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Abstract
Scoring rules serve to quantify predictive performance. A scoring rule is proper if truth
telling is an optimal strategy in expectation. Subject to customary regularity conditions,
every scoring rule can be made proper, by applying a special case of the Bayes act
construction studied by Grünwald and Dawid (Ann Stat 32:1367–1433, 2004) and
Dawid (Ann Inst Stat Math 59:77–93, 2007), to which we refer as properization. We
discuss examples from the recent literature and apply the construction to create new
types, and reinterpret existing forms, of proper scoring rules and consistent scoring
functions. In an abstract setting, we formulate sufficient conditions under which Bayes
acts exist and scoring rules can be made proper.

Keywords Bayes act · Consistent scoring function · Forecast evaluation ·
Misclassification error · Proper scoring rule

1 Introduction

Let B be a σ -algebra of subsets of a general sample space Ω . Let P be a convex
class of probability measures on (Ω,B). A scoring rule is any extended real-valued
function S onP × Ω such that
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660 J. R. Brehmer, T. Gneiting

S(P, Q) =
∫

S(P, ω) dQ(ω)

is well defined for P, Q ∈ P . The scoring rule S is proper relative toP if

S(Q, Q) ≤ S(P, Q) for all P, Q ∈ P. (1)

In words, we take scoring rules to be negatively oriented penalties that a forecaster
wishes to minimize. If she believes that a future quantity or event has distribution Q,
and the penalty for quoting the predictive distribution P when ω realizes is S(P, ω),
then (1) implies that quoting P = Q is an optimal strategy in expectation. The scoring
rule is strictly proper if (1) holds with equality only if P = Q. For recent reviews
of the theory and application of proper scoring rules, see Dawid (2007), Gneiting and
Raftery (2007), Dawid and Musio (2014) and Gneiting and Katzfuss (2014).

The intent of this note is to drawattention to the simple fact that, subject to customary
regularity conditions, any scoring rule can be properized, in the sense that it can
be modified in a straightforward way to yield a proper scoring rule, so that truth
telling becomes an optimal strategy. Implicitly, this construction has recently been
used by various authors in various types of applications; see, e.g., Diks et al. (2011),
Christensen et al. (2014) and Holzmann and Klar (2017).

Theorem 1 (properization) Let S be a scoring rule. Suppose that for every P ∈ P
there is a probability distribution P∗ ∈ P such that

S(P∗, P) ≤ S(Q, P) for all Q ∈ P. (2)

Then the function

S∗ : P × Ω → R̄, (P, ω) �→ S∗(P, ω) = S(P∗, ω), (3)

is a proper scoring rule.

Here and in what follows, we denote the real line byR and the extended real line by
R̄ := R∪ {−∞,∞}. Any probability measure P∗ with the property (2) is commonly
called Bayes act; for the existence of Bayes acts, see Sect. 3. In case there are multiple
minimizers of the expected score Q �→ S(Q, P), the function S∗ is well-defined by
using a mapping P �→ P∗ that chooses a P∗ out of the set of minimizers. If S is
proper and P∗ = P , then S∗ = S, so the proper scoring rules are fixed points under
the properization operator.

Importantly, Theorem 1 is a special case of a general and powerful construction
studied in detail by Grünwald andDawid (2004) andDawid (2007). Specifically, given
some action space A and a loss function L : A × Ω → R̄, suppose that for each
P ∈ P there is a Bayes act aP ∈ A , such that

∫
L(aP , ω) dP(ω) ≤

∫
L(a, ω) dP(ω) for all a ∈ A .
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Properization 661

Then the function

S∗ : P × Ω → R̄, (P, ω) �→ S∗(P, ω) = L(aP , ω),

is a proper scoring rule. Note the natural connection to decision- and utility-based
scoring approaches, where the quality of a forecast is judged by the monetary utility
of the induced acts and decisions (Granger and Pesaran 2000; Granger and Machina
2006; Ehm et al. 2016).

In general, a link function α : P → A , where α(P) is not necessarily a Bayes act
for P , can be used to construct scoring rules from loss functions.Moreover, the reverse
is possible and applied in a recent strand of the machine learning literature, where for
finiteΩ and bijectiveα a loss function onA ×Ω is constructed by composing a scoring
rule with α−1. For details on this type of composite loss, see Reid and Williamson
(2010), van Erven et al. (2012, Section 6) and Williamson et al. (2016).

In the remainder of the paper, we focus on the above special case in which the action
domain A is the class P . In Sect. 2, we identify scattered results in the literature as
prominent special cases of properization (Examples 1–4), and we use Theorem 1 to
construct new proper scoring rules from improper ones (Examples 5–7). Section 3
gives sufficient conditions for the existence of Bayes acts, and Sect. 4 contains a brief
discussion. All proofs and technical details are moved to the “Appendix.”

2 Examples

This section startswith an example inwhichwe review the ubiquitousmisclassification
error from the perspective of properization. We go on to demonstrate how Theorem 1
has been used implicitly to construct proper scoring rules in econometric, meteoro-
logical, and statistical strands of literature. The notion of properization simplifies and
shortens the respective proofs of propriety, makes them much more transparent, and
puts the scattered examples into a unifying and principled joint framework. Further
examples show other facets of properization: The scoring rules constructed in Exam-
ple 5 are original, and the discussion in Example 6 illustrates a connection to the
practical problem of the treatment of observational uncertainty in forecast evaluation.
Finally, Example 7 includes an instance of a situation in which properization fails.

Example 1 Consider probability forecasts of a binary event, where Ω = {0, 1} andP
is the class of the Bernoulli measures. We identify any P ∈ P with the probability
p = P({1}) ∈ [0, 1] and consider the scoring rules

S1(P, ω) := 1 − pω − (1 − p)(1 − ω) and S2(P, ω) := |p − ω|.

The scoring rule S1 corresponds to the mean probability rate (MPR) in machine learn-
ing (Ferri et al. 2009, p. 30). The equivalent form in S2 was first considered by Dawid
(1986). It agrees with the special case c1 = c2 in Section 4.2 of Parry (2016) and
also corresponds to the mean absolute error (MAE) as discussed by Ferri et al. (2009,
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662 J. R. Brehmer, T. Gneiting

p. 30).1 These scoring rules are improper with Bayes act

p∗ = 1
(
p ≥ 1

2

) ∈ {0, 1},

and with properized score given by the zero-one rule

S∗(P, ω) =
{
0, p∗ = ω,

1, otherwise.

A case-averaged zero-one score is typically referred to asmisclassification rate ormis-
classification error; undoubtedly, this is the most popular and most frequently used
performance measure in binary classification. While the scoring rule S∗ is proper, it
fails to be strictly proper (Gneiting and Raftery 2007, Example 4; Parry 2016, Section
4.3). Consequently, misclassification error has serious limitations as a performance
measure, as persuasively argued by Harrell (2015, p. 258), among others. Neverthe-
less, the scoring rule S∗ is proper, contrary to recent claims of impropriety in the
blogosphere.2

For the remainder of the section, let Ω = R and letB be the Borel σ -algebra. We
letL be the class of Borel measures P with a Lebesgue density, p. Furthermore, we
write Pk for the measures with finite kth moment and P+

k for the subclasses when
Dirac measures are excluded. Whenever it simplifies notation, we identify P with its
cumulative distribution function x �→ P((−∞, x]).
Example 2 Let S0 be a proper scoring rule on some subclass P of L and let w be a
nonnegative weight function such that 0 <

∫
w(z) p(z) dz < ∞ for p ∈ P . Let

S : P × R → R, (P, y) �→ S(P, y) = w(y) S0(P, y);

this score is improper unless the weight function is constant. Indeed, by Theorem 1 of
Gneiting and Ranjan (2011), the Bayes act P∗ under S has density

p∗(y) = w(y) p(y)∫
w(z) p(z) dz

.

From this, we see that the key statement in Theorem 1 of Holzmann and Klar (2017)
constitutes a special case of Theorem 1. In the further special case in which S0 is the
logarithmic score, the properized score (3) recovers the conditional likelihood score
of Diks et al. (2011) up to equivalence, as noted in Example 1 of Holzmann and
Klar (2017). For analogous results for consistent scoring functions, see Theorem 5 of
Gneiting (2011) and Example 2 of Holzmann and Klar (2017).

1 As noted by Parry (2016), the improper score S1 shares its (concave) expected score function P �→
S1(P, P) with the proper Brier score. This illustrates the importance of the second condition in Theorem 1
of Gneiting and Raftery (2007): For a scoring rule S, the (strict) concavity of the expected score function
G(P) := S(P, P) is equivalent to the (strict) propriety of S only if, furthermore, −S(P, ·) is a subtangent
of −G at P .
2 See, e.g., http://www.fharrell.com/post/class-damage/ and http://www.fharrell.com/post/classification/.
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Example 3 For a probability measure P ∈ P4, let μP , σ 2
P , and γP denote its mean,

variance, and centered third moment. Let

S(P, y) =
(
σ 2
P − (y − μP )2

)2

be the “trial score” in equation (16) of Christensen et al. (2014). As Christensen et al.
(2014) show in their “Appendix A,” if σ 2

P > 0, any Bayes act P∗ under S has mean
μP + 1

2
γP

σ 2
P
and variance

σ 2
P

(
1 + 1

4

γ 2
P

σ 6
P

)
,

so properization yields the spread-error score,

S∗(P, y) =
(

σ 2
P − (y − μP )2 + (y − μP )

γP

σ 2
P

)2

,

which is proper relative to the class P+
4 . Hence, the construction of the spread-error

score in Christensen et al. (2014) constitutes another special case of Theorem 1.

Example 4 The predictive model choice criterion of Laud and Ibrahim (1995) and
Gelfand and Ghosh (1998) uses the scoring rule S(P, y) = (y − μP )2 + σ 2

P , where
μP andσ 2

P denote themean and the variance of a distribution P ∈ P2, respectively.As
pointed out by Gneiting and Raftery (2007), this score fails to be proper. Specifically,
any Bayes act P∗ under S has mean μP and vanishing variance, so properization
yields the ubiquitous squared error, S∗(P, y) = (y − μP )2.

The original scoring rules of Examples 3 and 4 can be interpreted as functions L :
A ×Ω → R in theBayes act setting ofGrünwald andDawid (2004) andDawid (2007),
where the action spaceA is given byR×[0,∞), as we formalize in Sect. 3. Hence, the
properization method can be interpreted as an application of Theorem 3 of Gneiting
(2011) to consistent scoring functions for elicitable two-dimensional functionals, as
discussed by Fissler and Ziegel (2016).

Detailed arguments and calculations for the subsequent examples are deferred to
the “Appendix.”

Example 5 For α > 0 consider the scoring rule

Sα(P, y) =
∫

|P(x) − 1 (y ≤ x)|α dx,

where P is identified with its cumulative distribution function (CDF). For α = 2, this
is the well-known proper continuous ranked probability score (CRPS), as reviewed in
Section 4.2 of Gneiting and Raftery (2007). For α = 1, the score Sα was proposed by
Müller et al. (2005), and Zamo and Naveau (2018) show in their “Appendix A” that
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664 J. R. Brehmer, T. Gneiting

for discrete distributions every Dirac measure in a median of P is a Bayes act. The
same holds true for general distributions and for all α ∈ (0, 1]. If α > 1, the Bayes
act P∗ under Sα is given by

P∗(x) =
(
1 +

(
1 − P(x)

P(x)

)1/(α−1)
)−1

1 (P(x) > 0) , (4)

and all in all we see that properization of Sα works for any α > 0.
Moreover, in the case α > 1 the mapping P �→ P∗ is even injective. Consequently,

if the classP is such that P∗ ∈ P and Sα(P∗, P) is finite for P ∈ P , the properized
score (3) is even strictly proper relative to P . If α ∈ (1, 2], this can be ensured by
restricting Sα to the class P1. For α > 2, the class Pc of the Borel measures with
compact support is a suitable choice.

Example 6 Friederichs and Thorarinsdottir (2012, p. 58) propose a modification of the
CRPS that aims to account for observational error in forecast evaluation. Specifically,
they consider the scoring rule

SΦ(P, y) =
∫

|P(x) − Φ(x − y)|2 dx,

where Φ ∈ P+
1 represents additive observation error. This scoring rule fails to be

proper, as for probability measures P, Q ∈ P1 we have

SΦ(P, Q) = CRPS(P, Q ∗ Φ) − CRPS(Φ,Φ), (5)

where ∗ denotes the convolution operator. Due to the strict propriety of the CRPS
relative to the class P1, the unique Bayes act under SΦ is given by P∗ = P ∗ Φ.
Theorem 1 now gives the scoring rule S(P, y) := SΦ(P∗, y), which is proper relative
toP1.

In order to account for noisy observational data in forecast evaluation, Eq. (5) sug-
gests using the scoring rule S(P, y) := CRPS(P∗, y) if the noise is independent,
additive, and has distribution Φ. This corresponds to predicting hypothetical true val-
ues, to which noise is added before they are compared to observations. The drawbacks
of this approach and alternative techniques are discussed by Ferro (2017). The asso-
ciated issues in forecast evaluation remain challenges to the scientific community at
large; see, e.g., Ebert et al. (2013) and Ferro (2017).

Example 7 Let S be a scoring rule, and let Φ ∈ L be a distribution with Lebesgue
density ϕ. Suppose P is a class of distributions such that P ∗ Φ ∈ P for P ∈ P .
For P ∈ P , define

Sϕ(P, y) :=
∫

ϕ(x − y) S(P, x) dx,

which is again a scoring rule. If S is proper, a Bayes act under Sϕ is given by P∗ =
P∗Φ, since Sϕ(P, Q) = S(P, Q∗Φ) for Q ∈ P , and if S is strictly proper, theBayes
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Properization 665

act is unique. Properization now gives the proper scoring rule S(P, y) := Sϕ(P∗, y).
An interesting special case emerges when substituting the CRPS for S. This leads to

CRPSϕ(P, y) = SΦ(P, y) + CRPS(Φ,Φ), (6)

where SΦ is the scoring rule in the previous example. For another special case, let
c > 0 and P ∈ L , to yield

PSc(P, y) := −
∫ y+c

y−c
p(x) dx,

which recovers the probability score of Wilson et al. (1999). We have that PSc =
2c LinSϕc , where LinS(P, y) := −p(y) is the improper linear score and ϕc is a
uniform density on [−c, c]. Properization is not feasible relative to sufficiently rich
classes P , as Bayes acts fail to exist under both the linear score and the probability
score. For details, see the “Appendix.”

3 Existence of Bayes acts

In Example 7, we presented a scoring rule that cannot be properized, due to the non-
existence of Bayes acts. This section addresses the question under which conditions
on S and P a minimum of the expected score function exists. To illustrate the ideas,
we start with a further example.

Example 8 Using the notation of Example 3, consider the normalized squared error
(Gelman et al. 2014, p. 998),

S(P, y) = (y − μP )2

σ 2
P

,

as a scoring rule on the classesP+
2,m of the Borel measures with variance at most m,

andP+
2 = ∪m>0P

+
2,m , respectively. Relative toP

+
2,m any Bayes act P∗ under S has

mean μP and variance m, so properization yields (non-normalized) squared error up
to equivalence. Relative to P+

2 however, there is no Bayes act, since increasing the
variance will always lead to a smaller expected score.

We now turn to a general perspective and discuss sufficient conditions for the
existence of Bayes acts. At first, consider a finite probability spaceΩ = {ω1, . . . , ωk}.
In this situation, geometrical arguments yield sufficient conditions. In particular, a
Bayes act under S exists if the risk set

S := {(x1, . . . , xk) | ∃ P ∈ P : x j = S(P, ω j ), j = 1, . . . , k} ⊂ R
k

is closed from below and bounded from below; see Theorem 1 in Chapter 2.5 of
Ferguson (1967). Extending this result to a general sample space Ω is non-trivial
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666 J. R. Brehmer, T. Gneiting

since in this case S can be a subset of an infinite-dimensional vector space. In the
following, we employ well-known concepts of functional analysis in order to discuss
extensions. All proofs are deferred to the “Appendix.”

Let P be a set of probability measures on a general probability space Ω and let
A be a topological space. We return to the setting of Sect. 1 and consider functions
of the form

S(P, ω) = s(α(P), ω)

with mappings α : P → A and s : A × Ω → R̄, such that

s(a, P) =
∫

s(a, ω) dP(ω)

is well defined for all a ∈ A and P ∈ P . This makes the results easier to apply
in situations where the scoring rule depends on P only via some finite number of
parameters. Concerning the latter point, note that the normalized squared error of
Example 8 can be written as a composition of the mappings α(P) := (μP , σ 2

P ) and
s(x1, x2, y) := (y − x1)2/x2, with s being defined on A × Ω = R × (0,∞) ×
R. Consequently, the expected normalized squared error attains its minimum if the
expected score of s attains its minimum. Note that such a decomposition of the scoring
rule is possible for Examples 3 and 4 aswell, as alluded to in the comments that succeed
these examples.

We impose the following integrability condition.

Definition 1 The mapping s : A × Ω → R̄ is uniformly bounded from below if there
exists a function g : Ω → R which is integrable with respect to any P ∈ P and such
that s(a, ·) ≥ g(·) holds for all a ∈ A .

Our first result is similar to Theorem 2 in Chapter 2.9 of Ferguson (1967), which
proves the existence of minimax decision rules.

Theorem 2 Suppose s is lower semicontinuous in its first component and uniformly
bounded from below. If A is compact, then the function a �→ s(a, P) attains its
minimum for any P ∈ P .

This theorem can be used to prove the existence of a Bayes act for a given scoring
rule. However, its applicability to Example 8 is limited. To see this, recall the above
decomposition and note that restricting S to P+

2,m corresponds to restricting s to
R × (0,m]. The latter set is not a compact space and neither is its closure. We can
further restrict the domain of S to Borelmeasureswithmeans in some bounded interval
and variances that are bounded away from both zero and infinity. This corresponds to
restricting s to [−t, t] × [1/m,m] for some t > 0 and m > 0, and Theorem 2 now
applies.As a consequence of this observation,we aim to dispensewith the compactness
assumption.

To do so, we need additional concepts from functional analysis. Let X be a real
normed vector space. Recall that a function h : X → R is called coercive if for any
sequence (xn)n∈N ⊂ X the implication

123



Properization 667

lim
n→∞ ‖xn‖ = ∞ ⇒ lim

n→∞ h(xn) = ∞

holds true, see, e.g., Definition III.5.7 in Werner (2018). By weak topology on X ,
we mean the weakest topology such that all real-valued linear mappings on X are
continuous; see, e.g., Chapters 2.13 and 6.5 in Aliprantis and Border (2006). The space
X is called a reflexive Banach space if it is complete and the canonical embedding
of X into its bidual space is surjective; see, e.g., Chapter III.3 in Werner (2018) or
Chapter 6.3 in Aliprantis and Border (2006). Combining these concepts, we obtain a
complement to Theorem 2.

Theorem 3 Let A be a weakly closed subset of a reflexive Banach space. Moreover,
suppose s isweakly lower semicontinuous in its first component anduniformly bounded
from below. If the function a �→ s(a, P) is coercive, then it attains its minimum.

This result yields the existence of Bayes acts as long as the integrated scoring rule
is coercive for any P ∈ P , where P is a reflexive Banach space. We can connect to
Example 8 as follows: The function s(·, ·, y) from the above decomposition of S is
defined onR× (0,∞), which is a subset of the reflexive Banach spaceR2. Moreover,
s is bounded from below by zero and continuous in its first component. As mentioned
above, restricting the class P+

2 to P+
2,m corresponds to restricting the domain of s

to R × (0,m] and in this situation, integrating s with respect to y gives a coercive
function. Consequently, Theorem 3 can be used to show that S can be properized if
restricted toP+

2,m .
We conclude this section by stressing that Theorem 3 represents only one of several

possible ways to modify Theorem 2. Its limitations are illustrated in the following
example. Details are again deferred to the “Appendix.”

Example 9 For x, y ∈ R, the symmetric absolute percentage error (sAPE) is defined
as

s(x, y) :=
{

0, x = y,
|x−y|
|x |+|y| , x �= y.

It features prominently in forecast contests, such as the recent M4 competition (M4
Team 2018; Makridakis et al. 2018), where the sAPE is used to rank participants and
award prizes. For any probability measure P and x ∈ R, we have s(x, P) ∈ [0, 1],
and the mapping x �→ s(x, P) is continuous in R\{0}. Moreover,

lim
x→−∞ s(x, P) = lim

x→0− s(x, P) = lim
x→0+ s(x, P) = lim

x→∞ s(x, P) = 1 (7)

and s(0, P) = P(R\{0}). The behavior of the expected score thus implies that Bayes
acts exist. In particular, any scoring rule obtained from a composition with the sAPE
can be properized. However, the mapping x �→ s(x, P) is defined on a non-compact
set and fails to be coercive, so Theorems 2 and 3 do not apply.
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4 Discussion

In this article, we have introduced the concept of properization, which is rooted in
the Bayes act construction of Grünwald and Dawid (2004) and Dawid (2007), and we
have drawn attention to its widespread implicit use in the transdisciplinary literature
on proper scoring rules, where our unified approach yields simplified, shorter, and
considerably more instructive and transparent proofs than extant methods. Moreover,
using new examples, we have demonstrated the power of the properization approach
in the creation of new proper scoring rules from existing improper ones. We anticipate
further, important uses of the general Bayes act construction in a wide range of applied
settings, where scoring rules are to be tailored to forecast users’ needs (Ebert et al.
2018).

Since the central element in the construction of a properized score is a Bayes act,
we have discussed conditions on the scoring rule S and the classP that guarantee its
existence. Undoubtedly, there are alternative paths to existence results in the spirit of
Theorems 2 and 3, and the derivation of sufficient conditions in alternative situations
is an interesting open problem. The expected score in Example 9 hints at more general
conditions since it is not coercive, but its simple asymptotic behavior nevertheless
ensures the existence of global minima. Furthermore, we have not explored necessary
conditions for the existence of Bayes acts in this work.

A useful generic heuristic appears to be that Bayes acts exist (and properization is
feasible) if the scoring rule is selective, in the sense that there must not be a sequence
(Pn)n∈N in P such that S(Pn, ω) tends to the infimum of S(·, ω) for all ω ∈ Ω , and
the score is bounded from below in a suitable sense. In Example 7, the linear score
and the probability score satisfy the former condition but not the latter. In Example
8, the normalized squared error is bounded from below but fails to be selective. The
scoring rules in our other examples admit Bayes acts and satisfy both of these condi-
tions. Generally, the derivation of necessary conditions and the refinement of sufficient
conditions for the existence of Bayes acts remain challenges that we leave for future
work.
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Appendix: Proofs

Here, we present detailed arguments for the technical claims in Examples 5, 6, 7, and
9 as well as the proofs of Theorems 2 and 3.
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Details for Example 5

We fix some distribution P and start with the case α > 1. An application of Fubini’s
theorem gives

Sα(Q, P) =
∫ ∫

|Q(x) − 1 (y ≤ x) |α dP(y) dx . (8)

Given x ∈ R, we seek the value Q(x) ∈ [0, 1] that minimizes the inner integral in (8).
If x is such that P(x) ∈ {0, 1}, the equality 1 (y ≤ x) = P(x) holds for P-almost all
y, hence Q(x) = P(x) is the unique minimizer. If x satisfies P(x) ∈ (0, 1), define
the function

gx,P (q) :=
∫

|q − 1 (y ≤ x) |α dP(y) = (1 − P(x))qα + P(x)(1 − q)α,

which is strictly convex in q ∈ (0, 1) with derivative

g′
x,P (q) = α(1 − P(x))qα−1 − αP(x)(1 − q)α−1

and a unique minimum at q = q∗
x,P ∈ (0, 1). As a consequence, the minimizing value

Q(x) is given by

Q(x) = q∗
x,P =

(
1 +

(
1 − P(x)

P(x)

)1/(α−1)
)−1

.

The function Q defined by the minimizers Q(x), x ∈ R is a minimizer of Sα(·, P) and
if Sα(Q, P) is finite, it is unique Lebesgue almost surely. Since α > 1, the function Q
has the properties of a distribution function, and hence, P∗ defined by (4) is a Bayes
act for P . Moreover, Eq. (4) shows that the relation between P and P∗ is one-to-one.

It remains to be checked under which conditions the properization of Sα is not only
proper but strictly proper. The representation (4) along with two Taylor expansions
implies that P∗ behaves like P1/(α−1) in the tails. This has two consequences. At first,
the above arguments show that for Sα(P∗, P) to be finite x �→ gx,P(P∗(x)) has to
be integrable with respect to Lebesgue measure. Hence, the tail behavior of P∗ and
the inequality α/(α − 1) > 1 for α > 1 show that Sα(P∗, P) is finite for P ∈ P1.
Second, P∗ has a lighter tail than P for α ∈ (1, 2) and a heavier tail for α > 2. In the
latter case, P ∈ P1 does not necessarily imply P∗ ∈ P1. Hence, without additional
assumptions, strict propriety of the properized score (3) can only be ensured relative
toPc for α > 2 and relative to the classP1 for α ∈ (1, 2].

We now turn to α ∈ (0, 1). In this case, the function gx,P is strictly concave, and its
unique minimum is at q = 0 for P(x) < 1

2 and at q = 1 for P(x) > 1
2 . If P(x) = 1

2 ,
then both 0 and 1 areminima. Arguing as above, every Bayes act P∗ is a Diracmeasure
in a median of P .

Finally, α = 1 implies that gx,P is linear, thus, as for α ∈ (0, 1), every Dirac
measure in a median of P is a Bayes act. The only difference to the case α ∈ (0, 1) is
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that if there is more than one median, there are Bayes acts other than Dirac measures,
since gx,P is constant for all x satisfying P(x) = 1

2 .

Details for Example 6

Let P, Q andΦ be distribution functions. By the definition of the convolution operator

∫
1 (y ≤ x) d(Q ∗ Φ)(y) =

∫
Φ(x − y) dQ(y)

holds for x ∈ R. Using this identity and Fubini’s theorem leads to

SΦ(P, Q) =
∫ ∫ (

P(x)2 − 2P(x)Φ(x − y) + Φ(x − y)2
)
dQ(y) dx

=
∫ ∫ (

P(x)2 − 2P(x)1 (y ≤ x) + 1 (y ≤ x)
)
d(Q ∗ Φ)(y) dx

+
∫ ∫

Φ(x − y)(Φ(x − y) − 1) dQ(y) dx

=
∫ ∫

(P(x) − 1 (y ≤ x))2 dx d(Q ∗ Φ)(y) −
∫

Φ(x)(1 − Φ(x)) dx,

which verifies equality in (5). Moreover, the strict propriety of the CRPS relative to
the class P1 gives SΦ(P, Q) < ∞ for P, Q, Φ ∈ P1, thereby demonstrating that
the Bayes act is unique in this situation.

Details for Example 7

For distributions P, Q ∈ P and c > 0, the Fubini–Tonelli theorem and the definition
of the convolution operator give

Sϕ(P, Q) = −
∫ ∫

ϕ(x − y)S(P, x) dQ(y) dx

=
∫ ∫

ϕ(x − y) dQ(y) S(P, x) dx = S(P, Q ∗ Φ),

so the stated (unique) Bayes act under Sϕ follows from the (strict) propriety of S.
Proceeding as in the details for Example 6, we verify identity (6).

For P ∈ L , the same calculations as above show that the probability score satisfies

PSc(P, Q) = 2c
∫

Q(x + c) − Q(x − c)

2c
LinS(P, x) dx,

where LinS(P, y) = −p(y) is the linear score. Consequently, to demonstrate that
Theorem 1 is neither applicable to PSc nor to LinS, it suffices to show that there is
a distribution Q such that P �→ LinS(P, Q) does not have a minimizer. We use an
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argument that generalizes the construction in Section 4.1 of Gneiting and Raftery
(2007) who show that LinS is improper. Let q be a density, symmetric around zero
and strictly increasing on (−∞, 0). Let ε > 0 and define the interval Ik := ((2k −
1)ε, (2k + 1)ε] for k ∈ Z. Suppose p is a density with positive mass on some interval
Ik for k �= 0. Due to the properties of q, the score LinS(P, Q) can be reduced by
substituting the density defined by

p̃(x) := p(x) − 1 (x ∈ Ik) p(x) + 1 (x + 2kε ∈ Ik) p(x + 2kε)

for p, i.e., by shifting the entire probability mass from Ik to the modal interval I0.
Repeating this argument for any ε > 0 shows that no density p can be a minimizer
of the expected score LinS(P, Q). Note that the assumptions on q are stronger than
necessary in order to facilitate the argument. They can be relaxed at the cost of a more
elaborate proof.

Details for Example 9

For any probability distribution P and x ∈ R, we obtain

s(x, P) =
∫ |x − y|

|x | + |y|1 (x �= y) dP(y),

which immediately gives s(0, P) = P(R\{0}). This representation together with the
dominated convergence theorem imply the continuity of x �→ s(x, P) in R\{0} as
well as the limits given in (7).

Proof of Theorem 2

Let (an)n∈N ⊂ A be a sequence with a := limn→∞ an . Since s is lower semicontin-
uous in its first component and uniformly bounded from below by g, Fatou’s lemma
gives

lim inf
n→∞

∫
s(an, ω) dP(ω) ≥

∫
lim inf
n→∞ s(an, ω) dP(ω) ≥ s(a, P)

for any P ∈ P . Hence, a �→ s(a, P) is a lower semicontinuous function for any
P ∈ P and due to the assumed compactness of A , the result now follows from
Theorem 2.43 in Aliprantis and Border (2006). ��

Proof of Theorem 3

The same arguments as in the proof of Theorem 2 show that a �→ s(a, P) is a
weakly lower semicontinuous function for any P ∈ P . If P ∈ P is such that this
function is also coercive, we conclude by proceeding as in the proof of Satz III.5.8
in Werner (2018): In case infa∈A s(a, P) = ∞, there is nothing to prove. Otherwise,
if (an)n∈N ⊂ A is a sequence such that limn→∞ s(an, P) = infa∈A s(a, P) holds,
the coercivity of a �→ s(a, P) implies that this sequence is bounded. Together with the
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assumption that A is a subset of a reflexive Banach space, we obtain a subsequence
(ank )k∈N of (an)n∈N which weakly converges to some element a∗; see, e.g., Theo-
rem 6.25 in Aliprantis and Border (2006). SinceA is weakly closed, it contains a∗ and
weak lower semicontinuity gives s(a∗, P) ≤ limk→∞ s(ank , P) = infa∈A s(a, P),
concluding the proof. ��
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