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Abstract
We consider spatially homogeneous copulas, i.e. copulas whose corresponding mea-
sure is invariant under a special transformations of [0, 1]2, and we study their main
properties with a view to possible use in stochastic models. Specifically, we express
any spatially homogeneous copula in terms of a probability measure on [0, 1) via the
Markov kernel representation. Moreover, we prove some symmetry properties and
demonstrate how spatially homogeneous copulas can be used in order to construct
copulas with surprisingly singular properties. Finally, a generalization of spatially
homogeneous copulas to the so-called (m, n)-spatially homogeneous copulas is stud-
ied and a characterization of this new family of copulas in terms of the Markov
∗-product is established.

Keywords Copulas · Dependence · Probability measures · Singular measures

1 Introduction

It has been long recognized [see, for example, Brown (1965), Mikusiński and Tay-
lor (2009), Olsen et al. (1996) and the references therein] that Markov operators on
L1([0, 1]) are in one-to-one correspondence with copulas or, equivalently, doubly
stochastic measures, i.e. probability measures of [0, 1]2 whose marginals coincide
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with the Lebesgue measure. This correspondence has been exploited in various con-
texts, especially in problems related to convergence and approximation of copulas [see,
for example, Mikusiński and Taylor (2010), Trutschnig (2011)]. In Brown (1966), a
subclass of the family of all Markov operators on L1(Ω) is introduced under the name
spatially homogeneous Markov operators, which are Markov operators commuting
with all rotations. Nevertheless, to the best of the authors’ knowledge, the related
notion of spatially homogeneous copulas (as directly translated from the Markov
operator setting via the isomorphism between the two classes) has not received any
attention in the literature yet, despite the fact that it presents strong similarities with
related concepts appeared in the study of circular distributions.

The objective of this paper is hence to revisit the concept of spatially homogeneous
copulas. In particular, we are interested in their possible use in stochastic modelling.
Remarkably, each spatially homogeneous copula can be represented in terms of a
unique probabilitymeasure on [0, 1), which provides an interesting analogywith other
popular classes like Archimedean copulas (induced by survival functions associated
with a probabilitymeasure on the positive real line) or extreme–value copulas (induced
by measures on the unit simplex or, equivalently, Pickands dependence functions).
Thanks to the previous different viewpoint, we are hence able to provide a generaliza-
tion of spatially homogeneous copulas to the so-called (m, n)-spatially homogeneous
copulas which, in turn, are shown to be fully characterizable in terms of a Markov
product (also called ∗-product), which is used in the study ofMarkov processes in Dar-
sow et al. (1992). Various properties have been presented to illustrate how spatially
homogeneous copulas exhibit several interesting aspects of stochastic dependence.
Finally, we sketch a possible multivariate generalization of this concept.

2 Markov kernels of spatially homogeneous copulas

For arbitrary x ∈ R and z ∈ [0, 1], let Rx : [0, 1] → [0, 1) denote the rotation
by x , defined by Rx (z) = x + z (mod 1). Obviously, restricting to [0, 1) we have
R−1
x = R1−x—in the sequel R−1

x (F) will, however, denote the pre-image of F via
Rx . Furthermore, we define the transformation ⊕ : [0, 1]2 → [0, 1)2 by (x1, y1) ⊕
(x2, y2) := (x1 + x2 (mod 1), y1 + y2 (mod 1)).

The symbols B([0, 1]) and B([0, 1]2) denote the Borel σ -fields on [0, 1] and
[0, 1]2, and λ and λ2 the Lebesgue measures onB([0, 1]) andB([0, 1]2). Moreover,
C denotes the family of all two-dimensional copulas, KA(·, ·) the Markov kernel of
A ∈ C and μA the corresponding doubly stochastic measure. [For background, see
Durante and Sempi (2016) and the references therein.]

A copula A ∈ C is called completely dependent if there exists a λ-preserving
transformation h : [0, 1] → [0, 1] such that K (x, F) = 1F (h(x)) is a Markov
kernel of A; for properties and characterizations of complete dependence, we refer to
Trutschnig (2011). In the sequel, we will let T denote the family of all λ-preserving
transformations on [0, 1],T0 the subclass of all bijective λ-preserving transformations
and C cd the family of all completely dependent copulas. For h ∈ T , Ch will denote
the corresponding completely dependent copula.
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Spatially homogeneous copulas 609

As direct application of the results in Lange (1973), the Markov kernel KA(·, ·)
of an arbitrary copula A ∈ C can be decomposed into the sum of three substochastic
kernels K abs

A (·, ·), K sing
A (·, ·), K dis

A (·, ·) from [0, 1] toB([0, 1]), i.e.

KA(x, E) = K abs
A (x, E) + K sing

A (x, E) + K dis
A (x, E) (1)

for every x ∈ [0, 1] and E ∈ B([0, 1]). Therefore, themeasure K abs
A (x, ·) is absolutely

continuous with respect to the Lebesguemeasure λ, the measure K sing
A (x, ·) is singular

with respect to λ and has no point masses, and K dis
A (x, ·) is discrete for every x ∈

[0, 1]. Letting kA denote the Radon–Nikodym derivative of the absolutely continuous
component of μA with respect to λ2. Then the (almost everywhere) uniqueness of the
kernel KA implies that the measures K abs

A (x, ·) and E �→ ∫
E kA(x, y)dλ(y) coincide

for almost all x ∈ [0, 1].
In the sequel, we will refer to the induced measures μabs

A , μ
sing
A , μdis

A , given by

μabs
A (E × F) =

∫

E
K abs

A (x, F)dλ(x), μ
sing
A (E × F) =

∫

E
K sing

A (x, F)dλ(x)

μdis
A (E × F) =

∫

E
K dis

A (x, F)dλ(x) (2)

for all Borel sets E, F ⊆ [0, 1] and extended to B([0, 1]2) in the standard way,
simply as absolutely continuous, discrete and singular components of μA. Notice that
the standard definition of a (purely) singular copula as in Durante and Sempi (2016)
and Nelsen (2006) translates to μ

sing
A ([0, 1]2) + μdis

A ([0, 1]2) = 1.

Definition 1 (Brown 1966) A ∈ C is called spatially homogeneous if

μA(x(1, 1) ⊕ G) = μA(G) (3)

holds for every x ∈ [0, 1] and G ∈ B([0, 1]2).
In other words, a copula is spatially homogeneous if its associated measure is

invariant under the transformationΦx : (u, v) �→ (Rx (u), Rx (v)) for every x ∈ [0, 1].
Roughly speaking, the measure induced by a copula of this type is invariant to some
location shifts, assuming the unit square is wrapped around at its edges.

In the sequel, C H will denote the class of all spatially homogeneous copulas which
includes the comonotonicity copula M2 and the independence copula Π2.

Obviously, A ∈ C H if and only if we have

μA(Rx (E) × Rx (F)) = μA(E × F) (4)

for every x ∈ [0, 1) and E, F ∈ B([0, 1]).
Spatially homogeneous copulas can easily be characterized in terms of the cor-

responding Markov kernel. In fact, suppose that ϑ ∈ P ′([0, 1]), where P ′([0, 1])
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denotes the class of all probability measures on B([0, 1]) fulfilling ϑ({1}) = 0. Let
ϑ Rx denote the push-forward (i.e. image measure) of ϑ via Rx . Setting

K (x, E) := ϑ Rx (E) (5)

for every x ∈ [0, 1] and E ∈ B([0, 1]), the following result holds.

Theorem 1 The mapping K (·, ·) defined according to Eq. (5) is the Markov kernel of
a copula Aϑ ∈ C H .

Proof It is clear that E �→ K (x, E) is a probability measure on B([0, 1]) fulfilling
K (x, {1}) = 0 for every x ∈ [0, 1]. Moreover, considering

R−1
x ([0, y]) =

{ [0, y − x] ∪ [1 − x, 1] if x ≤ y,
[1 − x, 1 + y − x] if x > y,

(6)

it follows immediately that x �→ K (x, [0, y]) is measurable in x for every fixed
[0, y] ⊆ [0, 1]. Since the family D of all Borel sets F for which x �→ K (x, F) is
measurable forms a Dynkin system containing the family of all intervals of the form
[0, y], we conclude that K (x, E) = ϑ Rx (E) is a Markov kernel. Thus, we only have
to prove that K (·, ·) is associated with a doubly stochastic measure [i.e. it satisfies
Eq. (3.4.8) in Durante and Sempi (2016)]. Using Fubini’s theorem and change of
coordinates, we get

∫

[0,1]
K (x, E)dλ(x) =

∫

[0,1]

∫

[0,1]
1R−1

x (E)
(z)dϑ(z)dλ(x)

=
∫

[0,1]

∫

[0,1]
1E (Rx (z))dϑ(z)dλ(x)

=
∫

[0,1]

∫

[0,1]
1E (Rz(x))dλ(x)dϑ(z)

=
∫

[0,1]

∫

[0,1]
1E (y)dλ(y)dϑ(z)

= λ(E),

which implies that K (·, ·) is the Markov kernel of a copula Aϑ .
To show that Aϑ ∈ C H , we can proceed as follows. It is straightforward to ver-

ify that for every F ⊆ [0, 1) we have R−1
Rx (z)

(Rx (F)) = R−1
z (F), from which we

immediately get

K (Rx (z), Rx (F)) = ϑ
(
R−1
Rx (z)

(Rx (F))
) = ϑ(R−1

z (F)) = K (z, F)

for every F ∈ B([0, 1]) with F ⊆ [0, 1). Having this, using disintegration theorem
[see, for example, Ambrosio et al. (2000), Klenke (2008)] and changing coordinates,
for arbitrary E, F ∈ B([0, 1]) with F ⊆ [0, 1) the desired equality follows from

μAϑ (Rx (E) × Rx (F)) =
∫

Rx (E)

K (z, Rx (F))dλ(z)
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Spatially homogeneous copulas 611

=
∫

[0,1]
1E (R1−x (z))K (Rx ◦ R1−x (z), Rx (F)) dλ(z)

=
∫

[0,1]
1E (y)K (Rx (y), Rx (F))dλ(y) =

∫

E
K (y, F)dλ(y)

= μAϑ (E × F).

Since for F = {1} Eq. (4) obviously holds for every E ∈ B([0, 1]), the proof is
complete. �
Remark 1 From the previous construction and the fact that Rx ◦ R0 = Rx holds for
every x ∈ [0, 1], it follows that, if the measures ϑ and ϑ R0 ∈ P ′([0, 1])) coincide,
then they induce the same spatially homogeneous copula.

Not surprisingly, every spatially homogeneous copula is the result of rotating a
probability measure ϑ ∈ P ′([0, 1]), as the following result shows (compare with
(Brown 1966, Theorem 3).

Theorem 2 Suppose that A ∈ C H . Then there exists a unique probability measure
ϑ ∈ P ′([0, 1]) such that A = Aϑ .

Proof Without loss of generality, let KA(·, ·) denote a version of the Markov kernel
of A fulfilling KA(z, {1}) = 0 for every z ∈ [0, 1]. Expressing Eq. (4) in terms of the
corresponding kernel and changing coordinates, we get

∫

E
KA(z, F)dλ(z) =

∫

Rx (E)

KA(z, Rx (F)) dλ(z)

=
∫

[0,1]
1E (R1−x (z))KA(Rx ◦ R1−x (z), Rx (F)) dλ(z)

=
∫

[0,1]
1E (y)KA(Rx (y), Rx (F)) dλ(y)

=
∫

E
KA(Rx (z), Rx (F))dλ(z)

for every x ∈ [0, 1] and E, F ∈ B([0, 1]). Hence, for every G ∈ B([0, 1]) we must
have

∫

G×E
KA(z, F)dλ2(z, x) =

∫

G×E
KA(Rx (z), Rx (F))dλ2(z, x).

Considering that E,G were arbitrary,we canfind a setΩF ∈ B([0, 1]2),λ2(ΩF ) = 1,
such that KA(z, F) = KA(Rx (z), Rx (F)) holds for every (z, x) ∈ ΩF . Repeating the
same argument for every set F of the form F = [0, y] with y ∈ Q ∩ [0, 1], we can
find a set Ω ∈ B([0, 1]2) with λ2(Ω) = 1 such that

KA(z, [0, y]) = KA(Rx (z), Rx ([0, y])) = KA(Rx (z), R
−1
1−x ([0, y]))
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612 F. Durante et al.

holds for every (z, x) ∈ Ω simultaneously for all y ∈ Q ∩ [0, 1]. As a consequence,
for every (z, x) ∈ Ω the measure KA(z, ·) and the push-forward KA(Rx (z), ·)R1−x of
KA(Rx (z), ·) via R1−x coincide, i.e. we have

KA(z, F) = KA(Rx (z), Rx (F)) (7)

for every F ∈ B([0, 1]) and every (z, x) ∈ Ω . Disintegration theorem implies the
existence of a set Λ ∈ B([0, 1]) with λ(Λ) = 1 such that λ(Ωz) = 1 for every z ∈ Λ.
Let z ∈ Λ be arbitrary but fixed and define the probability measure ϑ ∈ P([0, 1])
by ϑ(F) = KA(z, Rz(F)). Then, for every x ∈ Ωz and every F ∈ B([0, 1]) using
Eq. (7) we get

ϑ Rx (F) = ϑ(R−1
x (F)) = KA

(
z, Rz ◦ R1−x (F)

)

= KA
(
Rx (z), Rx ◦ Rz ◦ R1−x (F)

)

= KA
(
Rx (z), Rz(F)

) = KA
(
Rz(x), Rz(F)

) = KA(x, F).

This last equality completes the proof of the representation (4) since Ωz has full
measure and kernels are only unique up to a set of measure zero. Finally, uniqueness
of ϑ is clear. �
Remark 2 According to Brown (1966), C H is a convex and compact subset of
C (endowed with the uniform metric). Moreover, its extreme points correspond to
extreme points of the class of all probability measures onP ′([0, 1]), i.e. to probabil-
ity measures concentrating their mass on one single point. In other words, a copula
A ∈ C H is an extreme point of C H if and only if there exists a point z ∈ [0, 1) such
that A = CRz holds; that is, A is a shuffle of M2 induced by Rz . Using this fact and
applying Choquet’s theorem [see Phelps (2001)] can also provide an alternative proof
of the one-to-one correspondence between P ′([0, 1]) and C H .

3 Some properties of spatially homogeneous copulas

In this section, we study some symmetry properties of spatially homogeneous copulas
and some particular examples underlining their usefulness concerning the construction
of copulas with exotic properties.

3.1 Measure-theoretic properties

Suppose that Aϑ ∈ C H . Obviously μ
sing
Aϑ

([0, 1]2), μdis
Aϑ

([0, 1]2) and μabs
Aϑ

([0, 1]2)
coincide with the masses of the singular, the discrete and the absolutely continu-
ous components of ϑ . Specifically, letting ϑ = ϑ sing + ϑdis + ϑabs the Lebesgue
decomposition of ϑ we have

μ
sing
Aϑ

([0, 1]2) = ϑ sing([0, 1]), μdis
Aϑ

([0, 1]2) = ϑdis([0, 1]), (8)

μabs
Aϑ

([0, 1]2) = ϑabs([0, 1]). (9)
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Spatially homogeneous copulas 613

Fig. 1 Samples of size 50,000 of spatially homogeneous, absolutely continuous copulas Aϑ where ϑ

corresponds to a uniform distribution on [ 14 , 3
4 ] (left panel) or a beta-distribution β2,5 with parameters 2

and 5 (right panel)

In particular, in case of ϑdis([0, 1]) = 0, it follows immediately from Eqs. (5) and (6)
that the function (x, y) �→ K (x, [0, y]) is continuous on [0, 1]2. Notice that, if ϑ is a
measure with full support, then Aϑ has also full support. Moreover, we could obtain
singular (respectively, absolutely continuous) spatially homogeneous copulas Aθ with
full support by selecting ϑ sing (respectively, ϑabs) that has full support.

Another aspect of interest is the case of ϑ absolutely continuous with density f . In
this case, it is straightforward to verify that (a version of) the density kϑ of Aϑ ∈ C H

is given by kϑ(x, y) = f (R1−x (y)). In fact, for every x, y ∈ [0, 1], we get
∫

[0,y]
kϑ(x, s) dλ(s) = ϑ Rx ([0, y]) =

∫

[0,1]
1[0,y](Rx (z)) f (z) dλ(z)

=
∫

[0,1]
1[0,y](Rx ◦ R1−x (s)) f (R1−x (s)) dλ(s)

=
∫

[0,y]
f (R1−x (s)) dλ(s).

Thus, the density kϑ of Aϑ ∈ C H

kϑ(Rz(x), Rz(y)) = kϑ(x, y)

for all x, y, z ∈ [0, 1]. A similar condition has also appeared in Alfonsi and Brigo
(2005), where periodic copulas have been introduced, and, under a slight modification
of the copula domain, in the study of copulas for circular distributions, as investigated,
for instance, in Jones and Pewsey (2015).

Figure 1 depicts samples of two spatially homogeneous, absolutely continuous
copulas.

123



614 F. Durante et al.

3.2 Dependence properties

Now, we are interested in checking whether spatially homogeneous copulas can be
related to some measures of association. Since Π2 and M2 belong to the convex set
C H , the continuity of Spearman’s ρ and Kendall’s τ (and, in general, any concordance
measure) with respect to the uniform metric d∞ implies ρ(C H ) ⊇ [0, 1] as well as
τ(C H ) ⊇ [0, 1]. In other words, spatially homogeneous copulas can describe any
degree of concordance in [0, 1].

Furthermore, spatially homogeneous copulas can cover a broader range of concor-
dance values. For Spearman’s ρ, it is even possible to determine this exact range, as
the following result shows.

Theorem 3 ρ(C H ) = [−0.5, 1].
Proof For the spatially homogeneous copula Aδz with z ∈ [0, 1), in view of the
disintegration theorem, we have

ρ(Aδz ) = 12
∫

[0,1]2
Π2 dμAδz

− 3 = 12
∫

[0,1]
x Rz(x) dλ(x) − 3

= 12
∫

[0,1−z]
x(x + z) dλ(x) + 12

∫

[1−z,1]
x(x + z − 1) dλ(x) − 3

= −6z(1 − z) + 1.

The latter expression is minimal for z = 1
2 and we get ρ(Aδz ) ≥ − 1

2 with equality
if and only if z = 1

2 . Considering that the mapping A �→ ρ(A) = ∫
[0,1]2 Π2 dμA

preserves convex combinations, it follows immediately that ρ(Aϑ) ≥ − 1
2 holds for

every discretemeasureϑ concentrating its mass on finitelymany points in [0, 1]. Since
every element of P ′([0, 1]) is the (weak) limit of a sequence (ϑn)n∈N of discrete
measures of the aforementioned type, the proof is complete. �
Remark 3 Determining the exact range ofKendall’s τ seemsmore challenging. Letting
ϑ denote the uniform distribution on [ 14 , 3

4 ] (the left panel of Fig. 1 shows samples
of this copula), a straightforward calculation yields τ(Aϑ) = − 1

6 . Using continuity
of Kendall’s τ w.r.t. d∞, we therefore get τ(C H ) ⊇ [− 1

6 , 1]. We conjecture that
this interval coincides with the actual range of possible values of Kendall’s τ for
spatially homogeneous copulas. However, we have not been able to prove formally
this conjecture.

We add a final remark about tail dependence properties. By the convexity of C H , it
follows that spatially homogeneous copulas cover all possible tail dependence coeffi-
cients (ranging from 0 to 1). In fact, a convex combination of the copulasΠ2 and M2 is
spatially homogeneous. Moreover, by the very construction of the classC H , it follows
that, if (U , V ) ∼ A ∈ C H , then P(U ≤ u, V ≤ u) = P(U ≥ 1 − u, V ≥ 1 − u)

for every u ∈ [0, 1], implying that the left lower and the right upper tail dependence
coefficients of A coincide.
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Spatially homogeneous copulas 615

3.3 Symmetries

Driven by the specific choice of the generating probability measure ϑ ∈ P ′([0, 1]),
the class C H contains copulas that exhibit different types of symmetries. In order to
study these symmetries, we first focus on the following lemma that gathers additional
properties of the bijection Φ : P ′([0, 1]) → C H , defined by Φ(ϑ) = Aϑ . [For
properties of themetric D1, see Fernández-Sánchez andTrutschnig (2015), Trutschnig
(2011).]

Lemma 1 Suppose that ϑ, ν ∈ P ′([0, 1]) have distribution function F and G, respec-
tively. Then we have

D1(Aϑ , Aν) ≤ 2‖F − G‖∞. (10)

Proof For all x, y ∈ [0, 1], using Eq. (6) and the triangle inequality we get

|KAϑ (x, [0, y]) − KAν (x, [0, y])|
≤ 1[0,y](x)|ϑ([0, y − x]) − ν([0, y − x])|

+ 1[0,y](x)|ϑ([1 − x, 1]) − ν([1 − x, 1])|
+ 1[y,1](x)|ϑ([1 − x, 1 + y − x]) − ν([1 − x, 1 + y − x])|

≤ 1[0,y](x) 2‖F − G‖∞ + 1(y,1](x) 2‖F − G‖∞ = 2‖F − G‖∞

from which inequality (10) follows immediately by integration. �
Theorem 4 If ϑ ∈ P ′([0, 1]) fulfils ϑ(1 − E) = ϑ(E) for every E ∈ B([0, 1]) with
E ⊆ (0, 1), then Aϑ is radially symmetric (i.e. Aϑ coincides with its survival copula
Âϑ ) and symmetric.

Proof (i): First suppose that ϑ({0}) = 0. Then, for every E ∈ B([0, 1]) with E ⊆
(0, 1) and x ∈ [0, 1], the Markov kernel fulfils K (1− x, 1− E) = K (x, E) since we
have

ϑ R1−x (1 − E) = ϑ(1 − R−1
x (E)) = ϑ(R−1

x (E)) = ϑ Rx (E).

Here, notice that R−1
1−x (1 − E) and 1 − R−1

x (E) need not coincide (consider, for
instance, E = {1/2} and x = 1/2). Using the disintegration of a measure, we get

Aϑ(x, y) = μAϑ ([0, x] × (0, y)) =
∫

[0,x]
K

(
z, (0, y)

)
dλ(z)

=
∫

[0,x]
K

(
1 − z, (1 − y, 1)

)
dλ(z)

= μAϑ ([1 − x, 1] × (1 − y, 1)) = μAϑ ([1 − x, 1] × [1 − y, 1])
= x + y − 1 + Aϑ(1 − x, 1 − y)

for all x, y ∈ [0, 1], so Aϑ is radially symmetric. Moreover, for ϑ = δ0, we have
Aϑ = M ∈ C H . Thus, the desired result follows by considering that every ϑ can be
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616 F. Durante et al.

expressed as convex combination of some ν ∈ P ′([0, 1]), with ν({0}) = 0, and δ0,
and the fact that Aϑ is rotation symmetric for every ϑ ∈ P ′([0, 1]).

(ii) To prove symmetry of Aϑ , we proceed in two short steps:
(a) First, assume that the support of ϑ can be written as

Supp(ϑ) = {x1, x2, . . . , xn, 1 − xn, . . . , 1 − x2, 1 − x1}

for some n ∈ N and 0 < x1 < x2 . . . , xn−1 < xn ≤ 1
2 . Define αi = ϑ({xi , 1 − xi })

and set ϑi = 1
αi

ϑ ∈ P ′([0, 1]). Since we obviously have

Aϑi (x, y) = 1
2

(
SRxi

(x, y) + SR1−xi
(x, y)

) = 1
2

(
SRxi

(x, y) + SRxi
(y, x)

)

for all x, y ∈ [0, 1], Aϑi is symmetric.Considering that themappingΦ : P ′([0, 1]) →
C H preserves convex combinations, Aϑ is symmetric too.

(b) Since the distribution function F of everyϑ ∈ P ′([0, 1])withϑ({0}) = 0 is the
uniform limit of discrete distribution functions corresponding to measures considered
in (a) and convergencewith respect to D1 implies uniform convergence [seeTrutschnig
(2011)], it follows that Aϑ is symmetric too. Finally, the proof can be completed by
using the same arguments as in (i) and the fact that M2 is symmetric. �
Remark 4 An alternative way to prove symmetry of Aϑ would be to show that for
every ϑ ∈ P ′([0, 1]) fulfilling ϑ(1 − E) = ϑ(E) for every E ∈ B([0, 1]) with
E ⊆ (0, 1) the corresponding Markov operator TAϑ is self-adjoint (interpreted as
operator on L2([0, 1],B([0, 1]), λ)) and using the fact that TAt = (TA)adj for every
copula A ∈ C [see Olsen et al. (1996), Trutschnig (2013)].

If we substitute the invariance condition (3) by the condition

μA(x(1,−1) ⊕ G) = μA(G) (11)

for all x ∈ [0, 1] and every G ∈ B([0, 1]2), it follows in the same manner as before
that such a copula A corresponds to a unique probability measure ϑ ∈ P ′([0, 1])
such that

K (x, E) = ϑ R1−x (E)

is a Markov kernel of A. Equivalently, if Aϑ is spatially homogeneous, then A′ ∈ C ,
defined by A′(x, y) = x − Aϑ(1 − x, y), fulfils condition (11).

The following result holds.

Theorem 5 The independence copulaΠ2 is the unique spatially homogeneous copula
satisfying (11) for every x ∈ [0, 1] and every G ∈ B([0, 1]2).
Proof If Aϑ1 ∈ C H also satisfies (11), then there exists a probability measure ϑ2 ∈
P ′([0, 1]) such that

ϑ
Rx
1 = ϑ

R1−x
2
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Spatially homogeneous copulas 617

holds for every x ∈ [0, 1]. As a direct consequence, we get ϑ R2x
1 = ϑ2, implying that

ϑ1 is invariant with respect to any rotation z �→ Rx (z) with x ∈ [0, 1), from which
ϑ1 = λ = ϑ2 follows immediately (uniqueness of Haar measure). This completes the
proof since Aλ = Π2 ∈ C H . �

3.4 Application to the construction of copulas with exotic properties

Theorem 4 can be used to construct various “exotic” copulas, i.e. copulas that do
not satisfy standard smoothness and regularity properties. Here, we provide three
examples.

Application 1 We prove the existence of singular copulas A ∈ C fulfilling that the
partial derivative ∂A

∂x is continuous on (0, 1)×[0, 1] and ∂A
∂ y is continuous on [0, 1]×

(0, 1). As shown in Segers (2012), under these regularity conditions weak convergence
of the empirical copula process holds.

Choose ϑ ∈ P ′([0, 1]) with ϑdis([0, 1]) = ϑabs([0, 1]) = 0 and fulfilling ϑ(1 −
E) = ϑ(E) for every E ∈ B([0, 1]). Then μ

sing
Aϑ

([0, 1]2) = 1, so Aϑ is singular, and

from Sect. 3.1 it follows that (x, y) �→ K (x, [0, y]) = ϑ Rx ([0, y]) is continuous on
[0, 1]2. Considering

A(x, y) =
∫

[0,x]
K (z, [0, y])dλ(z)

we conclude that ∂A
∂x (x, y) is continuous on (0, 1)×[0, 1]. Fulfilment of the condition

for ∂A
∂ y is now a direct consequence of symmetry of ϑ and Theorem 4. An example of

a measure ϑ satisfying the previous condition is given by the measure induced by the
Cantor ternary distribution function. See Fig. 2.

Application 2 Let α ∈ (0, 1) be arbitrary. Then there exists an absolutely continuous
copula A with density kA fulfilling the following three properties:

(I) The set Λ := {(x, y) ∈ [0, 1]2 : kA(x, y) = 0} fulfils λ2(Λ) > 1 − α.
(II) For E, F ∈ B([0, 1]), we have μA(E × F) > 0 whenever λ2(E × F) > 0.
(III) For E, F ∈ B([0, 1]), we have λ2(Λ∩ (E × F)) > 0 whenever λ2(E × F) > 0.

We proceed in two steps:
Step 1: Choose a set Ω ∈ B([0, 1]) with λ(Ω) ∈ (0, α) and Ω = 1 − Ω (i.e. Ω is
symmetric with respect to 1/2) such that for every interval (a, b) ⊆ [0, 1] and a < b
we have λ(Ω ∩ (a, b)) > 0 as well as λ(Ωc ∩ (a, b)) > 0. Such a set can easily be
constructed by slightly modifying the proof of Lemma 3.1 in Fernández-Sánchez and
Trutschnig (2016). Without loss of generality, we may assume that each point ω ∈ Ω

is a Lebesgue point [see Tao (2011)] of 1Ω , i.e. for each ω ∈ Ω we have

lim
r→0+

1

2r
λ
(
Ω ∩ (ω − r , ω + r)

) = 1.

Obviously, 1
λ(Ω)

1Ω is a probability density on [0, 1]. Letting ϑ ∈ P([0, 1]) denote
the corresponding probability measure, it follows from Theorem 4 and Sect. 3.1 that
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618 F. Durante et al.

the corresponding spatially homogeneous copula Aϑ is symmetric and absolutely
continuous with density

kϑ(x, y) = 1

λ(Ω)
1Ω ◦ R1−x (y).

Setting Λ := {(x, y) ∈ [0, 1]2 : kϑ(x, y) = 0}, we obviously have λ2(Λ) = 1 −
λ(Ω) > 1 − α, and considering that kϑ is zero on Λ by definition, Aϑ satisfies
condition (I). Also notice that for every ω ∈ Ω by symmetry we have 1 − ω ∈ Ω;
hence, (R1−(ω+x), x) ∈ Λc and kϑ(Rω(x), x) = 1

λ(Ω)
for every x ∈ [0, 1].

Step 2: We prove that μϑ := μAϑ also satisfies condition (II) by showing that for
all E, F ∈ B([0, 1]) with λ2(E × F) > 0 we have λ2(Λ

c ∩ (E × F)) > 0. By
extracting sets of measure zero from E and F if necessary, we may assume that each
point e ∈ E is a Lebesgue point of 1E and each f ∈ F is a Lebesgue point of 1F .
Furthermore, using symmetry (and intersecting E × F with small squares of the form
Qi j = [ i−1

2n , i
2n ] × [ j−1

2n ,
j
2n ] for i, j ∈ {0, . . . , 2n} if necessary) we may assume that

E × F ⊂ {(x, y) ∈ [0, 1]2 : y ≤ x}. Fix an arbitrary ε ∈ (0, 1/4). Since E and
F have positive measure, Steinhaus’ theorem [see, for example, Stromberg (1972)]
implies that E − F, defined by

E − F := {e − f : e ∈ E, f ∈ F} ⊆ [0, 1],

contains an open interval I of positive length. Since the construction of Ω implies
λ(Ω ∩ I ) > 0, we may chooseω ∈ Ω ∩ I and some r0 ∈ (0, 1)with (ω−r0, ω+r0) ⊆
I ⊆ E − F such that, for every r ∈ (0, r0], we have

1

2r
λ
(
Ω ∩ (ω − r , ω + r)

)
> 1 − ε. (12)

Choose (e, f ) ∈ E × F with e− f = ω. Then there exists Δ0 > 0 such that for every
Δ ≤ Δ0

1

2Δ
λ
(
E ∩ (e − Δ, e + Δ)

)
> 1 − ε and

1

2Δ
λ
(
F ∩ ( f − Δ, f + Δ)

)
> 1 − ε,

hence

λ2

(
(E × F) ∩ (

(e − Δ, e + Δ) × ( f − Δ, f + Δ)
))

> (1 − ε)24Δ2 (13)

holds. On the other hand, considering δ < r0
2 , we have

(e − δ, e + δ) − ( f − δ, f + δ) = (ω − 2δ, ω + 2δ) ⊆ (ω − r0, ω + r0).

Hence, using the observation mentioned at the end of Step 1 and inequality (12), we
get

λ2

(
Λc ∩ (

(e − δ, e + δ) × ( f − δ, f + δ)
))

> (1 − ε)24 δ2. (14)
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Spatially homogeneous copulas 619

ConsideringΔ = δ = ζ for some ζ < min{ r02 ,Δ0} together with the inequalities (13)
and (14), λ2(Λc ∩ (E × F)) > 0 follows, which completes the proof of condition (II).
Condition (III) can be proved analogously by working with Ωc instead of Ω .

Application 3 In Fredricks et al. (2005), it is shown how iterated function systems
with probabilities (IFSP) can be used to construct two-dimensional copulas with frac-
tal support. [for background on IFSP, fractals and Hausdorff dimension, we refer
to Falconer (2014), Kunze et al. (2012).] In particular, it is proved that, given an
arbitrary s ∈ (1, 2) there exists a copula As whose support has Hausdorff dimension
s. [For an extension to the general multivariate setting, we refer to Trutschnig and
Fernández Sánchez (2012).]

Spatially homogeneous copulas allow for an alternative short proof of this result.
Let s ∈ (0, 1) be arbitrary but fixed, set L = 1

21/s
∈ (0, 1

2 ) and consider the (totally

disconnected) IFS {[0, 1], (wi )
2
i=1} with

w1(x) = Lx, w2(x) = Lx + 1 − L.

Letting K ([0, 1]) the family of all non-empty compact subsets of [0, 1], the induced
Hutchinson operator W : K ([0, 1]) → K ([0, 1]), defined by W (E) = w1(E) ∪
w2(E) is easily seen to be a contraction on the completemetric space (K ([0, 1]), δH ),
where δH denotes the Hausdorff metric. Banach’s fixed-point theorem implies the exis-
tence of a set Z� ∈ K ([0, 1]) invariant underW , such that the Hausdorff dimension
dimH (Z�) of Z� of which is exactly s.
Choosing p1 ∈ (0, 1), setting p2 = 1 − p1 and considering the operator V :
P([0, 1]) → P([0, 1]), defined by

V (ϑ) = p1ϑ
w1 + p2ϑ

w2 (15)

it is straightforward to verify that V is a contraction on the complete metric
space (P([0, 1]), δK ) where δK denotes the Kantorovich (or Wasserstein) metric on
P([0, 1]). Banach’s fixed-point theorem implies the existence of a probability mea-
sure ϑ� ∈ P([0, 1]) (in fact even ϑ� ∈ P ′([0, 1])) invariant under V , the support of
which coincides with Z�. Notice that, for the special case of s = ln 2

ln 3 and p1 = p2 = 1
2 ,

the set Z� is the classical Cantor set and ϑ� is the probability measure correspond-
ing to the Cantor staircase function. Figure 2 depicts a sample of this homogeneous
copula. Obviously, the support Supp(Aϑ�) of the homogeneous copula Aϑ� is given
by

Supp(Aϑ�) =
⋃

x∈[0,1]
{x} × Rx (Z�).

Since the latter set has Hausdorff dimension s + 1 ∈ (1, 2), the alternative proof of
the result is complete.

Finally notice that, given a fixed s ∈ (0, 1), choosing p̃1 �= p1 and proceeding in
the aforementioned manner yields another measure ϑ̃� ∈ P ′([0, 1]) that, on the one
hand, has the same support as ϑ� but, on the other hand, is singular with respect to
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620 F. Durante et al.

Fig. 2 Sample of size 50,000 of the singular spatially homogeneous copula Aϑ� with ϑ� denoting the
probability measure corresponding to the Cantor staircase function

ϑ�. As a consequence, the doubly stochastic measures μAϑ� and μA
ϑ̃�

are singular
with respect to each other and have the same compact set of Hausdorff dimension
s + 1 as support [compare with Trutschnig and Fernández Sánchez (2014)].

4 A generalization of spatially homogeneous copulas

The concept of spatially homogeneous copulas can be extended in a natural way as
shown below.

Definition 2 Suppose that m, n ∈ N. Then A ∈ C is called (m, n)-spatially homoge-
neous if

μA(x(m, n) ⊕ G) = μA(G) (16)

holds for every x ∈ [0, 1] and G ∈ B([0, 1]2).
Obviously, A ∈ C is (m, n)-spatially homogeneous if and only if the measure μA

is invariant under every transformation Φ
m,n
x : [0, 1]2 → [0, 1]2, defined by

Φm,n
x (u, v) = (

Rmx (u), Rnx (v)
)
,

with x ∈ [0, 1]. In other words, A ∈ C is (m, n)-spatially homogeneous if and only
if we have

μA(Rmx (E) × Rnx (F)) = μA(E × F) (17)

for all E, F ∈ B([0, 1]) and x ∈ [0, 1].
In what follows, let the function hN

j : [0, 1] → [ j−1
N ,

j
N ] be defined by

hN
j (x) = x+(i−1)

N for every N ∈ N and every j ∈ 1, . . . , N . Suppose that A ∈ C
is (m, n)-spatially homogeneous and, without loss of generality, assume that m and
n are relatively prime. Set Qi, j = [ i−1

n , i
n ] × [ j−1

m ,
j
m ] for all i ∈ {1, . . . , n} and
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Spatially homogeneous copulas 621

Fig. 3 Sample of size 50,000 of a (3, 5)-homogeneous copula A, its histogram and marginal histograms;
therefore, the measure ϑ according to Eq. (20) has been chosen to be of the form ϑ = 0.1 δ3/4 + 0.9β2,5
with β2,5 denoting the beta-distribution with parameters 2, 5

j ∈ {1, . . . ,m} and let wi, j : [0, 1]2 → Qi, j denote the affine contraction

wi, j (x, y) =
(
x + i − 1

n
,
y + j − 1

m

)

= (
hni (x), h

m
j (y)

)
. (18)

Defining Ψ : [0, 1]2 → [0, 1]2 by

Ψ (x, y) =
(
R 1

n
(x), R 1

m
(y)

)
,

the following property holds: for every pair (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, there
exists exactly one l ∈ {0, 1, 2, . . . ,mn−1} such that Ψ l(Q1,1) = Qi, j . Furthermore,
(m, n)-spatial homogeneity yields that, for every G ∈ B([0, 1]2) with G ⊆ Qi, j , we
have

μA(G) = μA
(
Ψ −l(G)

) = μA
(
Ψ −l(G) ∩ Q1,1

)
.

This implies that there exists a copula B ∈ C such that

μA = 1

mn

n∑

i=1

m∑

j=1

μ
wi, j
B , (19)
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i.e. A is a τ -draughtboard of B with τ being the n × m-dimensional transformation
matrix having all entries equal to 1

mn . [For the construction of such draughtboard
copulas, see Durante et al. (2015).] Furthermore, (m, n)-spatial homogeneity of A
implies that B is also spatially homogeneous, so altogether we get that A is a n ×
m draughtboard of a spatially homogeneous copula B ∈ C H . Since, on the other
hand, every copula of the form (19) with B ∈ C H is obviously (m, n)-spatially
homogeneous, we have proved the following result.

Theorem 6 A copula A is (m, n)-spatially homogeneous if and only if there exists
Bϑ ∈ C H such that the following equality holds:

μA = 1

mn

n∑

i=1

m∑

j=1

μ
wi, j
Bϑ

. (20)

In other words, (m, n)-spatially homogeneous copulas can be constructed via suit-
able push-forwards of a spatially homogeneous copula Bϑ ∈ C H . Figure 3 depicts a
sample of a (3, 5)-homogeneous copula.

We will now derive a simple expression for the Markov operator and the Markov
kernel of (m, n)-spatially homogeneous copulas and then characterize (m, n)–spatial
homogeneity of a copula A in terms of (i) the Markov product ∗ of copulas and (ii)
the Markov operator of A [see Darsow et al. (1992), Olsen et al. (1996), Trutschnig
(2011), respectively]. To simplify notation, for ever ϑ ∈ P ′([0, 1]) and everym ∈ N,
let the measure ϑm ∈ P ′([0, 1]) be defined by

ϑm = 1

m

m∑

j=1

ϑ
hmj .

Theorem 7 Suppose that A ∈ C is (m, n)-spatially homogeneous and let Bϑ denote
the corresponding homogeneous copula according to Eq. (20). Then the Markov oper-
ator TA and the Markov kernel KA of A are given by

(TA f )(x) =
∫

[0,1]
f ◦ R n

m x (y)dϑm(y) = 1

m

m∑

j=1

∫

[0,1]
f ◦ R n

m x ◦ hmj (z)dϑ(z) (21)

and

KA(x, F) = ϑ
R n
m x

m (F) = 1

m

m∑

j=1

ϑ
hmj ◦R n

m x (F). (22)

Proof Equation (22) is a direct consequence of Eq. (20), Theorem 2 and Eq. (5).
Considering that, according to Trutschnig (2011), theMarkov operator TA of a copula
A can be expressed in terms of the Markov kernel KA of A via

(TA f )(x) =
∫

[0,1]
f (y)KA(x, dy),
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Spatially homogeneous copulas 623

Equation (21) follows immediately. �
Translating the composition ofMarkov operators TA, TB : L1([0, 1]) → L1([0, 1])

to the familyC of copulas yields theMarkov product of copulas, implicitly defined via
TA∗B = TA ◦ TB [see Olsen et al. (1996), Trutschnig (2013)]. Generalizing (Brown
1966, Theorem 3) (m, n)-spatial homogeneity of a copula can be characterized in
terms of the Markov product as follows:

Theorem 8 A copula A is (m, n)-spatially homogeneous if and only if A ∗ CRnx =
CRmx ∗ A holds for every x ∈ [0, 1].
Proof Suppose that TA is of the form (21) and let x ∈ [0, 1] and f ∈ L1([0, 1]) be
arbitrary but fixed. Setting i = mx+z−R0(mx+z) = �mx+z� ∈ {0, 1, . . . ,m−1},
it is straightforward to verify that R1−nx ◦ R n

m Rmx (z)(y) = R n
m z ◦ R i

m
(y) holds for

every y ∈ [0, 1], from which we get

(
TCRmx

◦ TA ◦ T−1
CRnx

f
)
(z) = (

TCRmx
◦ TA ◦ TCR1−nx

f
)
(z)

= (
TCRmx

◦ TA ◦ f ◦ R1−nx
)
(z)

= TCRmx

(∫

[0,1]
f ◦ R1−nx ◦ R n

m z(y)dϑm(y)

)

=
∫

[0,1]
f ◦ R1−nx ◦ R n

m Rmx (z)(y)dϑm(y)

=
∫

[0,1]
f ◦ R n

m z ◦ R i
m
(y)dϑm(y)

=
∫

[0,1]
f ◦ R n

m z(w)dϑm(w) = (TA f )(z),

whereby the penultimate equality follows from change of coordinates and the fact that

ϑ
R i
m

m = ϑm . We therefore know that TCRmx
◦ TA = TA ◦ TCRnx

, which, translating to
C , reads A ∗ CRnx = CRmx ∗ A.

To prove the reverse implication, assume now that TCRmx
◦ TA = TA ◦ TCRnx

holds
for every x ∈ [0, 1]. Considering f = 1F ∈ L1([0, 1]) for some F ∈ B([0, 1]), we
get [again see Trutschnig (2011)]

KA(z, F) = (TA1F )(z) = (
TCRmx

◦ TA ◦ T−1
CRnx

1F
)
(z)

= (
TCRmx

◦ TA1Rnx (F)

)
(z) = TA1Rnx (F)(Rmx (z))

= KA(Rmx (z), Rnx (F)),

from which Eq. (17) easily follows via disintegration. �

5 Onmultivariate spatially homogeneous copulas

Most naturally the question arises whether the provided class of copulas can be gener-
alized to any dimension d ≥ 3. The answer is positive—we complete the manuscript
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by stating the corresponding definition and the representation theorem analogous to
the two-dimensional setting and by providing a sketch of the proof.

Definition 3 A d-dimensional copula A is called spatially homogeneous if for every
G ∈ B([0, 1]d) and every x ∈ [0, 1]

μA(x(1, . . . , 1) ⊕ G) = μA(G)

holds.

Theorem 9 A d-dimensional copula A is spatially homogeneous if and only if there
exists a probability measure ϑ on B([0, 1)d−1) such that, for every B ∈ B([0, 1]d),
we have

μA(B) =
∫

[0,1]
ϑRx (Bx )dλ(x), (23)

where Bx = {(x2, . . . , xd) ∈ [0, 1]d−1 : (x, x2, . . . , xd) ∈ B} is the x-cut of B and
Rx denotes the rotation of [0, 1]d−1 defined by

Rx (y2, . . . , yd) = (Rx (y2), . . . , Rx (yd)).

Sketch of the proof. First suppose that ϑ is a probability measure on B([0, 1)d−1).
Then defining μA according to Eq. (23) obviously yields a probability measure μA on
B([0, 1]d). Letting ϑπ ∈ P ′([0, 1]) denote the push-forward of ϑ via the projection
π(y2, . . . , yd) = y2 and considering

F2 × [0, 1)d−2 ∈ B([0, 1)d−1)

we get

ϑRx (F2 × [0, 1)d−2) = ϑπ(R−1
x (F2)),

from which (by applying Theorem 1) μA([0, 1] × F2 × [0, 1)d−2) = λ(F2) follows
immediately. Showing that all other univariate marginals of μA coincide with the
uniform distribution on [0, 1] can be done analogously. Finally, the proof that μA

generates a spatially homogeneous copula can be done as in the two-dimensional
setting.

On the other hand, if A is a d-dimensional spatially homogeneous copula, then the
existence of a probability measure ϑ onB([0, 1)d−1) fulfilling Eq. (23) can be shown
by adjusting each of the steps in the proof of Theorem 2 to the multivariate setting.
[For properties of Markov kernels of multivariate copulas, see Fernández-Sánchez
and Trutschnig (2015).] �

Figure 4 depicts a sample of size 20,000 of a three-dimensional homogeneous
copula and its univariate marginals.
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Spatially homogeneous copulas 625

Fig. 4 Sample of size 20,000 of the three-dimensional spatially homogeneous copula with ϑ denoting the
doubly stochastic measure corresponding to the two-dimensional Marshall–Olkin copula with parameters
(1, 1

2 ); histograms of its univariate marginals

6 Concluding remarks

We have focused on spatially homogeneous copulas, and we have shown how they
can be helpful in providing novel stochastic models with some special features:

– they are generated by a unique probability measure in [0, 1);
– they cover a broad range of concordance values;
– they include various examples with unusual properties with respect to the smooth-
ness of the copula function and/or the existence of density/singular component.

Most remarkably, spatially homogeneous copulas can exhibit different types of sym-
metries and/or periodicity in the density. These latter aspects make them appealing in
the study of circular data (and copulas for circular distributions); such a link will be
the object of future investigations.
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