (4) by using the estimator g(ﬂiz, 1), which is obtained by local
linear estimate with the logarithmic transformation on the response variable, and the
theoretical results of # coincide with Liu and Xia (2018) and Zhang et al. (2018) if
model error € and Z are conditionally independent given ﬁgo Z and g = 0. Moreover,
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708 J.Zhang et al.

we can also obtain the estimator 7, of 5, by iterating the LPLPRE estimator gz, (u, #)
between (4) and (5), i.e.,

i = (a1.91) ©)

. T 5 (pT
=arg min Y~exp<—ot X;—gr(B Z~,n)>
dERq,¢T¢<1§{ i 1 oot

+Yi_l exp <0£TXi + §L(,3£Zi, 77)) }

Liu and Xia (2018) proposed to use minimization (9) by estimating (8 e g(u)) in
multiplicative single-index models (e« = 0). It is noted that there are no explicit
solutions for estimators #; and g1, (ﬂgz, 7) in minimization (9), and we can consider
to iterative estimate 1 and g () numerically.

In the following, we define m¢ x(u) = E [(e + e‘l)X|ﬂ$OZ = u], me z () =
E [(e +ehz|g) Z = u] and m.(u) = E [(e +eH|Bh z = u] Similar to the
Proposition 1 and Theorem 1 in Cui et al. (2011), we can have the following two

propositions.

I+s0
3

Proposition 1 Under the conditions (C1)—(C3),asn — 0, h — 0, (logm) 720

- — 0 for
some so > 0, we have

me,x (B4, 2)

3§L(,3£OZ’ 1) me(ﬂg 2) ) (log n)!+s0
omg _Ome,z(ﬂzoz)) Tor{ht nh? '

g By, T g, <z

me(Bg,2)

Let

T ®2

X — me,X(ﬁd,OZ)
T
e VA
Fro=E{(+eh ’nw%;me ’
0

and

®2

me x(Bg,Z)
X - ———
1)2 me(ﬂ¢oz)

me,z(BY Z)
/ T Z T Z _ ’ ¢0

Yro=E{(e—€"
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Partial linear single-index multiplicative models 709

Proposition 2 Under the conditions of Proposition 1, we have
A L _ _
Vi (i, —ng) — N <0p+q717 FL,IOELsOFL,IO) :

The asymptotic result of Proposition 2 is slightly different from Theorem 3.2 in Liu and
Xia (2018). Liu and Xia (2018) take derivative at the point 8 o lying on the boundary
of a unit ball | ﬁ¢0 |l = 1, and Theorem 3.2 in Liu and Xia (2018) involves some
generalized inverse matrices. We transform the boundary of a unit ball in R? to the
interior of a unit ball in R?~! by taking derivative at the point ¢, for the single-index
parameter. If model error € and (X', ZT) are conditionally independent given ﬂgOZ ,
both estimators 7 and #; are asymptotic equivalent.

3 A hypothesis test

In previous section, we discuss the estimation of 5, = (ag, (bg)T. Further interesting
topic is to see whether certain explanatory variables influence the response signifi-

cantly. Without loss of generality, we consider the linear hypothesis testing problem:
Ho:Ang=b, vs H;:Any #Db, (10)
where A is aknown constant k X (p+¢ — 1) matrix and b is a known constant k-vector.

We shall also assume thatrank(A) = k < (p+¢q — 1). For different purposes of testing
components of ag and ¢, we can set A = (A1, 0) or A = (0, A7) similarly.

3.1 Arestricted estimation
If the null hypothesis ¢ holds, the restriction condition An, = b should be considered

to obtain an estimator of 7. Following Wei and Wang (2012), we construct a restricted
estimator by using Lagrange multiplier technique:

g = @p, $p)" (11)

n

. T ArpT
=arg min Y;exp (—Ot X;—g(B Z~,1])>
(XERq,¢T¢<1 { ;I: 1 1 ¢ 1

+7; exp (o X, + (B3 2. n))} +AT(An—b) }

where A is a k x 1 vector of the Lagrange multipliers. Differentiating quantity (11)
with respect to 7 and A, the restricted estimator 7y is obtained as

. .1 2T\T
iix = (&R 9z (12)
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710 J.Zhang et al.

where 91, () used in (12) is defined in (6) by substituting #o1q With 7. For the single-
index parameter B , the restricted estimator B dr under the null hypothesis Hy is
T
A - AT
defined as B; = ( 1- ||¢R||2,¢R)

In the following we present the asymptotic results for estimator 7. Let ¢ =

-1
Lprg-1 =I5 AT (ATG'AT) A, where I,y is an (p + g — )-dimensional
identity matrix.

Theorem 4 Suppose conditions in Theorem 2 hold, under the null hypothesis Ho in
(10), we have

~ L _ _
Vi (iig = 10) = N (0piq-1. 2075 Zor' 27).

-1
If € is independent of (X, Z")T, let o = 1,4, — Ay' AT (AA(;‘AT) A, we
have

~ L —
\/Z(ﬂR — 170) — N (0p+q—lv kIloA, IH(T)) .

3.2 A test statistic

To test null hypothesis Iy in (10), our test statistic is proposed as

~ 1 o~ ~ _ —1
Ty = (i = b)" {A[T@] 7 &) [Fa@)] ' AT (13)
X (Afy — b) ,

where én (1) is defined as

AT R ®2
08(BgZi. m)
n i - a~
PPN ~ A o A AT ~
S (i) = @ —-&h o1 0% — M(B3Z) In(&)
" ; b 08(B4Zi. ) e
)
R T L AT\ 0aBZi) 03B Zi.m)
where & = Y;exp (—a X; —g(ﬂ,;,Z,-,n)), o = X - and
P Y asrT 7. R
dg(ﬂ¢?,,n) _ dg(l3¢zl’")‘ ,i =1,...,n. And, M(u) is the local linear estima-
¢ 9 n=h

tor of E [(6 + 6_1)(5(T, ZTJ%)TIﬂ;OZ = u] which is estimated as
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AT
R . 9g(BgZi, 1)
>iz1 buiWL; [ i L &
i buiG) 02(B3Zi, 1)
o¢

M) =

If € is independent with (X, ZT)T, the test statistic for H is proposed as

A—1 ~ T =17 -1 ~
Tian =ni~" (47— b)" (AZ7'AT) " (47 —b), (14)
where & ! = ¢n,1/cn2,and ¢y 1, cy,2 and A are defined as
1 n 2 l n 2
Cn,1={—Z(€i+€,-_l)} , Cn,2=—Z{€i—@i_l}
g e
and

AT
g(ByZi, 1)
o1 0%
P 9g(ByZi, 1)
a9

N

i

>)
Il
S| =

Theorem 5 Suppose conditions in Theorem 2 hold, under the null hypothesis in (10),
we have T, i) sz. If € is independent with (XT, ZT)T, we have Tiq n —L> X/?-

To study power, we consider the local alternative hypothesis
Hin: Ang=b+n""%¢c, ¢#0. (15)

We have the following asymptotic results.

Theorem 6 Suppose conditions in Theorem 2 hold, under local alternative hypothesis
-1
(15), let ®m = —I‘glAT (AFEIAT) ¢, we have

A L _ _
v (iig = n9) — N (ﬂ, ﬂorolzorolgg).
And if € is independent of (XT, Z™)T, we have
R L _
Vi (g —m) — N (n, kIyA, 1H3> .
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Theorem 7 Suppose conditions in Theorem 2 hold, under the local alternative

L
hypothesis Hy, in (15), we have T, —> sz(ro), where sz(to) is a noncentral
Chi-squared distributions with k degrees of freedom and noncentrality parameter

-1
70 = ¢’ (AFO_IZOFEIAT) c. Furthermore, if € is independent with (XT, zZHT,
we have Tig » —L> X,?(,oo), where Xlg(,oo) is a noncentral Chi-squared distributions

-1
with k degrees of freedom and noncentrality parameter py = k™~ '¢T (AAJ ! AT) c.

4 Variable selection

As we described in introduction, the LPRE criteria are strictly convex. We adopt
the convex property to propose the following penalized PLPRE function for variable

. T 2T\T .
selection. The penalized estimator i) p = (ag, ¢ P) of 5 is defined as

ip =arg min (16)
acR?,¢Tp<1
n

{ ) [Yi exp (~aX; — 28321, )

i=1

pt+q—1
+¥ exp (o X, +£’(ﬂ$zi7ﬂ)>j| +n Y p;5<|ns|>},

s=1

where p; (-) is a penalty function with a tuning parameter ¢. For different purposes of
selecting nonzero components of X and Z, if we let p;;(-) =0for j =1,...,q, we
aim at selecting Z-variables only; if we let p;,(-) =0for j =g+ 1,....p+q—1,
we select covariate X.

There have been various penalty functions for variable selection problems. For
example, the Ly-penalty p(|t|) = ¢ |1|? results in a ridge regression. The L -penalty
pe (|t]) = ¢|t|yields the least absolute shrinkage and selection operator (lasso) method
(Tibshirani 1996). Fan and Peng (2004) further proposed the smoothly clipped absolute
deviation (SCAD) method in a high-dimensional setting. The SCAD penalty function
pe () satisfies p; (0) =0, pé (0+) > 0, and its first-order derivative is

(@t —8)+ I

@—1¢ (8>§)}’

p;(a>=c{l(as;>+

where (s)4+ = sI(s > 0) is the hinge loss function; a is some positive constant with
a > 2. From Bayesian statistical point of view, Fan and Peng (2004) suggested to use
a = 3.7 and this value will be used throughout this paper.

Next, we study the sampling property of the resulting penalized PLPRE estimators.
Without loss of generality, assume that 5y, = (110’1, 170‘2), No.1 = (@®0,1, P 1)> ®0,1 is
go x 1 nonzero components of g, @ 1 is (po — 1) x 1 nonzero components of ¢.
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Moreover, 19, = (0,2, Pp.2), ®0,2 is a (¢ — qo) x 1 vector with zeros, and @ 5 is
a (p — po) x 1 vector with zeros. Note that B, ; > 0 by the identifiability condition
of the single-index parameter and thus covariate Z is included in the final model. We
denote that X1 consists of the first go components of X corresponding to &g 1, and Z1
consists of the first pg components of Z corresponding to (8.1, ng 1)T. We define the
following notations

o5, = diag(pf, (01, - Y, (0.0 L, (D0.1Ds -

DLt (80.50-1D).
Raos = (Ph, (0.1 Dsign(@o,). .. . p, (l0.go))sin(@o,q0) )

Ry = (Pl (0.1 DSiEN@0,0). - L (0, po 1 Dsign(@o,pp-1))

—_ T — 2

and Jg,, = ( ¢0’1/ = lIoal , where I ,_1 is an (po — 1)-dimensional
V ]

identity matrix. Moreover, we define X = X; — E[X1|ﬁ£0121], Z1 = (Z1 —

E[Z1|By, , 218 By, Z1),

v ®2 o ®2
Aor =E (JTX‘Z) , Tor=E (e+e“)< O ) ,
g0, 21 T o121
201 = EH(E —eh <JTXIZ )
$o1%1

. )"(1 T ®2
—E|(e+€e) ngzl ﬂ¢01121 ln(e)} :|

Theorem 8 Denote the penalized estimator ) p = (f]
(C1)—(CS5), the estimator 1§ p satisfies:

T
2) . Under conditions

(a) with probability tending to one, 1 p 2 = 0p14— po—qo;

(b) let Rg,y, = (RS, Rp )

Vit (Fox+ Zog,) {(ipa = m01) + (Fon + Fog,) ' Ry, |

i> N (OqurPofl’ 20,1) :

(c) If € is independent of (X¥, Z")T, let k1 = E(e + ¢ ") and ky» = E(e — e 1)?,
we have
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Vi (kiAo + Zoyg,) {(ﬁp,l —no,1) + (k1401 + 20»€1)_1 fR{o,l}

i> N (Oqo-‘rpo—lv ICQA()J) .

Remark2 The SCAD procedure automatically shrinkages zero components of  to
zeros and selects out nonzero components of 7, and retains /n-normality with an
extra-bias /nRo ¢, which is caused by the SCAD penalty function. If we impose the
condition /nRo ¢ , — 0, the asymptotic results of Theorem 8 (b)—(c) are in accordance
with Theorem 1 once we had known those nonzero components beforehand. Theorem 8
also indicates that the proposed variable selection procedure processes the oracle
property with proper choice of tuning parameters ¢. We discuss the selection of tuning
parameter in the following.

Suggested by Liang et al. (2010), we adopt the BIC selector to choose the regu-
larization parameters ¢;’s. We use the approach as follows: let ¢; = ose() ), where
se( j)’s are the standard errors of the unpenalized PLPRE estimators for ; with
j=1,..., p+q — 1. The BIC score for ¢y can be defined as

1
BIC(¢) = In{LPRE(Z)} + %Nm, (17)

and

n

1 n A AT o
LPRE(0) = ~ 3 {Y,- exp (~&p o Xi — 8By, Ziviin.))
i=l1

- . AT .
+7Y, Lexp (oc;’;hX[ +g(ﬂ$P,;Zi» ”P,C)) }

where N, is the number of nonzero coefficients of §p , §) p , is the resulting penal-
ized estimator of 5, with tuning parameter { = ({1, ..., §q+p_1)T, ¢ = gose(ﬁj),

T
R P AT
and ﬁqu‘g = <,/ 1—l1¢p 2 ¢P’§> . The standard error se(fj ;) is obtained as the

square root of n_le]T. [255“(,, (f))]_1 Sa (i) [93?,1(17)]_1 ej, where e is the (p + g — 1)-
dimensional vector with j-th position 1 and O elsewhere, j = 1, ..., p+¢q — 1. Thus,
the minimization problem over ¢;’s will reduce to a one-dimensional minimization
problem on ¢y. The minimizer of the tuning parameter ¢y can be obtained by a grid
search. Thirty grid points are set to be evenly distributed over the range of ¢y. In
detail, we set 30 grid points as {{p.1 < o2 < -+ < 0,30} According to (17), we
calculated BIC(¢p5), s = 1, ..., 30 and obtained ¢o min = arg min{BIC(¢p5),s =
1,...,30}. Then, the final tuning parameters are obtained as ¢; = g‘o,minse(,@ i)
j=1,...,p+ q — 1. The gird number 30 is based on experience from simula-
tions. In practice, the range of ¢y shall be selected to be wide enough so that the
minimizer of {BIC({O,S)}f= | can be approximately at the center of the range, and k
grid points are set over the range of ¢p.
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5 Model checking

For model checking, we consider
Hi 0 Y =exp (och + g(ﬂ302)> € a.s. forsome g(), &, ﬂ¢0. (18)

Let S = (X7, Z")T, under the null hypothesis 3, we have E(e — ¢~ !|§) = 0.
This conditional expectation motivates us to use the integrated conditional moment
(ICM) tests, which transform the conditional expectation of the null hypothesis
E(e — e’1|S) = 0 into uncountable many moments E{(e — e Duws, S} =0
for any s with the weighting function satisfying the equivalence of the conditional
expectation and infinite unconditional moments. There is an amount of the liter-
ature on the ICM tests with different weight functions, for example, exponential
weighting function exp(+/—1sTS) (Escanciano 2006; Bierens 1982), logistic weight-
ing function {1 +exp(sTS)}~! (Lee et al. 2001), simple indicator weighting function
I1(S < s) (Stute 1997; Lin et al. 2002) and also the linear indicator weighting function
1 (8TS < u) for u € R' (Xia et al. 2004; Stute and Zhu 2002; Escanciano 2006).
These weighting functions all lead to consistency model checking methods with dif-
ferent power properties. However, as noted in Ma et al. (2014), Bierens and Ploberger
(1997), no best weighting function in terms of power is possible because all these
weighting functions lead to asymptotic admissible tests.

In this section, we adopt to use the linear indicator weighting function 7 (STS <u)
for u € R'. Escanciano (2006) gave the rationality of the linear indicator weighing
function. That is, for random variables ¢ and W with E||W| < oo, E(e|W) = 0 if
and only if £ (¢18TW) = 0 almost sure for any unit vector § (Jones 1987). So, the
departure between € — e~ ! and S can be detected by a projection of the function along
a certain direction.

For unit vector §, the sample version of E{(e — e HI(8TS < 1)} is defined as

R (1) = % > {n exp (—&"X; - §(By 2. 1) (19)

i=1

N Y N
—¥ exp (&7 X; + 2By Zi i) }1(6Ts,- <.

To study the asymptotic properties of R, (1), we introduce the following notations

Aw) =E {(e +e NS < ) (sz )} ,
o

Ew)=1{8TS <u)}— [A(u)]Tl"(?l (sz) )
0

Rw=ATwI,'E |:(e+e_1) (éfz) ﬁgoz}—E [(e+e—1)1{5T35u}‘ﬂ$02]-
0
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Theorem 9 Under conditions (C1)—~(C5) and the null hypothesis Hg, /nR, (w) converges
to R(u) in the Skorohod space D [—o0, 00]PT4, where R(u) is a centered Gaussian process
with covariance function

Cov {R(u1), R(uz)}
=E{(c — ¢ ")VE@)E )} + E {[In(©)*$(u)B(u2)
+E{(e — e HIn©[E ) B(u2) + E u2) 81} .
If we take § as a random variable and denote the distribution of § by F5(§). Let u €
supp(87S), where supp(8TS) is the support of §TS, E [(e —e HI{s's < u}] = 0is
equivalent to

Egrs, {E [ —eH1(87s < 87s,)] ‘5Ts*} —0.

where S, an independent copy of S, and Ejr s, () stands for taking expectation of 8Ts.,.
Then, our test statistic is defined as

2
T = / {(VnR, (8T} dF5(5). (20)
Based on Theorem 9 and the continuous mapping theorem, we have
7 L f [RGTs))” dFyrg(8Ts) F3(8),

where Fyrg(8Ts) is the distribution function of §Ts for a given §.
To investigate the sensitivity of the proposed test, we consider the alternative hypothet-
ical models

T, Y =exp (agX + g(ﬁgol)) e+n " expm(X,Z))e

with some arbitrary bounded measurable function m (-, -) . In the following, we define
MX,Z)=m(X,Z) — och — g(ﬂiOZ), M(X, Z) =exp(M(X,Z)) — E[exp(M

(X,Z))‘ﬁgoz], Fo = Ei(e+e—1)M(X,Z)<sz)}; moreover, Yoy =

. b ¢
oo (1)
0

Theorem 10 Suppose conditions (C1)—(C5) hold, under the local alternative hypothesis
H,, we have

A L — _ _
i (i = mg) = N (rolfo, rolzorol) .
Further; if € is independent of (XT, ZT)T, we have
N L — _
ﬁ(ﬂ - 110) — N (AOIT(),ICAOI) .
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Letw(u) = E ((e + G’I)A;I(X, Z)I{8TS < u}), we have /nR, (u) converges to R(u) +

w(u) in the Skorohod space D [—00, 00?14, where u(u) = w (1) — [A(u)]TI’alFo and
R(u) is defined in Theorem 9. Moreover,

7 L / {R(8Ts) +M(aTs)}zngTs(aTs)Fs(a).

Next, we follow the bootstrap method proposed by Ma et al. (2014) to mimic the distribution
of the test statistic T}\.

Step 1: Compute the estimated projection direction § by fitting a single-index model with

AT
synthe51s” data {(¢; — 6_1)2 Sy & =Y exp(—&TX,- —8(ByZi, 1)), and
=¥ "exp@"X; +g(ﬂg,Zi,n)),i =1,...,n
1 T T 2

Step 2: Compute the test statistic T, = 3 Y [Z;’zl(éi — éi_l)I{S S; <é S,}] .

Step 3: Generate B times positive random variables sequence {&;}/_;,b =1, ..., B from

two-point distribution which, respectively, takes values M with probability

Sif and varlance 1 and compute the following arguments for each b: Yi[b] =

eXp(a Xi+ g(ﬂ(;;Zi, n) +eipxIn(€)),i=1,....n
Step 4: For each b, we calculate the bootstrap residuals éi[b], and we further define the
bootstrap test statistics

2
R AT AT
= L3S - i (s<d's) ]
r=1
b
where él.[b] = Y[ exp(—aPTx; — A[b](ﬂ[ " Zi "), @, g1, 4PN} are
obtained from Sect. 2.1 by using the bootstrap samples {Y[b] Xi, Z;},

Step 5: We calculate the 1 — « quantile of the bootstrap test statistic T}, +[]

critical value.

as the «-level

6 Implementation

In this section, we report simulation results to evaluate the performance of the proposed
estimators. In the following simulations, the Epanechnikov kernel K (1) = 0.75(1 — Ht
is used. The bandwidth 4 is selected according to the remark in Theorem 2.

Example 1 We generate 1000 realizations and choose the sample size to be n = 100,
n = 300 and n = 500 from model (1). We choose ag = (1, =3, 1.5, =2, —1.5)T, ,B¢0 =
2,1,2, l)T/m in this example. Covariate (X, Z) is generated from N (0, ¥) with ¥ =
(0ij)1<i,j<9,0ij = 0.511=J1. The link function is considered as g(ﬂgol) =0.5(1 +ﬂ£0Z)2
and g(ﬂzo Z) = exp(O.SﬁlOZ — 0.25). For the model error, we considered two cases.

Case 1 (Homoscedasticity). The model error € is independent of (XT, ZT)T and generated
from exp(U), where U follows uniform distribution U[—1, 1].
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Case 2 (Heteroscedasticity) The model error € is generated from exp(Uz, ), where Uz,
follows a uniform distribution U(—|0.2Z;+1], |0.2Z 4+ 1|) conditional on covari-
ate Z1.

AT
Simulation results for (&7, B (;,)T arereported in Tables 1 and 2. In the tables, we compare

AT
PLPRE estimator (&T, B (;,)T and the transformation profile least squares estimator (TPLS).

The TPLS estimator for (ocg, ﬁ(TbO)T is obtained by using the profile least squares estimation
method Liang et al. (2010) with logarithmic transformed data {In(Y;), X;, Z;}?_,. From
Tables 1, 2, we see that values of PLPRE estimator and TPLS estimator are close to the
true values of (ocg, ﬂ;O)T, respectively, and the values of MSE (&, e9) and MSE (& e B 4,0)

decrease with sample size n increasing. The angles (in radians) of arccos(ﬁ e By 0) become
closer to zero when sample size n increases to 500. We also note that the performance of
PLPRE estimator is better than the TPLS estimator. This simulation shows that PLPRE esti-
mation method is more efficient than the transformation-based method. This phenomenon
is also revealed in Chen et al. (2016).

In Tables 3 and 4, we consider the restricted estimator (&{, ﬁgR)T by consider-
ing the condition Ay = (1,1,0,—1,0,0,0, 0)T for ag, and the condition A, =
(0,0,0,0,0,1,0, =T for @, (that is, ap.1 + ap2 — aps = 0, fo2 — Poa = 0).
We find that the restricted estimators are close to the true values. As the sample size
n increases, the values of MSE for the restricted estimators decrease. Both two restric-
tion conditions A; and A; decrease the values of MSE, especially for the estimation
of (a1, 0,2, 0.4) in Table 3 and the estimation of (By.2, Bo4) in Table 4. More-
over, restricted condition A, also decreases the values of MSE of arccos(,@ J)R"B%)
in Table 4. This again reveals that the restricted condition for single-index parame-
ter can improve its estimation efficiency. Based on the numerical studies reported in
Tables 1, 4, the PLPRE estimation procedure for parameter (ozg, ,B;O)T performs well.

Further, we shall do linear hypothesis test:

Ho : Boo = Po.4, Hi:Po2=Pos+c,

where ¢ = 0.04,0.08, 0.12,0.16, 0.2 for five alternative hypothesis ;. Under the null
hypothesis Hyp, simulation results for the rejection probabilities of test statistics T, and
Jid,» under homoscedasticity are reported in Table 5. In Table 6, we report the simulation
results of test statistic T, under heteroscedasticity. From Tables 5, 6, we can see that as the
value of ¢ increases, the power function increases rapidly. We can also see that as sample
size n increases, the power function tends to be one, which shows that the test statistic T, is
powerful for the test problem. In Table 5, the model error € is independent with (X T ZT)T,
and the test statistic Tiq , is more powerful than T, for this test problem.

The performance of estimator g () of g(u) is evaluated using the average squared error
(ASE) and the average absolute error (AAE)

no no
ASE = ng" 3 [6y) — g’ AAE=ng" > |guy) — guy).

v=1 s=1

where {uy, ..., uy,,} are the given grid points, and ng = 200 is the number of grid points. We
compare the LPLPRE estimator gy (u, #§) and the TPLS estimator g(u, 9)) and report the
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Table 5 Power calculations of T}, and Tjq , for homoscedasticity in Example 1
Significant level Tn Jid,n
0.01 0.05 0.10 0.01 0.05 0.10
n =100, g(u) = 0.5(1 + u)?
¢ =0.00 0.004 0.035 0.074 0.011 0.047 0.091
c=0.04 0.021 0.068 0.147 0.028 0.099 0.189
c=0.08 0.033 0.145 0.246 0.121 0.267 0.378
c=0.12 0.106 0.309 0.454 0.252 0.474 0.583
c=0.16 0.290 0.568 0.701 0.514 0.727 0.818
c=0.20 0.510 0.751 0.855 0.705 0.878 0.936
n =300, g(u) = 0.5(1 + u)?
¢ =0.00 0.009 0.042 0.086 0.010 0.050 0.101
c=0.04 0.034 0.115 0.215 0.082 0.216 0.314
c=0.08 0.219 0.497 0.655 0.399 0.664 0.779
c=0.12 0.691 0.899 0.949 0.849 0.949 0.974
c=0.16 0.951 0.984 0.997 0.977 0.997 0.998
c=0.20 0.997 1.000 1.000 1.000 1.000 1.000
n =500, g(u) = 0.5(1 + u)?
¢ =0.00 0.011 0.051 0.110 0.010 0.048 0.099
c=0.04 0.062 0.207 0.339 0.144 0.339 0.459
c=0.08 0.531 0.760 0.861 0.704 0.860 0.932
c=0.12 0.923 0.982 0.995 0.970 0.994 0.999
c=0.16 0.997 1.000 1.000 0.999 1.000 1.000
c¢=0.20 1.000 1.000 1.000 1.000 1.000 1.000
n =100, g(u) = exp(0.5u — 0.25)
¢ =0.00 0.007 0.038 0.071 0.009 0.042 0.090
c=0.04 0.019 0.063 0.125 0.021 0.085 0.177
c=0.08 0.028 0.129 0.216 0.114 0.249 0.355
c=0.12 0.094 0.279 0.427 0.231 0.450 0.564
c=0.16 0.275 0.531 0.669 0.501 0.704 0.800
c=0.20 0.497 0.722 0.836 0.681 0.859 0.913
n =300, g(u) = exp(0.5u — 0.25)
¢ =0.00 0.011 0.047 0.092 0.012 0.052 0.106
c=0.04 0.021 0.089 0.160 0.054 0.172 0.297
c=0.08 0.174 0.462 0.635 0.366 0.637 0.744
c=0.12 0.662 0.864 0.919 0.801 0.915 0.939
c=0.16 0912 0.934 0.969 0.957 0.979 0.990
¢ =0.20 0.968 0.997 1.000 0.998 1.000 1.000
n = 500, g(u) = exp(0.5u — 0.25)
¢ =0.00 0.010 0.052 0.104 0.011 0.053 0.107
c=0.04 0.051 0.177 0.303 0.131 0.321 0.436
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Table 5 continued

Significant level Tn Tid.n

0.01 0.05 0.10 0.01 0.05 0.10
c=0.08 0.499 0.714 0.809 0.652 0.803 0.874
c=0.12 0.869 0.934 0.969 0914 0.992 1.000
c=0.16 0.956 1.000 1.000 0.987 1.000 1.000
¢=0.20 1.000 1.000 1.000 1.000 1.000 1.000

Table 6 Power calculations of T}, for heteroscedasticity in Example 1

Significant level gu) =051+ u)2 g(u) = exp(0.5u — 0.25)
0.01 0.05 0.10 0.01 0.05 0.10
n =100
¢ =0.00 0.011 0.043 0.079 0.011 0.047 0.091
c=0.04 0.023 0.098 0.199 0.020 0.062 0.131
c=0.08 0.095 0.295 0.475 0.041 0.173 0.289
c=0.12 0.250 0.588 0.736 0.124 0.389 0.532
c=0.16 0.536 0.802 0.897 0.352 0.571 0.696
c=0.20 0.648 0.882 0.943 0.545 0.714 0.866
n =300
¢ =0.00 0.009 0.045 0.092 0.013 0.054 0.091
c=0.04 0.122 0.540 0.786 0.036 0.078 0.173
c=0.08 0.813 0.963 0.990 0.054 0.216 0.366
c=0.12 0.986 0.998 1.000 0.169 0.508 0.690
c=0.16 0.999 1.000 1.000 0.413 0.751 0.858
c=0.20 1.000 1.000 1.000 0.681 0.880 0.925
n =500
¢ =0.00 0.011 0.051 0.110 0.010 0.048 0.099
c=0.04 0.568 0.930 0.980 0.129 0.269 0.381
c=0.08 0.991 0.999 1.000 0.369 0.684 0.858
c=0.12 1.000 1.000 1.000 0.641 0.892 0.941
c=0.16 1.000 1.000 1.000 0.880 0.947 0.999
c=0.20 1.000 1.000 1.000 0.967 1.000 1.000

simulation results in Table 7. We also see that the performance of PLPRE estimator g7 (i)
is better than the TPLS estimator, since the values of mean, median and standard errors for
PLPRE estimator are all smaller than those of TPLS estimator g(u, f). This simulation
shows that PLPRE estimation method is more efficient than the transformation-based
method even both estimators have root-(nh) convergence rate, slowly than the parametric
convergence rate.

Example 2 In this example, we conduct 1000 simulations from model (1) by choosing
@ = (1,-3,0,...,07, By = (1,=1,1,0,...,0)T/+/3. The length of (ef, B )"
issettobe p =g =10, p = g = 15and p = g = 20, i.e., the number of zero
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Table 7 The mean (M), median (Me) and standard errors (SD) for ASE and AAE

gw) = 0.5(1 +u)? g() = exp(0.5u — 0.25)
4L, ) 8, i) 8L, ) 8u. )
ASE AAE ASE AAE ASE AAE ASE AAE

n = 100, homoscedasticity

M 10.8691 83.7565 11.1910 84.5284 4.6983 34.1574 6.8281 38.6234
Me 8.5185 81.0115 8.7159 82.5541 4.3113 32.7373 6.4169 37.2098
SD 8.6678 38.1268 9.1889 38.5451 3.9934 14.1847 6.2112 16.1167
n = 300, homoscedasticity

M 3.2581 46.6536 3.5286  48.0776 1.6975 18.2267 2.3927 20.5583
Me 2.8202  45.7154 2.8917 46.5989 1.4558 16.9987 2.1905 18.3754
SD 2.1202 17.8256 2.7611 21.0759 1.3135 6.4443 1.7476 7.9763
n = 500, homoscedasticity

M 2.0962 36.7859 2.1866 37.0921 1.1214 13.3983 1.5539 15.2087
Me 1.5772 33.1865 1.6170 34.7934 1.0876 12.9467 1.4789 14.8876
SD 1.3582 13.5519 1.9136 17.6228 0.9791 5.7543 1.1191 6.3961
n = 100, heteroscedasticity

M 12.3345 92.2456 14.1984 97.9456 5.4456 36.2890 7.5873 41.8347
Me 9.6980 86.4432 11.5432 94.2920 4.9947 34.2886 6.9928 39.8877
SD 9.9392  45.3547 11.3909 479111 5.1114 16.4647 6.8967 18.4490
n = 300, heteroscedasticity

M 4.8830 52.3986 5.9676 55.2255 2.2234 21.7789 3.1219 22.9875
Me 4.3535 51.2160 2.8917 46.5989 2.0080 19.1213 2.8765 20.6690
SD 3.3321 19.1417 3.8980 24.1954 1.8689 7.2180 2.1418 8.4172
n = 500, heteroscedasticity

M 3.2909  41.3323 4.0011 44.5431 1.6362 16.1410 1.9357 18.2446
Me 3.0008 39.4674 3.8182  42.8090 1.4341 15.7666 1.8221 16.9934
SD 1.5573 14.2829 2.1315 16.4546 1.2554 6.3310 1.5117 7.4521

The values in this table are in the scale of x 10~3

components of g is 8, 18 and 28, and the number of zero components of ¢ is 7, 17 and
27, respectively. The covariate (X T Z1T follows normal distribution N (0 p+q> ) with
¥ = (0ij)1<i,j<(p+q) With o;; = (—0.5)l7=JI. The link function g(u) = 0.5(1 + u)? is
used in this example. Setting of model error € is the same as Example 1.

To measure the selection and estimation accuracy, we define wy, ¢y, ®c ¢y and Wy, as
the proportions of underfitted, correctly fitted and overfitted models for the parameter «,
and wy ¢, @c,¢, and w,, ¢, as the proportions of underfitted, correctly fitted and overfitted
models for the parameter ¢. In the case of overfitted, the labeled “1,” “2” and “> 3”
are the proportions of models including 1, 2 and more than 2 insignificant covariates.
Denote (Cqy, Cg,,) and (INg,, INg,) as the average number of the zero coefficients that
were correctly set to be zero, and the average number of the nonzero coefficients that were
incorrectly set to be zero, respectively.
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In Table 8, we report the performance of the penalized estimator #p. Values of
(Cqy, Cg,) are close to the true values (8,7) (p = g = 8), (13,12) (p = g = 15) and
(18,17) (p = g = 20), and (INg,, INg,) are close to 0. The proportion of correct model
fitting (column (w¢ o> @e,¢,)) is above 96% when the sample size n > 300. The propor-
tions of underfitting (column (wy,ay, @u,¢,)) and overfitted (columns under (o, > Wo,¢,))
are at most 0.5% and at most 3% when the sample size n > 300. In overfitted case, pro-
portion of models including one insignificant covariate dominates those including two or
more insignificant covariates. The latter is nearly 0% in most situations when the sample
size n is larger than or equal to 300. This indicates that the penalized estimator #j » most
likely selects model that is very close to the true one, which again implies the proposed
penalized estimation method will result in a final correct model in most situations.

Example 3 In this example, we consider model checking problem. We generate 1000 exper-
iments with sample size n = 300 and n = 500 from the following model

) q
Y =exp (agX + 0.5 (1 + B£0Z> ) € 4+ cexp (Z | X | + |B£OZ|> €.

r=1

Here, ¢ = 0 corresponds to the null hypothesis (§ and ¢ # 0 corresponds to the alternative
hypothesis. We set ¢ = 0.25,0.50, ..., 1.25 for the alternative hypothesis. Settings of
parameter (ag, B ;O)T, covariates (X, ZT)T and model error € are the same as Example 1.
In each simulation for the power calculation, 1000 bootstrap samples were generated. We
also compared our results with integrated conditional moment test statistic proposed by
Ma et al. (2014) by using the transformed data {In(Y;), X;, Z;}?_,.

The simulation results are reported in Table 9. Power functions are calculated at the
nominal level « = 0.01, « = 0.05 and @« = 0.10. It is clear that all empirical levels
obtained by the test statistic T;' and ICM test statistic are close to 0.01, 0.05, 0.10 when
¢ = 0, which indicates that the proposed model checking method can provide proper
rejection probabilities. When JHG is not true, that is, ¢ # 0, as the value of ¢ # 0 increases
or the sample size n increases, the empirical percentages of rejecting J(j approach to 1.
Clearly, as ¢ increases, the power increases rapidly. The powers for n = 500 are larger than
the powers for n = 300 for the same ¢ value and significance level. For n = 500 and large
¢, the powers are close to 1. We also note that the performance of test statistic is better than
the ICM test statistic. This simulation shows that the proposed model checking procedure
is more powerful than the transformation-based method. The results demonstrate that our
proposed test procedure is powerful.

7 Real data analysis

In this section, we analyze body fat data to illustrate the application of our proposed
method. The body fat data are available at http://lib.stat.cmu.edu/datasets/bodyfat. Based
on the studies in Chen et al. (2016), we use model (1) to re-analyze this dataset with
X1-thigh circumference, X,-knee circumference, X3-ankle circumference, X4-forearm
circumference, Z;-abdomen circumference, Zz-height4 / weightZ, Z3-neck circumference,
Z4- chest circumference, Zs-age, Zg-hip circumference, Z7-biceps circumference and
wrist circumference. The response variable Y is the percent body fat. We deleted one
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Table 8 Simulation results for variable selection in Example 2

(q0.9 —q0)  wuay (%)  @cay ()  Wo,uq (%) No. of zeros
“1(%)” 27 (%) “237(%) Cay INg,
n = 100, homoscedasticity
(2,8) 6.30 83.50 9.40 0.70 0.10 7.874 0.063
(2,13) 5.20 78.30 14.60 1.70 0.20 12.797 0.052
(2, 18) 4.10 71.20 19.90 4.10 0.70 17.674 0.041
n = 300, homoscedasticity
(2,8) 0.10 99.90 0.00 0.00 0.00 8.000 0.001
(2,13) 0.30 99.60 0.10 0.00 0.00 12.999 0.003
(2, 18) 0.00 99.80 0.10 0.10 0.00 17.997 0.000
n = 500, homoscedasticity
(2,8) 0.00 100.00 0.00 0.00 0.00 8.000 0.000
(2,13) 0.00 100.00 0.00 0.00 0.00 13.000 0.000
(2, 18) 0.00 100.00 0.00 0.00 0.00 18.000 0.000
n = 100, heteroscedasticity
(2,8) 4.90 82.60 11.60 0.80 0.10 7.862 0.049
(2,13) 6.30 75.30 16.50 1.80 0.10 12.772 0.063
(2, 18) 6.00 69.80 19.80 3.60 0.80 17.675 0.060
n = 300, heteroscedasticity
(2,8) 0.30 99.60 0.10 0.00 0.00 7.999 0.003
(2,13) 0.20 99.40 0.40 0.00 0.00 12.996 0.002
(2, 18) 0.20 99.50 0.30 0.00 0.00 17.997 0.002
n = 500, heteroscedasticity
(2,8) 0.00 100.00 0.00 0.00 0.00 8.000 0.000
(2,13) 0.00 100.00 0.00 0.00 0.00 13.000 0.000
(2, 18) 0.00 100.00 0.00 0.00 0.00 18.000 0.000
(Po—1,p—=p0) @y ¢y (%) wc gy (%) wp gy (%) No. of zeros
“L(%)”  “27(%)  “=37(%)  Cg, INg,
n = 100, homoscedasticity
2,7) 14.50 63.90 18.10 3.00 0.50 6.694 0.145
(2,12) 14.20 62.60 18.70 4.00 0.50 11.606 0.142
(2,17) 19.50 50.20 19.90 7.70 2.70 16.324 0.196
n = 300, homoscedasticity
2,7) 0.20 98.40 1.30 0.10 0.00 6.985 0.002
(2,12) 0.1 98.70 1.20 0.00 0.00 11.988 0.001
(2,17) 0.10 99.30 0.60 0.00 0.00 16.994 0.001
n = 500, homoscedasticity
2,7) 0.00 99.70 0.30 0.00 0.00 6.997 0.000
(2,12) 0.00 99.80 0.20 0.00 0.00 11.998 0.000
(2,17) 0.00 99.90 0.10 0.00 0.00 16.999 0.000
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Table 8 continued

(po— 1, p— po) "’lh(ﬁo(%) c. g (%) Do,y (%) No. of zeros
1) “27(%)  “z=37(%)  Cg, INg,
n = 100, heteroscedasticity
2,7 16.70 57.20 20.40 5.10 0.60 6.605 0.167
(2,12) 19.20 49.80 22.90 6.60 1.50 11.411 0.192
(2,17) 21.80 41.80 23.50 9.30 3.60 16.115 0.220
n = 300, heteroscedasticity
2,7) 0.30 96.80 2.90 0.00 0.00 6.971 0.003
(2,12) 0.40 97.80 1.80 0.00 0.00 11.980 0.004
(2,17) 0.10 97.90 2.00 0.00 0.00 16.980 0.001
n = 500, heteroscedasticity
2,7 0.10 99.00 0.90 0.00 0.00 6.991 0.001
(2,12) 0.00 99.50 0.50 0.00 0.00 11.995 0.000
2,17) 0.10 99.80 0.10 0.00 0.00 16.999 0.000

observation with Y = 0, giving a sample size n = 251. In the following analysis, covariates
X and Z are all standardized. T
Corresponding to covariates X and Z, the estimator (&T, B ,;)T and the penalized esti-

AT
mate (&;, B &P) are obtained in Table 10. Using Theorem 2 and Theorem 4, we conduct
the tests Hy : a9 ¢ = 0 against Hy, ag ¢ # 0, and also Hy : BO,j = 0 against Hy, ﬂo’j #0

by choosing restriction condition Ay = (0,...,0,1,0,..., 0)T with that the element 1
is the s-th position in the vector A;, s = 1,2,3,4,and A; = (0,...,0,1,0,..., 0)T
with that the element 1 is the j-th position in the vector A;, j = 1,...,8. The p val-

ues (pg, p;,h) of test statistic T, and the penalized estimator (&p, ﬁ &P) show that the

covariates X3-ankle circumference, Zj-abdomen circumference and Zg-hip circumfer-
ence should be included in the final model. In Fig. 1, we consider two kinds of estimators
of g(u) based on (5), along with their 95% pointwise confidence bands. The left panel

AT
in Fig. 1 is based on “synthesis” data {Y;, X;r&, ﬂ&Z,-}"

i_1» and the right panel in Fig. 1
is based on “synthesis” data {Y;, X l.T& P, BEP Z;}}_,. Figure 1 shows that the local linear
smoothing of the link function g(u) shows a nonlinear pattern; it decreases in the begin-
ning when the estimated single index is less around — 1 and then increases. The mean
and standard errors of the product relative errors {(¥; — )?,')2 /(Y; ?,-)}?:1 , and the squared
errors {(Y; — I?i)z}l’f:l are obtained as (0.2677, 0.9883), (52.5506, 75.6770), respectively.
If we treat g(«) as a linear model (i.e., a multiplicative linear regression model is adopted)
and denote the fitted values as ¥, i, 1 = 1,...,n. Then mean and standard errors of the
product relative errors {(¥; — I?L,-)z/(Yi I?L,-) "_,» and the squared errors {(¥; — I?L,-)z};’:l
are obtained as (0.2648, 1.0534), (47.8662, 91.3414), respectively. It is seen that the par-
tial linear single-index multiplicative model increases slightly larger mean values of the

product relative errors and the squared errors, but the standard errors are both smaller with
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Table 9 The simulation results for power calculations in Example 3

Significant level 0.01 0.05 0.10 0.01 0.05 0.10

T Ic™M

n = 300, homoscedasticity

¢ =0.00 0.012 0.044 0.096 0.010 0.040 0.089
c=0.25 0.432 0.652 0.717 0.356 0.584 0.634
c=0.50 0.560 0.773 0.873 0.488 0.701 0.810
c=0.75 0.581 0.791 0.893 0.532 0.733 0.864
c=1.00 0.617 0.816 0915 0.582 0.769 0.882
c=1.25 0.645 0.839 0.944 0.611 0.810 0.921

n = 500, homoscedasticity

¢ =0.00 0.011 0.051 0.101 0.011 0.044 0.096
c=0.25 0.780 0.890 0.946 0.643 0.804 0.872
¢ =0.50 0.823 0.913 0.973 0.796 0.842 0.910
c=0.75 0.875 0.922 0.986 0.829 0.888 0.935
c=1.00 0.914 0.945 0.990 0.889 0.915 0.962
c=1.25 0.971 1.000 1.000 0.956 0.997 1.000

n = 300, heteroscedasticity

¢ =0.00 0.011 0.042 0.091 0.008 0.042 0.090
c=0.25 0.368 0.541 0.622 0.300 0.489 0.552
¢ =0.50 0.471 0.691 0.800 0.421 0.634 0.740
c=0.75 0.522 0.739 0.831 0.474 0.679 0.806
c=1.00 0.589 0.777 0.882 0.541 0.737 0.854
c=1.25 0.620 0.809 0.921 0.596 0.788 0.907

n = 500, heteroscedasticity

¢ =0.00 0.012 0.048 0.097 0.011 0.046 0.095
c=0.25 0.714 0.822 0.870 0.588 0.707 0.803
¢ =0.50 0.769 0.874 0.921 0.648 0.783 0.869
¢ =0.75 0.815 0.900 0.943 0.779 0.836 0.901
c=1.00 0.888 0.921 0.970 0.854 0.889 0.942
c=125 0.941 0.989 1.000 0.926 0.957 0.989

stability. Together with Fig. 1, we consider the partial linear single-index multiplicative
model is more appropriate than the linear multiplicative model for this dataset. At last,
we conducted 1000 bootstraps with the test statistic T to check whether the partial linear
single-index multiplicative model is good enough for this dataset. The associated p value
is 0.65, which indicates that the partial linear single-index multiplicative model is tenable
for fitting this dataset.
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Fig. 1 The estimator g7 (u, #§) (solid line) against estimated single index, along with the associated 95%
pointwise confidence intervals (dotted lines)
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