Supplementary Material: Convergence Rates for Kernel
Regression in Infinite Dimensional Spaces

Joydeep Chowdhury - Probal Chaudhuri

1 Small ball probabilities of non-Gaussian processes

In Propositions 1, 2 and 3 below, we consider two random elements T and G,
and define ¢r(t,h) = P[|T — t| < k] and ¢ (g, h) = P[|G — g|| < h], where
t and g are some fixed elements and h > 0.

Proposition 1 Let By and By be separable Banach spaces, and f(-) : Ba —
By be a function such that for any u € By, there exist constants r,s > 0, which
may depend on u, such that for any v € Bs sufficiently close to u, we have
rl|lv—u| <||f(v) = f(u)]| < s|lv—ul. If T and G are random elements with
T = f(G), and the small ball probability of G satisfies the bounds described
in (9) in the main paper, then similar bounds also hold for T.

Proof Under the assumptions of the proposition, f(-) is a one-to-one function.
Let t be an element in the range of f(-). Then, t = f(g) for some g. Conse-

quently, for some positive constants r and s, which may depend on g, we have
for all sufficiently small h,

P[s]|G — gl <Al <P[[f(G) - f(g) < h] <P[r|G — gl <A

I CHELCUE L (1)

The proof follows by applying the bounds in (9) in (1). O
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Let G be a Gaussian process whose small ball probability ¢g (g, h) satisfies
the bounds in (9) for sufficiently small h, so that

C1h" exp [—~Ca(1/h)"* (log(1/h))"] < ¢a(g, h) < Csh' exp [~Cy(1/h)"*(log(1/h))"*]

as h — 0%. Here, C;,C5,C5,Cy > 0 and tq,t2,t3,t4 > 0 are appropriate
constants, all of which, except C7, are independent of g. C; may or may not
depend on g, but if it depends on g then C; = C} exp[—(1/2)]|g]|?] for some
positive constant C7. Also, either t5 > 0, or t3 > 1 with Cy = Cy.

In Proposition 2 and Proposition 3 below, we shall derive the bounds on
the small ball probabilities of some non-Gaussian processes. There, we shall
assume C = C] exp[—(1/2)|/g||?] for some positive constant C}. Since C}] >
C} exp[—(1/2)|/g||?] for all g, establishing the lower bound of the small ball
probability, when C; = Cf exp[—(1/2)|/g||?], also gives an appropriate lower
bound when C; does not depend on g.

Proposition 2 Let T = G/U, where G is a Gaussian process whose small
ball probability satisfies the bounds in (9) in the main paper, and U is a bounded
positive random variable independent of G. Then, the small ball probability of
T also satisfies the bounds in (9).

Proof Note that

¢r(t,h) = P[|G — tU|| < hU] = E[pg (tU, hU)]. (2)
Let 0 < U < wuy for some ug > 0. Recall from (10) in the main paper that
m(h) = C2(1/h)*2(log(1/h))* for 0 < h < 1. Since m(hug) < m(hU) for all
h > 0, we have

¢c (tU, hU) < C3(hU)" exp [-(Cy/Ca)m(hU))]
< Cs(hug)"™ exp [— (04/02)7”( 0)]

() (- (1) ()]
() () ()]

for all sufficiently small h. Hence, for all sufficiently small h,

E[éc (U, hU)] < Caulthts exp[ 24 (uO)tz (;L)t (1ogl11)t3]. 3)

Now, if U is a degenerate positive random variable, i.e., P[U = wug] = 1,
then the lower bound of ¢ (tU, hU) trivially satisfies (9). So, we assume
that U is non-degenerate, and P[lp < U < wug] > 0 for some Iy > 0. We
consider the case where the constant C; depends on the center of the small

= Cguf)‘* htt exp

< Cg,ut‘1 h'* exp
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ball probability of G. The case when C does not depend on the center of the
small ball probability of G can be covered similarly. So, we have

E[¢c (tU, hU)]

> E [C] exp[—(1/2)[[tU]|*](hU)" exp [-m(hU)]]

> E [Cf exp[—(1/2)U 6] 2)(h0)"* exp [-m(RU)] I(U > 1)

> E [C] exp[—(1/2)ug||t]*](hU)" exp [-m(hU)]I(U > Io)]

> Cf exp[—(1/2)ug|t||*)1g h™* exp [—m(hlo)]

1\ loglo\ " /1\" 1\"
=Cy exp[—(1/2)ug||t|\2]lélht1 exp l— <lo> <1 — log}ll> (h) (log h)

1\ /1\" 1\"
> Cexpl- (/2 n exp | -2 (£) (2) (tog (1)
lo h h
for all sufficiently small h. The proof is completed combining (2), (3) and (4).
O

Note that if T is an infinite dimensional ¢-process with degree k, it can
be expressed as T = G/+/x/k, where G is an infinite dimensional Gaussian
process, x follows a x2 distribution with degree of freedom %, and x is inde-
pendent of G. In the proposition below, we establish the bounds for the small
ball probability of an infinite dimensional ¢-process T.

Proposition 3 Let T be an infinite dimensional t-process in some normed
vector space with corresponding Gaussian process G, and the small ball prob-
ability of G satisfies the bounds in (9) in the main paper with to > 0. Then,
the small ball probability of T also satisfies the bounds in (9).

Proof We have
or(t.h) = P[|G — ty/x/k| < /3]
-5 [fo - wan] <k | ]

__ [ N AP
2’51“(12“)/0 ¢G<t\/;, h\/;)e u?2 " du. (5)

Define my(h) = (1/h)*(log(1/h))! for 0 < h < 1. Since ty > 0, mi(h) — o0
as h — 0", Let

ts=1+ 2. (6)

Define
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Clearly, U(h) — oo as h — 0T. Also,

1\" NI 1 %
h\/U(h) =h [(h) (log h) =hi (log h) —0ash— 0.
(®)

So, from (9) in the main paper and (6), (7) and (8), we have for all sufficiently
small h and for any u < U(h),

i)
(2 ol (4]

ts
. o (1) 1\" logvk 1
= C:i u%htf*exp — Ok F (h) <logh> <1+ Og\f— ogﬁ)
R

5 log log -

03 t

4
u? htexp

— ;t
2

—Cyk# <t212>t3 (ml(h))‘ls] : (9)

since for all sufficiently small h and any u < U(h),

logvk log+u 1
R
log 7 log & to + 2

Hence, from (5) and (9), we have for all sufficiently small h,
¢ (ta h)

1 Uh) ( \/E \/E) .k
= — ty/—, hy/— | e 2uz"tdu
e (Wi
1 o U U w &
4+ t\/77 h\/7> e”2u2 tdu
251 (&) /U(h) be ( k k
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I (43%) (2>24 . w1 \® 1 1\ [ 1\"
<|—=22(2) C3+422 |exp|—min Ckz( ) , - <) (10 > )
(p(g) k) P i\nr2) A\ &

We now proceed to find a lower bound for ¢r(t, k). From (9) in the main
paper, (6), (7) and (8), we get that for all sufficiently small h and for any
U(h) <u<2U(h),

(o)

> C] exp l—2 t

1] ) olrom ()

c It AR 1\"* log vk log/u ’
e T —ut e — Ok T (= log 1 -
P T <h> <Og h) Togd st
cr ¢ [ t|? 1 t 2\% —t2
> Tlu%htl exp —7” | (ml(h))t15 - CQk% o (ma(h))" =
K k s
/ + [ t 2 t 2 ts 1
= Cfiu%ht1 exp | — (” +Cok# () ) (ml(h))%] : (11)
R k ts
since for all sufficiently small h and any U(h) <
1 k1 2
1+ og\( - Og\( < i
log + log 7 ts

From (5) and (11), we have for all sufficiently small h,

QST(ta h)

1 2U(h) . b

> 22 1d
_2§F(§) o ¢G(\/7 \/7>e U U

1 G " lel” H u (2" T

h' Cy k — h))ts d

2§F(§) k% _/U(h) €xXp + t5 (ml( )) e 22u 2 (A

1o | o, . 6] w2\ 1
< du| bt — k = h))?
Q%F(g)kz [/ oo e B’ Ak m exp B + Cok2 (ts) (my(h))*s

v

1 Cy /QU(h) _u . ||t||2 N ( 9 )ts N
2 T Th U(h du| h** ex Py o= [ 2 ma (B)) s
50 (5 k% oo W)™ PTGk () ) )
1 C{ btk ”tH t <2>t3 N
=————F(U(h)) * h'tex + — +Cok? | — mi(h)) s
2:0 (&) k= (Uh) pl (2 L 2 ts (my(h))

t

1 t to 2 t3 1 % 1 ?
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So, from (10) and (12), we have for all sufficiently small h,

t2 t3 t
1\ % 1\ % 1\ % 1\ %
h't exp l—ul (h) (log h) ] < ¢(t,h) < ugexp l—ug (h) (10g h)
where
1) u (2" r(43%) (2
= —_ —_— k2 [— f— —_ e 7 —
" (2* ) ) e ey

w1 \"® 1
and ug = min ¢ Cyk2 <t2+2) 1 (-

2 Results required to prove Theorem 7

Lemma 1 Let {U,} be a sequence of real random variables and let {V,} be
another sequence of positive random variables with V,, = op(1) as n — oo.
Then, for any a > 0 and any € > 0, P[U, >a+V,] > P[U, > 2a] — ¢ for
all sufficiently large n.

Proof Since V,, = op(1) as n — oo, for any a > 0 and any € > 0,

P[U, >a+V,] >P[U, > 2a and V,, < (a/2)]
>P[U, > 2a] —P[V, > (a/2)]
>P[U, > 2a] —¢

for all sufficiently large n, which completes the proof. O

Lemma 2 Suppose that in (9) in the main paper, we have either to > 0,
or tg > 1 with Cy = C4, the kernel K(-) satisfies A(i), and the decom-
position (3) in the main paper along with conditions B(i)-B(iii), C(i) and
C(ii) are satisfied. Consider a bandwidth sequence {h,} that satisfies A(ii)
and h¥n¢(x, h,) — 0 as n — oo. Then, there exist ¢ > 0 and § > 0 such
that

P {(m_l(logn))iﬁ Hén(x) - Q(X)H > c} >4

for all sufficiently large n.
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Proof Recall from subsection 4.1 in the main paper that B, (x) = Bn(x) +
R, (x), where R, (x) = op(h?), and B, (x) is a non-random quantity. So, from
(3) in the main paper and condition B(iii), we have

~ ~

O,(x) — O(x) = Bp(x) + Vo (x) + Qn(x), (13)

where Q,,(x) = Ry, (x) + Ry, (x) = op(max {h?, [n¢(x, hn)]fl/Q}) as n — oo.

Recall the projection functional (51() defined in subsection 4.1 and the
positive integer 7o mentioned in condition C(ii). Note that ||¢ | = 1. So, for
all v e B,

|Gio (V)] < JJo]l. (14)

Using A(i), A(ii), B(ii), C(ii) and arguments similar to those in Theorem 4,
we get

[né(x, ha)]' 2 EE (x)] 2 EN (%) iy (Vo () — Z (15)
in distribution as n — oo, where Z follows a normal distribution with mean

zero and variance V(x) > 0.
Next, consider {h,,} that satisfies A(ii) and

h2Png(x, hy) — 0 as n — oo, (16)
From (40) in the main paper and (16), we get that for all sufficiently large n,

(%, b)) "2 > 1 > & (m™" (log n))”
= (m_1 (logn))fﬁ [np(x, hy)] "2 > cf7 (17)

where ¢; > 0 is a constant. Since Q,(x) = op(max {h, [nqﬁ(x,hn)}_lp})
as n — 0o, from (16), we have Q,(x) = o]p([ngb(x,hn)}fl/z) as n —» oo.

Further, from B(i), we get that h,”B,(x) is bounded, and hence from (16),
we have [n¢(x, hy,)]"/?B,,(x) — 0 as n — oo. Therefore,

o, b)) [ Ba)|| + | @n (0] = 02 (1) (18)

as n — 0. Take
lcf 1
= — e 1
¢= 57 and ¢ 2]P’HZ| > 1],

where Z is the normal random variable described in (15). So, from (8) in the
main paper, Lemma 1, (14), (15), (17), (18) and the triangle inequality, we
have for all sufficiently large n,

P[ (m~"(log n))_ﬁ H@n(x) - 0x)|| >

Ino (b)) [[[Va0) | = | Bu0)| = |Qu 0]

(=1 (logn))” [n(x, hn)]1/2 e
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910 (V00| > i 4 11, )2 [ B9l | + @ ()]

Bio(Va())| > 207 ~ 2

[
[

>P D[nfb(x, ho)|V2[E® (X)]_1/2E1(~Ll)(X)(Z)io“/n(x))‘ > QCCI_BL:| _ g
[

Lemma 3 Suppose that in (9) in the main paper, we have either to > 0,
or ts3 > 1 with Cy = Cy, the kernel K(-) satisfies A(i), and the decom-
position (3) in the main paper along with conditions B(i)-B(iii), C(i) and
C(ii) are satisfied. Consider a bandwidth sequence {h,} that satisfies A(ii)
and h2Pne(x, h,) — oo as n — oo. Then, there exist ¢ > 0 and § > 0 such
that

P {(m—laogn))*ﬁ Hén(x) - @(X)H > c} > 6
for all sufficiently large n.
Proof Consider {h,} that satisfies A(ii) and
h2ng(x, hy) — 00 as n — 0. (19)
Let Qn (x) be as defined in (13). Since Q. (x) = op(max {2, [n(x, h,)] *})

as n — oo, from (19), we have Q,(x) = op(h?) as n —» co. Further, from
Theorem 3 in the main paper and (19), we get

hy 2PE[|[Va (2))1] = by P [nep(x, 1)) np(x, b )E[|| Vi (3)[[2] — O
as n — oo, which implies h,,?V,,(x) = 0[[»(1) as n — oo. Therefore,

B [IVa )| + [[@n ][] = 0 (1) (20)

as n —> oo. Note that we have chosen ©(x) satisfying C(i), so that for any
kernel K (-) satisfying A(i) and any sequence of bandwidths {h,} satisfying
A(ii), we have for all sufficiently large n,

hy P (1B (x)]| > b1 > 0, (21)
where by is a constant. Take
b B
e=29 and 5= 1
4 2

Then, from (40) in the main paper, Lemma 1, (20), (21) and the triangle
inequality, we have for all sufficiently large n,

P[ (m~(logn)) 7 [|@n(x) — Ox)| > ]
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e (1B G| = Va0 = [[@n G0

>c
(m=1(logn))” hy,”

> P [ | Ba)]| > cei + b [[VaGol| + [|@n )]

> B [ ]| Ba ()| > 2] - |
315 b 1 3

a

Lemma 4 Suppose that in (9) in the main paper, we have either to > 0, or
ts > 1 with Cy = C4, the kernel K(-) satisfies A(i), and the decomposition
(3) in the main paper along with conditions B(i)-B(iii), C(i) and C(ii) are
satisfied. Consider a bandwidth sequence {h,} that satisfies A(ii), and 0 <
€1 < h2Pné(x, h,) < ez for all sufficiently large n and some €, and e5. Then,
there exist ¢ > 0 and § > 0 such that

P [(m—laogn))*ﬁ Hén(x) - Q(X)H > c] >
for all sufficiently large n.
Proof Consider {h,} that satisfies A(ii) and
0< e <hPPng(x,hy) < e (22)

for all sufficiently large n and some €; and €3. From (40) in the main paper
and (22), we get that for all sufficiently large n,

no(x 1/2pp8 €2
(= (1ogm)” frofae, b)) /2 < M VG gy
‘1 ‘1

where ¢; > 0 is a constant. Let @, (x) be as defined in (13). Since @, (x) =
op(max {h, [no(x, hn)]_l/Q}) as n — oo, from (22), we have
max {1, [nd(x, hy)] "/*} < max{y/ez, 1} [n(x, b)) 2
= [n(x, ha)]'? | Qu(x)]| = 0(1) (24)
as n —» oo. From A(ii), B(i) and (22), we get
[ (x, ha)]V2 (| B ()| < [n6(x, b 21505 P Bu(x)]] < vea|Lxllbr  (25)

for all sufficiently large n. Take

B U [ R Y= LA
RENGT? =9 el

where Z is the normal random variable described in (15), and I and L are the
constants described in A(i). So, from (8) in the main paper, Lemma 1, (14),
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(15), (23), (24), (25) and the triangle inequality, we have for all sufficiently
large n,

]P’[ (mfl(log n))_ﬁ Hén(x) — Q(X)H > C]
[ )22 [[Va)l| = | Ba )] = [|@n )]

= >c
L (m=1(logn))” [ng(x, hy)]1/2

> P ([, b)) /2|6, (Va(x))| > ev/@aer® + vl Laclbr + lno(x, b)) /2| Qn (x)]]

> P | [no(x, )] 2LED 0L ED (09 [61, (V00| > 22+ VAT Il | -
>P _ [np(x, hy)]Y2[EP (x)] V2 EWD (%) by, (Vn(x))‘ >1+ \/5l|ILx||bF} - g
>4

O

3 Results required to prove Theorem 9

Lemma 5 Suppose assumptions A(i) and A(ii) are satisfied. Let {h%b)} be
a sequence of bandwidths that satisfies A(ii) and balances the bias and the
variance so that

0 < cr < (W) *Pne(x, h?) < ¢5 < 00 (26)

for all sufficiently large n, where c1,ca are some constants. Also, let {hglop)}
denote the sequence of optimum bandwidths minimizing (25) in the proof of
Theorem 5 in the main paper. Assume that to > 0 in the bounds on the small
ball probability of the covariate in (9) in the main paper. Then,

2%
h(OP)

n

0<ez3 < < ey < o0

for all sufficiently large n, where c3,cq are some constants.

Proof Recall from (10) in the main paper that m(h) = Ca(1/h)*2(log(1/h))%
for 0 < h < 1. From (9) in the main paper and (26), we have

()P nCyexp [<m(h)] < e

and ¢ < ()2 HanCyexp [—(C4/C2)m(h£f))]

— (h%b))zﬁﬂlnexp [—m(h%b))} < L2
Cq
C1

and & < () mexp [(Ca/Coym(n?)]
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® T LS T
m(hy”) m(hy”) m(hy”)
log & —(28+ta)log <
and o < e+ o e
m(hy) m(hy) m(hy)  Co
for all sufficiently large n. When ¢5 > 0 in (9), we have
—(28 +t1)log ﬁ log &
m(h?) T om(nd) ’
log €L —(2B + t4) log &5
& (6;3 — 0 and 0 b 50

as n — oo. Therefore, given any € > 0, from (27), we have for all sufficiently
large n,

710g(7;0) <1l+4¢€¢ and % —e< logg)
m(hy”) Cy m(hy”)
logn logn
S <mhy< ——2= -
Tre =MD S (60—
_1 (logn _ logn
=) >hW s [ ——— ). 2
= (75) 20 2 (=) =

Next, we consider our optimum bandwidth hﬁ{”’ ). From (34) in the proof of
Theorem 5 in the main paper, we have, given any € > 0 and for all sufficiently

large n,
mt (187 S pom) 5 1 (logm (29)
1+e€ " 1—c¢

Since m(h) is strictly monotone decreasing function for h € (0,1) and m(h) —
0o as h — 07, m~Y(u) is well-defined for all u > 1 and m~!(u) — 0T as
u — 00. Given € > 0, we have

(50 9n) = em(h) o (1 28D Llese)™,

(1+¢)te log + t2 log +
a 1 log(1 — 11 &
m(c tz(l—e)h):cm(h) —|1- og( 16)—|—f ng :
(1 —¢)te log & t2 log &

For sufficiently small h > 0, we have

1 log(1+¢€) 1 loge\™ 1 log(1—¢€) 1 loge\"™
a1 T T Lier) 1A om T T T hloel)
(I+¢) log + t2 log + (1—¢) log + ta log +

which implies

m (c_%(l + e)h) < em(h) <m (c_i(l - e)h)
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for all sufficiently small & > 0. Hence, for all sufficiently large u, we have

m (cii(l + e)m_l(u)> <cu<m (07%(1 - e)m_l(u))

_L m~(cu) a1
— C t2(1—€)<m<c t2(1+€). (30)
From (30), we get that for any ¢ > 0,
—1
i G N o)
1)

as u — 00. Therefore, using (28), (29) and (31), we have

0]

n

hSIOP)

0<ecg3 < <ecy <00

for all sufficiently large n, where c3, c4 are some constants. a

Lemma 6 We denote our optimum bandwidth minimizing (25) in the proof

of Theorem 5 as hS{”J). Let éffp) (x) be as defined in Theorem 9. Then, under
the conditions in Theorem 9,

(hioP))=F# Hég’p)(x) - Q(X)H =op(l) asn— oo,
and (h{P))~2PE H(:)\,(fp) (x) — Q(X)H2 — 0 asn— oo.

Proof From (29) in the proof of Theorem 5 and the lower bound of ¢(x, h) in
(9) in the main paper, we get

(h{P)) 2B ng(x, h{P)) — 00 as n — oo, (32)
Since F'(-) € F(x,f1,G) for some 51 > 3, we have

(d(x,z))_ﬁ |F(z) — F(x)|| — 0 as d(x,z) — 0.

Consequently,
(h;ozo))fﬁ HBT(LOP) (X)H =op(l) asn — oo, (33)
2
and (h{")"*E HBq(zOp) (X)H — 0 asn—r oo (34)

From Theorem 3 and (32), we have
(bieP) 2 [V o)

= (0l (ot ne?)) ™ ) ot e [V G 0 (35)
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as n — 00, and from (35) and the Markov inequality, we get
(hloP)y=h HV’SOP)(X)H =op(1) as n — 0. (36)

From condition B(iii) and (32), we have

(he?) P [ REP ()| = 02(1) as n— o0, (37)
Since || ¢, || = 1, when E[||R,,(x)||] = 0(32) as n — oo, from (32), we have
2
(h;op))*w[[g HR;OP) (X)H — 0 asn — oo. (38)

Therefore, from (33), (36) and (37), we have
(ne”) =7 |8 (x) — 6|
< (he) 77 |[ B G| + () 7 [|[Vin o) + ()| R |
=op(l) asn — oo.

Further, from (34), (35) and (38), we have

(o) 67 (x) - 00)|

2 2 2
< 3(he) 2R [ BE ()| + 3(h77) R |V )|+ 3(aE7) B || REP (x|
— 0 asn — oo.

O

Lemma 7 Let b and O (x) be as defined in Theorem 9. Then, under the
conditions in Theorem 9, given any € > 0, there is 6 > 0 such that

P [(hﬁf’))*ﬁ Héﬁfﬁ(x) - @(X)H > 5} S1—e
for all sufficiently large n. Further,
(W) ~2PRE Hé,(f’) (x) — @(X)H2 is bounded away from 0 as n — oo.
Proof Let hY) satisfy (26). Since F(-) € F(x, 51,G) for some 8; > 5, we have
(d(x,z))fﬁ |F(z) — F(x)|| — 0 as d(x,z) — 0. (39)
Consequently,

(n(D)=# HBS’) (x)H —op(1) asn — co. (40)
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Let Z be the normal random variable described in (15). Given any € > 0, there
exists § > 0 such that

P[|Z| > 20\/col 'L] > 1, (41)

where ¢ is a constant described in (26), and I, L are constants described in
assumption A(i). Hence, from (8) in the main paper, (15), (26) and (41), we
have

P [H(hgﬁ)—ﬁvgl?)(x)H > 25}

=2 [ (00 (notx. 1) ),

(motoe.n)) " V0 ()

> 2]

> P || (note.n)) " v 0

> 25\/?2]

> P (n¢(x, h5§>>))1/ 2 G (VO (x))’ > 25@}

> B[ (ot 1) " [B00] 2B 005, (V0 (0) | > 25w
Sl—e (42)
for all sufficiently large n. From condition B(iii) and (26), we have
() || RO )| = 02(1) a5 — o0, (43)
Therefore, from Lemma 1, (40), (42) and (43), we have
P[(n) |6 (x) - 6(x)| > o]
> P [(h0) 7 [V 0| - 007 | BO )| - 1)~ || RO ()| > o]
=P [(n0) 7 [V )| > 5+ (07 [ BO )| + (07 || R )|
>P [(hgf’))‘ﬁ HV,Sb)(x)H > 26] >1—¢
for all sufficiently large n.

We proceed to prove the second part of the lemma. Since |¢, (v)| < ||v]|
for any v, from an application of the Cauchy-Schwarz inequality, we have

E Hégfﬁ(x) - @(X)H2
= E[[BO () + V000 + RO ||
> E (31, (B (09) + iy (V0 (09) + i (R 66)]

& [(éio(Bff’) (XD)Z} +E [(a}io(V,S”) (X))ﬂ +E [(éio(REf’) (X)))Q]
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+ 28 [ 91, (R () (61 (BY (%)) + 6 (V" ()|
> & |((B000) | + B | (3,00 60) | + | (6 (R0 600) |

~2 B | (G (®P6) - | ((8000) | +£| (3 00000) ] "
(ad)

From (39), we have
0025 | (5,50 ) | < 00 >E B0 0 a9
as 1 —> oo. From (8) in the main paper, (15) and (26), we have
() | (,000) |
= (097 (notx 1) ) motx 1 | (1,200

1 1/2 _
> 21| (nobx ) (B 01 B 006, (VO ()| > 1711
C2
>c6>0 (46)
for all sufficiently large n and for some constant cg. Further, since ||¢;, | = 1,

from Theorem 3 and (26), we have

() | (b, 07200) |
< (40172 (notx. ) ) moxn®e V0G| < £ )

for some constant ¢; > 0 and for all sufficiently large n. Since ||¢;, || = 1, when
E[||Rn(%)]|?] = 0(62) as n — oo, from (26) and (32), we have

1) | (3RO ) | < 00 2B rPe 0 e

as n —» o00.
Therefore, from (44), (45), (46), (47) and (48), we have

(1)~ |69 (x) - O(x)

for all sufficiently large n. O
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4 Results required to prove Theorem 10

Lemma 8 Let 0 < ¢y < 0.5 be fized. For h € H,,, define

. 1 logn
D 2
n(X7 h’) (1 + 60) g C’ﬂ/ n¢(x, h) Y
~ ~ ~ 2 ~
Cr(x,h) = max <H(9n(x, B) —@n(x,max{h,h'})H Dn(x,h’)>
' €H,, n
Then,

C(x,h) < Cp(x,h) + max (ﬁn()g h') — Dy (x, h’))+ :

h'€H,,
Proof The proof is straight forward from the definitions of C,,(x, h), Dy (x, h),
Cn(x,h) and D, (x,h). O

Lemma 9 Let D, (x,h) be as defined in Lemma 8, where h € H,,. Then, there
exists a positive integer N1 such that for all n > Ny,

. 1
/ / L
E [hmea@bli (Dn(xah)_Dn(xah)>+:| <3
~ 2
and E[Dn(x,h)] < 3D, (x, h) + 342;’ :

Proof Define the event

(gx,h’
vea = ) {‘¢Ex,h';_1

h'€H,,

<€O}a

where €j is as in Lemma 8. Since the cardinality of H,, is at most n, from an
application of the Bernstein inequality, we get that there exists an integer n
such that for all n > nq,

P(U(x))] =P [ U {[o6em) = o6e,1)| = eooix, h')}]

h'€H,,

SZP[

h'eH,

n

> (A, X;) < b)) = ¢(x, b))

i=1

> eono(x, h’)]

2
< 2h§ﬂ exp [—4logn] < 5 (49)

Note that

E [max (En(x7h/) — Dulx, h/))J

h'€eH,
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+E {&%ﬁ( (Dn(x, 1) — Da(x, h'))+ I ((U(x))c)] . (50)

When [(U(x)) = 1, we have

(1—e0)d(x,h') < dp(x,h') < (1 + €o)p(x,h') for all b € H,

1 1 1 1 1
< = < for all B’ € H,, (51)

T Ut o B) " e n - (= <o) o(x, B

— max (Dn(x7 B') — Dy (x, h’))Jr}I(IU(x)) =0

- / /
—E [hgle% (Dn(x, h') — Dy(x, h ))

]I(I[J(x))} =0. (52)
+
Let ny be a positive integer such that for all n > na, ¢, < (1+ €g){o- So, from
(49), we get that for all n > max{ny,na},

I / /
E [hrlneaﬁi <Dn(x7 h') = Dn(x,h ))

(U6

+

< 3 B|(Bubxt) - D)) 1(UG0))]

h'€H,,

< Y Dulx, W)P(U(x))°]

h'€H,,
B 1 9 logn . 2ii
= h,eZH i 60)0 Cn ox, h’)P [(U(x))°] < 2o logn n? (53)

Let ng = min{n| logn > (2/(1 + €y))o?¢o}. Then, from (50), (52) and (53),
we get that for all n > max{ni,na,ns3},

E [gneaﬁc (Dn(x, h') — Dy(x, h’))J < % (54)

Next, from (49) and (51), we have for all n > n4,

E [Dn(x,h)] = E [Dn(x, )I(U(x))] + E [Dn(x, )T ((U(x))%)]
(1 + 60)
(1 — 60)

- 3¢no2
< 3Dpn(x,h) + COQU.

< Dy (x,h) + 02CunP [(U(x))€]

(55)

n

Taking Ny = max{ny, ng, ng}, the proof is complete from (54) and (55). O

Lemma 10 Let the assumptions of Theorem 10 be satisfied. Let y > 0. We
have for all sufficiently large n,

|

n K(hlild(xa Xl))
ZILX (G(Y;) —E[G(Y;) | Xi]) nE[K (h/~1d(x,X))]

i=1

> y] <n3
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for all W' € H,,. Further, given any ¢y > 0, co > 0 and any 0 < € < 1, we have,
for all sufficiently large n,

- E[G(Y:) [ Xi])

(1 —€)?2np(x, h')c3(c1 Dp(x, W) + 1)

K(Wd(x,X,))
nE[K (W—1d(x, X))]

> cov/e1Dp(x, W)+t

< exp {—

(1 —€)%212np(x, ' )ear/c1 Dy (x, ) + t

1652 L2 }

+exp |—

160 L2

for all W' € H,, and all t > 0.

be independent random elements with

for all integers m > 2. Let

P = Ef[&1 + -

If « =u— (Bn/U,) > 0, then

Proof We use the following result from Yurinskii (1976): Let &1,--- ,&, € B
Ellg]™ < (ml/2)b3H™?
+&l,  U2=02 4+ 412
el 2 ull] < exp |- (50

Pll|& + -

Now, we choose

§i = Lx (G(Y:) — E[G(Y) | X))

fori=1,---

El|& 4 -+ &l

n

=E

=1

IN

|3 [e

IN

[

Z]Lx (G(Y:) —E[G(Y:) | Xi]) B
- E[G(Y;)[X

- E[G(Y:) [ Xi])

8(1 + (aH/2U,))

K(htd(x,X};))
nE[K (h'~1d(x,X))]

,n. Since B is a type 2 Banach space, from D(i), we have

K(W~td(x,X;))
nE[K (h'~1d(x,X))]

1) K(W=td(x,X;)
SRR (d(x, X

K(W~td(x,X;))
nE[K (h—1d(x,X))]

K2(W'~1d(x,X;)) H :

G(Yy) = BIO(Y) [ X %] s
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L
< Ve =,

T Ine(x, W)

where c is a positive constant. Also, again using D(i), we get

Lx (G(Y:) — E[G(Y:) | X))

Elelm ~E| e

nE[K (W ~1d(x, X)

< m! oL mTE o g2r2
— 2 \Un¢(x,h) 12n2¢(x, h')’

and we can take

272
5 o“L _ oL
Un = Enoey ™4 2= pomny

So, (/gn/Un):\/E Now,
T s

v, U, oL

for all sufficiently large n and for all A’ € H,,. Also,

(y_ﬁn> H (%/W_\/a 1 yl

U, U, )2, ~

So, from (56), we get that for all sufficiently large n (depending on y),

= K(h'~'d(x,X;))
2
< exp [— (yé:;gLZ _T_ Z\lflii) < exp[-3logn] =n"3.

For the next part in the statement of this lemma, we have

2 .2
VerDp(x, h) + ¢ leay/e1502%C, :
- U(X7 L g 7 >\/E:5
n g n

. C2
min
t>0

< .
2\/np(x,h’)  20L

for all sufficiently large n and all A’ € Hi,,. Also, given any 0 < € < 1, we have,

for all sufficiently large n,

[ 252
v erDy(x, b t legy/e150°C
602 o1Dn (3, 1) + > ev/logn vV s >4/e

U, oL

2
DTL bl ! n b !
(AT, gtz

U, 2 U2

n
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for all A’ € H,, and all ¢ > 0. Now,

cov/aDn(x, M)+t B,\ H H l
_Pn < o/ Dy (X, B) + f—e < o/ 1 Doy (X, 1) + £ —
< Un UTL 2Un = “ (X ) + 2U721 < “ “a (X ) * GL

for all A’ € H,, and all ¢ > 0. So, from (56), we get that for all sufficiently large
n,

- K(R'~'d(x,X;)) -
P ;}Lx (G(Y:) ~EICY) X)) enemma x|~ 2V alnbe )+
_ 2,272 / /
<oxp |- (1 —€)?csl*ng(x, h')(c1 Dp(x,h') + 1)
8o L? (a + co/er Dy (x, h') + t)
(1 —€)212np(x, W )c3(c1 Dy (x, h') + 1)
< exp {_ 1602L2
N (- €)212né(x, h')car/c1 Dy (%, h') +t
P 160 L2
for all A’ € H,, and for all ¢t > 0. O

Lemma 11 Let C,,(x,h) be as defined in Lemma 8, where h € H,. Let the
assumptions in Theorem 10 be satisfied. Then, there exists an integer No such
that for all n > No,

S Dy (x, 1)
< 28 N2 B n\X,
Cn(x,h) < Mih™" + 24 X, <||Vn(x,h e T )
/ 2_ 123 "2
e, g (IR = (3014 Wit )))

for all h € H,,, where My > 0 is some constant. Further, for allm > Ny and
all h € H,,, we have

L

>3

N2 128 N2
P[h,@r{gax » (IRaGe )P = (M7 4 |Vale, ))) >

v h'<

’ Q_ﬁn(xvh/>
h/eﬁ?ﬁgh<”‘/”(x’h)” —o1 . <

Proof Note that

N—

} <2n7?

and E

S -

Chn(x,h)

+

S el (2 Hé”(x’ h) — Q(X)HQ +2 Hén(xv h) — Q(X)H2 — Da(x, h/)>
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+2 max

h'€H,, h'<h

4

<2, ., (|80 - e - 220
Hén(x, h) — @(X)H2 — D"(X’h/)>

2 Dy(x,h)
h'eH h’<h< 9 Xh (X)H B 4 >+ (57)

since D,,(x,h') > D, (x,h) for b’ < h. From (3) in the main paper, we have

i, B 00 - DZ’”)

<|B (o, W)+ [V G, W)+ | R, B — D(f;h)>
+

h’GH h’<h

( (x, 1)) +Mh'2f3)
h’G]HIn,h’<h

D (x, 1)
+6h/€H h'<h (V (e, 1 )H 24 >+
ni2 23 N2
+3,, max_ ([[RaGe)|* = (MI% + V(e 1)) - (58)

From assumption B(i) and the fact that max{h’'|h’ € H,,} — 0 as n — o0,
we get that for all sufficiently large n,

max (I1Ba(x, W) + MR2) < My (59)
h'’eH,,,h'<h

for all h € H,,, where M; > 0 is a constant.
Next, define the event

NI~ K(Wd(x,X;))
S, 1) = {n ; EKE-1dx X)) (1= 60)} ’

where € is the number described in Lemma 8. From assumption D(ii) and the
fact that max{h’ |h’ € H,,} — 0 as n — oo, we have for all sufficiently large
n’

L/eH en (1, I = (MA 4 [Vl h'>||2))+ > nl]

<Y {(HR (x, )|* - (Mh’25+||Vn(x,h’)||2))+>O]

h'€H,

< 3 B[IRuGe W) > MA 4 [V, )]
h'€eH,,
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<Z [IVa(x, )| > €2]

h'cH,,
< > P[[Va(x, B)| > €2 and I(S(x, 1) + > P[(S(x,h))]. (60)
h'€H,, h'eH,,

Now, using assumption A(i), the fact that ng(x, h’) > (logn)? for all A’ € H,
and the Bernstein inequality, we get that for all sufficiently large n

Y Ps S p[ Z[ - x| 260]

h'€H,

h'EH K(hlild(x7 X))]
< Z exp [-3logn] <n~2 (61)
h'€H,

Also, from Lemma 10, we get

> P[|[Va(x, 1)|| > €2 and I(S(x, 1)) = 1]

h’eH,,
K(W=1d(x,X;))
< Y,) - E[G(Y,) | X; 1
h%% Z; GY:) = BIG(Y) | Xi]) s prciaie sy | = (1 o)
sn (62)
for all sufficiently large n. Hence, from (60), (61) and (62), we have

123 N2 i L
F L/EH h<h (”R SOl (Mh + Vo (x, Bl )>+ ~ n2] =2

(63)
for all sufficiently large n and all h € H,,. Next,
/ D (x, 1)
E lh eHn h'<} (”V (o, )” 24 >+1
Dy (x, 1)
< L i R A
ZE@vmm 24)]
h el +
D, (x,
<ZE@VMMMMW—;)H
h'eH +
+ Y E[IValx MIPTS e 1)) (64)
W eH,

Since B is a type 2 Banach space, from D(i) and (

> B[Vl )P TS, 1))

h'eH,,

61), we have
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vy E (|| L (G(Y)) —~ EIG(Y0) [ X)) K0, X)) X0, X,
= (i K (' —1d(x, X))’
(X1 E [ (GOY:) — EIGY) | X)) | X,] K2 (0 1d(x. X))
= Z A n 2
heH, | (>izi K(h1d(x,Xy)))
) Sy K2 (W d(x, X))
<co E
i [(Z?lmw—ld(x X))

< co? Z P( | <co’n? (65)
hleHVL

L((S(x, h’))c)]

T((S(x, h’))c)}

s L((S(x, h’))c)]

h’'eH,

for all sufficiently large n, where ¢ > 0 is a constant. On the other hand, taking
€ = ¢p in Lemma 10, we have for all sufficiently large n,

2 E (”V (x, W)[* 1S (x,h’))_Dn(X’h/)> 1
.

24
h'€H,,

-3 [r (|Vn<x,h'>|2ﬂ<s<x7h'>>—W) Zt] at
+

h’eH,

> [ el ) = P

h'€H, I 24
= I ) _ ) K(h~td(x,X;)) Dn(x, h)
< h% i P ;Lx (G(Yi) —E[G(Y)[X]) = [K(h’—ld(x,Xi)}H > (1= eo)\[ =5+t dt
_ 472 /
<y / exP[ (L0 ongx, ) (iwxﬂ’)“ﬂ »
h €M,
oo (1 _ 60)312n¢(x h/)
+h%}:ﬂ /0 exp [ 16012 24D,L(x ) +t| dt. (66)

Now, for the second term on the right hand side of (66), we have

(1 —€0)3?nep(x, h') 1 ,
2 / P [ 160 L2 aa P M)+

dt
h' €M,
=2 Z /OO exp _a — @) Png(x, h,)s sds
W e IV F DG 16oL?
1
67
nlogn (67)
for all sufficiently large n. Next, we take
1 22

¢o > 768 L0 (68)

( )4 l2'



24 Joydeep Chowdhury, Probal Chaudhuri

Since ¢, — (o as n — 00, we have

(1+e) L?
(I—e)* 12
for all sufficiently large n. Consequently, for the first term on the right hand
side of (66), we have from (69),

(1 —€0)*PPnop(x,h') [ 1 ,
Z/ exp|: 601)6027226( )(MDn(X,h)‘*‘t)}dt

h'eH,,

S [ Ut ],

Cn > 768 (69)

W, )3 160217
212 B 472
272 . 4 12
- h% (1 —eol)i(lIQ?faﬁ(X, 7y P |:_7(138((11+€€00))]{J2C (210g")}
o g m

for all sufficiently large n. Hence, from (66), (67) and (70), we have

S E (nv (x W)P IS (x,h'»—W) ]< 2
+

=t 24 nlogn

for all sufficiently large n. Therefore, from (64), (65) and (71), we get that for
all sufficiently large n and all h € H,,

’ Dn(x7h/)
E [h’EH h’< (”V (x, P )” 24 .

We choose an integer Ny large enough such that the assertions in (59), (63)
and (72) are satisfied for all n > Ny and all h € H,. Hence, the proof is
complete from (57), (58), (59), (63) and (72). O

< (72)

1
n

From (68), we see that (p depends on the choice of €, and it increases with
an increase in the value of ¢g. Taking ¢y = 0.1 we see that

2

L
G = 150075

satisfies (68). Taking smaller values of €p, we can further decrease the value of
Co, but it cannot be less than 768 in view of (68).

(73)
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