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Abstract
This paper is concerned with the error density estimation in high-dimensional sparse
linear model, where the number of variables may be larger than the sample size. An
improved two-stage refitted cross-validation procedure by random splitting technique
is used to obtain the residuals of themodel, and then traditional kernel densitymethod is
applied to estimate the error density. Under suitable sparse conditions, the large sample
properties of the estimator including the consistency and asymptotic normality, as well
as the law of the iterated logarithm are obtained. Especially, we gave the relationship
between the sparsity and the convergence rate of the kernel density estimator. The
simulation results show that our error density estimator has a good performance. A
real data example is presented to illustrate our methods.

Keywords High-dimensional sparse linear model · Kernel density estimation ·
Refitted cross-validation method · Asymptotic properties · Law of the iterated
logarithm

1 Introduction

Error density estimation is a basic problem in statistical modeling. For conventional
linear model, we often assume that the error satisfies Gaussian distribution with mean
zero; then, ordinary least square (OLS) approach is used to estimate regression coef-
ficients and corresponding statistical inference on coefficients could be also set up.
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Under the normality assumption, it is well known that theOLS estimator has some nice
properties. Meanwhile, it is equivalent to the maximum likelihood estimator (MLE).
Hence, the OLS method has occupied a prominent place in application fields for a
long time. However, the normality assumption in many practical problems is unrea-
sonable. From this point of view, it is very necessary to estimate accurately the error
density function other than simple assumption. Another motivation of the problem is
that we have to estimate error density when a statistical inference on regression coef-
ficients is considered. Specifically speaking, when some observations of the response
are truncated in the linear model, Powell (1984) showed that the coefficients could be
estimated by a least absolute deviation criterion, and then the estimator’s asymptotical
normality was proved under suitable regularity conditions. Unfortunately, there is an
unknown error density function in the representation of the asymptotic covariance
matrix. That is, it is sometimes necessary for us to estimate error density in order to
make statistical inference on regression coefficients.

In this paper, a nonparametric kernel method is proposed for the error density esti-
mation. In the past few decades, this method has been extensively applied to statistical
regression models and proved to have many large sample properties such as consis-
tency, the asymptotic normality and the law of iterated logarithm. The case of error
distribution in conventional linear regressionmodel was studied in Chai and Li (1993),
where the unknown slope parameters were estimated with OLS method; then, an esti-
mation method based on Parzen kernel function was used for estimating error density
and asymptotic theories of the estimator were also obtained. More related work could
be referred to Yang (1997) and Cheng (2005) for nonparametric regression model,
Liang and Hardle (1999) for semi-parametric model and so on.

Without loss of generality, the error density estimation could be accomplished by
two procedures. First, estimate the unknown parameters. Second, the kernel method
based on the residuals is applied to fit the error density function. However, in the high-
dimensional linear model where the number of covariates is greater than the sample
size, and OLS method is invalid to parameter estimation due to suffering from the
singularity problem. That is, the sample covariance matrix is not invertible when the
dimensionality is larger than the sample size. In another “high-dimensional” problem
where the sample size is larger than dimensionality but the dimensionality adds up
with the multiple of the sample, the performance of OLS method is poor. Here, we
take Fig. 6 as an illustration. Obviously, the fitted kernel density curve is over-fitted,
which mainly blames to the inefficiency of OLS method. In this paper, we propose
and compare several methods for error density estimation in high-dimensional linear
model. As well as Fan and Lv (2008), Fan et al. (2012), the sparse condition is not
negligible tomake the problem solvable. In aword, the number of nonzero components
is small relative to the sample size, which guarantees the variable selection procedure
can identify all the important predictors.

Therefore, to meet aforementioned challenges, a direct idea is to apply the kernel
approach to estimate error density after model selection and estimation in high-
dimensional linearmodel. Recently, a large number of variable selectionmethods have
been proposed in high-dimensional data analysis, which has become more and more
important in various research fields. Examples based on the specific model include the
LASSO (Tibshirani 1996), smoothly clipped absolute deviation called SCAD (Fan
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and Li 2001), the adaptive LASSO (Zou 2006), Dantzig selector (Candes and Tao
2007), SIS (Fan and Lv 2008) and MCP (Zhang 2010), please see the article by Fan
and Lv (2010) for an overview. Furthermore, to conquer the challenge of specifying
a correct model, a series of model-free sure screening procedures have been devel-
oped by many authors, for example, the DC-SIS (Li et al. 2012), the RoSIS (Zhong
2014), the MV-SIS (Cui et al. 2015) and so on. In this paper, we are concerned with
high-dimensional sparse linear model.

As mentioned above, a natural idea to estimate the error density is the following
two-stage procedure. In the first stage, a model selection tool such as LASSO, SCAD,
SIS is applied to select a subset model, which includes all important predictors with
the moderate size smaller than the sample size even if it is not exactly the true model.
In the second stage, the regression coefficients are estimated by OLSmethod, and then
kernel method is used to estimate the error density on the foundation of residuals. It is
apparent that if we can recover exactly the true model in the first stage, then the two-
stage procedurewillworkwell.Unfortunately, the facts ran counter to our expectations.
Intuitively, we can see that a over-fitted phenomenon is caused from Fig. 1, which
can be easily illustrated by endogeneity between variables. According to Fan et al.
(2012), when the number of irrelevant variables is huge, some of them have large
sample correlations with the realized noises, which are called spurious variables in
their paper. Alongwith the appearance of spurious variables, themodel finally selected
is over-fitted. As Fan et al. (2012) showed, the naivety of two-stage methods led to a
serious underestimate of the residual variance. Similarly, it is unreasonable to estimate
the error density by naive two-stage method in high-dimensional linear model. Since
almost all variable selection procedure will select these spurious variables with high
probability when the model is over-fitted, we will introduce refitted cross-validation
(RCV) method (Fan et al. 2012) to work out our challenges. The later simulations
suggest that the performance of RCVmethod is nice. To complete the above missions,
the rest of paper is organized as follows. In Sect. 2, we make an explanation about
nice properties of RCVmethod and introduce how to apply kernel method to estimate
error density in high-dimensional linear model. In Sect. 3, we present some conditions
and theoretical results. A set of simulation studies and a real data example are given
in Sect. 4. In Sect. 5, we detailedly justify all the theorems.

2 Methodology for error density estimation

Consider the following linear model

yi = XT
i β + ei , i = 1, . . . , n, (1)

where {Xi }ni=1 are p-dimensional i.i.d. covarite vectors with Cov(X1) = Σ , β is
a p-dimensional regression coefficient. The error sequence {ei }ni=1 is i.i.d.r.v.s. and
independent of predictors with a common unknown density f (x),

E(ei ) = 0, Var(ei ) = σ 2 < ∞, i = 1, . . . , n. (2)

In the setting of p > n, it is often assumed that only a small number of predictors
contribute to the response, which amounts to say the true model M0 = { j : β j �= 0} is
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sparse. In this paper, we assume that the number of nonzero coefficients s = #M0 =
O(nγ ) with 0 ≤ γ < 1, in other words, s is fixed or diverging at a mild rate. With
sparsity and regularity conditions, many variable selection tools such as the LASSO,
SCAD,SIS andDantzig selector have lots of excellent properties aboutmodel selection
consistency, such as sure screening property, model consistency, sign consistency
and the oracle property. Especially, as a crucial criterion, the sure screening property
ensures that we can pick out the true sparse model with probability tending to one. It
is worth noting that there are also some spurious variables in the selected variable set
other than these true variables, as mentioned in the introduction.

Considering that the naive two-stagemethod is imprecise to error density estimation
in high-dimensional linear model. Here, we attempt to work out this problem by
RCV method. Fan et al. (2012) showed that RCV method improved dramatically
the performance of the naive two-stage procedure. The reason lies in that the two
methods both require that the model selection procedure in the first stage has a sure
screening property, but RCV method can remove or reduce the influence of spurious
variables in the second stage, which motivates us to apply RCV method to kernel
density estimation. Next, we will illustrate that how RCVmethod is used to obtain the
residuals and give the kernel density estimator.

For any index set M̂ = { j1, . . . , jŝ} ⊂ {1, . . . , p}, (1 ≤ j1 < j2 < · · · < jŝ ≤ p),
we may as well denote XM̂ = (X1M̂ , . . . , XnM̂ )T, where Xi M̂ = (Xi j1 , . . . , Xi jŝ )

T.
To elaborate the idea of RCV method, we consider a data set with sample size n,
which is randomly split into two data sets (y(1), X (1)) and (y(2), X (2)) with one size
is n1 = [bn] and another size is n2 = n − n1, where 0 < b < 1 and [·] is integer part.
Usually, we take b = 1/2 and denote P( j)

M̂
= X ( j)

M̂
(X ( j)T

M̂
X ( j)

M̂
)−1X ( j)T

M̂
, ( j = 1, 2).

First, a variable selection tool is performed on (y(1), X (1)) and let M̂1 denote the set
of variables selected. Second, the error density function f (x) is estimated by kernel
method on the second data set (y(2), X (2)

M̂1
), namely

f̂ (1)
n2 (x) = 1

n2hn

n2∑

i=1

K

(
ê(1)
i − x

hn

)
,

where ê(1) = (In2 −P(2)
M̂1

)y(2) = (In2 −P(2)
M̂1

)e(2). Similarly, we use the second data set

(y(2), X (2)) to select the set of important variables M̂2 and the first data set (y(1), X (1)
M̂2

)

for estimation of f (x), resulting in

f̂ (2)
n1 (x) = 1

n1hn

n1∑

i=1

K

(
ê(2)
i − x

hn

)
,

where ê(2) = (In1 − P(1)
M̂2

)y(1) = (In1 − P(1)
M̂2

)e(1). Then, the final estimator is defined
as

f̂n(x) = n2
n

f̂ (1)
n2 (x) + n1

n
f̂ (2)
n1 (x) = 1

nhn

n∑

i=1

K

(
êi − x

hn

)
, ê =

(
ê(1), ê(2)

)T
.

(3)
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In the above procedure, the two halves of the data set are independent. Although
some extra unimportant variables other than the important ones are selected by the first
data set, these extra variables will play minor roles when we estimate the error density
by using the second data set along with refitting since they are just some random
unrelated variables over the second data set. Furthermore, Fan et al. (2012) indicated
that evenwhen some important variables aremissed in thefirst stage ofmodel selection,
they still have a good chance being well approximated by the other variables selected
in the first stage to reduce modeling biases, which is also significant to error density
estimation. Thanks to the refitting in the second stage, the best linear approximation
of those selected variables is used to obtain these residuals. In a word, RCV method
provides a new way for us to accurately estimate error density in high-dimensional
sparse linear model. The asymptotic properties of the kernel density estimator will be
presented in the next section.

3 The asymptotics for the error density estimator

To obtain our main results, these technical conditions are sufficient to facilitate the
proofs, although they may be not the weakest.

C0. The model selection procedure has the sure screening property, i.e., P{M0 ⊂
M̂ j } → 1 and ŝ j = #M̂ j = O(s) = O(nγ ) a.s. with 0 ≤ γ < 1, where M0 is
the set of true variables and M̂ j denotes the the number of selected variables in
the first stage, j = 1, 2.

C1. The kernel K (·) is a bounded variation and symmetric probability density func-
tion; moreover, it has compact support and K ′ is bounded except finite jump
points. The bandwidth hn satisfies limn→∞ hn = 0 and limn→∞ nhn/ log4 n =
∞.

C2. The covariates {X1 j }pj=1 satisfy sup1≤ j≤p E[X4k
1 j (log

+(X2
1 j ))

2] ≤ C < ∞
with k > 1, where C > 0 is a constant and h+(·) = max{0, h(·)}. Moreover,
min1≤#M≤cs λmin(

1
n X

T
M XM ) ≥ λ0

2 > 0 with M ⊂ {1, . . . , p}, where c ≥ 1, λ0
are constants and λmin(·) stands for the minimum eigenvalue of a matrix.

C3. The random error e1 satisfies the sub-exponential assumption. That is, there exist
positive constants t0 and C such that E exp{t |e1|} ≤ C < ∞, ∀ 0 < t < t0.

Remark 1 Condition C0 is a weak condition about variable selection procedure, as
stated in Fan and Lv (2008) and Fan et al. (2012). Condition C1 is about the assump-
tion of the kernel and bandwidth, which is common as well as in ordinary error
density estimation model. Related moment assumption about the covariates {X1 j }pj=1

and the minimum eigenvalue assumption about 1
n X

T
M XM are imposed in condition

C2, where M denotes the set of variables selected after dimensionality reduction. In
some sense, the convergence rate of the kernel density estimator f̂n(x) becomes faster
with the increase of k, which could be checked by Remark 2 of Theorem 3. The
minimum eigenvalue assumption is similar to Assumption 2 of Fan et al. (2012).
In the setting of λmin(Σ) ≥ λ0 > 0, the minimum eigenvalue inequality about
1
n X

T
M XM holds if {X1 j }pj=1 are independent with zero mean and covariance σ 2

j or

X1 = (X11, . . . , X1p)
T ∼ N (0,Σ). The two mentioned cases could be proved in the
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light of Marčenko and Pastur (1967) and Bai and Yin (1993). Condition C3 is a tail
condition on the random error, which apparently holds when the error follows normal
distribution or is bounded uniformly.

Then, we give the main theorems as following:

Theorem 1 Suppose the conditions C0 −C3 hold, γ < 1− 1/k. If f (u) is continuous
at u, then | f̂n(u) − f (u)| = o(1) a.s.

Theorem 2 Suppose the conditions in Theorem 1 hold, and f (u) is continuous uni-
formly about u over R, then supu∈R | f̂n(u) − f (u)| = o(1) a.s.

Theorem 3 Suppose the conditions in Theorem 1 hold, and f (u) is the first-order
Lipstchz continuous about u over R, then

sup
u∈R

| f̂n(u) − f (u)| = O

(
log n√
nhn

+ cn + hn

)
a.s.,

where cn = n− 1
2 (1−1/k−γ ) log n.

Remark 2 The uniform almost sure convergence rate of f̂n(u)− f (u) about the sparsity
parameter s is mainly embodied in γ due to the assumption s = O(nγ ). To obtain
the fastest convergence rate, it is worth noting that there is a trade-off between the
size of log n√

nhn
and hn . Here, we take hn = O(n−1/3(log n)2/3), then supu∈R | f̂n(u) −

f (u)| = O(cn +n−1/3(log n)2/3) a.s. Next, our discussion is mainly centered on the
relationship between the size of (1/k + γ ) and 1/3.

(i) If 1/k + γ ≥ 1/3, then supu∈R | f̂n(u) − f (u)| = O(cn) a.s.. Especially, when
the random variable sequence {X1 j }pj=1 is bounded, supu∈R | f̂n(u) − f (u)| =
O(n− 1

2 (1−γ ) log n). At this case, the fastest uniform almost sure convergence rate
of f̂n(u) − f (u) is O(n−1/3 log n) for u ∈ R, which corresponds to γ = 1/3.

(ii) If 1/k + γ < 1/3, then supu∈R | f̂n(u) − f (u)| = O(n−1/3(log n)2/3) a.s.

Theorem 4 Suppose the conditions in Theorem 1 hold, and f (u) is the first-
order Lipstchz continuous about u and f (u) > 0, if bandwidth still satisfies

limn→∞ nh3n = 0, limn→∞ cn log2 n
hn

= 0, then

(i).

√
nhn
v

[ f̂n(u) − f (u)] d−→ N (0, 1), v = f (u)

∫
K 2(y)dy;

(i i). lim sup
n

√
nhn

v log log n
[ f̂n(u) − f (u)] = √

2 a.s.,

where
d−→ stands for the convergence in distribution.

Theorem 5 Denote T ( f ) = ∫
H(x) f (x)dx = E[H(e1)], T ( f̂n) = ∫

H(x) f̂n(x)dx,
where H(·) is a smooth function. Suppose the conditions in Theorem 1 hold, then
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(i). If E sup|z|≤δ |H ′(ei + z)| < +∞ for some δ > 0, then T ( f̂n) is a consistent
estimator of T ( f );

(ii). If E sup|z|≤δ |H ′′(ei + z)| < +∞ for some δ > 0, limn→∞ nh4n = 0,

γ + 1/k < 1/2 and 0 < Var(H(e1)) < +∞, then
√
n [T ( f̂n) − T ( f )] d−→

N (0,Var(H(e1))).

Corollary 1 If we take H(x) = x2 and hn = o(n−1/4),γ + 1/k < 1/2, T ( f ), T ( f̂n)
are defined as Theorem 5, then

√
n
[
T ( f̂n) − σ 2

]
d−→ N

(
0, E

(
e41

)
− σ 4

)
.

Remark 3 The similar result in Corollary 1 can be also seen in Fan et al. (2012).
The condition γ + 1/k < 1/2 could be relaxed to 0 ≤ γ < 1, and asymptotic
normality still holds. In order to achieve the goal, we need to modify f̂n(x) as

f̂ ∗
n (x) = 1

(n−2ŝ2)hn

∑n−[n/2]
i=1 K (

ê(2)
i −x
hn

) + 1
(n−2ŝ1)hn

∑[n/2]
i=1 K (

ê(1)
i −x
hn

), where ŝ1 and

ŝ2, respectively, denote by the number of entry in the sets M̂1 and M̂2. The specific
proof idea can be drawn from the proof of Theorem 5 in the Appendix.

4 Numeric studies

In this section, we assess the finite sample performances of the newly proposed pro-
cedures by Monte Carlo simulation. Moreover, a real data analysis is presented by our
proposed procedure. In our numerical studies, we mainly report the results of RCV
method with SIS to save space. Of course, LASSO, SCAD and MCP (or combining
them with SIS) can be also used to make variable selection, see Fan et al. (2012).
For simplicity, N-SIS and RCV-SIS, respectively, denote that SIS is employed in the
model selection step for naive two-stage and refitted cross-validation methods; then,
the Epanechnikov kernel function is applied to estimate the error density. Meanwhile,
the bandwidth is selected by likelihood cross-validation (In Chapter 3, Section 4,
Silverman 1986). All numerical studies were conducted by R code.

4.1 Simulation study

Considering that there is little work to study the error density estimation for high-
dimensional linear model. This simulation is designed to compare the finite sample
performances of naive two-stage method and refitted cross-validation method. As
above stated, we employed SIS as ourmodel selection tool. For SIS, the predetermined
model size is always taken to be 5 in the null model as well as Fan et al. (2012). The
cut value in SIS is needed to choose carefully in the sparse model, [n/ log n] suggested
by Fan and Lv (2008) may be used. In our simulation study, two examples were used
to illustrate the performance of RCV-SIS method.

Example 1 We generated data from the following sparse linear model

Y = a (X1 + X2 + X3) + e (4)
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Fig. 1 Error density estimation for model (4) with a = 0. a n = 50, p = 100, b n = 50, p = 1000

where e ∼ N (0, 1), and {X1, . . . , X p} ∼ N (0,Σ) with Σ = {ρi j }pi, j=1 where
ρi i = 1, ρi j = ρ for i �= j . In order to examine the impact of signal-to-noise ratio
(SNR) to error density estimation, we take a = 0, 1/

√
3 and 2

√
3.

As a benchmark, the oracle or true error density is included in our simulation, where
the oracle means that OLSmethod is used to estimate the parameters of the truemodel,
and then kernel density method is applied to fit the error density. For a = 0, we only
consider the case ofρ = 0 and let numbers of covariates vary from100 to 1000 and the
sample sizes equal 50 and 100. The corresponding results for n = 50, p = 100, 1000
are presented in Fig. 1, which shows that the over-fitted phenomenons caused by N-
SIS method are becoming more and more serious with the increase of dimensionality
p. To the contrary, the improved two-stage procedure RCV-SIS is comparable with
the oracle and much better than N-SIS method, especially in the case of p = 1000.

Fora �= 0, our simulations are conducted in the setting ofρ = 0.5. For comparison,
two groups of experiments are designed such as n = 200, p = 2000, n = 300, p =
2000 for a = 2

√
3 and a = 1/

√
3. These corresponding results are depicted in Figs. 2

and 3.We can clearly see that the N-SISmethod and RCV-SISmethods both behave as
well as the oracle from Fig. 2. However, the performance of N-SISmethod is relatively
poor in Fig. 3. Therefore, the two figures show that naive method depends on the SNR.
In general, it performs better when the SNR is large. Furthermore, it is apparent that
RCV-SIS method outperforms the N-SIS method and performs as well as the oracle
procedure even if the signal is strong as well as the noise in Fig. 3. A conclusion could
be drawn that RCV method is relatively insensitive to the size of SNR.

We may find that the performances of RCV-SIS are satisfactory from Exam-
ple 1. Next, an additional simulation has been conducted to test the sensitivity of
the RCV-SIS procedure to the final selected model size. Here, we take the case of
a = 1/

√
3, n = 200, p = 2000 into consideration and assume the resulting model

includes ŝ predictors, and the simulation results are summarized in Fig. 4. The Figure
shows that N-SIS method easily results in over-fitted phenomenon when many redun-
dant variables are presented. To the contrary, RCV-SIS method is insensitive to model
size and has a nice performance.
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Fig. 2 Error density estimation for model (4) with a = 2
√
3. a n = 200, p = 2000, b n = 300, p = 2000

Fig. 3 Error density estimation for model (4) with a = 1/
√
3. a n = 200, p = 2000, b n = 300, p = 2000

Fig. 4 Error estimation by using Naive and RCV methods with various ŝ. a N-SIS, b RCV-SIS

Example 2 We set the specific model as well as the Example 3 of Fan et al. (2012),

Y = 1.01X1 − 0.06X2 + 0.72X3 + 1.55X5 + 2.32X7 − 0.36X11

+ 3.75X13 − 2.04X17 − 0.13X19 + 0.61X23 + e,

where e ∼ N (0, 1), and {X1, . . . , X p} ∼ N (0,Σ) with Σi j = 0.5|i− j |, i, j =
1, 2, . . . , p.
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Fig. 5 Error density estimation. a Four arbitrary splits, b the average of four splits

In this example, a more realistic model with 10 important predictors is considered.
Since some nonzero coefficients are very small, it is hard to say some method can
chose all true variables in the stage of model selection. In this setting, two cases are
considered for n = 400, p = 1000 and n = 400, p = 10,000. Here, we only present
the simulation results of the latter given that the latter is more representative and
challenging. The summarized results are shown in Fig. 5. In Fig. 5a, maybe there are
some differences among different random splits. To conquer the splitting randomness,
we adopted multi-split method (Meinshausen et al. 2009) and put the average result in
Fig. 5b. In a small neighborhood of zero, the values of average estimator are slightly
smaller than the real ones fromFig. 5b,which is corresponded to the results of Example
3 of Fan et al. (2012). Their results show that RCV methods slightly overestimate the
variance when the sure screening condition is not satisfied. Hence, in some sense,
Fig. 5b illustrates that RCV-SIS method still has a pretty good performance even in
this case.

There is no doubt that the two examples show thatRCVmethod greatly improves the
accuracy of error density estimation in high-dimensional linear model. Furthermore,
the following discussions are also very necessary tomake our simulationmore perfect.

RCV method relies on sample-splitting, performing variable selection and dimen-
sionality reduction on one part of the data and OLS estimate on the remaining part. In
our simulation, we randomly split the data set into two disjoint groups of equal size.
However, the results may change if this split is chosen differently. An alternative to a
single arbitrary split is dividing the sample repeatedly, then take the average result as
the final estimator. The specific operation of this idea is embodied in Fig. 5 of Exam-
ple 2. In Example 1, the simulation results are obtained by a single split. Of course,
this idea of multi-split method could be also applied to Example 1. In some sense, it
could be expected that the corresponding results will be more stable. About this point,
more discussions could be seen in supplementary material.

Through the previous simulation results, we can clearly see that RCV method has
an obvious advantage over naive method in the setting of p > n. Naturally, a problem
is put forward about whether or not the performance of RCV method is good in the
setting of n > p. The simulation results are depicted in Fig. 6. In this figure, it is
easy to see that a over-fitted phenomenon is caused if we directly estimate the model
parameters by OLSmethod, as we have stated in the part of introduction. However, the
RCV-SIS method still performs well. Two reasons could be used to explain it. First,
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Fig. 6 Error density estimation for model (4) with a = 1/
√
3 and ρ = 0.5. a n = 100, p = 50, b

n = 100, p = 80

Fig. 7 Error density estimation for abnormal case. a e ∼ Be(4, 4) − 1/2, b e ∼ Be(2, 8) − 1/5

RCV method has a procedure of variable selection. Second, RCV method can reduce
the influence of spurious variables by refitting.

To illustrate the impacts of different error distributions on the performance of RCV
method, we still take model (4) as an example, where a = 1/

√
3, n = 200, p =

2000 and the covariates are jointly normal with equal correlation 0.5, and marginally
N (0, 1). Here, two different error terms are taken into consideration. Case (1) e ∼
Be(4, 4)−1/2; Case (2) e ∼ Be(2, 8)−1/5, where the error distribution is symmetric
in Case (1), while the error distribution is biased at the right side in Case (2). The
simulation results are presented in Fig. 7, we can see that RCV-SIS method performs
slightly better than or as well as the oracle. In other words, RCV method has a certain
stability for different error distributions.

4.2 Real data analysis

We use the data set reported in Scheetz et al. (2006) to illustrate the application of
RCV-SIS method in error density estimation in high-dimensional linear model. Gene
TRIM32 was recently found to cause Bardet–Biedl syndrome (Chiang et al. 2006),
which is a genetically heterogeneous disease of multiple organ systems including the
retina. Next, we make a brief description about the data set, more details could be
saw in Huang et al. (2008). For this data set, 18976 probes are finally included to
make a research and selected by two criteria. On the one hand, each probe should be
sufficiently expressed; on the other hand, its expression values must be sufficiently
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Fig. 8 Descriptive statistical analysis on the response and residuals. a Boxplot of Y, b histogram of the
residuals

variable. The research shows that the probe from TRIM32 is 1389163_at. To find the
probe among the remaining 18975 probes that are most related to TRIM32, Huang
et al. (2008) set up a linear model to make an analysis. In their model, the sample size
is 120 and the number of probes is 18975. It is expected that only a few genes are
related to TRIM32. Therefore, this is a sparse, high-dimensional regression problem.
In summary, the model based on the data set is Y = Xβ + e, where the response Y is
the probe 1389163_at, the design matrix X is made up of the remaining 18975 probes,
and e is the random error. In our paper, what we are concerned about is the error
density estimation. Now we do as the following steps to estimate the error density:

Wefirstly conduct some exploratory data analysis on the response. Figure 8a depicts
the boxplot of Y , where the distance the plot whiskers extend out from the box is set to
be 1.5 interquartile range in order to detect the potential outliers. The boxplot shows
that there is an extreme outlier in the response. Here, we eliminate it; then, the actual
sample size n is 119 and the dimensionality p is 18975. Considering that p � n, then
the following measures are taken,

(1) To estimate the error density by RCV-SIS method, we randomly split the sample
into two independent data sets such as (Y (1), X (1)) with size 60 and (Y (2), X (2))

with size 59.
(2) For each data set, we follow this approach of Huang et al. (2008). First, select

3000 predictors with the largest variances, and then standardize the response and
3000 predictors so that they have mean zero and standard deviation 1.

(3) Compute the marginal correlation coefficients of the 3,000 predictors with the
response and select the top 15 covariates with the largest correlation coefficients.
That is, the resulting model includes ŝ = 15 predictors for each data set.

(4) The histogram of two parts of residuals is presented in Fig. 8b.

To illustrate the impact of choices of ŝ on the performance of RCV-SISmethod, we,
respectively, select the top 10 or 25 covariates with the largest correlation coefficients
instead of 15 at the step (3). As Fig. 9a shows that the change of ŝ has a very little
influence on the performance of RCV-SIS method. For ŝ = 15, four fitted density
curves obtained by four arbitrary splits are shown in Fig. 9b. We may take one or their
average as the final error density estimator.
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Fig. 9 Error density estimation. a ŝ = 10, 15, 25, b Four arbitrary splits for ŝ = 15

Supplementarymaterial

Supplement to “Error Density Estimation inHigh-Dimensional Sparse LinearModel.”
This supplemental article includes four parts. Part(I ) Some illustrations about Gn ;
Part(I I ) Some explanations about multi-split method; Part(I I I ) A proof about the
order of max1≤i≤n Pii ; Part(I V ) An explanation about the minimum eigenvalue
inequality in condition C2.
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5 Appendix: Proofs of main results

Lemma 1 (Theorem 37 inChapter 2, Pollard 1984)For each n, letFn be a permissible
class of functions (Definition 1, in Appendix C, Pollard 1984)whose covering numbers
(Definition 23, in Chapter 2, Pollard 1984) satisfy supQ N1(ε, Q,Fn) ≤ Aε−W , 0 <

ε < 1, with constants A and W not depending on n. Let αn be a non-increasing
sequence of positive numbers for which nδ2nα

2
n � log n. If | f | ≤ 1,

√
P0 f 2 ≤ δn,

∀ f ∈ Fn, then

sup
Fn

|Pn f − P0 f | � δ2nαn a.s.,

where P0 f = ∫
f d P0, Pn f = ∫

f d Pn = 1
n

∑n
i=1 f (Xi ).

For simplicity, we only prove the large sample properties of f̂n1(x) about f (x). For
j = 1, 2, we use n, ŝ and M̂ instead of n j , ŝ j and M̂ j , respectively, to make the proof
look more concise and comfortable, where ŝ j and M̂ j is defined in condition C0. By
the screening consistency, we have ŝ = O(nγ ), 0 ≤ γ < 1.

Lemma 2 Suppose the assumptionsC2 andC3 hold, thenwehavemax1≤i≤n |êi−ei | =
o(cn) a.s., where cn = n− 1

2 (1− 1
k −γ ) log n with 0 ≤ γ < 1 − 1

k .
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Proof Denote XM̂ = (X1M̂ , . . . , XnM̂ )T, where Xi M̂ = (Xi j1 , . . . , Xi jŝ )
T with M̂ =

{ j1, . . . , jŝ}, (1 ≤ j1 < · · · < jŝ ≤ p). By the definition of P , we have Pi j =
XT
i M̂

(XT
M̂
X M̂ )−1X j M̂ and Var(

∑n
j=1 Pi j e j |XM̂ ) = σ 2Pii . To prove Lemma 2, the

first is to compute the order of max1≤i≤n Pii ( For more detailed proof, please see the
supplementary material). By the definition of Pii and the condition C2, we have

max
1≤i≤n

Pii ≤ 2ŝ

nλ0
max
1≤i≤n

1

ŝ

∑

j∈M̂
X2
i j ,

which is equivalent to compute the order of max1≤i≤n
1
ŝ

∑
j∈M̂ X2

i j . For the sake of

simplicity, we may as well set Z in = 1
ŝ

∑
j∈M̂ X2

i j due to ŝ = O(nγ ) with 0 ≤ γ <

1, i = 1, . . . , n. Since Z in is i.i.d. random variable sequence, then

P

(
max
1≤i≤n

Z in > A0n
1/k

)
= 1 − P(Z in < A0n

1/k)n = 1 − [1 − P(Z in > A0n
1/k)]n,

where A0 > 2. ∀x > 0, denote h(x) = x2k(log+(x))2, then we have

P
(
Z in > A0n

1/k
)

≤ E
h(Z in)

h
(
A0n1/k

) ≤ k2

A2k
0

sup1≤ j≤p Eh
(
X2
1 j

)

n2 log2 n
.

For fixed k and the condition sup1≤ j≤p E[X4k
1 j (log

+(X2
1 j ))

2] ≤ C < ∞, then

∞∑

n=2

P

(
max
1≤i≤n

Z in > A0n
1/k

)
< ∞,

thereby we have max1≤i≤n Z in = O(n1/k) a.s.. By Cauchy’s inequality, we have
maxi, j |Pi j | ≤ max1≤i, j≤n

√
Pii Pj j ≤ max1≤i≤n Pii . In addition, by the condition

C3, we have that max1≤i≤n |ei | ≤ c0 log n for some constant c0 > 0. Denote e1i =
ei I {|ei | ≤ c0 log n} and e2i = ei I {|ei | > c0 log n}, then E(e2 j ) = o(n−3) and

n∑

j=1

Pi j e j =
n∑

j=1

Pi j [e1 j − E(e1 j )] +
n∑

j=1

Pi j [e2 j − E(e2 j ]).

Since for any ε > 0, {max1≤i≤n
∑n

j=1 Pi j e2 j > εcn} ⊂ {max1≤i≤n |ei | > c0 log n},
then max1≤i≤n

∑n
j=1 Pi j e2 j = o(cn) a.s.. Therefore,

max
1≤i≤n

n∑

j=1

Pi j [e2 j − E(e2 j )] = o(cn) a.s. (5)
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Furthermore, for some constant c1 > 0, by Bernstein’s inequality, we have

P

⎧
⎨

⎩ max
1≤i≤n

∣∣∣∣∣∣

n∑

j=1

Pi j [e1 j − E(e1 j )]
∣∣∣∣∣∣
≥ nt, max

1≤i≤n
Pii ≤ c1ŝn

1/k−1|XM̂

⎫
⎬

⎭

≤
n∑

i=1

P

⎧
⎨

⎩

∣∣∣∣∣∣

n∑

j=1

Pi j [e1 j − E(e1 j )]
∣∣∣∣∣∣
≥ nt, max

1≤i≤n
Pii ≤ c1ŝn

1/k−1|XM̂

⎫
⎬

⎭

≤ 2n exp

{
− n2t2

2
∑n

j=1 Var(Pi j e j ) + 2
3c0 max1≤i≤n Pii (log n)nt

}

I

{
max
1≤i≤n

Pii ≤ c1ŝn
1/k−1

}

≤ 2n exp

{
− n2t2

2c1ŝn1/k−1(σ 2 + t
3c0n log n)

}
.

Let t = εtn with ε > 0, tn = √
ŝn−α log n, α = 3

2 − 1
2k , then

− n2t2

2c1ŝn1/k−1(σ 2 + t
3c0n log n)

= −ε2 log2 n

2c1(σ 2 + εc0
3 cn log n)

≤ − ε2

4c1σ 2 log2 n ≤ −3 log n,

as n is large enough. It can be derived by the Borel–Cantelli lemma that

max
1≤i≤n

n∑

j=1

Pi j [e1 j − E(e1 j )] = o(ntn) = o(cn) a.s. (6)

Then, we can easily know max1≤i≤n |êi − ei | = o(cn) a.s. by (5) and (6). ��

Lemma 3 Suppose the assumptions C0 − C3 hold and γ < 1 − 1/k, then we have

(i). If f (·) is continuous at u, then f̂n(u) − fn(u) = o(1) a.s.
(ii). If f (·) is continuous uniformly, then

sup
u

| f̂n(u) − fn(u)| ≤ o

(
log n√
nhn

(
1 ∧

√
cn
hn

))
+ 2 sup

u
[In+(u) + In−(u)] a.s.,

where In+(u) = ∫
K (y)| f (u + Ccn + hn y) − f (u + hn y)|dy and In−(u) =∫

K (y)| f (u − Ccn + hn y) − f (u + hn y)|dy for some constant C > 0.

Proof Since K (·) is a bounded variation function, then K can be written as K = K1−
K2 which K1 and K2 are two monotonically increasing functions. By the definitions
of f̂n(u) and fn(u), we have
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f̂n(u) − fn(u) = 1

nhn

[
n∑

i=1

K

(
êi − u

hn

)
−

n∑

i=1

K

(
ei − u

hn

)]

= 1

nhn

[
n∑

i=1

K1

(
êi − u

hn

)
−

n∑

i=1

K1

(
ei − u

hn

)]

+ 1

nhn

[
n∑

i=1

K2

(
êi − u

hn

)
−

n∑

i=1

K2

(
ei − u

hn

)]

= Δ1n(u) + Δ2n(u). (7)

On the set {êi | max |êi − ei | ≤ Ccn} with constant C > 0, it can be derived that
I2n(u) ≤ Δ1n(u) ≤ I1n(u) due to the fact that K1 is a monotonically increasing
function, where

I1n(u) = 1

nhn

n∑

i=1

[
K1

(
ei + Ccn − u

hn

)
− K1

(
ei − u

hn

)]
,

I2n(u) = 1

nhn

n∑

i=1

[
K1

(
ei − Ccn − u

hn

)
− K1

(
ei − u

hn

)]
.

Let Gn =: { gnu = K1(
(e+Ccn)−u

hn
) − K1(

e−u
hn

) : u ∈ R} ( For more details about Gn ,
please refer to supplementary material ), then Gn is a class of permissible functions
with a polynomial discriminant and

I1n(u) = 1

hn
[Pngnu − P0gnu] + 1

hn
P0gnu .

Since K has compact support, we suppose that K j has compact support [−M, M]
with M > 0 and K ′

j is bounded except one jump point without loss of generality. For
fixed u, we have

|P0gnu |
hn

= 1

hn

∣∣∣∣E
[
K1

(
e − u + Ccn

hn

)
− K1

(
e − u

hn

)]∣∣∣∣

= 1

hn

∣∣∣∣
∫

K1

(
x − u + Ccn

hn

)
f (x)dx −

∫
K1

(
x − u

hn

)
f (x)dx

∣∣∣∣

=
∣∣∣∣
∫

K1(y)[ f (u − Ccn + hn y) − f (u + hn y)]dy
∣∣∣∣

≤
∫

K (y)| f (u − Ccn + hn y) − f (u + hn y)|dy = In−(u),
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and

P0g
2
n,u =

∫ [
K1

(
x − u + Ccn

hn

)
− K1

(
x − u

hn

)]2
f (x)dx

= hn

∫ [
K1

(
y + C

cn
hn

)
− K1(y)

]2
f (u + hn y)dy.

(i). If f (·) is continuous at u and hn = o(1), then f (u + hn y) ≤ f (u) + 1 for
|y| ≤ M +Ccn/hn , and P0g2n,u ≤ 4( f (u)+1)MC2

1hn = O(hn) for cn/hn ≥ 1.
If cn/hn < 1, let y1 be a jump point of K1 in [−M, M], B =: [y1−Ccn/hn, y1+
Ccn/hn] and Bc =: [−M − Ccn/hn, M + Ccn/hn] − B, then

P0g
2
n,u ≤ hn

[(∫

B
+
∫

Bc

)[
K1

(
y + C

cn
hn

)
− K1(y)

]2
f (u + hn y)dy

]

≤ hn

[
2C2

1 ( f (u) + 1)
∫

B
dy + C2( f (u) + 1)(cn/hn)

2
∫

Bc
dy

]

= ( f (u) + 1)O(cn),

whereC1 = sup K ,C2 > 0 is some constant. Thus, P0g2n,u ≤ ( f (u)+1)O(cn ∧
hn) and In−(u) = o(1). By using Bernstein’s inequality, we obtain |Pngnu −
P0gnu | = o(hn) a.s. and |I1n(u)| ≤ |Pngnu − P0gnu |/hn + In−(u) = o(1) a.s.
Similarly, we also have I2n(u) = o(1) a.s.. It means that Δ1n(u) = o(1) a.s..
By the same derivation way, Δ2n(u) = o(1) a.s. still holds. Therefore, we have
f̂n(u) − fn(u) = o(1) a.s. by (7). ��

(ii). If f (·) is continuous uniformly, then f (u) is bounded and supu P0g2n,u ≤
4 supu( f (u) + 1)MC2

1 (cn ∧ hn) = O(cn ∧ hn). By Lemma 36 (ii) in Chap-
ter 2, Pollard (1984), the covering numbers of Gn satisfy supQ N1(ε, Q,Gn) ≤
Aε−W , 0 < ε < 1, where constants A and W are not depending on n, and
supu |gnu | ≤ C1. Denote αn = log n√

nδn
, δ2n = O(cn ∧ hn), then the conditions of

Lemma 1 hold. Furthermore, we have

sup
u

|Pngnu − P0gnu | = o
(
δ2nαn

)
a.s.

Therefore, supu |I1n(u)| ≤ o( δ2nαn
hn

) + supu In−(u) = o( log n√
nhn

(1 ∧
√

cn
hn

)) +
supu In−(u) a.s. Similarly, we have supu |I2n(u)| ≤ o( log n√

nhn
)+supu In+(u) a.s.

and

sup
u

|Δ1n(u)| ≤ o

(
log n√
nhn

(
1 ∧

√
cn
hn

))
+ sup

u
[In+(u) + In−(u)] a.s. (8)

Similar to the proof of Eq. (8),we also have supu |Δ2n(u)| ≤ o( log n√
nhn

(1∧
√

cn
hn

))+
supu[In+(u)+ In−(u)] a.s..We know that supu | f̂n(u)− fn(u)| can be dominated
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by supu |Δ1n(u)| + supu |Δ2n(u)| almost surely by (7). Thus, we have

sup
u

| f̂n(u) − fn(u)| ≤ o

(
log n√
nhn

(
1 ∧

√
cn
hn

))
+ 2 sup

u
[In+(u) + In−(u)] a.s.

This completes the proof of Lemma 3. ��
Proof of Theorem 1. Note that

| f̂n(u) − f (u)| ≤ | f̂n(u) − fn(u)| + | fn(u) − f (u)|.

By condition C1 and Lemma 3 (i), we have f̂n(u) − fn(u) = o(1) a.s. due to the
continuity of f at u. For fn(u) − f (u) = o(1) a.s., please refer to pages 35–36 of
Pollard (1984). Therefore, | f̂n(u) − f (u)| = o(1) holds a.s. ��
Proof of Theorem 2. According to triangle inequality,

sup
u

| f̂n(u) − f (u)| ≤ sup
u

| f̂n(u) − fn(u)| + sup
u

| fn(u) − f (u)|.

From Lemma 3 (ii),

sup
u

| f̂n(u) − fn(u)| ≤ o

(
log n√
nhn

)
+ 2 sup

u
[In+(u) + In−(u)].

Due to the assumption that f (u) is continuous uniformly about u and conditions
C1−C3, we have supu In−(u) = supu

∫
K (y)| f (u−Ccn +hn y)− f (u+hn y)|dy =

o(1) and supu In+(u) = o(1). By Lemma 3 (ii), we immediately have supu | f̂n(u) −
fn(u)| = o(1) a.s.. Moreover, supu | fn(u) − f (u)| = o(1) a.s. holds according to
condition C1. Therefore, we obtain supu | f̂n(u) − f (u)| = o(1) a.s. ��
Proof of Theorem 3. According to Theorem 2 and Lemma 3 (ii),

sup
u

| f̂n(u) − f (u)| ≤ o

(
log n√
nhn

)
+ 2 sup

u
[In+(u) + In−(u)] + sup

u
| fn(u) − f (u)|.

According to Lipstchz condition of f , we have that supu |E fn(u) − f (u)| = O(hn)
and supu | fn(u)−E fn(u)| = o( log n√

nhn
) a.s.Therefore, it is easy to know by the triangle

inequality,

sup
u

| fn(u) − f (u)| ≤ sup
u

| fn(u) − E fn(u)| + sup
u

|E fn(u) − f (u)|

= o

(
log n√
nhn

)
+ O(hn) a.s.

Since f (u) satisfies the first-order Lipstchz condition, then

In−(u) =
∣∣∣∣
∫

K (y)| f (u − Ccn + hn y) − f (u + hn y)

∣∣∣∣ dy = O(cn).
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Similarly, we have In+(u) = O(cn). Thus, it can be derived that

sup
u

| f̂n(u) − f (u)| = O(
log n√
nhn

+ cn + hn) a.s.

��
Lemma 4 Assume that the conditions C1 − C3 hold, f (·) satisfies the first-order
Lipstchz condition and limn→∞ nh3n = 0, then for fixed u ∈ R and f (u) > 0,
we have

√
nhn
v

[ fn(u) − f (u)] d−→ N (0, 1), v = f (u)

∫
K 2(y)dy.

��
Proof of Theorem 4. (i). Since f (·) satisfies the first-order Lipstchz condition, then

supu In+(u) + supu In−(u) = O(cn). By Lemma 3 and cn = o(hn/ log2 n), we
know

√
nhn | f̂n(u) − fn(u)| = √

nhn

[
o

(√
cn
hn

log n√
nhn

∧ log n√
nhn

)
+ O(cn)

]
= o(1) a.s.

and
√
nhn
v

[ f̂n(u) − f (u)] =
√
nhn
v

[ f̂n(u) − fn(u)] +
√
nhn
v

[ fn(u) − f (u)]

=
√
nhn
v

[ fn(u) − f (u)] + o(1) a.s.

Due to condition limn→∞ nh3n = 0 and Lemma 4, then we have

√
nhn
v

[ f̂n(u) − f (u)] d−→ N (0, 1).

��
(ii). By cn = o(hn/ log2 n), we have

√
nhn [ f̂n(u)− fn(u)] = o(1) a.s. and E fn(u)−

f (u) = O(hn). In addition, by employing the law of the iterated logarithm
(Theorem 2, Hall 1981), we have

lim sup
n→∞

√
nhn

V log log n
[ fn(u) − E fn(u)] = √

2 a.s. (9)

Furthermore, by condition limn→∞ nh3n = 0, it can be derived that

√
nhn

v log log n
[ f̂n(u) − f (u)] =

√
nhn

v log log n
[ fn(u) − E fn(u)] + o(1) a.s. (10)
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Finally, we have

lim sup
n→∞

√
nhn

v log log n
[ f̂n(u) − f (u)] = √

2 a.s.

This completes the proof of Theorem 4 by (9) and (10).
��

Proof of Theorem 5. (i)

|T ( fn) − T ( f )| =
∣∣∣∣
∫

H(u) fn(u)du − EH(e1)

∣∣∣∣

=
∣∣∣∣∣∣
1

n

n∑

i=1

∫
[H(ei + hn y) − H(ei )]K (y)dy

∣∣∣∣∣∣
+
∣∣∣∣∣∣
1

n

n∑

i=1

H(ei ) − EH(e)

∣∣∣∣∣∣

=
∣∣∣∣∣∣
1

n

n∑

i=1

∫
H ′(ei + θi hn y)hn yK (y)dy

∣∣∣∣∣∣
+ o(1)

≤ 1

n

n∑

i=1

sup
|z|≤δ

|H ′(ei + z)|hn
∫

|y|K (y)dy + o(1) = o(1) a.s.

Next, we make some explanations about why the “≤” holds. For given i , H(ei +
hn y) − H(ei ) = H ′(ei + θi hn y)hn y by Taylor’s expansion of H(·) at ei with
|θi | ≤ 1. Since hn → 0, there exists a constant δ > 0 such that |θi hn y| ≤ Mhn ≤
δ. Furthermore, we have |H(ei + hn y) − H(ei )| ≤ sup|z|≤δ |H ′(ei + z)|hn|y| as
long as n is large enough. To prove T ( f̂n) is a consistent estimator of T ( f ), it just
needs to prove T ( f̂n) − T ( fn) = o(1) a.s.. By Taylor’s expansion,

T ( f̂n) − T ( fn) = 1

n

n∑

i=1

∫
[H(êi + hn y) − H(ei + hn y)]K (y)dy

= 1

n

n∑

i=1

∫ [
H ′(ei + hn y + θi (êi − ei ))K (y)dy(êi − ei )

]

I {max
i

|êi − ei | ≤ cn} + o(1)

≤ 1

n

n∑

i=1

sup
|z|≤δ

|H ′(ei + z)|cn + o(1) = o(1) a.s.

��
(ii). By Taylor’s expansion, we have

∣∣∣∣∣
√
n[T ( fn) − T ( f )] − 1√

n

n∑

i=1

(H(ei ) − EH(e1))

∣∣∣∣∣

=
∣∣∣∣∣
1√
n

n∑

i=1

∫ [
H ′(ei )hn y + 1

2
H ′′(ei + θi hn y)h

2
n y

2
]
K (y)dy

∣∣∣∣∣
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=
∣∣∣∣∣
h2n
2
√
n

n∑

i=1

∫
H ′′(ei + θi hn y)y

2K (y)dy

∣∣∣∣∣

≤
√
nh2n
2n

n∑

i=1

sup
|z|≤δ

|H ′′(ei + z)|
∫

y2K (y)dy = o(1) a.s.,

and

√
n
∣∣∣T ( f̂n) − T ( fn)

∣∣∣ ≤ √
n|T ( f̂n) − T ( fn)|I {max

i
|êi − ei | ≤ cn} + o(1)

=
∣∣∣∣∣
1√
n

n∑

i=1

[H(êi ) − H(ei )]
∣∣∣∣∣ I {max

i
|êi − ei | ≤ cn}

+
∣∣∣∣∣
1√
n

n∑

i=1

[H ′′(êi + θ1i hn y) − H ′′(ei + θ2i hn y)]h2n
∫

y2K (y)dy

∣∣∣∣∣

I {max
i

|êi − ei | ≤ cn} + o(1)

≤
∣∣∣∣∣
1√
n

n∑

i=1

H ′(ei )(êi − ei )

∣∣∣∣∣ +
1

2
√
n

n∑

i=1

sup
|z|≤δ

|H ′′(ei + z)|c2n

+2h2n√
n

n∑

i=1

sup
|z|≤δ

|H ′′(ei + z)|
∫

y2K (y)dy + o(1)

≤
∣∣∣∣∣
1√
n

n∑

i=1

H ′(ei )(êi − ei )

∣∣∣∣∣ + o(1)

≤
∣∣∣∣∣∣
1√
n

n∑

i=1

n∑

j=1

Pi j [H ′(ei ) − E(H ′(ei ))]e j
∣∣∣∣∣∣
+
∣∣∣∣∣∣
E(H ′(e1)√

n

n∑

i=1

n∑

j=1

Pi j e j

∣∣∣∣∣∣
+ o(1)

=
∣∣∣∣∣∣
1√
n

n∑

i=1

n∑

j=1

Pi j [H ′(ei ) − E(H ′(ei ))]e j
∣∣∣∣∣∣
+ Op(

√
ŝ/n) + o(1). (11)

Let e∗
i = H ′(ei ) − E(H ′(ei )), then

E

⎧
⎪⎨

⎪⎩

⎡

⎣ 1√
n

n∑

i=1

n∑

j=1

Pi j e
∗
i e j

⎤

⎦
2

|XM̂

⎫
⎪⎬

⎪⎭
= 1

n

n∑

i=1

P2
i i E

(
e∗2
1 e21

)

+1

n

∑

i �= j

Pii Pj j E
(
e∗
1e1

)
E
(
e∗
2e2

)

+2

n

∑

i �= j

P2
i j E

[
e∗2
1 e22

]

= O(ŝ/n) + O(ŝ2/n) = O(ŝ2/n) a.s.
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It can be derived from (11) and condition γ + 1/k < 1/2 that
√
n[T ( f̂n) −

T ( fn)] = op(1). Therefore,

√
n[T ( f̂n) − T ( f )] = √

n[T ( f̂n) − T ( fn)] + √
n[T ( fn) − T ( f )]

= 1√
n

n∑

i=1

(H(ei ) − EH(e1)) + op(1)
d−→ N (0,Var(H(e1))).

This completes the proof of Theorem 5. ��
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