
Supplementary Material: Convergence Rates for Kernel
Regression in Infinite Dimensional Spaces

Joydeep Chowdhury · Probal Chaudhuri

1 Small ball probabilities of non-Gaussian processes

In Propositions 1, 2 and 3 below, we consider two random elements T and G,
and define φT(t, h) = P [‖T− t‖ ≤ h] and φG(g, h) = P [‖G− g‖ ≤ h], where
t and g are some fixed elements and h > 0.

Proposition 1 Let B1 and B2 be separable Banach spaces, and f(·) : B2 −→
B1 be a function such that for any u ∈ B2, there exist constants r, s > 0, which
may depend on u, such that for any v ∈ B2 sufficiently close to u, we have
r‖v−u‖ ≤ ‖f(v)− f(u)‖ ≤ s‖v−u‖. If T and G are random elements with
T = f(G), and the small ball probability of G satisfies the bounds described
in (9) in the main paper, then similar bounds also hold for T.

Proof Under the assumptions of the proposition, f(·) is a one-to-one function.
Let t be an element in the range of f(·). Then, t = f(g) for some g. Conse-
quently, for some positive constants r and s, which may depend on g, we have
for all sufficiently small h,

P [s‖G− g‖ ≤ h] ≤ P [‖f(G)− f(g)‖ ≤ h] ≤ P [r‖G− g‖ ≤ h]

⇐⇒ φG

(
g,
h

s

)
≤ φT(x, h) ≤ φG

(
g,
h

r

)
. (1)

The proof follows by applying the bounds in (9) in (1). ut
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Let G be a Gaussian process whose small ball probability φG(g, h) satisfies
the bounds in (9) for sufficiently small h, so that

C1h
t1 exp

[
−C2(1/h)t2(log(1/h))t3

]
≤ φG(g, h) ≤ C3h

t4 exp
[
−C4(1/h)t2(log(1/h))t3

]
as h −→ 0+. Here, C1, C2, C3, C4 > 0 and t1, t2, t3, t4 ≥ 0 are appropriate
constants, all of which, except C1, are independent of g. C1 may or may not
depend on g, but if it depends on g then C1 = C ′1 exp[−(1/2)‖g‖2] for some
positive constant C ′1. Also, either t2 > 0, or t3 > 1 with C2 = C4.

In Proposition 2 and Proposition 3 below, we shall derive the bounds on
the small ball probabilities of some non-Gaussian processes. There, we shall
assume C1 = C ′1 exp[−(1/2)‖g‖2] for some positive constant C ′1. Since C ′1 ≥
C ′1 exp[−(1/2)‖g‖2] for all g, establishing the lower bound of the small ball
probability, when C1 = C ′1 exp[−(1/2)‖g‖2], also gives an appropriate lower
bound when C1 does not depend on g.

Proposition 2 Let T = G/U, where G is a Gaussian process whose small
ball probability satisfies the bounds in (9) in the main paper, and U is a bounded
positive random variable independent of G. Then, the small ball probability of
T also satisfies the bounds in (9).

Proof Note that

φT(t, h) = P [‖G− tU‖ ≤ hU] = E [φG (tU, hU)] . (2)

Let 0 ≤ U ≤ u0 for some u0 > 0. Recall from (10) in the main paper that
m(h) = C2(1/h)t2(log(1/h))t3 for 0 < h < 1. Since m(hu0) ≤ m(hU) for all
h > 0, we have

φG (tU, hU) ≤ C3(hU)t4 exp [−(C4/C2)m(hU)]

≤ C3(hu0)t4 exp [−(C4/C2)m(hu0)]

= C3u
t4
0 h

t4 exp

[
−C4

(
1

u0

)t2 (
1− log u0

log 1
h

)t3 ( 1

h

)t2 (
log

1

h

)t3]

≤ C3u
t4
0 h

t4 exp

[
−C4

2

(
1

u0

)t2 ( 1

h

)t2 (
log

1

h

)t3]

for all sufficiently small h. Hence, for all sufficiently small h,

E [φG (tU, hU)] ≤ C3u
t4
0 h

t4 exp

[
−C4

2

(
1

u0

)t2 ( 1

h

)t2 (
log

1

h

)t3]
. (3)

Now, if U is a degenerate positive random variable, i.e., P[U = u0] = 1,
then the lower bound of φG (tU, hU) trivially satisfies (9). So, we assume
that U is non-degenerate, and P[l0 ≤ U < u0] > 0 for some l0 > 0. We
consider the case where the constant C1 depends on the center of the small
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ball probability of G. The case when C1 does not depend on the center of the
small ball probability of G can be covered similarly. So, we have

E [φG (tU, hU)]

≥ E
[
C ′1 exp[−(1/2)‖tU‖2](hU)t1 exp [−m(hU)]

]
≥ E

[
C ′1 exp[−(1/2)U2‖t‖2](hU)t1 exp [−m(hU)] I(U ≥ l0)

]
≥ E

[
C ′1 exp[−(1/2)u20‖t‖2](hU)t1 exp [−m(hU)] I(U ≥ l0)

]
≥ C ′1 exp[−(1/2)u20‖t‖2]lt10 h

t1 exp [−m(hl0)]

= C ′1 exp[−(1/2)u20‖t‖2]lt10 h
t1 exp

[
−
(

1

l0

)t2 (
1− log l0

log 1
h

)t3 ( 1

h

)t2 (
log

1

h

)t3]

≥ C ′1 exp[−(1/2)u20‖t‖2]lt10 h
t1 exp

[
−2

(
1

l0

)t2 ( 1

h

)t2 (
log

1

h

)t3]
(4)

for all sufficiently small h. The proof is completed combining (2), (3) and (4).
ut

Note that if T is an infinite dimensional t-process with degree k, it can
be expressed as T = G/

√
χ/k, where G is an infinite dimensional Gaussian

process, χ follows a χ2 distribution with degree of freedom k, and χ is inde-
pendent of G. In the proposition below, we establish the bounds for the small
ball probability of an infinite dimensional t-process T.

Proposition 3 Let T be an infinite dimensional t-process in some normed
vector space with corresponding Gaussian process G, and the small ball prob-
ability of G satisfies the bounds in (9) in the main paper with t2 > 0. Then,
the small ball probability of T also satisfies the bounds in (9).

Proof We have

φT(t, h) = P
[∥∥∥G− t

√
χ/k

∥∥∥ ≤ h√χ/k
]

= E
[
P
[∥∥∥G− t

√
χ/k

∥∥∥ ≤ h√χ/k
 χ

]]
=

1

2
k
2 Γ
(
k
2

) ∫ ∞
0

φG

(
t

√
u

k
, h

√
u

k

)
e−

u
2 u

k
2−1du. (5)

Define m1(h) = (1/h)t2(log(1/h))t3 for 0 < h < 1. Since t2 > 0, m1(h) −→∞
as h −→ 0+. Let

t5 = 1 +
t2
2
. (6)

Define

U(h) = (m1(h))
1
t5 . (7)
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Clearly, U(h) −→∞ as h −→ 0+. Also,

h
√
U(h) = h

[(
1

h

)t2 (
log

1

h

)t3] 1
2t5

= h
1
t5

(
log

1

h

) t3
2t5

−→ 0 as h −→ 0+.

(8)

So, from (9) in the main paper and (6), (7) and (8), we have for all sufficiently
small h and for any u ≤ U(h),

φG

(
t

√
u

k
, h

√
u

k

)
≤ C3

(
h

√
u

k

)t4
exp

[
−C4m1

(
h

√
u

k

)]

=
C3

k
t4
2

u
t4
2 ht4 exp

−C4k
t2
2 u−

t2
2

(
1

h

)t2 (
log

1

h

)t3 (
1 +

log
√
k

log 1
h

− log
√
u

log 1
h

)t3
≤ C3

k
t4
2

u
t4
2 ht4 exp

[
−C4k

t2
2

(
1

t2 + 2

)t3
(m1(h))

1
t5

]
, (9)

since for all sufficiently small h and any u ≤ U(h),

1 +
log
√
k

log 1
h

− log
√
u

log 1
h

>
1

t2 + 2
.

Hence, from (5) and (9), we have for all sufficiently small h,

φT(t, h)

=
1

2
k
2 Γ
(
k
2

) ∫ U(h)

0

φG

(
t

√
u

k
, h

√
u

k

)
e−

u
2 u

k
2−1du

+
1

2
k
2 Γ
(
k
2

) ∫ ∞
U(h)

φG

(
t

√
u

k
, h

√
u

k

)
e−

u
2 u

k
2−1du

<
1

2
k
2 Γ
(
k
2

) C3

k
t4
2

∫ U(h)

0

ht4 exp

[
−C4k

t2
2

(
1

t2 + 2

)t3
(m1(h))

1
t5

]
e−

u
2 u

t4+k
2 −1du

+
1

2
k
2 Γ
(
k
2

) ∫ ∞
U(h)

exp

[
−1

4
U(h)

]
e−

u
4 u

k
2−1du

<
1

2
k
2 Γ
(
k
2

) C3

k
t4
2

[∫ ∞
0

e−
u
2 u

t4+k
2 −1du

]
ht4 exp

[
−C4k

t2
2

(
1

t2 + 2

)t3
(m1(h))

1
t5

]

+
1

2
k
2 Γ
(
k
2

) [∫ ∞
0

e−
u
4 u

k
2−1du

]
exp

[
−1

4
(m1(h))

1
t5

]

=

(
Γ
(
t4+k
2

)
Γ
(
k
2

) (
2

k

) t4
2

C3

)
ht4 exp

[
−C4k

t2
2

(
1

t2 + 2

)t3
(m1(h))

1
t5

]
+ 2

k
2 exp

[
−1

4
(m1(h))

1
t5

]
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≤

(
Γ
(
t4+k
2

)
Γ
(
k
2

) (
2

k

) t4
2

C3 + 2
k
2

)
exp

[
−min

{
C4k

t2
2

(
1

t2 + 2

)t3
,

1

4

}(
1

h

) t2
t5
(

log
1

h

) t3
t5

]
.

(10)

We now proceed to find a lower bound for φT(t, h). From (9) in the main
paper, (6), (7) and (8), we get that for all sufficiently small h and for any
U(h) ≤ u ≤ 2U(h),

φG

(
t

√
u

k
, h

√
u

k

)
≥ C ′1 exp

[
−1

2

∥∥∥∥t√u

k

∥∥∥∥2
](

h

√
u

k

)t1
exp

[
−C2m1

(
h

√
u

k

)]

=
C ′1

k
t1
2

u
t1
2 ht1 exp

−u‖t‖2
2k
− C2k

t2
2 u−

t2
2

(
1

h

)t2 (
log

1

h

)t3 (
1 +

log
√
k

log 1
h

− log
√
u

log 1
h

)t3
≥ C ′1

k
t1
2

u
t1
2 ht1 exp

[
−‖t‖

2

k
(m1(h))

1
t5 − C2k

t2
2

(
2

t5

)t3
(m1(h))

1− t2
2t5

]

=
C ′1

k
t1
2

u
t1
2 ht1 exp

[
−

(
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)
(m1(h))

1
t5

]
, (11)

since for all sufficiently small h and any U(h) ≤ u,

1 +
log
√
k

log 1
h

− log
√
u

log 1
h

<
2

t5
.

From (5) and (11), we have for all sufficiently small h,

φT(t, h)

≥ 1

2
k
2 Γ
(
k
2

) ∫ 2U(h)

U(h)

φG

(
t

√
u

k
, h

√
u

k

)
e−

u
2 u

k
2−1du

≥ 1

2
k
2 Γ
(
k
2

) C ′1
k

t1
2

∫ 2U(h)

U(h)

ht1 exp

[
−

(
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)
(m1(h))

1
t5

]
e−

u
2 u

t1+k
2 −1du

=
1

2
k
2 Γ
(
k
2

) C ′1
k

t1
2

[∫ 2U(h)

U(h)

e−
u
2 u

t1+k
2 −1du

]
ht1 exp

[
−

(
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)
(m1(h))

1
t5

]

≥ 1

2
k
2 Γ
(
k
2

) C ′1
k

t1
2

[∫ 2U(h)

U(h)

e−
U(h)

2 (U(h))
t1+k

2 −1
du

]
ht1 exp

[
−

(
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)
(m1(h))

1
t5

]

=
1

2
k
2 Γ
(
k
2

) C ′1
k

t1
2

(U(h))
t1+k

2 ht1 exp

[
−

(
1

2
+
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)
(m1(h))

1
t5

]

> ht1 exp

[
−

(
1

2
+
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)( 1

h

) t2
t5
(

log
1

h

) t3
t5

]
. (12)
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So, from (10) and (12), we have for all sufficiently small h,

ht1 exp

[
−u1

(
1

h

) t2
t5
(

log
1

h

) t3
t5

]
< φT(t, h) < u2 exp

[
−u3

(
1

h

) t2
t5
(

log
1

h

) t3
t5

]
,

where

u1 =

(
1

2
+
‖t‖2

k
+ C2k

t2
2

(
2

t5

)t3)
, u2 =

(
Γ
(
t4+k
2

)
Γ
(
k
2

) (
2

k

) t4
2

C3 + 2
k
2

)

and u3 = min

{
C4k

t2
2

(
1

t2 + 2

)t3
,

1

4

}
.

ut

2 Results required to prove Theorem 7

Lemma 1 Let {Un} be a sequence of real random variables and let {Vn} be
another sequence of positive random variables with Vn = oP(1) as n −→ ∞.
Then, for any a > 0 and any ε > 0, P [Un > a+ Vn] > P [Un > 2a] − ε for
all sufficiently large n.

Proof Since Vn = oP(1) as n −→∞, for any a > 0 and any ε > 0,

P [Un > a+ Vn] ≥ P [Un > 2a and Vn < (a/2)]

≥ P [Un > 2a]− P [Vn > (a/2)]

> P [Un > 2a]− ε

for all sufficiently large n, which completes the proof. ut

Lemma 2 Suppose that in (9) in the main paper, we have either t2 > 0,
or t3 > 1 with C2 = C4, the kernel K(·) satisfies A(i), and the decom-
position (3) in the main paper along with conditions B(i)–B(iii), C(i) and
C(ii) are satisfied. Consider a bandwidth sequence {hn} that satisfies A(ii)
and h2βn nφ(x, hn) −→ 0 as n −→ ∞. Then, there exist c > 0 and δ > 0 such
that

P
[(
m−1(log n)

)−β ∥∥∥Θ̂n(x)−Θ(x)
∥∥∥ > c

]
> δ

for all sufficiently large n.
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Proof Recall from subsection 4.1 in the main paper that Bn(x) = B̃n(x) +
R̃n(x), where R̃n(x) = oP(hβn), and B̃n(x) is a non-random quantity. So, from
(3) in the main paper and condition B(iii), we have

Θ̂n(x)−Θ(x) = B̃n(x) + Vn(x) +Qn(x), (13)

where Qn(x) = Rn(x)+ R̃n(x) = oP
(

max
{
hβn,
[
nφ(x, hn)

]−1/2})
as n −→∞.

Recall the projection functional φ̃i(·) defined in subsection 4.1 and the
positive integer i0 mentioned in condition C(ii). Note that ‖φ̃i0‖ = 1. So, for
all v ∈ B,

|φ̃i0(v)| ≤ ‖v‖. (14)

Using A(i), A(ii), B(ii), C(ii) and arguments similar to those in Theorem 4,
we get

[nφ(x, hn)]1/2[E(2)
n (x)]−1/2E(1)

n (x)φ̃i0(Vn(x)) −→ Z (15)

in distribution as n −→ ∞, where Z follows a normal distribution with mean
zero and variance V(x) > 0.

Next, consider {hn} that satisfies A(ii) and

h2βn nφ(x, hn) −→ 0 as n −→∞. (16)

From (40) in the main paper and (16), we get that for all sufficiently large n,

[nφ(x, hn)]−1/2 > hβn > cβ1
(
m−1 (log n)

)β
=⇒

(
m−1 (log n)

)−β
[nφ(x, hn)]−1/2 > cβ1 , (17)

where c1 > 0 is a constant. Since Qn(x) = oP
(

max
{
hβn,
[
nφ(x, hn)

]−1/2})
as n −→ ∞, from (16), we have Qn(x) = oP

([
nφ(x, hn)

]−1/2)
as n −→ ∞.

Further, from B(i), we get that h−βn B̃n(x) is bounded, and hence from (16),
we have [nφ(x, hn)]1/2B̃n(x) −→ 0 as n −→∞. Therefore,

[nφ(x, hn)]1/2
[∥∥B̃n(x)

∥∥+
∥∥Qn(x)

∥∥] = oP
(
1
)

(18)

as n −→ 0. Take

c =
lcβ1
2L

and δ =
1

2
P[|Z| > 1],

where Z is the normal random variable described in (15). So, from (8) in the
main paper, Lemma 1, (14), (15), (17), (18) and the triangle inequality, we
have for all sufficiently large n,

P
[ (
m−1(log n)

)−β ∥∥Θ̂n(x)−Θ(x)
∥∥ > c

]
≥ P

 [nφ(x, hn)]1/2
[∥∥Vn(x)

∥∥− ∥∥B̃n(x)
∥∥− ∥∥Qn(x)

∥∥]
(m−1(log n))

β
[nφ(x, hn)]1/2

> c


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≥ P
[
[nφ(x, hn)]1/2

∣∣∣φ̃i0(Vn(x))
∣∣∣ > cc−β1 + [nφ(x, hn)]1/2

[∥∥B̃n(x)
∥∥+

∥∥Qn(x)
∥∥]]

≥ P
[
[nφ(x, hn)]1/2

∣∣∣φ̃i0(Vn(x))
∣∣∣ > 2cc−β1

]
− δ

2

≥ P
[∣∣∣[nφ(x, hn)]1/2[E(2)

n (x)]−1/2E(1)
n (x)φ̃i0(Vn(x))

∣∣∣ > 2cc−β1

L

l

]
− δ

2

= P
[∣∣∣[nφ(x, hn)]1/2[E(2)

n (x)]−1/2E(1)
n (x)φ̃i0(Vn(x))

∣∣∣ > 1
]
− δ

2
> δ.

ut

Lemma 3 Suppose that in (9) in the main paper, we have either t2 > 0,
or t3 > 1 with C2 = C4, the kernel K(·) satisfies A(i), and the decom-
position (3) in the main paper along with conditions B(i)–B(iii), C(i) and
C(ii) are satisfied. Consider a bandwidth sequence {hn} that satisfies A(ii)
and h2βn nφ(x, hn) −→ ∞ as n −→ ∞. Then, there exist c > 0 and δ > 0 such
that

P
[(
m−1(log n)

)−β ∥∥∥Θ̂n(x)−Θ(x)
∥∥∥ > c

]
> δ

for all sufficiently large n.

Proof Consider {hn} that satisfies A(ii) and

h2βn nφ(x, hn) −→∞ as n −→∞. (19)

LetQn(x) be as defined in (13). SinceQn(x) = oP
(

max
{
hβn,
[
nφ(x, hn)

]−1/2})
as n −→ ∞, from (19), we have Qn(x) = oP

(
hβn
)

as n −→ ∞. Further, from
Theorem 3 in the main paper and (19), we get

h−2βn E[‖Vn(x)‖2] = h−2βn [nφ(x, hn)]
−1
nφ(x, hn)E[‖Vn(x)‖2] −→ 0

as n −→∞, which implies h−βn Vn(x) = oP
(
1
)

as n −→∞. Therefore,

h−βn
[∥∥Vn(x)

∥∥+
∥∥Qn(x)

∥∥] = oP
(
1
)

(20)

as n −→ ∞. Note that we have chosen Θ(x) satisfying C(i), so that for any
kernel K(·) satisfying A(i) and any sequence of bandwidths {hn} satisfying
A(ii), we have for all sufficiently large n,

h−βn ‖B̃n(x)‖ ≥ b1 > 0, (21)

where b1 is a constant. Take

c =
b1c

β
1

4
and δ =

1

2
.

Then, from (40) in the main paper, Lemma 1, (20), (21) and the triangle
inequality, we have for all sufficiently large n,

P
[ (
m−1(log n)

)−β ∥∥Θ̂n(x)−Θ(x)
∥∥ > c

]
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≥ P

h−βn
[∥∥B̃n(x)

∥∥− ∥∥Vn(x)
∥∥− ∥∥Qn(x)

∥∥]
(m−1(log n))

β
h−βn

> c


≥ P

[
h−βn

∥∥B̃n(x)
∥∥ > cc−β1 + h−βn

[∥∥Vn(x)
∥∥+

∥∥Qn(x)
∥∥]]

≥ P
[
h−βn

∥∥B̃n(x)
∥∥ > 2cc−β1

]
− 1

4

= P
[
h−βn

∥∥B̃n(x)
∥∥ > b1

2

]
− 1

4
=

3

4
> δ.

ut

Lemma 4 Suppose that in (9) in the main paper, we have either t2 > 0, or
t3 > 1 with C2 = C4, the kernel K(·) satisfies A(i), and the decomposition
(3) in the main paper along with conditions B(i)–B(iii), C(i) and C(ii) are
satisfied. Consider a bandwidth sequence {hn} that satisfies A(ii), and 0 <
ε1 < h2βn nφ(x, hn) < ε2 for all sufficiently large n and some ε1 and ε2. Then,
there exist c > 0 and δ > 0 such that

P
[(
m−1(log n)

)−β ∥∥∥Θ̂n(x)−Θ(x)
∥∥∥ > c

]
> δ

for all sufficiently large n.

Proof Consider {hn} that satisfies A(ii) and

0 < ε1 < h2βn nφ(x, hn) < ε2 (22)

for all sufficiently large n and some ε1 and ε2. From (40) in the main paper
and (22), we get that for all sufficiently large n,

(
m−1 (log n)

)β
[nφ(x, hn)]1/2 <

[nφ(x, hn)]1/2hβn

cβ1
<

√
ε2

cβ1
, (23)

where c1 > 0 is a constant. Let Qn(x) be as defined in (13). Since Qn(x) =

oP
(

max
{
hβn,
[
nφ(x, hn)

]−1/2})
as n −→∞, from (22), we have

max
{
hβn,
[
nφ(x, hn)

]−1/2} ≤ max{
√
ε2, 1}

[
nφ(x, hn)

]−1/2
=⇒ [nφ(x, hn)]1/2 ‖Qn(x)‖ = oP

(
1
)

(24)

as n −→∞. From A(ii), B(i) and (22), we get

[nφ(x, hn)]1/2
∥∥B̃n(x)

∥∥ ≤ [nφ(x, hn)]1/2hβnh
−β
n

∥∥B̃n(x)
∥∥ ≤ √ε2‖Lx‖bF (25)

for all sufficiently large n. Take

c =
cβ1 l

2
√
ε2L

and δ =
1

2
P
[
|Z| > 1 +

√
ε2
L

l
‖Lx‖bF

]
,

where Z is the normal random variable described in (15), and l and L are the
constants described in A(i). So, from (8) in the main paper, Lemma 1, (14),
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(15), (23), (24), (25) and the triangle inequality, we have for all sufficiently
large n,

P
[ (
m−1(log n)

)−β ∥∥Θ̂n(x)−Θ(x)
∥∥ > c

]
≥ P

 [nφ(x, hn)]1/2
[∥∥Vn(x)

∥∥− ∥∥B̃n(x)
∥∥− ∥∥Qn(x)

∥∥]
(m−1(log n))

β
[nφ(x, hn)]1/2

> c


≥ P

[
[nφ(x, hn)]1/2

∣∣∣φ̃i0 (Vn(x))
∣∣∣ > c

√
ε2c
−β
1 +

√
ε2‖Lx‖bF + [nφ(x, hn)]1/2

∥∥Qn(x)
∥∥]

≥ P

[
[nφ(x, hn)]1/2[E(2)

n (x)]−1/2E(1)
n (x)

∣∣∣φ̃i0 (Vn(x))
∣∣∣ > 2

√
ε2L

cβ1 l
c+
√
ε2
L

l
‖Lx‖bF

]
− δ

2

≥ P
[∣∣∣[nφ(x, hn)]1/2[E(2)

n (x)]−1/2E(1)
n (x)φ̃i0 (Vn(x))

∣∣∣ > 1 +
√
ε2
L

l
‖Lx‖bF

]
− δ

2

> δ.

ut

3 Results required to prove Theorem 9

Lemma 5 Suppose assumptions A(i) and A(ii) are satisfied. Let {h(b)n } be
a sequence of bandwidths that satisfies A(ii) and balances the bias and the
variance so that

0 < c1 ≤ (h(b)n )2βnφ(x, h(b)n ) ≤ c2 <∞ (26)

for all sufficiently large n, where c1, c2 are some constants. Also, let {h(op)n }
denote the sequence of optimum bandwidths minimizing (25) in the proof of
Theorem 5 in the main paper. Assume that t2 > 0 in the bounds on the small
ball probability of the covariate in (9) in the main paper. Then,

0 < c3 ≤
h
(b)
n

h
(op)
n

≤ c4 <∞

for all sufficiently large n, where c3, c4 are some constants.

Proof Recall from (10) in the main paper that m(h) = C2(1/h)t2(log(1/h))t3

for 0 < h < 1. From (9) in the main paper and (26), we have

(h(b)n )2β+t1nC1 exp
[
−m(h(b)n )

]
≤ c2

and c1 ≤ (h(b)n )2β+t4nC3 exp
[
−(C4/C2)m(h(b)n )

]
=⇒ (h(b)n )2β+t1n exp

[
−m(h(b)n )

]
≤ c2
C1

and
c1
C3
≤ (h(b)n )2β+t4n exp

[
−(C4/C2)m(h(b)n )

]
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=⇒
−(2β + t1) log 1

h
(b)
n

m(h
(b)
n )

+
log n

m(h
(b)
n )
− 1 ≤

log c2
C1

m(h
(b)
n )

and
log c1

C3

m(h
(b)
n )
≤
−(2β + t4) log 1

h
(b)
n

m(h
(b)
n )

+
log n

m(h
(b)
n )
− C4

C2
(27)

for all sufficiently large n. When t2 > 0 in (9), we have

−(2β + t1) log 1

h
(b)
n

m(h
(b)
n )

−→ 0,
log c2

C1

m(h
(b)
n )
−→ 0,

log c1
C3

m(h
(b)
n )
−→ 0 and

−(2β + t4) log 1

h
(b)
n

m(h
(b)
n )

−→ 0

as n −→∞. Therefore, given any ε > 0, from (27), we have for all sufficiently
large n,

log n

m(h
(b)
n )
≤ 1 + ε and

C4

C2
− ε ≤ log n

m(h
(b)
n )

=⇒ log n

1 + ε
≤ m(h(b)n ) ≤ log n

(C4/C2)− ε

=⇒ m−1
(

log n

1 + ε

)
≥ h(b)n ≥ m−1

(
log n

(C4/C2)− ε

)
. (28)

Next, we consider our optimum bandwidth h
(op)
n . From (34) in the proof of

Theorem 5 in the main paper, we have, given any ε > 0 and for all sufficiently
large n,

m−1
(

log n

1 + ε

)
≥ h(op)n ≥ m−1

(
log n

1− ε

)
. (29)

Sincem(h) is strictly monotone decreasing function for h ∈ (0, 1) andm(h) −→
∞ as h −→ 0+, m−1(u) is well-defined for all u > 1 and m−1(u) −→ 0+ as
u −→∞. Given ε > 0, we have

m
(
c−

1
t2 (1 + ε)h

)
= cm(h)

1

(1 + ε)t2

(
1− log(1 + ε)

log 1
h

+
1

t2

log c

log 1
h

)t3
,

m
(
c−

1
t2 (1− ε)h

)
= cm(h)

1

(1− ε)t2

(
1− log(1− ε)

log 1
h

+
1

t2

log c

log 1
h

)t3
.

For sufficiently small h > 0, we have

1

(1 + ε)t2

(
1− log(1 + ε)

log 1
h

+
1

t2

log c

log 1
h

)t3
< 1 <

1

(1− ε)t2

(
1− log(1− ε)

log 1
h

+
1

t2

log c

log 1
h

)t3
,

which implies

m
(
c−

1
t2 (1 + ε)h

)
< cm(h) < m

(
c−

1
t2 (1− ε)h

)
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for all sufficiently small h > 0. Hence, for all sufficiently large u, we have

m
(
c−

1
t2 (1 + ε)m−1(u)

)
< cu < m

(
c−

1
t2 (1− ε)m−1(u)

)
=⇒ c−

1
t2 (1− ε) < m−1(cu)

m−1(u)
< c−

1
t2 (1 + ε). (30)

From (30), we get that for any c > 0,

m−1(cu)

m−1(u)
−→ c−

1
t2 (31)

as u −→∞. Therefore, using (28), (29) and (31), we have

0 < c3 ≤
h
(b)
n

h
(op)
n

≤ c4 <∞

for all sufficiently large n, where c3, c4 are some constants. ut

Lemma 6 We denote our optimum bandwidth minimizing (25) in the proof

of Theorem 5 as h
(op)
n . Let Θ̂

(op)
n (x) be as defined in Theorem 9. Then, under

the conditions in Theorem 9,

(h(op)n )−β
∥∥∥Θ̂(op)

n (x)−Θ(x)
∥∥∥ = oP(1) as n −→∞,

and (h(op)n )−2βE
∥∥∥Θ̂(op)

n (x)−Θ(x)
∥∥∥2 −→ 0 as n −→∞.

Proof From (29) in the proof of Theorem 5 and the lower bound of φ(x, h) in
(9) in the main paper, we get

(h(op)n )2βnφ(x, h(op)n ) −→∞ as n −→∞. (32)

Since F (·) ∈ F(x, β1,G) for some β1 > β, we have

(d(x, z))
−β ‖F (z)− F (x)‖ −→ 0 as d(x, z) −→ 0.

Consequently,

(h(op)n )−β
∥∥∥B(op)

n (x)
∥∥∥ = oP(1) as n −→∞, (33)

and (h(op)n )−2βE
∥∥∥B(op)

n (x)
∥∥∥2 −→ 0 as n −→∞. (34)

From Theorem 3 and (32), we have

(h(op)n )−2βE
∥∥∥V (op)

n (x)
∥∥∥2

=

(
(h(op)n )−2β

(
nφ(x, h(op)n )

)−1)
nφ(x, h(op)n )E

∥∥∥V (op)
n (x)

∥∥∥2 −→ 0 (35)
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as n −→∞, and from (35) and the Markov inequality, we get

(h(op)n )−β
∥∥∥V (op)

n (x)
∥∥∥ = oP(1) as n −→∞. (36)

From condition B(iii) and (32), we have

(h(op)n )−β
∥∥∥R(op)

n (x)
∥∥∥ = oP(1) as n −→∞. (37)

Since ‖φ̃i0‖ = 1, when E[‖Rn(x)‖2] = o(δ2n) as n −→∞, from (32), we have

(h(op)n )−2βE
∥∥∥R(op)

n (x)
∥∥∥2 −→ 0 as n −→∞. (38)

Therefore, from (33), (36) and (37), we have

(h(op)n )−β
∥∥∥Θ̂(op)

n (x)−Θ(x)
∥∥∥

≤ (h(op)n )−β
∥∥∥B(op)

n (x)
∥∥∥+ (h(op)n )−β

∥∥∥V (op)
n (x)

∥∥∥+ (h(op)n )−β
∥∥∥R(op)

n (x)
∥∥∥

= oP(1) as n −→∞.

Further, from (34), (35) and (38), we have

(h(op)n )−2βE
∥∥∥Θ̂(op)

n (x)−Θ(x)
∥∥∥2

≤ 3(h(op)n )−2βE
∥∥∥B(op)

n (x)
∥∥∥2 + 3(h(op)n )−2βE

∥∥∥V (op)
n (x)

∥∥∥2 + 3(h(op)n )−2βE
∥∥∥R(op)

n (x)
∥∥∥2

−→ 0 as n −→∞.

ut

Lemma 7 Let h
(b)
n and Θ̂

(b)
n (x) be as defined in Theorem 9. Then, under the

conditions in Theorem 9, given any ε > 0, there is δ > 0 such that

P
[
(h(b)n )−β

∥∥∥Θ̂(b)
n (x)−Θ(x)

∥∥∥ > δ
]
> 1− ε

for all sufficiently large n. Further,

(h(b)n )−2βE
∥∥∥Θ̂(b)

n (x)−Θ(x)
∥∥∥2 is bounded away from 0 as n −→∞.

Proof Let h
(b)
n satisfy (26). Since F (·) ∈ F(x, β1,G) for some β1 > β, we have

(d(x, z))
−β ‖F (z)− F (x)‖ −→ 0 as d(x, z) −→ 0. (39)

Consequently,

(h(b)n )−β
∥∥∥B(b)

n (x)
∥∥∥ = oP(1) as n −→∞. (40)
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Let Z be the normal random variable described in (15). Given any ε > 0, there
exists δ > 0 such that

P
[
|Z| > 2δ

√
c2l
−1L

]
> 1− ε, (41)

where c2 is a constant described in (26), and l, L are constants described in
assumption A(i). Hence, from (8) in the main paper, (15), (26) and (41), we
have

P
[∥∥∥(h(b)n )−βV (b)

n (x)
∥∥∥ > 2δ

]
= P

[(
(h(b)n )−β

(
nφ(x, h(b)n )

)−1/2)∥∥∥∥(nφ(x, h(b)n )
)1/2

V (b)
n (x)

∥∥∥∥ > 2δ

]
≥ P

[∥∥∥∥(nφ(x, h(b)n )
)1/2

V (b)
n (x)

∥∥∥∥ > 2δ
√
c2

]
≥ P

[∣∣∣∣(nφ(x, h(b)n )
)1/2

φ̃i0(V (b)
n (x))

∣∣∣∣ > 2δ
√
c2

]
≥ P

[∣∣∣∣(nφ(x, h(b)n )
)1/2

[E(2)
n (x)]−1/2E(1)

n (x)φ̃i0(V (b)
n (x))

∣∣∣∣ > 2δ
√
c2l
−1L

]
> 1− ε (42)

for all sufficiently large n. From condition B(iii) and (26), we have

(h(b)n )−β
∥∥∥R(b)

n (x)
∥∥∥ = oP(1) as n −→∞. (43)

Therefore, from Lemma 1, (40), (42) and (43), we have

P
[
(h(b)n )−β

∥∥∥Θ̂(b)
n (x)−Θ(x)

∥∥∥ > δ
]

≥ P
[
(h(b)n )−β

∥∥∥V (b)
n (x)

∥∥∥− (h(b)n )−β
∥∥∥B(b)

n (x)
∥∥∥− (h(b)n )−β

∥∥∥R(b)
n (x)

∥∥∥ > δ
]

= P
[
(h(b)n )−β

∥∥∥V (b)
n (x)

∥∥∥ > δ + (h(b)n )−β
∥∥∥B(b)

n (x)
∥∥∥+ (h(b)n )−β

∥∥∥R(b)
n (x)

∥∥∥]
> P

[
(h(b)n )−β

∥∥∥V (b)
n (x)

∥∥∥ > 2δ
]
> 1− ε

for all sufficiently large n.
We proceed to prove the second part of the lemma. Since |φ̃i0(v)| ≤ ‖v‖

for any v, from an application of the Cauchy-Schwarz inequality, we have

E
∥∥∥Θ̂(b)

n (x)−Θ(x)
∥∥∥2

= E
∥∥∥B(b)

n (x) + V (b)
n (x) +R(b)

n (x)
∥∥∥2

≥ E
[
φ̃i0(B(b)

n (x)) + φ̃i0(V (b)
n (x)) + φ̃i0(R(b)

n (x))
]2

= E
[(
φ̃i0(B(b)

n (x))
)2]

+ E
[(
φ̃i0(V (b)

n (x))
)2]

+ E
[(
φ̃i0(R(b)

n (x))
)2]
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+ 2E
[
φ̃i0(R(b)

n (x))
(
φ̃i0(B(b)

n (x)) + φ̃i0(V (b)
n (x))

)]
≥ E

[(
φ̃i0(B(b)

n (x))
)2]

+ E
[(
φ̃i0(V (b)

n (x))
)2]

+ E
[(
φ̃i0(R(b)

n (x))
)2]

− 2

[
E
[(
φ̃i0(R(b)

n (x))
)2]]1/2 [

E
[(
φ̃i0(B(b)

n (x))
)2]

+ E
[(
φ̃i0(V (b)

n (x))
)2]]1/2

.

(44)

From (39), we have

(h(b)n )−2βE
[(
φ̃i0(B(b)

n (x))
)2]
≤ (h(b)n )−2βE

∥∥∥B(b)
n (x)

∥∥∥2 −→ 0 (45)

as n −→∞. From (8) in the main paper, (15) and (26), we have

(h(b)n )−2βE
[(
φ̃i0(V (b)

n (x))
)2]

=

(
(h(b)n )−2β

(
nφ(x, h(b)n )

)−1)
nφ(x, h(b)n )E

[(
φ̃i0(V (b)

n (x))
)2]

≥ 1

c2
P
[∣∣∣∣(nφ(x, h(b)n )

)1/2
[E(2)
n (x)]−1/2E(1)

n (x)φ̃i0(V (b)
n (x))

∣∣∣∣ > l−1L

]
> c6 > 0 (46)

for all sufficiently large n and for some constant c6. Further, since ‖φ̃i0‖ = 1,
from Theorem 3 and (26), we have

(h(b)n )−2βE
[(
φ̃i0(V (b)

n (x))
)2]

≤
(

(h(b)n )−2β
(
nφ(x, h(b)n )

)−1)
nφ(x, h(b)n )E

∥∥∥V (b)
n (x))

∥∥∥2 ≤ c7
c1

(47)

for some constant c7 > 0 and for all sufficiently large n. Since ‖φ̃i0‖ = 1, when
E[‖Rn(x)‖2] = o(δ2n) as n −→∞, from (26) and (32), we have

(h(b)n )−2βE
[(
φ̃i0(R(b)

n (x))
)2]
≤ (h(b)n )−2βE

∥∥∥R(b)
n (x)

∥∥∥2 −→ 0 (48)

as n −→∞.

Therefore, from (44), (45), (46), (47) and (48), we have

(h(b)n )−2βE
∥∥∥Θ̂(b)

n (x)−Θ(x)
∥∥∥2 ≥ c6

2
> 0

for all sufficiently large n. ut
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4 Results required to prove Theorem 10

Lemma 8 Let 0 < ε0 < 0.5 be fixed. For h ∈ Hn, define

D̃n(x, h) =
1

(1 + ε0)
σ2ζn

log n

nφ(x, h)
,

C̃n(x, h) = max
h′∈Hn

(∥∥∥Θ̂n(x, h′)− Θ̂n(x,max{h, h′})
∥∥∥2 − D̃n(x, h′)

)
+

.

Then,

Cn(x, h) ≤ C̃n(x, h) + max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+
.

Proof The proof is straight forward from the definitions of Cn(x, h), Dn(x, h),
C̃n(x, h) and D̃n(x, h). ut

Lemma 9 Let D̃n(x, h) be as defined in Lemma 8, where h ∈ Hn. Then, there
exists a positive integer N1 such that for all n ≥ N1,

E
[

max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+

]
<

1

n2
,

and E [Dn(x, h)] ≤ 3D̃n(x, h) +
3ζ0σ

2

n2
.

Proof Define the event

U(x) =
⋂

h′∈Hn

{∣∣∣∣∣ φ̂(x, h′)

φ(x, h′)
− 1

∣∣∣∣∣ < ε0

}
,

where ε0 is as in Lemma 8. Since the cardinality of Hn is at most n, from an
application of the Bernstein inequality, we get that there exists an integer n1
such that for all n ≥ n1,

P [(U(x))c] = P

[ ⋃
h′∈Hn

{∣∣∣φ̂(x, h′)− φ(x, h′)
∣∣∣ ≥ ε0φ(x, h′)

}]

≤
∑
h′∈Hn

P

[∣∣∣∣∣
n∑
i=1

[I (d(x,Xi) ≤ h′)− φ(x, h′)]

∣∣∣∣∣ ≥ ε0nφ(x, h′)

]

< 2
∑
h′∈Hn

exp [−4 log n] ≤ 2

n3
. (49)

Note that

E
[

max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+

]
= E

[
max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+
I(U(x))

]
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+ E
[

max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+
I ((U(x))c)

]
. (50)

When I(U(x)) = 1, we have

(1− ε0)φ(x, h′) < φ̂(x, h′) < (1 + ε0)φ(x, h′) for all h′ ∈ Hn

⇐⇒ 1

(1 + ε0)

1

φ(x, h′)
<

1

φ̂(x, h′)
<

1

(1− ε0)

1

φ(x, h′)
for all h′ ∈ Hn (51)

=⇒ max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+
I(U(x)) = 0

=⇒ E
[

max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+
I(U(x))

]
= 0. (52)

Let n2 be a positive integer such that for all n ≥ n2, ζn ≤ (1 + ε0)ζ0. So, from
(49), we get that for all n ≥ max{n1, n2},

E
[

max
h′∈Hn

(
D̃n(x, h′)−Dn(x, h′)

)
+
I ((U(x))c)

]
≤
∑
h′∈Hn

E
[(
D̃n(x, h′)−Dn(x, h′)

)
+
I ((U(x))c)

]
≤
∑
h′∈Hn

D̃n(x, h′)P [(U(x))c]

=
∑
h′∈Hn

1

(1 + ε0)
σ2ζn

log n

nφ(x, h′)
P [(U(x))c] < 2ζ0σ

2 1

log n

1

n2
. (53)

Let n3 = min{n | log n > (2/(1 + ε0))σ2ζ0}. Then, from (50), (52) and (53),
we get that for all n ≥ max{n1, n2, n3},

E
[

max
h′∈Hn

(
Dn(x, h′)− D̃n(x, h′)

)
+

]
<

1

n2
. (54)

Next, from (49) and (51), we have for all n ≥ n1,

E [Dn(x, h)] = E [Dn(x, h)I (U(x))] + E [Dn(x, h)I ((U(x))c)]

≤ (1 + ε0)

(1− ε0)
D̃n(x, h) + σ2ζnnP [(U(x))c]

< 3D̃n(x, h) +
3ζ0σ

2

n2
. (55)

Taking N1 = max{n1, n2, n3}, the proof is complete from (54) and (55). ut

Lemma 10 Let the assumptions of Theorem 10 be satisfied. Let y > 0. We
have for all sufficiently large n,

P

[∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥ > y

]
≤ n−3
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for all h′ ∈ Hn. Further, given any c1 > 0, c2 > 0 and any 0 < ε < 1, we have,
for all sufficiently large n,

P

[∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥ > c2
√
c1Dn(x, h′) + t

]

≤ exp

[
− (1− ε)2l2nφ(x, h′)c22(c1Dn(x, h′) + t)

16σ2L2

]
+ exp

[
−

(1− ε)2l2nφ(x, h′)c2
√
c1Dn(x, h′) + t

16σL2

]
.

for all h′ ∈ Hn and all t ≥ 0.

Proof We use the following result from Yurinskĭı (1976): Let ξ1, · · · , ξn ∈ B
be independent random elements with

E‖ξj‖m ≤ (m!/2)b2jH
m−2

for all integers m ≥ 2. Let

βn ≥ E‖ξ1 + · · ·+ ξn‖, U2
n = b21 + · · ·+ b2n.

If ū = u− (βn/Un) > 0, then

P[‖ξ1 + · · ·+ ξn‖ ≥ uUn] ≤ exp

[
− ū2

8(1 + (ūH/2Un))

]
. (56)

Now, we choose

ξi = Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

for i = 1, · · · , n. Since B is a type 2 Banach space, from D(i), we have

E‖ξ1 + · · ·+ ξn‖

= E

∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥
≤

E∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥
2
 1

2

≤

[
c

n∑
i=1

E
∥∥∥∥Lx (G(Yi)− E[G(Yi) |Xi])

K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥2
] 1

2

=
√
c

[
n∑
i=1

E

[
E
[
‖Lx (G(Yi)− E[G(Yi) |Xi])‖2

Xi

] K2(h′−1d(x,Xi))

(nE[K(h′−1d(x,X))])
2

]] 1
2
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≤
√
c

σL

l
√
nφ(x, h′)

= βn,

where c is a positive constant. Also, again using D(i), we get

E‖ξi‖m = E
∥∥∥∥Lx (G(Yi)− E[G(Yi) |Xi])

K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥m
≤ m!

2

(
σL

lnφ(x, h′)

)m−2
σ2L2

l2n2φ(x, h′)
,

and we can take

U2
n =

σ2L2

l2nφ(x, h′)
and H =

σL

lnφ(x, h′)
.

So, (βn/Un) =
√
c. Now,

y

Un
− βn
Un

=
yl
√
nφ(x, h′)

σL
−
√
c ≥ yl log n

σL
−
√
c > 0

for all sufficiently large n and for all h′ ∈ Hn. Also,(
y

Un
− βn
Un

)
H

2Un
=

(
yl
√
nφ(x, h′)

σL
−
√
c

)
1

2
√
nφ(x, h′)

<
yl

2σL
.

So, from (56), we get that for all sufficiently large n (depending on y),

P

[∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥ > y

]

< exp

[
− (yl log n−

√
cσL)

2

8σ2L2 + 4ylσL

]
< exp [−3 log n] = n−3.

For the next part in the statement of this lemma, we have

min
t≥0

c2
√
c1Dn(x, h′) + t

Un
≥
√

log n
lc2

√
c1

2
3σ

2ζn

σL
>
√
c =

βn
Un

for all sufficiently large n and all h′ ∈ Hn. Also, given any 0 < ε < 1, we have,
for all sufficiently large n,

ε
c2
√
c1Dn(x, h′) + t

Un
≥ ε
√

log n

 lc2
√
c1

2
3σ

2ζn

σL

 >
√
c

=⇒

(
c2
√
c1Dn(x, h′) + t

Un
−
√
c

)2

> (1− ε)2c22
c1Dn(x, h′) + t

U2
n
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for all h′ ∈ Hn and all t ≥ 0. Now,(
c2
√
c1Dn(x, h′) + t

Un
− βn
Un

)
H

2Un
≤ c2

√
c1Dn(x, h′) + t

H

2U2
n

< c2
√
c1Dn(x, h′) + t

l

σL

for all h′ ∈ Hn and all t ≥ 0. So, from (56), we get that for all sufficiently large
n,

P

[∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥ > c2
√
c1Dn(x, h′) + t

]

≤ exp

− (1− ε)2c22l2nφ(x, h′)(c1Dn(x, h′) + t)

8σL2
(
σ + c2

√
c1Dn(x, h′) + t

)


≤ exp

[
− (1− ε)2l2nφ(x, h′)c22(c1Dn(x, h′) + t)

16σ2L2

]
+ exp

[
−

(1− ε)2l2nφ(x, h′)c2
√
c1Dn(x, h′) + t

16σL2

]

for all h′ ∈ Hn and for all t ≥ 0. ut

Lemma 11 Let C̃n(x, h) be as defined in Lemma 8, where h ∈ Hn. Let the
assumptions in Theorem 10 be satisfied. Then, there exists an integer N2 such
that for all n ≥ N2,

C̃n(x, h) ≤M1h
2β + 24 max

h′∈Hn, h′≤h

(
‖Vn(x, h′)‖2 − D̃n(x, h′)

24

)
+

+ 12 max
h′∈Hn, h′≤h

(
‖Rn(x, h′)‖2 −

(
Mh′2β + ‖Vn(x, h′)‖2

))
+

for all h ∈ Hn, where M1 > 0 is some constant. Further, for all n ≥ N2 and
all h ∈ Hn, we have

P
[

max
h′∈Hn, h′≤h

(
‖Rn(x, h′)‖2 −

(
Mh′2β + ‖Vn(x, h′)‖2

))
+
>

1

n2

]
≤ 2n−2,

and E

[
max

h′∈Hn, h′≤h

(
‖Vn(x, h′)‖2 − D̃n(x, h′)

24

)
+

]
<

1

n
.

Proof Note that

C̃n(x, h)

= max
h′∈Hn, h′≤h

(∥∥∥Θ̂n(x, h′)− Θ̂n(x, h)
∥∥∥2 − D̃n(x, h′)

)
+

≤ max
h′∈Hn, h′≤h

(
2
∥∥∥Θ̂n(x, h′)−Θ(x)

∥∥∥2 + 2
∥∥∥Θ̂n(x, h)−Θ(x)

∥∥∥2 − D̃n(x, h′)

)
+
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≤ 2 max
h′∈Hn, h′≤h

(∥∥∥Θ̂n(x, h′)−Θ(x)
∥∥∥2 − D̃n(x, h′)

4

)
+

+ 2 max
h′∈Hn, h′≤h

(∥∥∥Θ̂n(x, h)−Θ(x)
∥∥∥2 − D̃n(x, h′)

4

)
+

≤ 4 max
h′∈Hn, h′≤h

(∥∥∥Θ̂n(x, h′)−Θ(x)
∥∥∥2 − D̃n(x, h′)

4

)
+

(57)

since D̃n(x, h′) ≥ D̃n(x, h) for h′ ≤ h. From (3) in the main paper, we have

max
h′∈Hn, h′≤h

(∥∥∥Θ̂n(x, h′)−Θ(x)
∥∥∥2 − D̃n(x, h′)

4

)
+

≤ 3 max
h′∈Hn, h′≤h

(
‖Bn(x, h′)‖2 + ‖Vn(x, h′)‖2 + ‖Rn(x, h′)‖2 − D̃n(x, h′)

12

)
+

≤ 3 max
h′∈Hn, h′≤h

(
‖Bn(x, h′)‖2 +Mh′2β

)
+ 6 max

h′∈Hn, h′≤h

(
‖Vn(x, h′)‖2 − D̃n(x, h′)

24

)
+

+ 3 max
h′∈Hn, h′≤h

(
‖Rn(x, h′)‖2 −

(
Mh′2β + ‖Vn(x, h′)‖2

))
+
. (58)

From assumption B(i) and the fact that max{h′ |h′ ∈ Hn} −→ 0 as n −→∞,
we get that for all sufficiently large n,

max
h′∈Hn, h′≤h

(
‖Bn(x, h′)‖2 +Mh′2β

)
≤M1h

2β (59)

for all h ∈ Hn, where M1 > 0 is a constant.
Next, define the event

S(x, h′) =

{
1

n

n∑
i=1

K(h′−1d(x,Xi))

E [K(h′−1d(x,X))]
> (1− ε0)

}
,

where ε0 is the number described in Lemma 8. From assumption D(ii) and the
fact that max{h′ |h′ ∈ Hn} −→ 0 as n −→∞, we have for all sufficiently large
n,

P
[

max
h′∈Hn, h′≤h

(
‖Rn(x, h′)‖2 −

(
Mh′2β + ‖Vn(x, h′)‖2

))
+
>

1

n2

]
≤
∑
h′∈Hn

P
[(
‖Rn(x, h′)‖2 −

(
Mh′2β + ‖Vn(x, h′)‖2

))
+
> 0

]
≤
∑
h′∈Hn

P
[
‖Rn(x, h′)‖2 > Mh′2β + ‖Vn(x, h′)‖2

]
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≤
∑
h′∈Hn

P [‖Vn(x, h′)‖ > ε2]

≤
∑
h′∈Hn

P [‖Vn(x, h′)‖ > ε2 and I(S(x, h′)) = 1] +
∑
h′∈Hn

P [(S(x, h′))c] . (60)

Now, using assumption A(i), the fact that nφ(x, h′) ≥ (log n)2 for all h′ ∈ Hn
and the Bernstein inequality, we get that for all sufficiently large n,

∑
h′∈Hn

P [(S(x, h′))c] =
∑
h′∈Hn

P

[
1

n

n∑
i=1

[
1− K(h′−1d(x,Xi))

E [K(h′−1d(x,X))]

]
≥ ε0

]
≤
∑
h′∈Hn

exp [−3 log n] ≤ n−2. (61)

Also, from Lemma 10, we get∑
h′∈Hn

P [‖Vn(x, h′)‖ > ε2 and I(S(x, h′)) = 1]

≤
∑
h′∈Hn

P

[∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE[K(h′−1d(x,X))]

∥∥∥∥∥ > (1− ε0)ε2

]
≤ n−2 (62)

for all sufficiently large n. Hence, from (60), (61) and (62), we have

P
[

max
h′∈Hn, h′≤h

(
‖Rn(x, h′)‖2 −

(
Mh′2β + ‖Vn(x, h′)‖2

))
+
>

1

n2

]
≤ 2n−2

(63)

for all sufficiently large n and all h ∈ Hn. Next,

E

[
max

h′∈Hn, h′≤h

(
‖Vn(x, h′)‖2 − D̃n(x, h′)

24

)
+

]

≤
∑
h′∈Hn

E

[(
‖Vn(x, h′)‖2 − D̃n(x, h′)

24

)
+

]

≤
∑
h′∈Hn

E

[(
‖Vn(x, h′)‖2 I(S(x, h′))− D̃n(x, h′)

24

)
+

]
+
∑
h′∈Hn

E
[
‖Vn(x, h′)‖2 I ((S(x, h′))c)

]
. (64)

Since B is a type 2 Banach space, from D(i) and (61), we have∑
h′∈Hn

E
[
‖Vn(x, h′)‖2 I ((S(x, h′))c)

]
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=
∑
h′∈Hn

E

E
[∥∥∑n

i=1 Lx (G(Yi)− E[G(Yi) |Xi])K(h′−1d(x,Xi))
∥∥2X1, · · · ,Xn

]
(
∑n
i=1K(h′−1d(x,Xi)))

2 I ((S(x, h′))c)


≤
∑
h′∈Hn

E

c∑n
i=1 E

[
‖Lx (G(Yi)− E[G(Yi) |Xi])‖2

Xi

]
K2(h′−1d(x,Xi))

(
∑n
i=1K(h′−1d(x,Xi)))

2 I ((S(x, h′))c)


≤ cσ2

∑
h′∈Hn

E

[ ∑n
i=1K

2(h′−1d(x,Xi))

(
∑n
i=1K(h′−1d(x,Xi)))

2 I ((S(x, h′))c)

]
≤ cσ2

∑
h′∈Hn

P [(S(x, h′))c] ≤ cσ2n−2 (65)

for all sufficiently large n, where c > 0 is a constant. On the other hand, taking
ε = ε0 in Lemma 10, we have for all sufficiently large n,∑
h′∈Hn

E

[(
‖Vn(x, h′)‖2 I(S(x, h′))− D̃n(x, h′)

24

)
+

]

=
∑
h′∈Hn

∫ ∞
0

P

[(
‖Vn(x, h′)‖2 I(S(x, h′))− D̃n(x, h′)

24

)
+

≥ t

]
dt

=
∑
h′∈Hn

∫ ∞
0

P

‖Vn(x, h′)‖ I(S(x, h′)) ≥

√
D̃n(x, h′)

24
+ t

 dt
≤
∑
h′∈Hn

∫ ∞
0

P

∥∥∥∥∥
n∑
i=1

Lx (G(Yi)− E[G(Yi) |Xi])
K(h′−1d(x,Xi))

nE [K(h′−1d(x,Xi)]

∥∥∥∥∥ ≥ (1− ε0)

√
D̃n(x, h′)

24
+ t

 dt
≤
∑
h′∈Hn

∫ ∞
0

exp

[
− (1− ε0)4l2nφ(x, h′)

16σ2L2

(
1

24
Dn(x, h′) + t

)]
dt

+
∑
h′∈Hn

∫ ∞
0

exp

[
− (1− ε0)3l2nφ(x, h′)

16σL2

√
1

24
Dn(x, h′) + t

]
dt. (66)

Now, for the second term on the right hand side of (66), we have∑
h′∈Hn

∫ ∞
0

exp

[
− (1− ε0)3l2nφ(x, h′)

16σL2

√
1

24
Dn(x, h′) + t

]
dt

= 2
∑
h′∈Hn

∫ ∞
√

1
24Dn(x,h′)

exp

[
− (1− ε0)3l2nφ(x, h′)

16σL2
s

]
sds

<
1

n log n
(67)

for all sufficiently large n. Next, we take

ζ0 ≥ 768
(1 + ε0)2

(1− ε0)4
L2

l2
. (68)



24 Joydeep Chowdhury, Probal Chaudhuri

Since ζn −→ ζ0 as n −→∞, we have

ζn > 768
(1 + ε0)

(1− ε0)4
L2

l2
(69)

for all sufficiently large n. Consequently, for the first term on the right hand
side of (66), we have from (69),∑

h′∈Hn

∫ ∞
0

exp

[
− (1− ε0)4l2nφ(x, h′)

16σ2L2

(
1

24
Dn(x, h′) + t

)]
dt

=
∑
h′∈Hn

∫ ∞
1
24Dn(x,h′)

exp

[
− (1− ε0)4l2nφ(x, h′)

16σ2L2
s

]
ds

=
∑
h′∈Hn

16σ2L2

(1− ε0)4l2nφ(x, h′)
exp

[
− (1− ε0)4l2nφ(x, h′)

16σ2L2

1

24
Dn(x, h′)

]

=
∑
h′∈Hn

16σ2L2

(1− ε0)4l2nφ(x, h′)
exp

[
− 1

768

(1− ε0)4

(1 + ε0)

l2

L2
ζn(2 log n)

]

≤ 16σ2L2

(1− ε)4l2(log n)2
n−1 <

1

n log n
(70)

for all sufficiently large n. Hence, from (66), (67) and (70), we have∑
h′∈Hn

E

[(
‖Vn(x, h′)‖2 I(S(x, h′))− D̃n(x, h′)

24

)
+

]
<

2

n log n
(71)

for all sufficiently large n. Therefore, from (64), (65) and (71), we get that for
all sufficiently large n and all h ∈ Hn,

E

[
max

h′∈Hn, h′≤h

(
‖Vn(x, h′)‖2 − D̃n(x, h′)

24

)
+

]
<

1

n
. (72)

We choose an integer N2 large enough such that the assertions in (59), (63)
and (72) are satisfied for all n ≥ N2 and all h ∈ Hn. Hence, the proof is
complete from (57), (58), (59), (63) and (72). ut

From (68), we see that ζ0 depends on the choice of ε0, and it increases with
an increase in the value of ε0. Taking ε0 = 0.1 we see that

ζ0 = 1500
L2

l2
(73)

satisfies (68). Taking smaller values of ε0, we can further decrease the value of
ζ0, but it cannot be less than 768 in view of (68).
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Yurinskĭı, V. (1976). Exponential inequalities for sums of random vectors. Journal of
Multivariate Analysis, 6(4):473–499.


	Small ball probabilities of non-Gaussian processes
	Results required to prove Theorem 7
	Results required to prove Theorem 9
	Results required to prove Theorem 10

