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Abstract
We derive the asymptotic properties of the least squares cross-validation (LSCV)
selector and the direct plug-in rule (DPI) selector in the kernel density estimation for
circular data. The DPI selector has a convergence rate of O(n−5/14), although the
rate of the LSCV selector is O(n−1/10). Our simulation shows that the DPI selector
has more stability than the LSCV selector for small and large sample sizes. In other
words, the DPI selector outperforms the LSCV selector in theoretical and practical
performance.

Keywords Kernel density estimation · Circular data · Smoothing parameter selector ·
Least squares cross-validation · Direct plug-in rule

1 Introduction

Kernel density estimation is the standard nonparametric method for exploring the
structure of circular data. The structure of the kernel density estimator is largely
influenced by the value of the smoothing parameter. Therefore, its selection is an
important problem in the practical analysis of circular data.

Prior studies proposed automatic selectors of the smoothing parameter for circu-
lar data and examined their practical performances in simulations. However, to our
knowledge, no study derived theoretical properties for the selectors in the field of
circular data analysis.
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We will explore the least squares cross-validation (LSCV) selector proposed by
Hall et al. (1987) and the direct plug-in rule (DPI) selector proposed by Di Marzio
et al. (2011). The LSCV selector is a common circular data analysis method due to
its simple definition. A few studies researched the properties of the DPI selector for
circular data. However, in the studies on selectors for linear data, Wand and Jones
(1994) pointed out that the DPI selector has a better performance than the LSCV
selector with respect to the convergence rate to the optimal smoothing parameter.

This study derives the theoretical properties of both the LSCV and DPI selectors,
including the asymptotic normality and the convergence rate (see Hall and Marron
1987; Scott and Terrell 1987; Sheather and Jones 1991 for previous studies regarding
linear data). We obtained the rates from the central limit theorem of a degenerate
U-statistic given by Hall (1984). We demonstrate that the convergence rate of the
DPI selector is O(n−5/14) and that of the LSCV selector is O(n−1/10). Numerical
experiments show that DPI is much more stable than LSCV, even when sample size n
is not large enough.

2 Properties of kernel density estimation

We give the definitions and the asymptotic properties of the kernel density estimators
on a circle. A kernel density estimator f̂κ(θ) of unknown density f based on a random
sample Θ1, . . . , Θn is defined as

f̂κ(θ) = 1

n

n∑

i=1

Kκ(θ − Θi ),

where Kκ(θ) is a symmetric kernel function, and κ is a concentration parameter that
acts as a smoothing parameter, and corresponds to κ = h−2 for a general bandwidth
h > 0. Our loss function between f̂κ and f is the integrated squared error (ISE) given
by ISE[ f̂κ ] := ∫ π

−π
{ f̂κ(θ) − f (θ)}2dθ . The risk is the mean integrated squared error

(MISE) given by MISE[ f̂κ ] := E f [ISE[ f̂κ ]].
We now employ the kernel function for circular data proposed by Hall et al. (1987).

Definition 1 (Kernel function) A function Kκ(θ): [−π, π) → R is a kernel function.
Let Kκ(θ) denote Kκ(θ) := C−1

κ (L)Lκ(θ), where

Lκ(θ) := L(κ{1 − cos(θ)}) (1)

and Cκ(L) := ∫ π

−π
Lκ(θ)dθ . We define the l-th moment of L as

μl(L) :=
∫ ∞

0
L(r)r (l−1)/2dr ,

where l ≥ 0 is even and r = κ{1 − cos(θ)}. For even number p ≥ 2, the function L
satisfies the following eight conditions:
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(a) The fourth derivative L(4)(r) := d(4)L(r)/dr4 is continuous.
(b) If r is large, then L(r)r (p+1)/2 = O(r−(p+4)/2).
(c) The term δ2t (L) := ∫ ∞

−∞ L2(z2/2)z2tdz is bounded for t = 0, 1.
(d) The moment μl(L) is bounded for 0 ≤ l ≤ p + 4, and μl(L) = μκ,l(L) +

O(κ−(p+6)/2), where μκ,l(L) := ∫ κ

0 L(r)r (l−1)/2dr .
(e) lim|z|→∞ η(z)|z|3/2 = o(1), where η(z) := ∫ ∞

−∞ L(t2/2)L((t + z)2/2)dt .
(f) lim|z|→∞ λ(z)|z|3/2 = o(1), where λ(L) := ∫ ∞

−∞ L ′(t2/2)L((t + z)2/2)t2/2dt
is bounded.

(g) The term δt (Sm4 ) := ∫ ∞
−∞ S2m4 (z2/2)z2tdz is bounded for t = 1, 2 and m = 1, 2,

where S4(z2/2) := 3S(2)(z2/2) − 6z2S(3)(z2/2) + z4S(4)(z2/2).
(h) For any r , L(r) ≥ 0.

Conditions (a), (c), and (d) are required to derive MISE[ f̂κ ]; we can replace condition
(a) on the assumption that L ′ is continuous. We use conditions (a)–(f) to prove the
theoretical properties of the LSCV selector, and need conditions (a), (c), (d), and (g)
to prove the theoretical properties of the DPI selector.

A kernel such as L(r) = e−r satisfies all conditions of Definition 1 and is equivalent
to a von Mises (vM) kernel such as Lκ(θ) = exp[−κ{1 − cos(θ)}]. Hall et al. (1987)
suggested that smooth and rapidly varying kernels of type (1) are asymptotically
equivalent to the kernel of L(r) = e−r .

Let R(g(θ)θ t ) := ∫ π

−π
g2(θ)θ2tdθ . Then,we show the following asymptoticMISE.

Theorem 1 Assume that the following conditions hold:

(i) κ = κ(n) and limn→∞ κ(n) = ∞.
(ii) limn→∞ n−1κ1/2(n) = 0.
(iii) f is fourth differentiable and f (s) is square-integrable for s = 1, 2.

Then, the MISE is given by

MISE[ f̂κ ] = AMISE[ f̂κ ] + o
(
κ−2 + n−1κ1/2

)
,

where

AMISE[ f̂κ ] = μ2
2(L)

μ2
0(L)

R( f ′′)κ−2 + n−1κ1/2d(L), (2)

and d(L) := 2−1μ2
0(L)δ0(L). The minimizer κ∗ of (2) is given by

κ∗ = β(L)R( f (2))2/5n2/5, (3)

where β(L) := [4μ2
2(L)/{μ2

0(L)d(L)}]2/5. Then, the convergence rate of the optimal
MISE is O(n−4/5).

See Tsuruta and Sagae (2017) for details of Theorem 1. In general, we need to estimate
κ∗, which depends on an unknown functional R( f (2)). Therefore, we discuss the
properties of the selectors of κ∗: the LSCV and DPI selectors from the next section.
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3 Bandwidth selectors

3.1 Least squares cross-validation

Themotivation of the LSCV selector comes from theminimization of ISE[ f̂κ ]−R( f ).
The LSCV selector κ̂CV is defined as the minimizer of the CV function given by

CV(κ) := R( f̂ ) − 2

n

n∑

i=1

f̂−i (Θi ), (4)

where f̂−i (Θi ) = (n − 1)−1 ∑n
j �=i Kκ(θ − Θ j ). Since n

n−1 → 1, we can replace (4)
by

CV(κ) := R(Kκ)

n
+ 2

n2
∑

i< j

γ (yi j ), (5)

where yi j := Θi − Θ j and γ (y) = ∫ π

−π
Kκ(w)Kκ(w + y)dw − 2Kκ(y). We apply

the augmented cross-validation given by

CV(κ) := CV(κ) + 2

n

∑

i

f (Θi ) − R( f )

for the theoretical analysis. Then, we obtain the variance of CV(κ), which has a faster
order than that of CV(κ) and is similar to that derived by Scott and Terrell (1987),
who indicated that the augmented cross-validation for linear data provides a smaller
variance. We derive the expectation and variance of CV(κ) as the following theorem:

Theorem 2 Assume the three conditions of Theorem 1, R( f (4) f 1/2) < ∞, and
R(( f (4))1/2 f ) < ∞.

Then, it follows that

E f [CV(κ)] = AMISE[ f̂κ ] + o
(
κ−2 + n−1κ1/2

)
, (6)

and

Var f [CV(κ)] = 2

n2
κ1/2Q(L)R( f ) + o

(
n−2κ1/2 + n−1κ−2

)
, (7)

where Q(L) := ∫ ∞
−∞{2−1μ−2

0 (L)η(z) − 21/2μ−1
0 (L)L(z2/2)}2dz.

With a strategy similar to Scott and Terrell (1987), Theorem 2 leads to an LSCV
selector κ̂CV consistent with the minimizer κ∗.

Corollary 1 Let κ̂CV := argminκ∈(aκ∗,bκ∗)CV(κ) for 0 < a < 1 and 1 < b. Then, it
holds that
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Bandwidth selectors for Kernel density estimation on the circle 515

κ̂CV/κ∗
p−→ 1,

as n → ∞.

3.2 Direct plug-in rule

Note that ψr := ∫ π

−π
f (r)(θ) f (θ)dθ and R( f (r)) = (−1)rψ2r . We now define the

DPI estimator as

κ̂PI := β(L)ψ̂4(g)
2/5n2/5,

where

ψ̂4(g) := n−1
n∑

i=1

f̂ (4)
g (Θi ) = n−2

n∑

i=1

n∑

j=1

T (4)
g (Θi − Θ j ), (8)

where T (4)
g (θ) := C−1

κ (L)S(4)
g (θ), and g and Tg(θ) := C−1

κ (S)Sg(θ) are a smoothing
parameter and a kernel that is possibly different from κ and Kκ , respectively. Themain
term S(4)

g (θ) is given by

S(4)
g (θ) := −g cos(θ)S(1)

g (θ) + g2
{
−4 sin2(θ) + 3 cos2(θ)

}
S(2)
g (θ)

+ 6g3 cos(θ) sin2(θ)S(3)
g (θ) + g4 sin4(θ)S(4)

g (θ). (9)

The asymptotic properties for the mean square error (MSE) of ψ̂4 play an important
role in showing the theoretical properties of κ̂PI in the next section. We provide the
bias and variance of ψ̂4(g) in the following theorem.

Theorem 3 Assume that the following conditions hold:

(i) g := g(n), limn→∞ g(n) = ∞, and limn→∞ n−2g9/2(n) = 0.
(ii) f is 6-th differentiable; ψ6 is bounded.

Then, the bias is given by

Bias f
[
ψ̂4(g)

]
= Abias f

[
ψ̂4(g)

]
+ O

(
n−1g3/2 + g−2

)
, (10)

where

Abias f
[
ψ̂4(g)

]
= 3n−1g5/2S(2)

g (0)/
{
21/2μ0(S)

}
+ μ2(S)μ0(S)−1ψ6g

−1.

The variance is given by

Var f
[
ψ̂4(g)

]
= 4n−1Var f

[
f (4)(Θi )

]
+ 2G1,0(S4)ψ0n

−2g9/2 + o
(
n−1 + n−2g9/2

)
,

(11)
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where Gm,t (S4) := 2−mμ−2m
0 (S)δt (Sm4 ). Select the optimal smoothing parameter g∗

such that Abias f [ψ̂(g)] = 0. Then, g∗ is given by

g∗ = cψ6n
2/7, (12)

where c := −21/2μ2(S)/(3S(2)
g (0)). Selecting g∗ means that the remaining squared

bias is Bias2f [ψ̂4(g∗)] = O(n−8/7) and the variance is Var f [ψ̂4(g∗)] = O(n−5/7).

Thus, we obtain infg>0 MSE[ψ̂4(g)] = O(n−5/7).

We consider the positive condition of g∗. Since ψ6 = −R( f (3)) shows that this
condition is μ2(S)/S(2)

g (0) > 0, the vM kernel is one suitable kernel satisfying

μ2(S)/S(2)
g (0) > 0.

Estimating g∗ also requires estimating an unknown functional ψ6. We provide the
simplest estimator of ψ6 by employing a reference density that we assume as true
density. We proposed the two reference densities: the vM density and a wrapped
Cauchy (wC) density. The vM density is defined as

fvM(θ; τ) := (2π I0(τ ))−1 exp{τ cos(θ)},

where Ip(τ ) denotes the modified Bessel function of the first kind and order p, and τ

is the concentration parameter. The functional ψ6 of the vM density is given by

ψvM
6 (τ ) = −

[
4τ I1(2τ) + 30τ 2 I2(2τ) + 15τ 3 I3(2τ)

] / {
16π I 20 (τ )

}
.

The wC density is defined by

fwC(θ; ρ) := 1

2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ)
,

where ρ ∈ (0, 1) is the concentration parameter. The functional ψ6 of the wC density
is given by

ψwC
6 (ρ) = −

[
ρ2 + 57ρ4 + 302ρ6 + 302ρ8 + 57ρ10 + ρ12

]
/
{
π(1 − ρ2)7

}
.

We propose the easy and practical algorithm that employs the vM density or the wC
density as the reference density for a direct plug-in rule, which we call the “one-step
direct plug-in rule”.

We provide an algorithm in which the vM density is the reference density.

Algorithm 1 The algorithm uses the following procedure:

Step 1 Calculate Maximum likelihood estimator τ̂ and ψvM
6 (τ̂ ).

Step 2 Compute ĝ := [cψvM
6 (τ̂ )n]2/7 as the estimator of g∗.

Step 3 Compute κ̂PI.vM = β(L)ψ̂4(ĝ)2/5n2/5.

We provide an algorithm in which the wC density is the reference density.
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Bandwidth selectors for Kernel density estimation on the circle 517

Algorithm 2 The algorithm uses the following procedure:

Step 1 Calculate Maximum likelihood estimator ρ̂ and ψwC
6 (ρ̂).

Step 2 Compute g̃ := [cψwC
6 (ρ̂)n]2/7 as the estimator of g∗.

Step 3 Compute κ̂PI.wC = β(L)ψ̂4(g̃)2/5n2/5.

If we admit sacrificing the nonnegativity of kernels, then we find that the conver-
gence rate of the MSE of ψ̂4 is O(n−1) after applying the p-th order kernel proposed
by Tsuruta and Sagae (2017).

Definition 2 (p-th order kernel function) Kκ (θ) is a p-th order kernel if Kκ (θ) satisfies
conditions (a)–(g) in Definition 1 and

μ0(L) �= 0, μl(L) = 0 l = 2, 4, . . . , p − 2, and μl(L) �= 0, l = p.

We obtain the following MSE when employing a p-th order kernel.

Corollary 2 Assume that condition (i) in Theorem 3 holds, f is (4+ p)th differentiable,
and ψ4+2t is bounded for t = 1, 2, . . . , p/2. Then, when we employ a p-th order
kernel, the bias is given by

Bias f
[
ψ̂4(g)

]
= Abias f

[
ψ̂4(g)

]
+ O

(
n−1g3/2 + g−(p+2)/2

)
, (13)

where

Abias f
[
ψ̂4(g)

]
= 3g5/2S(2)

g (0)

21/2μ0(S)n
+ μp(S)

μ0(S)

p/2∑

t=1

bp,2tψ4+2t

(2t)! g−p/2,

and bp,2t is the constant (see Lemma 2 in Tsuruta and Sagae 2017 for its definition).
The variance is equal to (11). From (13), the optimal parameter gp is given by

gp = W (S)n2/(p+5),

where W (S) =
[
−{21/2μp(S)

∑p/2
t=1[ψ4+2t bp,2t/(2t)!]}/{3S(2)

g (0)}
]2/(p+5)

. Then,

we can easily show that g2 = g∗. If the order of the kernel is p ≥ 4, then we obtain
infg>0 MSE[ψ̂4(g)] = O(n−1); otherwise, we obtain the result in Theorem 3.

The proof is easily shown by Lemma 2 in Tsuruta and Sagae (2017) the same way as
in the proof of Theorem 3. Providing the positive condition of gp for p ≥ 4 is difficult
because gp has the sum of some unknown functionals ψr . In the practical analysis,
we recommend employing the suitable kernels of order p = 2 such as the vM kernel
to avoid this problem.
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4 Theoretical properties for the selectors

From theoretical perspective, we must inspect whether the DPI selector outperforms
theLSCVselector.Wemeasure the theoretical performance of selector κ̂ by the conver-
gence rate of the relative error κ̂/κ∗ −1. We derive the rate through the asymptotically
normal distribution:

nα(κ̂/κ∗ − 1)
d−→ N

(
0, σ 2

)
,

where σ 2 < ∞ depends only on f and L , but not on n. Theorems 4 and 5 show the
asymptotic distributions of LSCV and DPI, respectively.

Theorem 4 Assume that all conditions of Theorems 1 and 2 hold. Then, it holds that

n1/10(κ̂CV/κ∗ − 1)
d−→ N

(
0, σ 2

CV

)
, (14)

as n → ∞, where σ 2
CV := 50d−2(L)M1,0(L)R( f )β−1/2(L)R( f ′′)−1/5, and

Mm,t (L) := ∫ ∞
−∞ m(L)2mz2tdz, where

m(L) := 2−1μ−2
0 (L) {η(z) + λ(z) + λ(−z)} − 2−1/2μ−1

0 (L)
{
L(z2/2) + L(z2/2)z2

}
.

Theorem 5 Assume that the conditions of Theorem 3 hold. Then, when we employ the
suitable second-order kernel, and it holds that

n5/14(κ̂PI/κ∗ − 1)
d−→ N

(
0, σ 2

PI

)
, (15)

as n → ∞, where σ 2
PI = 8W 9/2(S)G1,0(S4)ψ0ψ

−2
4 /25.

The convergence rates of κ̂CV and κ̂PI are equivalent to that of the LSCV and DPI
selectors on the real line, respectively (Hall and Marron 1987; Scott and Terrell 1987;
Sheather and Jones 1991). The rate of κ̂PI is much faster than that of κ̂CV. Moreover,
κ̂PI is more stable with the smaller order of variance. Therefore, the DPI selector is
more appealing with respect to theoretical performance than the LSCV selector.

5 Numerical experiment

Analyzing a real-line small sample often does not indicate the same effect as the
theoretical results. Therefore, we perform a simulation to compare the LSCV and
DPI selectors with the eight simulation scenarios (models 1–8) in Fig. 1 when we
employ the vM kernel. Models 1–3 are well-used distributions: vM, wC, and car-
dioid distributions. Additionally, models 4–6 (sine skewed vM, sine skewed wC,
and sine skewed cardioid distributions) are produced by skewing to the three above
distributions, respectively. These six distributions are subclasses of a sine skewed
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(a) (b) (c)
Fig. 1 Models 1–3 are von Mises, cardioid, and wrapped Cauchy densities. Models 4–6 are sine skewed
von Mises, sine skewed cardioid, and sine skewed wrapped Cauchy densities. Models 7–8 are mixtures of
the two von Mises densities

Jones–Pewsey distribution (Abe and Pewsey 2011). Models 7–8 are mixtures of two
vM distributions.

We conduct our simulation with the statistical software R (R Core Team 2018)
according to the following procedure:

1. Execute the following six steps for model 1:

(a) Generate a random sample of size n distributed in model 1.
(b) Calculate the optimal parameter κ∗ applying the density of the model 1 to

(3).
(c) Estimate κ̂CV by bw.cv.mse.circular, which is a function in the

circular (Agostinelli and Lund 2017) library of R.
(d) Estimate κ̂PI.vM by Algorithm 1 and κ̂PI.wC by Algorithm 2.
(e) Calculate the three relative errors: YCV = κ̂CV/κ∗ −1, YPI.vM = κ̂PI.vM/κ∗ −

1, and YPI.wC = κ̂PI.wC/κ∗ − 1.
(f) Repeat steps (a)–(e) 10,000 times, and give the three sample means and the

three sample standard errors of mean of YCV, YPI.vM, and YPI.wC.

2. Execute steps (a)–(f) for models 2–8.

We now discuss the small sample properties of the selectors. Table 1 shows that the
DPI.vM selector is the most stable and the DPI.wC selector is the second most stable,
but the LSCV selector is highly unstable for all models.

The key to explaining the performance of these selectors is the curvature of f :
R( f ′′), because (3) shows that it determines the value of the optimal parameter κ∗
when n and the kernel are fixed. Therefore, each relative magnitude of the optimal
parameter in Table 2 corresponds the relative magnitude of the curvature. The DPI.vM
selector outperforms the others in the models with the small curvatures (models 1, 2,
4, and 5). The DPI.wC and LSCV selectors perform well when the curvature is large
(models 3, 6, 7, and 8). In models 7–8, the LSCV selector has the best performance
for n ≥ 500, and the DPI.wC selector has the best performance for n ≤ 200. The
DPI.vM selector tends to oversmooth, and the DPI.wC and LSCV selectors tend to
undersmooth.
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Table 2 The optimal parameter of models 1–8 from the simulation in Sect. 5

n 1 2 3 4 5 6 7 8

50 3.51 2.32 7.51 4.67 3.69 8.24 5.53 8.45

100 4.63 3.06 9.91 6.16 4.87 10.87 7.30 11.15

200 6.11 4.04 13.08 8.12 6.42 14.35 9.63 14.71

500 8.82 5.82 18.87 11.72 9.27 20.7 13.89 21.22

1000 11.64 7.68 24.89 15.46 12.23 27.31 18.33 28.00

The values are the optimal parameter κ∗ in models 1–8 (rows) and n = 50, 100, 200, 500, and 1000

6 Applications

We now illustrate a real data example showing that a choice among the three selectors
leads to different conclusions on a case study and another example in which it does not.
Figures 2 and 3 show that the data sets A and B consist of observation values of wind
direction acquired every 10min at Kanazawa University in Japan for a period in which
Japan was experiencing a typhoon in 2014. Let the observed values θi ∈ [−π, π) take
an increasing value clockwise from −π (north) on the circle.

We provide kernel density estimations of each data set employing the DPI.vM,
κ̂PI.vM; DPI.wC, κ̂PI.wC; or LSCV κ̂CV selectors, where we estimate these estimators
as in the above section. For data set A (Fig. 2), Fig. 4 shows that the DPI.vM selec-
tor produces the bimodal density estimation, but the DPI.wC and LSCV estimators
provide the too-jagged estimation with the five peaks. They seem to be too-jagged
estimation. For data set B (Fig. 3), Fig. 5 indicates that the choice between large con-
centration parameters give almost the same estimation. This is because the effect of
the concentration parameter κ on the vM kernel decreases as κ gets larger because

Fig. 2 Data set A. The rose
diagram shows the frequencies
of 97 wind directions measured
between 5:00 am and 9:00 pm
on August 10th

N

E

S

W +

Fig. 3 Data set B. The rose
diagrams show the frequencies
of 288 wind directions measured
from 0:00 am on July 10th to
11:50 pm on July 11th

N

E

S

W +
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Fig. 4 The kernel density
estimations of data set A in
Fig. 2. The three lines show
three estimations obtained by
applying it κ̂PI.vM =
12.89, κ̂PI.wC = 75.28, and
κ̂CV = 69.34
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Fig. 5 The kernel density
estimations of data set B in
Fig. 3. The three lines show
three estimations obtained by
applying it to κ̂PI.vM =
55.7, κ̂PI.wC = 135.85, and
κ̂CV = 88.25

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

K
D
E

DPI.vM
DPI.wC
LSCV

the circular variance of the vM kernel, 1− I1(κ)/I0(κ), approximates 1/(2κ) (Mardia
and Jupp 1999).

7 Discussion

Wederived the asymptotic properties for the least squares cross-validation selector and
the direct plug-in selector for circular data. The convergence rate of the DPI selector
is O(n−5/14) and that of the LSCV selector is O(n−1/10). The rates are equivalent to
the two selectors on the real line. Thus, the theoretical performance of the DPI selector
is better than that of the LSCV selector. Our simulation shows that the DPI selector is
more stable than the LSCV selector.

We now discuss the properties of the two selectors with comparing them with
the recent literatures. Di Marzio et al. (2018) proposed the local likelihood cross-
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validation (LCV) selector that is a new estimator with a penalized term. The LCV
selector outperforms the LSCV selector in Table 3 in Di Marzio et al. (2018), but there
is little literature that studied the theoretical aspect of the LCV selector. Its theoretical
results such as the consistency may support its numerical result in Di Marzio et al.
(2018).

Di Marzio et al. (2017) suggested another derivative estimator f̂ ( j)(θ; p). It may
produce a functional estimator ψ̃ j := n−1 ∑

i f̂ ( j)(Θi ; p).We think that the derivative
and functional estimators are possible to have higher order rate of the MISE, but Di
Marzio et al. (2017) did not derive its rate of the MISE of these estimators. If we
obtain it, we can compare our functional estimator to these estimators. Investigating
properties of f̂ ( j)(θ; p) is an interesting study and may provide a new selector that is
one of the DPI estimator.

Acknowledgements Wewould like to thank the reviewers for the helpful comments. Thisworkwas partially
supported by JSPS KAKENHI Grant Nos. JP16K00043, JP24500339, and JP16H02790.

Appendix A

Proof of Theorem 2. We set γ (yi j ) = γi j to ease the notation. First, we calculate the
expectation of CV(κ), given by

E f [CV(κ)] = R(Kκ)

n
+ 2

n2
∑

i< j

E f [γi j ] + 2

n

∑

i

E f [ f (Θi )] − R( f ). (16)

We set γi = E f [γi j |Θi ]. Then, the conditional expectation γi is given by

γi = − f (Θi ) + f (4)(Θi )μ
−2
0 (L)μ2

2(L)κ−2 + O(κ−3). (17)

“Appendix B” in ESM presents the details. It follows from (17) that

E f [γi j ] = E f [γi ] = −R( f ) + R( f (2))μ−2
0 (L)μ2

2(L)κ−2 + O(κ−3). (18)

Lemma 1 (Tsuruta and Sagae 2017) The term R(K (θ)θ t ) is equal to

R(K (θ)θ t ) := κ−(2t−1)/2[d2t (L) + o(1)],

where d2t (L) := 2−1μ−2
0 (L)δ2t (L) and d(L) := d0(L).

By considering Lemma 1, (18), and E f [ f (Θi )] = R( f ), we find that E f [CV(κ)] is
equivalent to (6).

We calculate the variance of CV(κ). That is,

Var f [CV(κ)] 
 2n−2Var f
[
γi j

] + 4n−1Var f [ f (Θi )] + 4n−1Cov f
[
γi j , γik

]

+ 8n−1Cov f
[
γi j , f (Θi )

]
, (19)
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where j �= k. Let I1 := R(( f (4))1/2 f ), I2 := R( f (2))R( f ), and I3: = R( f 3/2) −
R( f )2. Each term on the right-hand side of (19) is given by

Var f [γi j ] = κ1/2[Q(L)R( f ) + o(1)], (20)

Var f [ f (Θi )] = I3, (21)

Cov f [γi j , γik] = I3 − 2{I1 − I2}μ−2
0 (L)μ2

2(L)κ−2 + o(κ−2), (22)

and

Cov f [γi j , f (Θi )] = −I3 + {I1 − I2}μ−2
0 (L)μ2

2(L)κ−2 + o(κ−2). (23)

“Appendix C” in ESM provides the details of (20)–(23). By considering (19)–(23),
we find that Var f [CV(κ)] is equivalent to (7). ��

proof of Corollary 1 We set c := κ̂CV/κ∗. Then, we combine Theorems 1 and 2 and
find that

AMISE(cκ∗)/MISE(cκ∗)
p−→ 1, (24)

CV(cκ∗)/MISE(cκ∗)
p−→ 1, (25)

and

AMISE(cκ∗)/AMISE(κ∗) = 1

5c2
+ 4c1/2

5
. (26)

(26) is a convex function with a minimum at c = 1. Thus, if c �= 1 and n is large, then
it follows from combining (24) and (26) that

MISE(cκ∗) > MISE(κ∗). (27)

Suppose that c does not converge to 1. Recall that it is necessary that CV(cκ∗) ≤
CV(κ) for any κ , because κ̂CV is the minimizer of CV(κ). Additionally, if n is large,
then CV(κ) is a convex function with a minimum at κ = cκ∗, because we find that
CV(κ) approximates AMISE(κ) from Theorem 2. Therefore, it follows that

P(CV(cκ∗) < CV(κ∗)) → 1, (28)

as n → ∞. From (25) and (28), then it holds that

MISE(cκ∗) < MISE(κ∗), (29)

as n → ∞. The contradiction between (27) and (29) completes the proof. ��
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Proof of Theorem 3. LetUi j = T (4)
g (Θi−Θ j ), andUi = E f [Ui j |Θi ]. The expectation

of ψ̂4(g) is given by

E f [ψ̂4(g)] = n−1T (4)
g (0) + 2n−2

∑

i< j

E f [Ui j ]. (30)

It follows from (9) that

S(4)
g (0) = 3g2

[
S(2)
g (0) + O(g−1)

]
. (31)

Lemma 2 (Tsuruta and Sagae 2017) The term Cκ(L) is given by

Cκ(L) = κ−1/221/2μ0(L) + O
(
κ−3/2

)
.

By combining (31) and Lemma 2, we find that the first term on the right side of
(30) is equal to

n−1T (4)
g (0) =

3g5/2
[
S(2)
g (0) + O(g−1)

]

21/2μ0(S)n
. (32)

Lemma 3 (Tsuruta and Sagae 2017) We set α j (Kκ) := ∫ π

−π
Kκ(θ)θ jdθ . The terms

α2t (Kκ) for t = 1, 2 are given by

α2(Kκ) = 2μ−1
0 (L)μ2(L)κ−1 + O

(
κ−2

)
,

and α4(Kκ) = O(κ−2). Lemma 2 in Tsuruta and Sagae (2017) presents the general
form of α2t (Kκ).

It follows from Lemma 3 that

Ui =
∫ π

−π

Tg(θ j − Θi ) f
(4)(θ j )dθ j

= f (4)(Θi ) + f (6)(Θi )α2(Tg)/2 + O(α4(Tg))

= f (4)(Θi ) + f (6)(Θi )μ
−1
0 (S)μ2(S)g−1 + O(g−2). (33)

E f [Ui j ] in (30) is given by the expectation of (33) over Θi .

E f [Ui j ] = E f [Ui ] = ψ4 + μ−1
0 (S)μ2(S)ψ6g

−1 + O(g−2). (34)

We obtain the bias (13) from combining (30), (32), and (34).
We now derive the variance of ψ̂4(g). We setWi j := Ui j −Ui −Uj + E f [Ui ] and

Zi := Ui −E f [Ui ]. Then, we obtain E f [Wi j ] = 0, E f [Zi ] = 0, and Cov f [ZiWi j ] =
0. By using Wi j and Zi , we present ψ̂4(g) − E f [ψ̂4(g)] as
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ψ̂4(g) − E f [ψ̂4(g)] = 2(n − 1)

n2
∑

i

Zi + 2

n2
∑

i< j

Wi j . (35)

(35) shows that the variance of ψ̂4 is equal to

Var f [ψ̂4(g)] = 4(n − 1)2

n4
∑

i

Var f [Zi ] + 4

n4
∑

i< j

Var f [Wi j ]. (36)

By combining (33) and (34), Var f [Zi ] reduces to

Var f [Zi ] = E f [U 2
i ] − E f [Ui ]2

= Var f [ f (4)(Θi )] + o(1). (37)

By considering (34), E f [U 2
i j ] = g9/2[G1,0(S4)ψ0+o(1)], and E f [U 2

i ] = E f [Ui ]2 =
O(1) (“Appendix D” in ESM provides the details of E f [U 2

i j ] and E f [U 2
i ]), we obtain

Var f [Wi j ]. That is,

Var f [Wi j ] = E f [U 2
i j ] − 2E f [U 2

i ] + E f [Ui ]2
= g9/2[G1,0(S4)ψ0 + o(1)]. (38)

We obtain (11) from combining (36) (37), and (38). ��
Proof of Theorem 4. If n is large, it follows from Lemma 3 that

CV(κ) 
 d(L)κ1/2

n
+ 2

n2
∑

i< j

γ (yi j ). (39)

The derivative of (39) is given by

dCV(κ)

dκ

 d(L)

2nκ1/2 + 2

n2κ1/2

∑

i< j

Vi j , (40)

where Vi j := κ−1/2[γ (yi j ) + ρ(yi j ) + 3/4μ−1
0 (L)μ2(L)κ−1τ(yi j )], φκ(yi j ) :=

κC−1
κ (L) d

dκ Lκ(yi j ), ρ(yi j ) := Kκ(yi j ) + ∫ π

−π
{φκ(w)Kκ(w + yi j ) + Kκ(w)φκ(w +

yi j )}dw − 2φκ(yi j ), and τ(yi j ) := ∫ π

−π
Kκ(w)Kκ(w + yi j )dw − Kκ(yi j ).

“Appendix E” in ESM provides the details. The selector κ̂CV satisfies
dCV(κ)/dκ |κ=κ̂CV= 0. This is equivalent to

2n−2
∑

i< j

Vi j
∣∣∣
κ=κ̂CV

= −d(L)/(2n). (41)
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Note that Vi := E f [Vi j |Θi ]. Then, we set Hi j := Vi j − Vi − Vj + E f [Vi ] and
Xi := Vi − E f [Vi ]. Then, we rewrite 2n−2 ∑

i< j {Vi j − E f [Vi j ]} as

2n−2
∑

i< j

Vi j − 2n−2
∑

i< j

E f [Vi j ] 
 2n−1
∑

i

Xi + 2n−2
∑

i< j

Hi j ,

where 2n−2 ∑
i< j Hi j is the degenerate U-statistic. We obtain the asymptotic normal-

ity for 2n−1 ∑
i Xi from the standard Central Limit Theorem (CLT). That is,

2

n

∑

i

Xi
d−→ N

(
0, Bn−1κ−5

)
, (42)

where, B := 16μ4
2(L){R( f (4) f 1/2) − R( f ′′)2}/{μ4

0(L)}. “Appendix F” in ESM
presents the details.

We give the definition of a degenerate U-statistic. A U-statistic is defined asUn :=∑
i< j Hi j , where Hi j := H(Θi ,Θ j ) and Hi j is symmetric and E f [Hi j ] = 0. Let the

degenerate U-statistic be the U-statistic satisfying E f [Hi j |Θi ] = 0. The following
lemma describes the asymptotic normality of a degenerate U-statistic.

Lemma 4 (Hall 1984) Assume that Hi j is symmetric, and E f [Hi j |Θi ] = 0, almost
surely and E f [H2

i j ] < ∞ for each n. We set Gi j := E f [Hii Hi j ]. if
{
E f [G2

i j ] + n−1E f [H4
i j ]

}
/E f [H2

i j ]2 → 0, (43)

as n → ∞, then,

∑

1≤i< j≤n

Hi j
d−→ N (0, n2E f [H2

i j ]/2).

We obtain the asymptotic normality for 2n−2 ∑
i< j Hi j from Lemma 4. that is,

2

n2
∑

i< j

Hi j
d−→ N (0, 2n−2κ−1/2M1,0(L)R( f )). (44)

See “Appendix G” in ESM for details. We combine (42) and (44) to derive the asymp-
totically normal for 2n−2 ∑

i< j Vi j as

2

n2
∑

i< j

Vi j
d−→ N

(
−2R( f ′′)μ−2

0 (L)μ2
2(L)κ−5/2, σ 2

1

)
, (45)

where σ 2
1 := Bn−1κ−5 + 2n−2κ−1/2M1,0(L)R( f ). We take κ = κ̂CV in (45). Then,

we replace κ̂CV in the variance to κ∗ by Corollary 1. Thus, it follows from combining
(41) and (45) that
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−2R( f ′′)μ−2
0 (L)μ2

2(L)κ̂
−5/2
CV

d−→ N
(
−d(L)/(2n), σ 2

2

)
, (46)

where σ 2
2 := Bn−1κ−5∗ + 2n−2κ

−1/2∗ M1,0(L)R( f ). We ignore the first term for
the variance of (46), because the convergence rate of the first term is O(n−3), and
that of the second term is O(n−11/5) using κ∗ = O(n2/5). From (3), we obtain
R( f ′′)μ2

2(L)n/(d(L)μ0(L)) = κ
5/2∗ . Thus, (46) reduces to

(κ̂CV/κ∗)−5/2 d−→ N
(
1, 8d(L)−2M1,0(L)R( f )κ1/2∗

)
. (47)

Let g(x) = x−5/2. Then, it follows that g(1) = 1 and {g′(1)}2 = 25/4. We obtain the
asymptotic normality for κ̂CV/κ∗ by applying the delta method to (47). That is,

κ̂CV/κ∗
d−→ N

(
1, 50d(L)−2M1,0(L)R( f )β(L)−1/2R( f ′′)−1/5n−1/5

)
. (48)

Theorem 4 completes the proof from (48). ��
Proof of Theorem 5. The Taylor expansion κ̂PI = κ̂PI(ψ̂4(g∗)) is given by

κ̂PI

(
ψ̂4(g∗)

)

 β(L)n2/5ψ2/5

4 + 2

5
β(L)n2/5ψ−3/5

4 (ψ̂4(g∗) − ψ4)

= κ∗
[
1 + 2(ψ̂4(g∗) − ψ4)/(5ψ4)

]
. (49)

(49) reduces to

κ̂PI/κ∗ − 1 = 2

5ψ4

(
ψ̂4(g∗) − ψ4

)
. (50)

NotingWi j := Ui j −Ui −Uj + E f [Ui ], and Zi := Ui − E f [Ui ], it follows that (35)
becomes

ψ̂4(g) − E f [ψ̂4(g)] 
 2n−1
∑

i

Zi + 2n−2
∑

i< j

Wi j , (51)

where 2n−2 ∑
i< j Wi j is the degenerate U-statistic. From (37), we obtain the asymp-

totic normality distribution from the standard CLT. That is,

n−1/2
∑

i

Zi
d−→ N (0,Var f [ f (Θi )]). (52)

If we choose g∗ = W (S)n2/7, then applying Lemma A.4 to 2n−2 ∑
i< j Wi j gives

2

n2
∑

i< j

Wi j
d−→ N

(
0, 2n−2g9/2∗ G1,0(S4)ψ0

)
, (53)
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as n → ∞. “Appendix H” in ESM presents the details. By combining (52) and (53),
we obtain the asymptotic distribution of (51). That is,

ψ̂4(g∗) − E f

[
ψ̂4(g∗)

]
d−→ N

(
0, 4n−1Var f [ f (Θi )] + 2n−2g9/2∗ G1,0(S4)ψ0

)
.

(54)

Theorem 3 shows that the rate of Var f [ψ̂4(g∗)] is the order n−5/7. Thus, (54) reduces
to

n5/14
{
ψ̂4(g∗) − E f

[
ψ̂4(g∗)

]}
d−→ N

(
0, 2W 9/2(S)G1,0(S4)ψ0

)
. (55)

The main term ψ̂4(g∗) − ψ4 on the right side for (50) is equivalent to

n5/14
{
ψ̂4(g∗) − ψ4

}
= n5/14

{
ψ̂4(g∗) − E f

[
ψ̂4(g∗)

]}
− n5/14Bias f

[
ψ̂4(g∗)

]
.

(56)

We show that Bias f [ψ̂4(g∗)] = O(n−4/7) from Corollary 2. Then, we obtain that
n5/14Bias f [ψ̂4(g∗)] is O(n−3/14). Thus, if n is large, then this term is ignored. There-
fore, the asymptotic normal distribution for n5/14{ψ̂4(g∗) − ψ4} is given by

n5/14{ψ̂4(g) − ψ4} d−→ N (0, 2W 9/2(S)G1,0(S4)ψ0). (57)

Therefore, as n → ∞, Theorem 5 completes the proof from (50) and (57). ��
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