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SUPPLEMENTARY MATERIAL

(I) Some explanations about Gn

Here, we give some properties of Gn, where

Gn =: { gnu = K1(
(e+ Ccn)− u

hn
)−K1(

e− u

hn
) : u ∈ R}.

We may as well set An =: {g1nu = K1(
(e+Ccn)−u

hn
) : u ∈ R}, Bn =: {g2nu =

K1(
e−u
hn

) : u ∈ R}, then Gn = An − Bn. Here, we make an explanation about

An, another is the same. For fixed u, g1nu is a function. When u varies in the

real field, then An is a class of functions.

(i) According to the definition of An, Bn and Gn , we could know that they

all satisfy the conditions of a permissible class of functions (Definition 1, in

Appendix C, Pollard(1984)). Therefore, An, Bn and Gn are all permissible

classes of functions.

(ii) K1 is monotonically increasing and bounded on the interval [−M,M ]. By

question 27, page 42 of Pollard(1984), we know that the class of graphs ( please

refer to line 11, page 27 of Pollard(1984)) of functions in An has polynomial

discrimination (Definition 13, in Chapter 2, Pollard(1984)). Say simply, An and

Bn are both permissible classes of functions with polynomial discrimination.

By Lemma 15 in Chapter 2, Pollard(1984), we can imply that Gn is also a

permissible class of functions with polynomial discrimination.

(iii) By Lemma 36 (ii), page 34 of Pollard(1984), the covering numberN1(ε,Q,Fn)

(Definition 23, in Chapter 2, Pollard(1984)) satisfies supQ N1(ϵ,Q,Fn) ≤ Aϵ−W , 0 <

ϵ < 1, with constants A and W not depending on n.

Since K(·) is bounded on the compact support, there exists a constant C

such that supu |gn,u| ≤ C. If we take αn = logn√
nδn

, δ2n = O(cn ∧ hn), then the
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conditions of Lemma 1 holds.

(II) Some explanations about multi-split method

There are two places where multi-split method (Meinshausen et al.(2009))

are used in our paper. One is in example 2, the other is in empirical study.

In example 2, since some non-zero coefficients are very small, it is hard to say

some method can chose all true variables in the stage of model selection. When

we conducted this simulation, we found that the density estimation curves may

change due to different splits, which motivates us to remedy this deficiency by

dividing the sample repeatedly. Meinshausen et al.(2009)) showed that multi-

split method had better stability than a single-split. Therefore, we take their

average as the final estimator to obtain a stable error density estimator in exam-

ple 2. For the same purpose, we also applied multi-split method to analysis the

example in empirical study, the corresponding results are presented in Figure 9.

The density curves obtained by different splits are almost the same from Figure

9 (b), so we say that it may be acceptable to take one or their average as the

final error density estimator. Next, we mainly explain the stability of multi-split

method from two aspects.

(1) When the sure screening property holds in the variable selection procedure,

we first discuss theoretically the effect of different splits on the estimation re-

sults. For the sake of simplicity, we assume the true variables are “X1, X2”.

However, for two different splits, the selected variables may be “X1, X2, X3”

and “X1, X2, X4” respectively. Therefore, there may be a slight difference a-

mong different splits. For visual intuition, we applied RCV method to example

1 again. By dividing the sample repeatedly, four representative density curves

are given in Figure 10.

(2) When the sure screening property hardly holds in the variable selection

procedure, our discussion is similar to (1). For example, we assume the true

variables are “X1, X2, X3”. However, for two different splits, the selected vari-

ables are “X1, X2, X5” and “X2, X3, X5” respectively. Therefore, there may be
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(a): split1 (b): split2

(c): split3 (d): split4

Figure 10: In the model Y = a(X1 +X2 +X3)+ e, we set a = 1/
√
3, e ∼ N(0, 1) and

{X1, . . . , Xp} ∼ N(0,Σ) with Σ = {ρij}pi,j=1 where ρii = 1, ρij = 0.5 for i ̸= j, then

the simulation is conducted in the setting of n = 200, p = 2000.
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some differences among different splits. Here, we take example 2 as an example,

the simulation results are presented in Figure 11.

Through the discussion (1) and (2), we may find that the result obtained by

a single-split isn’t always the same due to the randomness of split. Intuitive-

ly, there may be only a slight difference among different splits when the sure

screening property holds. On the contrary, different splitting results may have

some differences. To sum up, the purpose of multi-split is to obtain a more

stable error density estimator. A conservative approach is to divide the sample

repeatedly for 3-4 times and take their average as the final estimator no matter

whether these results obtained by 3-4 random splits are almost the same or not.

In our paper, our aim is to estimate the error density in the setting of

E(ei) = 0, V ar(ei) = σ2 < ∞, i = 1, . . . , n. As we have stated, it is the

randomness of single split that leads to some differences in the results, which

may be unrelated to E[e2i |xi] = σ2(xi).

(III) A proof about the order of max1≤i≤n Pii

Next, we give a detailed proof. By the definition of matrix P , we have

Pii = XT
iM̂

(XT
M̂
XM̂ )−1XiM̂ with M̂ = {j1, · · · , jŝ}, then by condition C2,

max
1≤i≤n

Pii ≤
2ŝ

nλ0
max
1≤i≤n

1

ŝ

∑
j∈M̂

X2
ij .

That is, we only need to compute the order of max1≤i≤n
1
ŝ

∑
j∈M̂ X2

ij . For the

following random variable sequences

X1j1 X1j2 · · · X1jŝ

X2j1 X2j2 · · · X2jŝ

· · · · · · · · · · · ·

Xnj1 Xnj2 · · · Xnjŝ ,

then the random sequence 1
ŝ

∑
j∈M̂ X2

ij are i.i.d., i = 1, · · · , n. For the sake

of simplicity, we may as well set Zin = 1
ŝ

∑
j∈M̂ X2

ij , where the subscript is
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(a): split1 (b): split2

(c): split3 (d): split4

The average of four splits

Figure 11: In example 2, the model Y = 1.01X1 − 0.06X2 + 0.72X3 + 1.55X5 +

2.32X7 − 0.36X11 + 3.75X13 − 2.04X17 − 0.13X19 + 0.61X23 + e, where e ∼ N(0, 1),

and {X1, . . . , Xp} ∼ N(0,Σ) with Σij = 0.5|i−j|, i, j = 1, 2, . . . , p, then the simulation

is conducted in the setting of n = 400, p = 10000.
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set to “in” due to ŝ = #M̂ = O(nγ) with 0 ≤ γ < 1. That is, the prob-

lem is turned into computing the order of max1≤i≤n Zin. If ŝ is fixed, the

original condition sup1≤j≤p E|Xij |2k < ∞ may imply max1≤i≤n
1
ŝ

∑
j∈M̂ X2

ij =

O(n1/k) a.s.. However, when the number of true variables s diverges at a mild

rate, the original condition may need to be strengthened. Therefore, the orig-

inal assumption sup1≤j≤p E|Xij |2k < ∞ in condition C2 has been replaced by

sup1≤j≤p E[X4k
1j (log

+(X2
1j))

2] ≤ C < ∞. Since Zin, i = 1, . . . , n, are i.i.d., then

P ( max
1≤i≤n

Zin > A0n
1/k)

= 1− P (Zin < A0n
1/k)n

= 1− [1− P (Zin > A0n
1/k)]n,

where A0 > 2. ∀x > 0, denote h(x) = x2k(log+(x))2, we have

P (Zin > A0n
1/k) ≤ E

h(Zin)

h(A0n1/k)

≤ E

1
ŝ

∑
j∈M̂

h(X2
ij)

A2k
0 (log+(A0) +

1
k log n)2n2

≤ k2

A2k
0

sup1≤j≤p Eh(X2
ij)

n2 log2 n
.

For fixed k and the condition sup1≤j≤p E[X4k
1j (log

+(X2
1j))

2] ≤ C < ∞, then

∞∑
n=2

P ( max
1≤i≤n

Zin > A0n
1/k) < ∞,

thereby we have max1≤i≤n Zin = O(n1/k) a.s..

(IV ) An explanation about min1≤#M≤cs λmin(
1
nX

T
MXM ) ≥ λ0

2 > 0

In our paper, the dimensionality reduces from p to ŝ by the sure screening

property of variable selection procedure, where ŝ = O(s) = O(nγ) a.s. with 0 ≤

γ < 1, as condition C0 stated in our revised manuscript. Without loss of gen-

erality, our assumption about the minimum eigenvalue inequality of 1
nX

T
MXM

is based on M , where M ⊂ {1, . . . , p} denotes the set of variables selected after

dimensionality reduction and satisfies 1 ≤ #M ≤ cs with c ≥ 1. To illustrate
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the rationality of the minimum eigenvalue assumption, we take the following

two cases as examples in the setting of sup1≤j≤p E[X4k
1j (log

+(X2
1j))

2] ≤ C < ∞

with k > 1.

(i) λmin(Σ) ≥ λ0 > 0 and X1 = (X11, . . . , X1p)
T ∼ N(0,Σ)

In this case, we denote XM = (X1M , . . . , XnM )T with Cov(X1M ) = Σ1M .

By the definition of M , we have #M
n ≤ cs

n → 0 when n approaches to in-

finity. Denote YM = XMΣ
−1/2
1M , then Yij , i = 1, . . . , n; j ∈ M , are i.i.d..

Due to λmin(Σ) ≥ λ0 > 0 and the normality of {X1j}pj=1, we can obtain

E|Y1j |4 < ∞, j = 1, . . . , p. By Theorems 1-2 of Bai and Yin (1993), we have

λmin(
1
nY

T
MYM ) → 1 a.s.. That is, λmin(Σ

−1/2
1M ( 1nX

T
MXM )Σ

−1/2
1M ) → 1 a.s.. Here,

we may as well set λmin(Σ
−1
1M ( 1nX

T
MXM )) ≥ 1/2 holds a.s.. Furthermore, we

have

λmin(
1

n
XT

MXM ) ≥ 1

2
λmin(Σ1M ) a.s..

Based on the fact that Σ1M is a submatrix of Σ with Σ = Cov(X1), where

X1 = (X11, . . . , X1p)
T , then we have λmin(Σ1M ) ≥ λmin(Σ). Therefore,

min
1≤#M≤cs

λmin(
1

n
XT

MXM ) ≥ λ0

2
.

(ii) {X1j}pj=1 are independent with zero mean and covariance σ2
j , where σ2

j ≥

λ0 > 0. Similar to the proof of (i), the above minimum eigenvalue inequality

also holds.
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