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Abstract
Weconsider a nonparametric regression setup,where the covariate is a randomelement
in a complete separable metric space, and the parameter of interest associated with the
conditional distribution of the response lies in a separable Banach space. We derive
the optimum convergence rate for the kernel estimate of the parameter in this setup.
The small ball probability in the covariate space plays a critical role in determining the
asymptotic variance of kernel estimates. Unlike the case of finite-dimensional covari-
ates, we show that the asymptotic orders of the bias and the variance of the estimate
achieving the optimum convergence rate may be different for infinite-dimensional
covariates. Also, the bandwidth, which balances the bias and the variance, may lead
to an estimate with suboptimal mean square error for infinite-dimensional covariates.
We describe a data-driven adaptive choice of the bandwidth and derive the asymptotic
behavior of the adaptive estimate.

Keywords Adaptive estimate · Bias-variance decomposition · Gaussian process ·
Maximum likelihood regression · Mean square error · Optimal bandwidth · Small
ball probability · t process

1 Introduction

Suppose that we have a nonparametric regression problem, where the covariate X is
a random element in a complete separable metric space, and the response Y lies in
some arbitrary measure space. Our parameter of interest, which is denoted as �(x),
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is a parameter associated with the conditional distribution of Y given X = x. Let
(X1,Y1), . . . , (Xn,Yn) be a sample of i.i.d. observations from the joint distribution
of (X,Y), and our objective is to estimate �(x) based on this sample. In the par-
ticular case, where the response Y is a real random variable, the covariate space is
the q-dimensional Euclidean space R

q and �(x) = E[Y |X = x], Stone (1980)
proved that the optimal convergence rate of a nonparametric estimate ̂�n(x) of �(x)
is n−(β/(2β+q)). Here, β is a positive constant such that |�(z)−�(x)| = O(‖z−x‖β)

as z −→ x, with ‖·‖ being the Euclidean norm inRq . The optimum achievable conver-
gence rate for nonparametric regression with finite-dimensional covariate was further
investigated in Stone (1982), Ibragimov and Haśminskii (1980), Yatracos (1988),
Donoho and Liu (1991a, b), etc. However, when the dimension of the covariate space
is infinite, the expressions of the optimum rate of convergence derived by these authors
are no longer valid.

Recently, nonparametric regression with functional covariates has been studied
in Masry (2005), Ferraty et al. (2007), Rachdi and Vieu (2007), etc. These authors
investigated nonparametric estimation of the conditional mean when the covariate
is functional, and the response is real-valued. They investigated the consistency and
the asymptotic normality of kernel estimates as well as data-driven selection of the
bandwidth. In Ferraty et al. (2012) and Lian (2012), the problem of nonparametric
regressionwhenboth the response and the covariate are functions is investigated,where
the parameter of interest is the conditional mean of the response given the covariate. In
Ferraty et al. (2012), asymptotic normality of the estimate of the conditional mean is
derived and a bootstrap implementation is described. In Lian (2012), an upper bound
of the convergence rate of the estimate of the conditional mean is established.

The problem of optimum convergence rate of a nonparametric regression estimate
was explored in Mas (2012) and Chagny and Roche (2014) when the covariate is
infinite-dimensional. In Mas (2012), the usual mean regression problem with a real-
valued response was considered, and a lower bound for the rate of convergence of the
minimax risk was established (see Theorem 3 in Mas 2012). In Chagny and Roche
(2014), the optimum convergence rate was derived for the estimate of the conditional
distribution function of a real-valued response given an infinite-dimensional covariate.
In both these cases, the methodology developed is restricted to the conditional mean
of some real-valued response, and cannot be applied when the response is infinite-
dimensional, or the parameter of interest is not the conditional mean.

In most of the existing literature on nonparametric regression with functional data,
the authors considered real or multivariate responses and functional covariates. How-
ever, regression problems, where the response itself may be infinite-dimensional
in nature, are also common. Authors who investigated regression with functional
responses and covariates, like Ferraty et al. (2012) andLian (2012), considered the con-
ditional mean as their parameter of interest. But, one may also be interested in various
parameters of the conditional distribution of the response other than the conditional
mean, like the conditional variance and covariance, the conditional coefficient of vari-
ation, the conditional correlation, etc. In our study, the parameter of interest �(x) lies
in some separable Banach space, and it covers a large class of parameters of interest
including those stated above. We shall investigate the convergence rate of a large class
of kernel estimates in this setup and derive the optimal convergence rate.
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Convergence rates for kernel regression 473

In Sect. 2, our regression setup and the kernel estimates are described in detail. In
Sect. 3, we discuss an asymptotic bias-variance decomposition of our kernel estimate,
and study the asymptotic behavior of the bias and the variance terms. We show that
the asymptotic behavior of the variance term critically depends on the small ball
probability in the covariate space. The main convergence results for the estimate
̂�n(x) are presented in Sect. 4. A data-driven method of bandwidth selection along
with the asymptotic behavior of the adaptive estimate is presented in Sect. 5. In the
same section, we demonstrate the adaptive estimates in simulated datasets from several
regression models. Section 6 contains concluding remarks and discussion. The proofs
and related mathematical details are provided in Sect. 7 and in the supplement.

2 Kernel estimates

Weassume that the covariateX is a random element in some complete separablemetric
space (C, d) with d being the metric, and the response Y is a random element in some
measurable spaceR equipped with some appropriate σ -field and probability measure.
Denote the conditional probability measure of Y given X = x as μ(· | x). We want to
estimate a parameter �(x) associated with μ(· | x) for a fixed x ∈ C. We employ the
nonparametric kernel regression method developed by Nadaraya (1964) and Watson
(1964). Let K (·) be a suitable kernel function with associated bandwidth h > 0. To
estimate �(x), we first construct the weighted empirical probability measure μn(· | x)
that assigns probability mass

Wi,n = K (h−1d(x,Xi ))
∑n

i=1 K (h−1d(x,Xi ))

to the data point Yi for i = 1, . . . , n. The kernel estimate ̂�n(x) of �(x) is the
corresponding parameter associated with μn(· | x).

We require the concept of a type 2 Banach spaces in our subsequent discussion. A
separable Banach space is called type 2 if there is a positive constant c such that for
any n ≥ 1 and independent zero-mean random elements Z1, . . . ,Zn in that Banach
space withE‖Zi‖2 < ∞ for i = 1, . . . , n, we haveE‖Z1+· · ·+Zn‖2 ≤ c(E‖Z1‖2+
· · · + E‖Zn‖2) (Araujo and Giné 1980, p. 158). Also, a Banach space is said to have
a Schauder basis {en} if for every element v in that space, v = ∑∞

n=1 vnen for some
sequence of real numbers {vn}. Separable Hilbert spaces and L p[a, b] spaces with
p ≥ 2 and −∞ ≤ a < b ≤ ∞ are well-known examples of type 2 Banach spaces
with Schauder bases. Henceforth, I(·) will denote the usual indicator function.

We now discuss some examples. These examples demonstrate the use of kernel
estimates in a diverse class of statistical models. In all our subsequent discussion, the
expectation of a random element in a separable Banach space is defined in the sense
of Bochner (Araujo and Giné 1980, p. 100).

Example 1 (Mean regression): Consider �(x) = E[�(Y) |X = x] ∈ B, where B is
a type 2 Banach space, and �(·) is a function from R to B. The estimate ̂�n(x) of
�(x) is
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̂�n(x) =
∑n

i=1 �(Yi )K (h−1d(x,Xi ))
∑n

i=1 K (h−1d(x,Xi ))
.

Some examples of �(·) and the resulting �(x) are the following. Let Y ∈ R, and
�(Y) = I(Y ≤ y), where y ∈ R. Then,�(x) is the conditional distribution ofY given
X = x at y (see Ferraty et al. (2006), Chagny and Roche (2014), etc.). Alternatively,
if�(Y) = Yr , �(x) is the conditional r th moment ofY givenX = x. Next, letY be a
random vector in R

q . For u, v ∈ R
q with u = [u1, . . . , uq ] and v = [v1, . . . , vq ], let

u ≤ v denote ui ≤ vi for i = 1, . . . , q. Then, for �(Y) = I(Y ≤ y), where y ∈ R
q ,

�(x) becomes the conditional multivariate distribution of Y at y given X = x. When
Y is a univariate or multivariate random variable, the choice �(Y) = Y corresponds
to the conditional mean of a univariate or multivariate response given X = x (see,
e.g., Ferraty and Vieu (2006), Ferraty et al. (2007), etc.). Similarly, when Y ∈ B and
B is a separable Hilbert space, the choices �(Y) = Y and �(Y) = Y ⊗ Y (the
outer product of Y with itself) correspond to the conditional mean and the second
conditional moment of Y given X = x, respectively (see Ferraty et al. (2012)). Note
that when B = R

q , Y ⊗ Y becomes the q × q matrix YYt .

Example 2 (Functions of conditional mean): Let B1,B2 be two separable Banach
spaces, U be an open subset of B1, and �(·) : R −→ B1 be such that E[�(Y) |X =
x] ∈ U . For �(·) : U −→ B2, we consider �(x) = �(E[�(Y) |X = x]). Here, the
kernel regression estimate ̂�n(x) is

̂�n(x) = �

(∑n
i=1 �(Yi )K (h−1d(x,Xi ))
∑n

i=1 K (h−1d(x,Xi ))

)

.

As a special case, let Y be a real random variable. Let �(Y) = (Y2,Y) and
U = {(u, v) ∈ R

2 | u > v2, v > 0}. Let �(·) : U −→ R be defined by �(u, v) =
v−1

√
u − v2. Then, �(x) = �(E[�(Y) |X = x]) is the conditional coefficient of

variation of Y given X = x (see, e.g., Dette and Wieczorek (2009); Dette et al.
(2012)).

As another special case, let Y = (Y1, Y2) be a bivariate random variable. Let
�(Y) = �(Y1, Y2) = (Y1Y2, Y1, Y2, Y 2

1 , Y 2
2 ) and U = {(s, t, u, v, w) ∈ R

5 | v >

t2, w > u2}. Let �(·) : U −→ R be defined by

�(s, t, u, v, w) = s − tu√
v − t2

√
w − u2

.

Then, �(x) = �(E[�(Y) |X = x]) is the conditional correlation coefficient of Y1
and Y2 given X = x (see, e.g., Klemelä (2014, p. 13)).

As the third special case, let the response space R be a separable Hilbert space,
and B2 denote the space of Hilbert–Schmidt operators onR. Note that B2 is a Hilbert
space (Bhatia 2009, p. 195). Also, the space of finite rank operators is dense in the
space of Hilbert–Schmidt operators (Bhatia 2009, p. 196), and the space of finite
rank operators on a separable Hilbert space is itself separable. Consequently, B2 is a
separable Hilbert space. Set B1 = B2 × R. Define �(Y) = (Y ⊗ Y,Y), U = B1
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and �(u, v) = u − v ⊗ v. Then, �(x) = COV[Y |X = x], which is the conditional
covariance operator ofY givenX = x (see, e.g., Ferraty et al. 2012). Note that whenY
is real random variable, this choice of �(Y) and �(·, ·) corresponds to the conditional
variance of Y given X = x.

Example 3 (Maximum likelihood regression): Nonparametric estimation in a likeli-
hood based regression problem with finite-dimensional covariate was investigated in
Staniswalis (1989), Chaudhuri and Dewanji (1995) and Aerts and Claeskens (1997).
Let the covariate X and the response Y be random elements in the complete separable
metric spaces C andR, respectively. SupposeY givenX has a conditional density with
respect to some sigma-finite measure in R, and it is given by f (· | �(x)) for X = x,
where �(·) : C −→ R

q . We assume that the form of the function f (· | ·) is known,
but �(·) is unknown. We are interested in estimating �(x) using maximum weighted
likelihood procedure, where x ∈ C is fixed. The kernel estimate ̂�n(x) of �(x) is
given by

̂�n(x) = argmax
t∈Rq

n
∏

i=1

[ f (Yi | t)]Wi,n(x), where Wi,n(x) = K (h−1d(x,Xi ))
∑n

i=1 K (h−1d(x,Xi ))
.

(1)

So, when f (y | t) is a differentiable function of t ∈ R
q , ̂�n(x) is the solution (in t) of

the likelihood equation

n
∑

i=1

[∇(log f (Yi | t))]Wi,n(x) = 0. (2)

Here, ∇ denotes the gradient vector of first partial derivatives with respect to t.

It is well known that when the covariate X is finite-dimensional, say X ∈ R
q , and

X has a continuous positive density at x, one needs to have a sequence of bandwidths
{hn} such that hn −→ 0 and nhq

n −→ ∞ as n −→ ∞ to ensure the consistency of the
kernel regression estimate ̂�n(x) (see, e.g., chapter 3 in Hardle (1990)). To deal with
covariates,which are not necessarily finite-dimensional, defineφ(z, h) = P[d(z,X) ≤
h]. The function φ(z, h) is known as the small ball probability function, and it plays an
important role in the asymptotic properties of nonparametric regression estimates. We
make the following assumptions on the kernel and the sequence of bandwidths, which
are required to establish the consistency of the estimates and derive their convergence
rates.

A(i) The kernel K (·) is supported on [0, 1] with K (u) being bounded and bounded
away from 0 for 0 ≤ u ≤ 1, i.e., there are constants 0 < l ≤ L such that
l ≤ K (u) ≤ L for all 0 ≤ u ≤ 1.

A(ii) The bandwidth hn −→ 0, and nφ(x, hn) −→ ∞ as n −→ ∞.

The choice of the kernel K (·) described in Assumption A(i) is equivalent to the type
I kernel described in Ferraty and Vieu (2006, p. 42). This is a popular choice of
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kernel in the literature on nonparametric regression involving functional covariates
(see, e.g., Ferraty et al. (2006), Burba et al. (2009), Chagny and Roche (2014, 2016),
etc.). Note that for X ∈ R

q having a continuous positive density at x, the condition
nφ(x, hn) −→ ∞ as n −→ ∞ in Assumption A(ii) is equivalent to nhq

n −→ ∞
as n −→ ∞. Assumption A(ii) is required to ensure the consistency of the kernel
estimates involving an infinite-dimensional covariate, and is also used in earlier works
(see, e.g., Ferraty et al. 2007).

3 Bias-variance decomposition

Let B be a separable type 2 Banach space with a Schauder basis, and �(·) : C −→ B.
For x ∈ C, we consider the class of kernel regression estimates, which satisfy

̂�n(x) − �(x) = Bn(x) + Vn(x) + Rn(x), (3)

where

Bn(x) = Lx

(

∑n
i=1 F(Xi )K (h−1

n d(x,Xi ))
∑n

i=1 K (h−1
n d(x,Xi ))

− F(x)

)

, (4)

Vn(x) = Lx

(

∑n
i=1[G(Yi ) − E[G(Yi ) |Xi ]]K (h−1

n d(x,Xi ))
∑n

i=1 K (h−1
n d(x,Xi ))

)

. (5)

Here, F(·) : C −→ G, G(·) : R −→ G, Lx(·) : G −→ B and G is a separable Banach
space. Lx(·) is a continuous linear map. The functions F(·), G(·) and the remainder
term Rn(x) are assumed to satisfy the following conditions.

B(i) Let β > 0 be a constant. Then, F(·) ∈ F(x, β,G). Here,F(x, β,G) is a class of
functions F(·) : C −→ G such that for some constant bF > 0, ‖F(z)−F(x)‖ ≤
bF d(x, z)β for all z lying in a neighborhood of x.

B(ii) G(·) is such that for some ν > 2, E[‖G(Y) − E[G(Y) |X = z]‖ν |X = z] is
uniformly bounded for z lying in a neighborhood of x.

B(iii) Rn(x) = oP(δn) as n −→ ∞, where δn = max
{

hβ
n ,
[

nφ(x, hn)
]−1/2}.

Note that E[Vn(x) |X1, . . . ,Xn] = 0. We can view Bn(x) as the bias term and
Vn(x) as the variance term in kernel regression. Note that condition B(i) is related to
the smoothness of the regression function. Condition B(ii) imposes a bound on the
variability of the residual of the regression. Condition B(iii) essentially states that the
remainder term in our bias-variance decomposition is asymptotically negligible. We
shall nowverify the validity of the above bias-variance decomposition in Examples 1, 2
and 3 in Sect. 2.

Example 1 (continued). Recall Example 1 considered in Sect. 2. We can set

Bn(x) =
∑n

i=1 E[�(Yi ) |Xi ]K (h−1
n d(x,Xi ))

∑n
i=1 K (h−1

n d(x,Xi ))
− E[�(Y) |X = x],
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Vn(x) =
∑n

i=1[�(Yi ) − E[�(Yi ) |Xi ]]K (h−1
n d(x,Xi ))

∑n
i=1 K (h−1

n d(x,Xi ))
,

and Rn(x) = 0.

Then, setting G(Y) = �(Y), F(X) = E[�(Y) |X] and Lx(·) to be the identity map
on B, (3) holds for any kernel satisfying A(i) and any sequence of bandwidths {hn}
satisfying A(ii). Here, condition B(iii) is trivially satisfied. Note that in this case,
F(z) = �(z), and so condition B(i) is satisfied when �(z) is Holder continuous at
x with exponent β, and the class F(x, β,B) can be taken as the class of all Holder
continuous functions atx. ConditionB(ii) is satisfiedwhen for some ν > 2,E[‖�(Y)−
E[�(Y) |X = z]‖ν |X = z] is uniformly bounded for z lying in a neighborhood of
x. In particular, B(ii) holds for the location-scale type model �(Y) = l(X) + s(X)U,
where l(·) : C −→ B and s(·) : C −→ (0,∞) are continuous functions, and U is a
zero-mean random element in B, which is independent of X with E[‖U‖ν] < ∞ for
some ν > 2.

Example 2 (continued). Consider again the class of estimators described in Exam-
ple 2. The following proposition asserts that the bias-variance decomposition (3) holds
for those estimators.

Theorem 1 In Example 2 considered in Sect. 2, letB2 be a type 2 Banach space. Let the
kernel function K (·) satisfyA(i)and the bandwidths {hn} satisfy A(ii). Assume that �(·)
is Fréchet differentiable with derivative �′(·). Let Lx(·) = �′ (E[�(Y) |X = x]) (·),
G(Y) = �(Y), F(z) = E[G(Y) |X = z], and conditions B(i) and B(ii) hold.
Then, B(iii) is also satisfied, and consequently the bias-variance decomposition in
(3) holds.

Note that in all the specific cases discussed in Example 2, namely, the coefficient of
variation, the correlation coefficient and the covariance operator, the function �(·)
satisfies the differentiability condition stated in Theorem 1, and its derivative can be
computed in a straight forward way.

When Y is a real-valued random variable and �(x) is the conditional coefficient of
variation of Y given X = x as mentioned in Example 2, Assumption B(i) is satisfied
if E[Y2 |X = z] and E[Y |X = z] are both Holder continuous at x with exponent β.
Further, the Assumption B(ii) is satisfied if E[Y4+α |X = z] is uniformly bounded for
z lying in a neighborhood of x for some α > 0. Note that conditionsE[Y |X = x] > 0
and V[Y |X = x] > 0 ensure that E[�(Y) |X = x] lies in the domain of �(·).

WhenY = (Y1, Y2) is a bivariate random variable, and�(x) is the conditional cor-
relation between Y1 and Y2 givenX = x as mentioned in Example 2, Assumption B(i)
is satisfied if each ofE[Y1Y2 |X = z],E[Y1 |X = z],E[Y2 |X = z],E[Y 2

1 |X = z] and
E[Y 2

2 |X = z] is Holder continuous at xwith exponent β. Assumption B(ii) is satisfied
if E[‖Y‖4+α |X = z] is uniformly bounded for z lying in a neighborhood of x for
some α > 0. Further, V[Y1 |X = x],V[Y2 |X = x] > 0 ensure that E[�(Y) |X = x]
lies in the domain of �(·).

One can verify that when �(x) is the conditional covariance of Y given X = x,
Assumption B(i) is satisfied if E[Y ⊗ Y |X = z] and E[Y |X = z] are both Holder
continuous at x with exponent β. Assumption B(ii) holds if E[‖Y‖4+α |X = z] is
uniformly bounded for z lying in a neighborhood of x for some α > 0.
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Example 3 (continued). In the case of Example 3 considered in Sect. 2, define
g(y | t) = log f (y | t), where t ∈ R

q . Let T be an open ball in R
q containing the

range of �(·). We now assume some Cramer-type regularity conditions on the log-
likelihood g(y | t) that are required for asymptotic analysis of weighted maximum
likelihood estimates (see, e.g., Chaudhuri and Dewanji 1995). The support of f (y | t)
is assumed to be same for all t ∈ T , and g(y | t) is assumed to be thrice continuously
differentiablewith respect to t for t ∈ T . Denote theHessianmatrix of all second-order
partial derivatives of g(y | t)with respect to t as�2(g(y | t)), and the array of all third-
order partial derivatives of g(y | t) with respect to t as �3(g(y | t)). Define I(�(z)) =
−E[�2(g(Y | �(z))) |X = z], and assume that I(�(z)) is finite, positive definite and
continuous for z lying in a neighborhood of x. Also, assume that for t ∈ T , there exist
two nonnegative random variables D1(Y | t) and D2(Y | t) such that E[D1(Y | t)]2 <

∞, E[D2(Y | t)] < ∞, and ‖�2(g(Y | s))‖ ≤ D1(Y | t), ‖�3(g(Y | s))‖ ≤ D2(Y | t)
for any s in some neighborhood of t contained in T .

In the next proposition, we see that the decomposition (3) along with condi-
tions B(i)–B(iii) is satisfied for the weighted maximum likelihood estimate ̂�n(x)
defined in (1).

Theorem 2 In Example 3 considered in Sect. 2, assume that �(·) ∈ F(x, β,Rq)

for some β > 0, where F(x, β,Rq) is as defined in B(i). Let the kernel function
K (·) satisfy A(i) and the bandwidths {hn} satisfy A(ii). Then, under the Cramer-type
regularity conditions stated above, the decomposition (3) along with conditions B(i)–
B(iii) will hold for ̂�n(x) in (1) if we choose Lx(·) = [I(�(x))]−1(·), G(Y) =
∇g(Y | �(X)) and F(X) = I(�(x))(�(X)), where g(y | t) = log f (y | t).

3.1 Asymptotic behavior of the bias and the variance

In this subsection, the orders of convergence of the bias term Bn(x) and the variance
term Vn(x) in (3) are investigated. It follows from Assumptions A(ii) and B(i) that
‖Bn(x)‖ ≤ ‖Lx‖bF hβ

n for all sufficiently large n. So, for all choices of bandwidths
{hn} with hn −→ 0+ as n −→ ∞,

E

[

‖Bn(x)‖2
]

≤ (‖Lx‖bF )2h2β
n (6)

for all sufficiently large n. The inequality (6) leads to an upper bound of the rate of
convergence of the bias term, and it will be used later to study the asymptotic properties
of the estimate ̂�n(x).

We next discuss the asymptotic behavior of the variance term Vn(x). We derive an
upper bound of the convergence rate of E[‖Vn(x)‖2] in the theorem below.

Theorem 3 Under A(i), A(ii) and B(ii), nφ(x, hn)E[‖Vn(x)‖2] = O(1) as n −→ ∞.

The following condition is needed to derive the asymptotic distribution of Vn(x).

B(iv) B is a separable Hilbert space, and G(·) in (5) is such that the covariance
operator D(·, · | z) : B × B −→ R defined by D(u, v | z) = E[〈u,Lx(G(Y) −
E[G(Y) |X = z])〉〈v,Lx(G(Y)−E[G(Y) |X = z])〉 |X = z], where u, v ∈ B,
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Convergence rates for kernel regression 479

converges toD(·, · | x) in the trace norm as z −→ x, andD(·, · | x) is a bounded
positive definite operator.

Condition B(iv) is related to the smoothness of the conditional distribution of the
residual in the regression given the covariate, and it holds in many common models.
For example, consider the location-scale type model Lx(G(Y)) = l(X) + s(X)U,
where l(·) : C −→ B and s(·) : C −→ (0,∞) are continuous functions, and U
is a zero-mean random element in B, which is independent of X, having a bounded
positive definite covariance operator.

From Assumption A(i), it follows that l jφ(x, h) ≤ E
[

K j (h−1d(x,X))
] ≤

L jφ(x, h) for any positive integer j and any bandwidth h > 0. Define

E ( j)
n (x) = [φ(x, hn)]−1

E

[

K j (h−1
n d(x,X))

]

(7)

for all positive integer j . Note that

0 < L−1l ≤
[

E (2)
n (x)

]−1/2
E (1)

n (x) ≤ l−1L < ∞ (8)

for all n. In the next theorem, we establish the asymptotic Gaussianity of Vn(x).

Theorem 4 Let the kernel function K (·) satisfy A(i), and the sequence of bandwidths
{hn} satisfy A(ii). Then, under conditions B(ii) and B(iv),

[nφ(x, hn)]1/2
[

E (2)
n (x)

]−1/2
E (1)

n (x)Vn(x) −→ W

in distribution as n −→ ∞, where W is a zero-mean Gaussian random element in B
with covariance operator D(·, · | x).
Recall that Rn(x) = 0 for the mean-type regression problems described in Example 1.
So, for these class of regression problems, from Theorem 4 and (3) we get that

[nφ(x, hn)]1/2
[

E (2)
n (x)

]−1/2
E (1)

n (x)
[

̂�n(x) − �(x) − Bn(x)
] −→ W

in distribution as n −→ ∞. Define

en[G(Y) | x] =
∑n

i=1 G(Yi )K (h−1
n d(x,Xi ))

∑n
i=1 K (h−1

n d(x,Xi ))
.

The covariance operator D(·, · | x) ofW may be estimated by

̂Dn(u, v | x)

=
∑n

i=1 [〈u,Lx(G(Yi ) − en[G(Y) | x])〉 〈v,Lx(G(Yi ) − en[G(Y) | x])〉] K (h−1
n d(x,Xi ))

∑n
i=1 K (h−1

n d(x,Xi ))
.

The function φ(x, h) plays a central role in determining the convergence rate and
the asymptotic distribution of Vn(x), and we discuss it in detail in the next subsection.
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3.2 The small ball probability function

When the covariate X is finite-dimensional, say X ∈ R
q , and it has a continuous

positive density at x, it follows that φ(x, h) ∼ hq as h −→ 0+. But if X is a random
element in an infinite-dimensional space, getting the asymptotic order of φ(x, h) as
h −→ 0+ is much more difficult, and the available results in this area are mostly for
the case where X is a Gaussian process (see, e.g., Lifshits 2013). In the literature,
the popular approach has been to first derive the limiting behavior of logφ(0, h) as
h −→ 0+, when X is a Gaussian random element centered at 0. Then, one makes a
connection between φ(x, h) and φ(0, h) for suitable x and sufficiently small h.

The asymptotic behavior of logφ(0, h) was investigated in Li (2001) for real-
valued centered Gaussian Markov processes on [0, 1] under the L p-norm, where
1 ≤ p ≤ ∞. It was shown there that in such a case, h2 logφ(0, h) −→ −c1 as
h −→ 0+, where c1 > 0 is a constant depending on p. ForX being a fractional Brow-
nian motion on [0, 1] with Hurst index γ ∈ (0, 1), it was shown in Theorem 4.6 in
Li and Shao (2001) that under the L∞-norm, −c2h−1/γ ≤ logφ(0, h) ≤ −c3h−1/γ

for all 0 < h ≤ 1. Here, c2 and c3 are positive constants depending on γ . For
X being an integrated fractional Brownian motion with Hurst index γ ∈ (0, 1), it
was established in Theorem 4.10 of Li and Shao (2001) that under the L∞-norm,
−c4h−1/(1+γ ) ≤ logφ(0, h) ≤ −c5h−1/(1+γ ) for all 0 < h ≤ 1, where c4 and c5 are
positive constants depending on γ .

For the Lévy fractional Brownian motion on [0, 1]q with Hurst index γ ∈ (0, 1),
it was proved in Theorem 5.1 in Li and Shao (2001) that under the L∞-norm,
−c6h−q/γ ≤ logφ(0, h) ≤ −c7h−q/γ for all 0 < h ≤ 1. Here, c6 and c7 are positive
constants depending on γ and q. For a Brownian sheet on [0, 1]q , it follows from
Theorem 5.3 in Li and Shao (2001) that under the L2-norm, −c8h−2(log(1/h))(2q−2)

≤ logφ(0, h) ≤ −c9h−2(log(1/h))(2q−2) as h −→ 0+, where c8, c9 > 0 are con-
stants depending on q. It was shown in Theorem 5.4 in Li and Shao (2001) that if
X is a Brownian sheet on [0, 1]2, we have −c10h−2(log(1/h))3 ≤ logφ(0, h) ≤
−c11h−2(log(1/h))3 under the L∞-norm, where c10, c11 > 0 are constants.

3.3 Shifted small ball probability

As we have already mentioned, the asymptotic behavior of logφ(x, h) is derived by
establishing some relationship between φ(x, h) and φ(0, h). As described in subsec-
tion 1.2 in Mas (2012), one can establish a relation between φ(x, h) and φ(0, h) if the
probability measure of X − x is absolutely continuous with respect to the probability
measure of X, and the density of the measure of X− x with respect to the measure of
X is suitably smooth. This approach is motivated from the Cameron–Martin theorem
describing the Radon–Nikodym derivative of a Weiner measure translated by x with
respect to the centeredWeinermeasure,wherex is an element of the reproducing kernel
Hilbert space associated with the centered Weiner measure (see Cameron and Martin
1944). When X is a centered Gaussian random element in a separable Banach space,
and x is an element of the associated reproducing kernel Hilbert space, from Theorem
3.1 in Li and Shao (2001) we get that exp[−(1/2)‖x‖2μ]φ(0, h) ≤ φ(x, h) ≤ φ(0, h)
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for all h > 0, where ‖ ·‖μ is the norm in the reproducing kernel Hilbert space. But this
result is not very useful for our purpose since the probability of the event that an infinite-
dimensional Gaussian random element lies in its reproducing kernel Hilbert space is
zero (seeCorollary 7.1 inLukić andBeder (2001)). Fortunately, it follows fromRemark
2.2 in Dereich and Lifshits (2005) that whenX is a centered Gaussian random element
in a separable Banach space, then for almost all x, (φ(0, h/2))2 ≤ φ(x, h) ≤ φ(0, h)

for all sufficiently small h. How small h needs to be depends on that particular x. On
the other hand, it follows from Theorem 2.1 in Hoffmann-Jorgensen et al. (1979) that
for X being a centered Gaussian random element in a separable infinite-dimensional
Hilbert space, we have exp[−(1/2)‖x‖2]φ(0, h) ≤ φ(x, h) ≤ φ(0, h) for all h > 0.

Let X be a centered Gaussian random element in a separable Hilbert space. The
Karhunen–Loeve expansion of X is X = ∑∞

j=1

√

λ j Z jψ j , where {Z j } is a collec-
tion of independent normal random variables with mean 0 and variance 1, {λ j } is
the sequence of decreasing eigenvalues of the covariance operator of X, and {ψ j } is
an orthonormal basis of the Hilbert space. Here, the small ball probability φ(x, h)

can be related to the rate of decrease of the sequence {λ j }. As discussed in sub-
section 4.1 in Chagny and Roche (2014), for certain rates of decrease for {λ j },
e.g., if for some α > 1, jαλ j is bounded and bounded away from 0 for all j ,
we may have c12h p1 exp(−c13h−q1) ≤ φ(x, h) ≤ c14h p2 exp(−c15h−q1) for posi-
tive constants c12, c13, c14, c15, p1, p2 and q1. Alternatively, for some other rates,
e.g., if j exp[2 j]λ j is bounded and bounded away from 0 for all j , we may have
c16h p3 exp[−c17(log(1/h))q2 ] ≤ φ(x, h) ≤ c18h p4 exp[−c17(log(1/h))q2 ] for posi-
tive constants c16, c17, c18, p3, p4 and q2 > 1 (see subsection 4.1 in Chagny and Roche
(2014)). See also Theorem 4.4, Examples 4.5, 4.6 and 4.7 inHoffmann-Jorgensen et al.
(1979) for a discussion on the relation between the small ball probability φ(x, h) and
the rate of decrease of {λ j }.

From the discussion on the small ball probability functions above, it is now clear
that in a diverse collection of cases, we have

C1ht1 exp
[−C2(1/h)t2 (log(1/h))t3

] ≤ φ(x, h) ≤ C3ht4 exp
[−C4(1/h)t2 (log(1/h))t3

]

(9)

as h −→ 0+. Here,C1, C2, C3, C4 > 0 and t1, t2, t3, t4 ≥ 0 are appropriate constants,
all of which, except C1, are independent of x. C1 may or may not depend on x, but
if it depends on x then C1 = C ′

1 exp[−(1/2)‖x‖2] for some positive constant C ′
1. For

infinite-dimensional covariates, either t2 > 0, or t3 > 1 is an integer with C2 = C4.
Define

m(h) = C2(1/h)t2(log(1/h))t3 (10)

for 0 < h < 1. We shall derive the optimum convergence rates of the estimates in
terms of m(h).

The previous discussion of small ball probabilities are concerned with only
Gaussian random elements. We next consider small ball probabilities of some infinite-
dimensional non-Gaussian distributions. Let B1 and B2 be separable Banach spaces,
and f (·) : B2 −→ B1 be a function such that for any u ∈ B2, there exist constants
r , s > 0, which may depend on u, such that for any v ∈ B2 sufficiently close to u, we
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have r‖v − u‖ ≤ ‖ f (v) − f (u)‖ ≤ s‖v − u‖. Any Frechet differentiable function
f (·) with a Frechet differentiable inverse satisfies such a condition. If T and G are
random elements with T = f (G), and the small ball probability of G satisfies the
bounds described in (9), then similar bounds also hold for T (see Proposition 1 in the
supplement). An example of such a non-Gaussian process T is the geometric Brow-
nian motion in an L2 space, where f (·) is the pointwise exponential map (Øksendal
2003, p. 67).

Next, letG be a Gaussian process whose small ball probability satisfies the bounds
in (9), and T = G/U, where U is a bounded positive random variable independent of
G. Then, (9) will also hold for the small ball probabilities of T (see Proposition 2 in
the supplement). Also, bounds similar to (9) can be established for the small ball prob-
abilities of an infinite-dimensional t process, whose corresponding Gaussian process
has small ball probabilities satisfying (9) (see Proposition 3 in the supplement).

The bounds in (9)were considered in Ferraty andVieu (2006, p. 209)withC2 = C4,
t1 = t4 = 0, and they called it the small ball probability function of an exponential-
type process. For t2 = 0, t3 = 1 and appropriate values of the parameters C1, C2,
C3 and C4, (9) yields the case of a finite-dimensional covariate X with a continuous
positive density at x, or a fractal-type process as defined in Ferraty and Vieu (2006,
p. 207).

4 Convergence rate

Wenowderive the optimumachievable convergence rate for kernel estimates satisfying
the bias-variance decomposition (3). As we shall see, the function m(h) defined in
(10) plays a central role in determining the convergence rate of the estimate ̂�n(x).
We shall consider the covariate space to be infinite-dimensional. The case of finite-
dimensional covariates is extensively discussed in the past literature (see, e.g., Stone
(1980, 1982), Ibragimov and Haśminskii (1980), Yatracos (1988), Donoho and Liu
(1991a, b)). In order to consider only infinite-dimensional covariates, we assume that
in (9), either t2 > 0, or t3 > 1 with C2 = C4 in all subsequent discussions. In that
case, m(h) is a strictly decreasing positive function, and m−1(·), which is the inverse
function of m(·), is well defined. In the next theorem, we see that

(

m−1(log n)
)β

is
an attainable rate of convergence of ̂�n(x). Also, under certain additional conditions,
(

m−1(log n)
)2β

is an attainable rate of convergence of the mean square error of̂�n(x).

Theorem 5 Suppose that in (9), we have either t2 > 0, or t3 > 1 with C2 = C4. Then,
for any kernel K (·) satisfying A(i) and �(x) satisfying (3) along with conditions B(i)–
B(iii), there is a sequence of bandwidths {hn} satisfying A(ii) such that

∥

∥̂�n(x) −
�(x)

∥

∥ = OP

( (

m−1(log n)
)β )

as n −→ ∞, where m(h) is as defined in (10). Further,
if E[‖Rn(x)‖2] = o

(

δ2n
)

as n −→ ∞, where δn is as defined in B(iii), E
∥

∥̂�n(x) −
�(x)

∥

∥

2 = O
( (

m−1(log n)
)2β )

as n −→ ∞ for the aforementioned sequence of
bandwidths {hn}.
Recall that when the parameter of interest is a conditional mean type function as
described in Example 1 in Sect. 2, Rn(x) = 0. So, in that case the condition
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E[‖Rn(x)‖2] = o(δ2n) assumed in the second part of the above theorem is trivially
satisfied.

4.1 Lower bound on the convergence rate

We now proceed to investigate the lower bound of the convergence rate of ̂�n(x).
In the next proposition, we establish an asymptotic lower bound of the sequence of
bandwidths {hn} that leads to consistent kernel regression estimates. This result will
be needed while deriving the lower bound of the convergence rate of a kernel estimate.

Theorem 6 Suppose that in the upper and the lower bounds in the shifted small
ball probability in (9), we have either t2 > 0, or t3 > 1 with C2 = C4. Then,
for any sequence of bandwidths {hn}, which satisfies Assumption A(ii), we have
hn/m−1(log n) bounded away from 0 as n −→ ∞, where m(h) is as defined in (10).

Define

B̃n(x) = Lx

(

E

[

(F(X) − F(x))
K
(

h−1
n d(x,X)

)

E (1)
n (x)φ(x, hn)

])

,

where Lx(·) and F(·) are as defined after (5), and E (1)
n (x) is as defined in (7). Also, let

{e1, e2, · · · } be a Schauder basis of B, such that for any v ∈ B, v = ∑∞
n=1 vnen for a

sequence of real numbers {vn}. Let φ̃i ∈ B∗ be the projection functional corresponding
to ei , i.e., v = ∑∞

i=1 φ̃i (v)ei for all v ∈ B. Consider the following assumptions.

C(i) There is �(·) : C −→ B with the corresponding Lx(·) and F(·) such that for
any sequence of bandwidths {hn} satisfying A(ii),

h−β
n

∥

∥

∥B̃n(x)
∥

∥

∥ > b1 > 0 (11)

for all sufficiently large n.
C(ii) Let G(·) be as defined after (5). For some positive integer i0, the conditional

variance function V(z) : C −→ R defined by V(z) = E
[(

φ̃i0

(

Lx(G(Y) −
E[G(Y) |X = z])))2 ∣∣X = z

]

converges to V(x) as z −→ x, and V(x) > 0.

Condition C(ii), like condition B(iv), is related to the smoothness of the conditional
distribution of the residual in the regression. In fact, condition C(ii) holds in the same
location-scale type models, which we described after condition B(iv). Condition C(i)
gives a lower bound on the rate of convergence of the bias part of the estimate. Inequal-
ity (6) and condition C(i) together imply that the rate of convergence of the bias part
is same as hβ

n as n −→ ∞. The following two conditions are sufficient to ensure
that C(i) holds.

a. There is a constant 0 < s < 1 such that φ(x, sh)/φ(x, h) is bounded away from
1 for all sufficiently small h > 0.
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b. Let Lx(F(x, β,G)) be the class of all functions defined by the composition
Lx ◦ H , where H ∈ F(x, β,G) and F(x, β,G) is as defined in B(i). Then
Lx(F(x, β,G)) contains the function z �→ d(x, z)βv, where v ∈ B, and z lies
in a neighborhood of x.

Condition (a) is satisfied when in (9), t2 > 0, or t1 < t4, or C2 = C4. We observe that
at least one of these is true in the examples that we have described in Sect. 3.2.

Now, we derive the lower bound of the order of convergence of the bias term Bn(x)
in (3) under B(i) and C(i). Note that Bn(x) = B̃n(x) + R̃n(x), where

R̃n (x)

= Lx

⎛

⎝

∑n
i=1 (F (Xi ) − F (x)) K

(

h−1
n d (x,Xi )

)

∑n
i=1 K

(

h−1
n d (x,Xi )

) − B̃n (x)

⎞

⎠

= Lx

⎛

⎝

∑n
i=1 (F (Xi ) − F (x)) K

(

h−1
n d (x,Xi )

)

∑n
i=1 K

(

h−1
n d (x,Xi )

) − 1

n

n
∑

i=1

(F (Xi ) − F (x))
K
(

h−1
n d (x,Xi )

)

E(1)
n (x) φ (x, hn)

⎞

⎠

+ Lx

⎛

⎝

1

n

n
∑

i=1

(F (Xi ) − F (x))
K
(

h−1
n d (x,Xi )

)

E(1)
n (x) φ (x, hn)

− E

⎡

⎣(F (X) − F (x))
K
(

h−1
n d (x,X)

)

E(1)
n (x) φ (x, hn)

⎤

⎦

⎞

⎠ .

It follows form condition A(i) and Markov inequality that
(n−1∑n

i=1[E (1)
n (x)φ(x, hn)]−1K (h−1

n d(x,Xi )) − 1) = OP

([

nφ(x, hn)
]−1/2) as

n −→ ∞. Hence, from conditions A(i), A(ii) and B(i), we have

Lx

⎛

⎝

∑n
i=1 (F (Xi ) − F (x)) K

(

h−1
n d (x,Xi )

)

∑n
i=1 K

(

h−1
n d (x,Xi )

) − 1

n

n
∑

i=1

(F (Xi ) − F (x))
K
(

h−1
n d (x,Xi )

)

E (1)
n (x) φ (x, hn)

⎞

⎠

= oP
(

hβ
n

)

as n −→ ∞. Also, from Assumptions A(i), A(ii), B(i) and Markov inequality, it
follows that

Lx

(

1

n

n
∑

i=1

(F (Xi ) − F (x))
K
(

h−1
n d (x,Xi )

)

E (1)
n (x) φ (x, hn)

− E

[

(F (X) − F (x))
K
(

h−1
n d (x,X)

)

E (1)
n (x) φ (x, hn)

])

= oP
(

hβ
n

)

as n −→ ∞. Hence,

R̃n(x) = oP(hβ
n ) as n −→ ∞. (12)

Note that inequality (11) provides a lower bound of the convergence rate for the bias
term Bn(x) in view of (12), and this will be used to determine a lower bound of the
rate of convergence of ̂�n(x). Also note that φ̃i0

(

Lx(G(Y))
)

in condition C(ii) is a
real-valued random variable. So, the convergence condition in C(ii) of the conditional
variance may be viewed as a special case of condition B(iv). We now state the theorem
on the lower bound of the convergence rate of

∥

∥̂�n(x) − �(x)
∥

∥.
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Theorem 7 Suppose that in (9), we have either t2 > 0, or t3 > 1 with C2 = C4,
the kernel K (·) satisfies A(i), the sequence of bandwidths {hn} satisfies A(ii), and the
decomposition (3) along with conditions B(i)–B(iii), C(i) and C(ii) hold. Then,

lim inf
n−→∞ P

[

(

m−1(log n)
)−β ∥

∥̂�n(x) − �(x)
∥

∥ > c

]

> 0

for some constant c > 0 depending on �(x), where m(h) is as defined in (10).

Theorem 7 implies that we cannot get a faster rate of convergence than
(

m−1(log n)
)β
, since

(

m−1(log n)
)−β ∥

∥̂�n(x) − �(x)
∥

∥ does not converge to 0 in

probability as n −→ ∞. Further, from Theorem 7 it follows that
(

m−1(log n)
)2β

is a

lower bound for the rate of convergence of the mean square error E
∥

∥̂�n(x)−�(x)
∥

∥

2.

Hence, combining Theorems 5 and 7, we get that
(

m−1(log n)
)β

and
(

m−1(log n)
)2β

are the optimum rates of convergence of̂�n(x) and its mean square error, respectively,
when all the conditions of the two theorems are satisfied. We now deduce simplified
expressions of the optimum rates for the specific infinite-dimensional covariate distri-
butions considered in Sect. 3.2.

For X being a real-valued continuous Gaussian Markov process on [0, 1], under
the L p-norm, we have

(

m−1(log n)
)β = O((log n)−β/2) as n −→ ∞. For fractional

Brownian motion on [0, 1] with Hurst index γ ∈ (0, 1), under the L∞-norm, we have
t2 = 1/γ , and consequently

(

m−1(log n)
)β = O((log n)−γβ) as n −→ ∞. On the

other hand, for an integrated fractional Brownianmotion with Hurst index γ and under
the L∞-norm, we have t2 = 1/(1 + γ ) and

(

m−1(log n)
)β = O((log n)−(1+γ )β) as

n −→ ∞. When X is a Lévy fractional Brownian motion on [0, 1]q with Hurst index
γ , t2 = q/γ and

(

m−1(log n)
)β = O((log n)−γβ/q) as n −→ ∞.

In the class of processes HX ,L considered in subsection 4.1 of Chagny and Roche

(2014), t2 > 0 and t3 = 0, and we have
(

m−1(log n)
)2β = O((log n)−2β/t2) as

n −→ ∞. On the other hand, for the class of processes HX ,M considered by these

authors, we have
(

m−1(log n)
)2β = O

(

exp[−2βC−1/t3
2 (log n)1/t3 ]) as n −→ ∞.

Note that these rates coincide with the optimal rates of convergence of the mean
square error described in Chagny and Roche (2014, Table 1, p. 2363), which were
derivedwhen the response is real-valued and the parameter of interest is the conditional
distribution function of the response. We have covered this particular case of the
parameter of interest in Example 1.

4.2 Asymptotic dominance of bias over variance

Recall that in the case of finite-dimensional covariates, the bias and the variance
terms in nonparametric regression have the same rate of convergence (see, e.g., Stone
(1980), Ibragimov and Haśminskii (1980)). In fact, Mas (2012) chose the bandwidth
of the kernel estimate by balancing the asymptotic orders of the bias and the variance
(see Lemma 1 and the preceding discussion in Mas (2012)) even when the covariate
is infinite-dimensional. However, as we shall show now, the optimum choice of the
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bandwidth in a kernel estimate, as described in the proof of Theorem 5, leads to
different asymptotic orders of the bias and the variance when the covariate is infinite-
dimensional in nature, i.e., when we have either t2 > 0 or t3 > 1 with C2 = C4 in
(9).

Theorem 8 Suppose that either t2 > 0 or t3 > 1 with C2 = C4 in the bounds in
(9). Also, let the kernel K (·) satisfy A(i), and the decomposition (3) along with condi-
tionsB(i)–B(iii)hold. Then, for any�(x) satisfyingC(i), the ratio‖Vn(x)‖/‖Bn(x)‖ =
oP(1) as n −→ ∞ for the optimum choice of bandwidth {hn} described in the proof
of Theorem 5.

Theorem 8 illustrates that our optimum bandwidth, which minimizes (25) in the
proof of Theorem 5, does not balance the convergence rates of the variance and the
bias in kernel regression if the covariate is infinite-dimensional. Instead, the ratio of the
variance to the bias for our optimal choice of bandwidth tends to zero as the sample
size increases. This phenomenon is due to the exponential decay of the small ball
probability function in infinite-dimensional spaces. When the covariate is infinite-
dimensional, we may have very small number of observations in a neighborhood
in the covariate space. To cope with this problem, one has to use relatively larger
bandwidths than what is required for finite-dimensional covariates. This results in an
‘over-smoothed’ estimatewith its bias asymptotically larger than its variance. It will be
appropriate to note here that the optimum convergence rate derived in Theorems 5 and
7 is same as the one derived in Mas (2012) for estimation of the conditional mean of a
real-valued response, where the chosen bandwidth balances the bias and the variance
(Mas 2012, p. 1760). However, our optimum bandwidth, which does not try to balance
the bias and the variance in the decomposition (3), will often lead to an estimate with
higher statistical precision compared to an estimate based on a bandwidth that balances
the bias and the variance. In several cases, the statistical error will be substantially
lower when our optimum bandwidth is used as demonstrated in Theorem 9.

Theorem 9 Suppose Assumptions A(i), A(ii), B(i)–B(iii) and C(ii) are satisfied. Let
̂�

(b)
n (x) be an estimate of �(x) constructed using bandwidth h(b)

n , which satisfies A(ii)
and balances the bias and the variance so that (h(b)

n )2βnφ(x, h(b)
n ) is bounded and

bounded away from 0 as n −→ ∞. Also, let ̂�(op)
n (x) be an estimate of �(x) con-

structed using our optimum bandwidth minimizing (25) in the proof of Theorem 5.
Assume that t2 > 0 in the bounds in (9). Then, for any β1 > β and any �(·) for which
the corresponding F(·) ∈ F(x, β1,G) ⊆ F(x, β,G),

∥

∥

∥

̂�
(op)
n (x) − �(x)

∥

∥

∥

∥

∥

∥

̂�
(b)
n (x) − �(x)

∥

∥

∥

= oP(1) as n −→ ∞.

Further, if E[‖Rn(x)‖2] = o
(

δ2n
)

as n −→ ∞, where δn is as defined in B(iii), then

E

∥

∥

∥

̂�
(op)
n (x) − �(x)

∥

∥

∥

2

E

∥

∥

∥

̂�
(b)
n (x) − �(x)

∥

∥

∥

2 = o(1) as n −→ ∞.
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Recall that for conditional mean type functions described in Example 1 in Sect. 2,
Rn(x) = 0, and the condition E[‖Rn(x)‖2] = o(δ2n) assumed in the second part of the
above theorem is trivially satisfied.

5 Adaptive selection of bandwidths

In practice, one has to choose the bandwidth h by some data-driven adaptive proce-
dure. Such adaptive choice of bandwidth, when the covariate is functional, has been
investigated in Chagny and Roche (2014, 2016) for the kernel estimates of the condi-
tional distribution and the conditionalmean of a real-valued response. Their data-based
bandwidth selection procedure can be suitably extended for more general regression
problems considered in this paper.

Let Hn be a finite collection of bandwidths with cardinality less than or equal to
n such that for any h ∈ Hn , φ(x, h) ≤ 2(log n)−1 and φ(x, h) ≥ n−1(log n)2. Since
φ(x, h) is a monotone increasing function of h, if a sequence of bandwidths {hn} is
such that hn ∈ Hn for all n, then {hn} satisfies condition A(ii). In this section, we
shall write ̂�n(x, h), Bn(x, h), Vn(x, h) and Rn(x, h) for ̂�n(x), Bn(x), Vn(x) and
Rn(x), respectively, to indicate the dependence of ̂�n(x), Bn(x), Vn(x) and Rn(x) on
the bandwidth h. We assume the following:

D(i) There is a constant σ > 0 such that for any z in a certain neighborhood of x and
every integer k ≥ 2,

E

[

‖Lx (G(Y) − E[G(Y) |X = z]) ‖k
⏐

⏐

⏐X = z
]

≤ k!
2

σ k .

D(ii) There are constants ε1 > 0, ε2 > 0 and M > 0 such that whenever h ≤ ε1 and
‖Vn(x, h)‖ ≤ ε2, we have ‖Rn(x, h)‖2 ≤ Mh2β + ‖Vn(x, h)‖2.

ConditionD(i) is similar to assumption (Hε) used in Chagny and Roche (2016, p. 108),
which was used to derive the convergence rate of the adaptive estimate of the con-
ditional mean for a real-valued response. Condition D(ii) describes a bound on the
remainder of our bias-variance type decomposition in terms of the bound on the bias
part and the variance part. Condition D(ii) is trivially satisfied for the conditional
mean type estimates described in Example 1 in Sect. 2. It is also satisfied in the class
of regression problems described in Example 2 in Sect. 2. Define the empirical shifted
small ball probability ̂φ(x, h) = (1/n)

∑n
i=1 I(d(x,Xi ) ≤ h). Define

Dn(x, h) = σ 2ζn
log n

nφ̂(x, h)
I

(

φ̂(x, h) > 0
)

+ σ 2ζnnI
(

φ̂(x, h) = 0
)

,

where {ζn} is a sequence of positive constants independent of h, such that ζn −→
ζ0 > 0 as n −→ ∞. The constant ζ0 is described in the proof of Lemma 11 in the
supplement. Also define

Cn(x, h) = max
h′∈Hn

(

∥

∥̂�n
(

x, h′)− ̂�n
(

x,max{h, h′})∥∥2 − Dn
(

x, h′))

+ .
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Dn(x, h) approximates the upper bound of the variance term, and Cn(x, h) approxi-
mates the bias term. The data-driven choice of bandwidth is defined as

h∗
n = arg min

h∈Hn
[Cn(x, h) + Dn (x, h)] .

The following theorem gives an upper bound on the convergence rate of the adaptive
estimate ̂�n(x, h∗

n).

Theorem 10 Define

λn = min
h∈Hn

[

h2β + log n

nφ (x, h)

]

.

Let conditions A(i), B(i), D(i) and D(ii) be satisfied. Then,

∥

∥̂�n
(

x, h∗
n

)− �(x)
∥

∥

2 = OP (λn) as n −→ ∞. (13)

Further, for the conditional mean type functions described in Example 1 in Sect. 2, we
have

E
∥

∥̂�n(x, h∗
n) − �(x)

∥

∥

2 = O (λn) as n −→ ∞. (14)

Equation (13) gives an upper bound for the asymptotic convergence rate of the
adaptive estimate. In Chagny and Roche (2016), the adaptive estimate and its conver-
gence rate were derived for the estimation of the conditional mean of a real-valued
response in a homoscedastic model. Our setup includes heteroscedastic regression
models where the parameter to be estimated is an element of a type 2 Banach space,
and it is not necessarily the conditional mean.

5.1 Numerical demonstration

We next demonstrate the adaptive estimate ̂�n(x, h∗
n) in several regression models.

In all the examples, we consider the covariate X to be a random element in L2[0, 1].
The usual norm in L2[0, 1] is denoted as ‖ · ‖2. We denote the adaptive choice of the
bandwidth as h∗

n . We take ζn = min{√n, 1500} in our computation, the validity of
which is ensured from (73) in the supplement. We substitute φ(x, h) by φ̂(x, h) in
the construction of the collection of bandwidths Hn , as done in Chagny and Roche
(2016). The parameter σ 2 used to define Dn(x, h) and mentioned in D(i) also needs
to be estimated. This is done based on the regression model. Note that for σ 2, which
satisfies

σ 2 ≥ ‖Lx‖2 sup
z

E

[

‖G(Y) − E[G(Y) |X = z]‖2
⏐

⏐

⏐X = z
]

(15)

for z lying in some neighborhood of x, condition D(i) will hold. Since by construc-
tion maxHn −→ 0 as n −→ ∞, and the kernel K (u) = I (0 ≤ u ≤ 1) satisfies
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condition A(i), it is enough to consider the supremum in (15) over the Xi s such that
d(x,Xi ) ≤ maxHn for estimating σ 2. So, if σ̂ 2

1 is an estimated upper bound of ‖Lx‖2,
and σ̂ 2

2 (Xi ) is an estimated upper bound of E
[‖G(Yi ) − E[G(Yi ) |Xi ]‖2

⏐

⏐Xi
]

, then
we can take

σ̂ 2 = σ̂ 2
1 max

{

σ̂ 2
2 (Xi ) | d(x,Xi ) ≤ maxHn

}

as an estimate of σ 2. Let hn,1 = minHn and hn,2 = maxHn . Denote

W (1)
i,n (z) = K

(

hn,1
−1d (z,Xi )

)

∑n
i=1 K

(

hn,1
−1d (z,Xi )

) .

In the case of the mean regression model as described in Example 1, an estimate of
σ 2 is

σ̂ 2 = max

⎧

⎨

⎩

n
∑

j=1

∥

∥

∥

∥

∥

�(Y j ) −
(

n
∑

k=1

�(Yk)W (1)
k,n(X j )

)∥

∥

∥

∥

∥

2

W (1)
j,n(Xi )

⏐

⏐

⏐

⏐

⏐

⏐

d(x,Xi ) ≤ hn,2

⎫

⎬

⎭

.

The function �(·) is as described in Example 1. The rationale for using the weights
W (1)

i,n (z) is the same as that described in subsection 4.1.2 in Chagny and Roche (2016).
In case the parameter to be estimated is a function of the conditional mean as discussed
in Example 2, or in the case of a maximum likelihood regression model as described
in Example 3, we need to additionally estimate an upper bound of the term ‖Lx‖2 in
(15). For a function of conditional mean type estimate, we have seen in Theorem 1 that
Lx(·) = �′ (E[�(Y) |X = x]) (·), where�(·) and�(·) are as described in Example 2.

Hence, we can take σ̂ 2
1 =

∥

∥

∥�′
(

∑n
i=1 �(Yi )W (1)

i,n (x)
)∥

∥

∥

2
, and

σ̂ 2 = σ̂ 2
1 max

⎧

⎪

⎨

⎪

⎩

n
∑

j=1

∥

∥

∥

∥

∥

∥

�(Y j ) −
⎛

⎝

n
∑

k=1

�(Yk)W (1)
k,n(X j )

⎞

⎠

∥

∥

∥

∥

∥

∥

2

W (1)
j,n(Xi )

⏐

⏐

⏐

⏐

⏐

⏐

⏐

d(x,Xi ) ≤ hn,2

⎫

⎪

⎬

⎪

⎭

.

Here, the function�(·) is as described in Example 2. In a maximum likelihood regres-
sion model (Example 3), we have seen from Theorem 2 that Lx(·) = [I(�(x))]−1(·).
So, we need to estimate I(�(x)) = −E[�2(g(Y | �(x))) |X = x], which we esti-
mate by Î = −∑n

i=1 �2(g(Yi | ̂�(1)
n (x)))W (1)

i,n (x), where ̂�(1)
n (x) is defined as the

solution of the likelihood equation (2) with the bandwidth being hn,1. So, we can take

σ̂ 2
1 = ∥

∥Î
∥

∥

−2. In this case, G(Y) = ∇g(Y | �(X)), so that E[G(Yi ) |Xi ] = 0 for all i .

Since �(Xi ) is unknown, we estimate G(Yi ) by ∇g(Yi |̂�(1)
n (Xi )), where ̂�

(1)
n (Xi )

is the solution of the likelihood equation (2) with x replaced by Xi and the bandwidth
being hn,1. Consequently, here we have

σ̂ 2 = σ̂ 2
1 max

⎧

⎨

⎩

n
∑

j=1

∥

∥

∥∇g(Y j |̂�(1)
n (X j ))

∥

∥

∥

2
W (1)

j,n(Xi )

⏐

⏐

⏐

⏐

⏐

⏐

d(x,Xi ) ≤ hn,2

⎫

⎬

⎭

.
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As our first example, we consider Y following a normal distribution with mean
zero and variance ‖X‖22. We consider two distributions for X, namely the standard
Brownian motion and the fractional Brownian motion with Hurst index 0.8. We want
to estimate the conditional variance V[Y |X = x], which we do in two ways. In the
first case, we estimate V[Y |X = x] by

̂V
(1)
n [Y |X = x] =

n
∑

i=1

[

Yi −
(

n
∑

i=1

Yi Wi,n(x)

)]2

Wi,n(x),

where

Wi,n(x) = K
(

(h∗
n)−1d(x,Xi )

)

∑n
i=1 K

(

(h∗
n)

−1d(x,Xi )
) .

So, this estimate belongs to the class of estimates described in Example 2. In the second
case, we estimate V[Y |X = x] using the weighted maximum likelihood procedure
described in Example 3, with the conditional density of Y given X being the density
of the normal random variable with mean zero and variance ‖X‖22. In this case, our
estimate turns out to be

̂V
(2)
n [Y |X = x] =

n
∑

i=1

Y2
i Wi,n(x).

We randomly generate 100 values of x from the distribution of X and compute the
estimateŝV(1)

n [Y |X = x] and̂V(2)
n [Y |X = x] for each of them.We plot the estimates

̂V
(1)
n [Y |X = x] and ̂V(2)

n [Y |X = x] along with the actual V[Y |X = x] values
for different sample sizes against the values of ‖x‖ in Fig. 1, where X is a standard
Brownian motion. When X is a fractional Brownian motion with Hurst index 0.8, we
plot the estimates along with the actual values in Fig. 2. from the plots, we observe that
the two estimateŝV(1)

n [Y |X = x] and̂V(2)
n [Y |X = x] have no noticeable differences.

Also, there appears to be some underestimationwhen the value ofV[Y |X = x] is high.
This is due to the fact that the V[Y |X = Xi ] values for Xi lying in a neighborhood of
x tend to be smaller than V[Y |X = x], and the kernel estimate is based on those Xi

and their correspondingYi values.We also observe that the deviations of the estimated
values from the actual values are marginally less when the covariate is a fractional
Brownian motion with Hurst index 0.8, compared to the case where the covariate is a
standard Brownian motion. This may be due to the fact that the distribution of ‖X‖2 is
more concentrated at lower values whenX is a fractional Brownian motion with Hurst
index 0.8 compared to the distribution of the same when X is a standard Brownian
motion.

In the second example, we take Y to be a Bernoulli random variable, with
P[Y = 1 |X = x] = 1 − P[Y = 0 |X = x] = 1/(1 + ‖X‖2). Here, our param-
eter of interest is P[Y = 1 |X = x], and we estimate it using the weighted maximum
likelihood procedure described in Example 3, while employing the adaptive choice
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Fig. 1 Plots of actual conditional variance V[Y |X = x] (line) and its estimates ̂V(1)
n [Y |X = x] (points,

first row) and ̂V(2)
n [Y |X = x] (points, second row) for different sample sizes. The covariate is a standard

Brownian motion

Fig. 2 Plots of actual conditional variance V[Y |X = x] (line) and its estimates ̂V(1)
n [Y |X = x] (points,

first row) and ̂V(2)
n [Y |X = x] (points, second row) for different sample sizes. The covariate is a fractional

Brownian motion with Hurst index 0.8
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Fig. 3 Plots of estimated probabilitŷPn [Y = 1 |X = x] (points) and actual probability P[Y = 1 |X = x]
(line). The covariate is the standard Brownian motion in the first row, and the fractional Brownian motion
with Hurst index 0.8 in the second row

of the bandwidth. We again consider two distributions of X, namely the standard
Brownian motion and the fractional Brownian motion with Hurst index 0.8, randomly
generate 100 values of x from the distribution of X and plot the estimated values and
the actual probabilities against the values of ‖x‖ in Fig. 3 for three different sample
sizes. The improvement in accuracy of the estimate over the sample sizes is notice-
able. We also observe that there appears to be some overestimation for small values
of P[Y = 1 |X = x], which is due to the fact that values of P[Y = 1 |X = Xi ] for
Xi lying in a neighborhood of x tend to be larger than P[Y = 1 |X = x] in such a
case. Further, like in the first example, we observe that the deviations of the estimated
values from the actual values are less when the covariate is a fractional Brownian
motion with Hurst index 0.8, compared to the case where the covariate is a standard
Brownian motion.

In the third example, we consider a functional response Y, defined by Y(t) =
∫ t
0 X(t)dt + E(t), where E(·) is a Brownian motion independent of X(·) with the
covariance operator COV(E(s),E(t)) = 0.25min{s, t}. We want to estimate the
conditional mean curve E[Y |X = x], for some fixed value x of the covariate. We
again consider two distributions of X, namely the standard Brownian motion and
the fractional Brownian motion with Hurst index 0.8. In each case, we generate 3
random curves as values of x and plot the adaptive estimates of the corresponding
conditional means for different sample sizes in Fig. 4. In the first column, we have
plotted the curves chosen as values of x. The first three rows in Fig. 4 present the
estimated conditional mean curves and the actual conditional mean curves for different
sample sizes corresponding to the respective values of x in the particular rows when
the covariate is a standard Brownian motion. The last three rows in Fig. 4 present the
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Fig. 4 Plots of estimated conditional mean curveŝEn [Y |X = x] (dashed line) and actual conditional mean
curves E[Y |X = x] (solid line). The covariate is a standard Brownian motion in the first three rows, and a
fractional Brownian motion with Hurst index 0.8 in the last three rows

estimated conditional mean curves and the actual conditional mean curves for different
sample sizes when the covariate is a fractional Brownian motion with Hurst index 0.8.
We observe that in all the cases, the estimates follow the actual curves closely.

5.2 Demonstration in real data

We now demonstrate the adaptive estimates of several regression parameters in the
Tecator data. The Tecator data is a popular dataset available in the R package ‘caret.’
This dataset contains the percentage values of moisture, fat and protein contents of
215 meat samples along with their absorbance spectra in the wavelength range 850–
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Fig. 5 Plots of adaptive estimates of E[Y1 |X = x], E[Y2 |X = x], VAR[Y1 |X = x] and VAR[Y2 |X =
x] against the L2-norm of x in the Tecator data

1050 nm measured by a Tecator spectroscope. The chemical contents of the meat
samples are measured by analytical chemistry, which is expensive. The spectra of the
samples are measured using a Tecator spectroscope, which is relatively inexpensive
compared to the analytical chemistry method. So, it is economically beneficial to be
able to predict the chemical contents of a sample from its spectra. Hence, we consider
the fat and the protein content values as the response and the curve of the absorbance
spectra as the covariate. We denote the percentage values of the fat and the protein
contents as Y1 and Y2, respectively, and curve of the absorbance spectra as X. So,
the covariate X is a random function here, which we consider as a random element in
the L2 space. We consider 5 regression parameters of interest, namely E[Y1 |X = x],
E[Y2 |X = x], VAR[Y1 |X = x], VAR[Y2 |X = x] and COR[Y1,Y2 |X = x]. We
compute the adaptive estimates of all this parameters,where x varies over all the sample
curves of the absorbance spectra. We plot the adaptive estimates of E[Y1 |X = x],
E[Y2 |X = x], VAR[Y1 |X = x] and VAR[Y2 |X = x] against the L2 norm of x in
Fig. 5, and the adaptive estimate of COR[Y1,Y2 |X = x] against the L2 norm of x in
Fig. 6. The clear patterns of variation of the regression parameters over the covariate
values are noticeable in each of the plots.

Next, we demonstrate the adaptive estimates of the conditional mean in another
dataset, where both the response and the covariate are random functions. The dataset
we consider is the Cigar data, which is available in the ‘Ecdat’ package in R. This
dataset contains information about cigarette sales in packs per capita, per capita net
disposable income (NDI) and other economic parameters in 46 states in the USA over
a 30 years period from 1963 to 1992. We consider the curve of NDI over 30 years
as the covariate X, and the curve of cigarette sales over 30 years as the response Y.
So, both the response and the covariate in this setup are random functions, and our
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Fig. 6 Plot of adaptive estimates of COR[Y1,Y2 |X = x] against the L2-norm of x in the Tecator data

Fig. 7 Plots of adaptive estimates of E[Y |X = x] for 3 values of x in the Cigar data

sample size is 46. We choose 3 sample covariate curves as values of x, and compute
the adaptive estimates of E[Y |X = x] for these 3 values of x. We plot the estimated
curves along with the respective covariate curves in Fig. 7, where the first row contains
the plots of the 3 curves chosen as values of x, and the second row contains the plots of
the corresponding adaptive estimates of E[Y |X = x]. The 3 estimated curves reflect
the variation of E[Y |X = x] over x.
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6 Concluding remarks

In this paper, we have derived the optimum convergence rate for a wide class of
kernel regression estimates when the covariate as well as the response may be infinite-
dimensional. It is shown that the convergence rates of such estimates do not depend
on the dimension of the response, but they depend critically on the dimension of
the covariate. We have seen that, for a wide class of covariates having infinite-
dimensional Gaussian distributions, the convergence rate is much slower than the
optimum achievable rate for finite-dimensional covariates. For instance, if the covari-
ate is a real-valued continuous Gaussian Markov process in L p[0, 1], the convergence
rate is O((log n)−δ) for some δ > 0. Theorem 4 implies that if h2β

n nφ(x, hn) −→ 0
as n −→ ∞, [nφ(x, hn)]1/2cn[̂�n(x)−�(x)] converges in distribution to a Gaussian
random element with zero mean as n −→ ∞, where cn = [E (2)

n (x)]−1/2E (1)
n (x) is

a sequence of positive numbers bounded and bounded away from 0. Note that this
corresponds to an under-smoothed kernel estimate of �(x). On the other hand, if
h2β

n nφ(x, hn) −→ ∞ as n −→ ∞, which includes the case of our optimum band-
width obtained in Theorem 5, we have h−β

n [̂�n(x) − �(x)] − h−β
n B̃n(x) −→ 0 in

probability as n −→ ∞. Here, B̃n(x) is a non-random deterministic object described
at the beginning of Sect. 4.1.

In Ferraty and Vieu (2006), Ferraty et al. (2006, 2010) and Chaouch and Laïb
(2013, 2015), asymptotic properties of nonparametric regression estimates of different
parameters other than the mean of the conditional distribution of the response were
investigated.However, they only consideredfinite-dimensional responses, and they did
not investigate the problem of optimum convergence rates of nonparametric regression
estimates.

The problem of slow convergence rate of the regression estimates with infinite-
dimensional covariates that has been derived in this paper may be coped with using
an appropriate dimension reduction procedure on the covariate. Some procedures for
such dimension reduction for infinite-dimensional covariates available in the litera-
ture are the uses of functional sliced inverse regression (Ferré and Yao 2003, 2005),
functional average derivative regression (Ferraty et al. 2011) and distance correlation
maximization (Vepakomma et al. 2016). If the covariate with the reduced dimension is
adequate for regression analysis, the new small ball probability function in the reduced
covariate space will lead to better convergence rates.

7 Proofs andmathematical details

Proof of Theorem 1 From the definitions of Lx(·), G(Y) and F(z) in the statement of
Theorem 1, and from (4) and (5), we have

Bn(x)

= �′ (E[�(Y) |X = x])
⎛

⎝

∑n
i=1 E[�(Yi ) |Xi ]K

(

h−1
n d(x,Xi )

)

∑n
i=1 K (h−1

n d(x,Xi ))
− E[�(Y) |X = x]

⎞

⎠ ,
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Vn(x) = �′ (E[�(Y) |X = x])
⎛

⎝

∑n
i=1[�(Yi ) − E[�(Yi ) |Xi ]]K (h−1

n d(x,Xi ))
∑n

i=1 K
(

h−1
n d(x,Xi )

)

⎞

⎠ .

Set Rn(x) = [̂�n(x) − �(x)] − Bn(x) − Vn(x). From A(ii) and (6), we have
‖Bn(x)‖ −→ 0 as n −→ ∞. FromA(ii) and Theorem 3, we haveE[‖Vn(x)‖2] −→ 0
as n −→ ∞, and consequently ‖Vn(x)‖ −→ 0 in probability as n −→ ∞. So,
‖Bn(x) + Vn(x)‖ −→ 0 in probability as n −→ ∞. Therefore,

‖Rn(x)‖
= ∥

∥[̂�n(x) − �(x)] − Bn(x) − Vn(x)
∥

∥

=
∥

∥

∥

∥

∥

�

(
∑n

i=1 �(Yi )K
(

h−1
n d(x,Xi )

)

∑n
i=1 K (h−1

n d(x,Xi ))

)

− �(E[�(Y) |X = x])

−�′ (E[�(Y) |X = x])
(

∑n
i=1 �(Yi )K (h−1

n d(x,Xi ))
∑n

i=1 K (h−1
n d(x,Xi ))

− E[�(Y) |X = x]
)∥

∥

∥

∥

∥

= o (‖Bn(x) + Vn(x)‖) whenever ‖Bn(x) + Vn(x)‖ −→ 0,

= o (‖Bn(x)‖ + ‖Vn(x)‖) whenever ‖Bn(x)‖ + ‖Vn(x)‖ −→ 0,

= oP
(

max
{

hβ
n , [nφ(x, hn)]−1/2}) as n −→ 0, (16)

since from (6), we have ‖Bn(x)‖ = O(hβ
n ) as n −→ ∞, and from Theorem 3, we

have ‖Vn(x)‖ = OP([nφ(x, hn)]−1/2) as n −→ ∞. So, B(iii) is satisfied. ��

Proof of Theorem 2 Under the assumptions stated in Example 3, it follows that condi-
tionB(i) holds from theHolder continuity of�(z). The continuity of the linear operator
Lx(·) follows from the invertibility of I(�(x)), and B(ii) follows from the assumptions
stated in Example 3 using arguments similar to those used in the proof of Theorem
3.2 in Chaudhuri and Dewanji (1995). We now proceed to verify condition B(iii).

Using arguments similar to those in the proof of Theorem 3.1 in Chaudhuri and
Dewanji (1995), we get ̂�n(x) −→ �(x) in probability as n −→ ∞. Using this fact,
(2) and a Taylor expansion of ∇g(Yi | t) at t = ̂�n(x), we get

n
∑

i=1

∇g(Yi | �(Xi ))Wi,n(x) =
n
∑

i=1

�2(g(Yi | ηi (x)))
(

�(Xi ) − ̂�n(x)
)

Wi,n(x)

�⇒ ̂�n(x) − �(x)

=
⎡

⎣

n
∑

i=1

�2(g(Yi | ηi (x)))Wi,n(x)

⎤

⎦

−1⎛

⎝

n
∑

i=1

�2(g(Yi | ηi (x)))(�(Xi ) − �(x))Wi,n(x)

⎞

⎠

−
⎡

⎣

n
∑

i=1

�2(g(Yi | ηi (x)))Wi,n(x)

⎤

⎦

−1⎛

⎝

n
∑

i=1

∇g(Yi | �(Xi ))Wi,n(x)

⎞

⎠ ,
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where ηi (x) lies between �(Xi ) and ̂�n(x). Also, under the assumptions in Exam-
ple 3, using arguments similar to those used in the proofs of Theorems 3.1 and 3.2
in Chaudhuri and Dewanji (1995), we get that ‖∑n

i=1 �2(g(Yi | ηi (x)))Wi,n(x) +
I(�(x))‖ −→ 0 in probability as n −→ ∞. Also, since �(z) ∈ F(x, β,Rq), we
have max{‖�(Xi ) − �(x)‖Wi,n(x) | i = 1, . . . , n} ≤ chβ

n for all n, where c > 0 is a
constant. Consequently, it follows that

̂�n(x) − �(x)

= [I(�(x))]−1

(

n
∑

i=1

I(�(x))(�(Xi ) − �(x))Wi,n(x)

)

+ [I(�(x))]−1

(

n
∑

i=1

∇g(Yi | �(Xi ))Wi,n(x)

)

+ oP
(

hβ
n

)+ oP

(∥

∥

∥

∥

∥

[I(�(x))]−1

(

n
∑

i=1

∇g(Yi | �(Xi ))Wi,n(x)

)∥

∥

∥

∥

∥

)

.

Taking

Vn(x) = [I(�(x))]−1

(

n
∑

i=1

∇g(Yi | �(Xi ))Wi,n(x)

)

and Bn(x) = [I(�(x))]−1

(

n
∑

i=1

I(�(x))(�(Xi ) − �(x))Wi,n(x)

)

,

we have Rn(x) = oP
(

hβ
n + ‖Vn(x)‖

)

as n −→ ∞, and the proof is complete using

the convergence rate of E[‖Vn(x)‖2] as described in the proof on Theorem 1. ��

Proof of Theorem 3 The arguments used in this proof are closely related to the argu-
ments in the proof of Proposition 1 in Chagny and Roche (2016). Define Wn(x) =
n−1∑n

i=1[E (1)
n (x)φ(x, hn)]−1K (h−1

n d(x,Xi )), where E (1)
n (x) is as defined in (7). It

follows from Bernstein’s inequality (Serfling 2009, p. 95) and condition A(i) that

P[|Wn(x) − 1| > (1/2)] ≤ 2 exp(−c1nφ(x, hn)), (17)

where c1 is a positive constant. Note that

E[‖Vn(x)‖2] = E[‖Vn(x)‖2I(Wn(x) < (1/2))] + E[‖Vn(x)‖2I(Wn(x) ≥ (1/2))].
(18)

For the first term on the RHS in (18), using the fact that B is a type 2 Banach space
and conditions A(i), A(ii) and B(ii), we have from (17),

123



Convergence rates for kernel regression 499

E[‖Vn(x)‖2I(Wn(x) < (1/2))] = E[E[‖Vn(x)‖2I(Wn(x) < (1/2)) |X1, . . . ,Xn]]

≤ c2E

⎡

⎢

⎣

∑n
i=1 E[‖G(Yi ) − E[G(Yi ) |Xi ]‖2 |Xi ]K 2

(

h−1
n d (x,Xi )

)

(

∑n
i=1 K

(

h−1
n d (x,Xi )

))2 I

(

Wn(x) <
1

2

)

⎤

⎥

⎦

≤ c3E

⎡

⎢

⎣

∑n
i=1 K 2(h−1

n d(x,Xi ))
(

∑n
i=1 K

(

h−1
n d (x,Xi )

))2 I

(

Wn(x) <
1

2

)

⎤

⎥

⎦

≤ c3P[|Wn(x) − 1| > (1/2)] ≤ 2c3 exp(−c1nφ(x, hn)) (19)

for all sufficiently large n, where c2 and c3 are positive constants. Since ue−u ≤ e−1

for u > 0, from (19), we get that for all sufficiently large n,

nφ(x, hn)E
[

‖Vn(x)‖2I(Wn(x) < (1/2))
]

≤ 2c3
c1e

. (20)

Now, for the second term on the RHS in (18), again using the fact that B is a type
2 Banach space, conditions A(i), A(ii), B(ii) and inequality (8), we get that for all
sufficiently large n,

E[‖Vn(x)‖2I(Wn(x) ≥ (1/2))]

≤ ‖Lx‖2E
⎡

⎣

∥

∥

∥

∥

∥

1

n

n
∑

i=1

[G(Yi ) − E[G(Yi ) |Xi ]] K (h−1
n d(x,Xi ))

E (1)
n (x)φ(x, hn)

∥

∥

∥

∥

∥

2
I(Wn(x) ≥ (1/2))

(Wn(x))2

⎤

⎦

= ‖Lx‖2E
⎡

⎣E

⎡

⎣

∥

∥

∥

∥

∥

1

n

n
∑

i=1

[G(Yi ) − E[G(Yi ) |Xi ]] K (h−1
n d(x,Xi ))

E (1)
n (x)φ(x, hn)

∥

∥

∥

∥

∥

2
⏐

⏐

⏐

⏐

⏐

⏐

X1, . . . ,Xn

⎤

⎦

I(Wn(x) ≥ (1/2))

(Wn(x))2

⎤

⎦

≤ ‖Lx‖2c4E

[

n
∑

i=1

E

[

‖G(Yi ) − E[G(Yi ) |Xi ]‖2
⏐

⏐

⏐Xi

] K 2(h−1
n d(x,Xi ))I(Wn(x) ≥ (1/2))

(Wn(x))2 (E (1)
n (x))2n2(φ(x, hn))2

]

≤ c5E

[

n
∑

i=1

K 2(h−1
n d(x,Xi ))I(Wn(x) ≥ (1/2))

(Wn(x))2 (E (1)
n (x))2n2 (φ (x, hn))2

]

≤ 4c5E

⎡

⎢

⎣

n
∑

i=1

K 2
(

h−1
n d (x,Xi )

)

(

E (1)
n (x)

)2
n2 (φ (x, hn))2

⎤

⎥

⎦

= 4c5E (2)
n (x)

(

E (1)
n (x)

)2

1

nφ(x, hn)
≤ 4c5L2

l2
1

nφ(x, hn)

�⇒ φ(x, hn)E
[

‖Vn(x)‖2I(Wn(x) ≥ (1/2))
]

≤ 4c5L2

l2
, (21)

where c4 and c5 are positive constants. From (18), (20) and (21), we get nφ(x, hn)

E[‖Vn(x)‖2] = O(1) as n −→ ∞. ��
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Proof of Theorem 4 Note that

[nφ(x, hn)]1/2 [E (2)
n (x)]−1/2E (1)

n (x)Vn(x)

=
∑n

i=1
K (h−1

n d(x,Xi ))

[E (2)
n (x)]1/2[nφ(x,hn)]1/2

Lx(G(Yi ) − E[G(Yi ) |Xi ])

n−1
∑n

i=1

[

E (1)
n (x)φ(x, hn)

]−1
K (h−1

n d(x,Xi ))

. (22)

Define

V ∗
n (x) =

n
∑

i=1

K (h−1
n d(x,Xi ))

[E (2)
n (x)]1/2 [nφ(x, hn)]1/2

Lx(G(Yi ) − E[G(Yi ) |Xi ]).

The covariance operator of V ∗
n (x), denoted as Dn(·, · | x), is given by

Dn(u, v | x)

= E

[

〈u,Lx(G(Y) − E[G(Y) |X])〉 〈v,Lx(G(Y) − E[G(Y) |X])〉 K 2(h−1
n d(x,X))

E(2)
n (x)φ(x, hn)

]

for u, v ∈ B. Under conditions A(i), A(ii) and B(iv),Dn(·, · | x) converges toD(·, · | x)
in the trace norm as n −→ ∞. Consequently, conditions (i) and (ii) in Theorem 1.1
in Kundu et al. (2000) are satisfied. Define

Un,i (x) = K
(

h−1
n d (x,Xi )

)

[E (2)
n (x)]1/2

Lx (G(Yi ) − E [G(Yi ) |Xi ]) .

Given ε > 0 and b ∈ B, define

Ln(ε,b) =
n
∑

i=1

E

[

〈

Un,i (x)

[nφ(x, hn)]1/2
,b
〉2

I

[∣

∣

∣

∣

〈

Un,i (x)

[nφ(x, hn)]1/2
,b
〉∣

∣

∣

∣

> ε

]

]

.

From A(i), A(ii) and B(ii), we have for any b with ‖b‖ = 1,

Ln(ε, b) = E

[
〈

Un,1(x),b
〉2

φ(x, hn)
I

[

∣

∣

〈

Un,1(x),b
〉∣

∣ > ε [nφ(x, hn)]1/2
]

]

≤ E

⎡

⎣

〈

Un,i (x),b
〉2

φ(x, hn)

[ ∣

∣

〈

Un,1(x),b
〉∣

∣

ε [nφ(x, hn)]1/2

]ν−2
⎤

⎦

≤
[

1

ε [nφ(x, hn)]1/2

]ν−2
E

[

‖Lx‖ν ‖G(Y) − E[G(Y) |X]‖ν K ν(h−1
n d(x,X))

[E(2)
n (x)]ν/2φ(x, hn)

]

≤ c [nφ(x, hn)]− ν−2
2 −→ 0
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as n −→ ∞, where ν > 2 is the constant mentioned in B(ii). Hence, condition (iii) in
Theorem 1.1 in Kundu et al. (2000) is satisfied. Consequently,

V ∗
n (x) −→ W (23)

in distribution as n −→ ∞. Now, under conditions A(i), A(ii) and an application of
the Markov inequality, we get

n−1
n
∑

i=1

[

E (1)
n (x)φ(x, hn)

]−1
K (h−1

n d(x,Xi )) −→ 1 (24)

in probability as n −→ ∞. The proof is completed from (22), (23), (24) and an
application of Slutsky’s Theorem. ��
Proof of Theorem 5 From the upper bounds of E‖Bn(x)‖2 and E‖Vn(x)‖2 in (6) and
Theorem 3, respectively, and the lower bound of φ(x, hn) in (9), we have

E‖Bn(x) + Vn(x)‖2 ≤ 2
[

E‖Bn(x)‖2 + E‖Vn(x)‖2
]

≤ f1(hn)

for all sufficiently large n, where

f1(hn) = ah2β
n + b

nC1
(1/hn)t1 exp [m(hn)] , (25)

and a, b > 0 are some constants. We establish below that the choice of bandwidths
{hn} described in the statement of Theorem 5 is one which minimizes (25). Note that
m(h), which is defined in (10), is a differentiable function of h, and

m′(h) = −m(h)(1/h)

(

t2 + t3
log(1/h)

)

. (26)

Consequently, f1(h) is differentiable for all n, and

f ′
1(h) = 2βah2β−1 − bt1

nC1
(1/h)t1+1 exp[m(h)]

− b

nC1
(1/h)t1+1 exp[m(h)]m(h)

(

t2 + t3
log(1/h)

)

(27)

= exp[m(h)]
[

2βah2β−1

exp[m(h)] − bt1
nC1

(1/h)t1+1

− b

nC1
(1/h)t1+1m(h)

(

t2 + t3
log(1/h)

)]

. (28)

From (28), we get that for every fixed n, f ′
1(h) −→ −∞ as h −→ 0+, and for any

0 < s < 1, f ′
1(s) > 0 for all sufficiently large n. Since f ′

1(h) is continuous in h for
0 < h < 1, given any 0 < s < 1, f ′

1(h) must have a root in (0, s) for all sufficiently
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large n. For any fixed n, consider h0 = inf{h | f ′
1(h) = 0}. Again, since f ′

1(h) is
continuous in h, we have f ′

1(h0) = 0. Further, since f ′
1(h) −→ −∞ as h −→ 0+,

from the continuity of f ′
1(h) we have f ′

1(h) < 0 for h < h0, which implies that f1(h)

is a decreasing function for h < h0. Also, for any 0 < s < s′ < 1, we have for all
sufficiently large n, f ′

1(h) > 0 for all s ≤ h ≤ s′, which implies f1(h) is increasing
in s ≤ h ≤ s′. Therefore, f1(h) must have a minima for all sufficiently large n, whose
corresponding h will satisfy f ′

1(h) = 0. Now, from (27), f ′
1(hn) = 0 implies that

2βah2β−1
n = n−1(1/hn)t1+1 exp[m(hn)]

×
[

bt1
C1

+ b

C1
m(hn)

(

t2 + t3
log(1/hn)

)]

⇐⇒ h2β
n = n−1(1/hn)t1 exp[m(hn)]

×
[

bt1
2βaC1

+ b

2βaC1
m(hn)

(

t2 + t3
log(1/hn)

)]

(29)

⇐⇒ n = (1/hn)2β+t1 exp[m(hn)]
×
[

bt1
2βaC1

+ b

2βaC1
m(hn)

(

t2 + t3
log(1/hn)

)]

(30)

⇐⇒ log n

m(hn)
= 1 + (2β + t1)

log(1/hn)

m(hn)
+ 1

m(hn)

× log

([

bt1
2βaC1

+ b

2βaC1
m(hn)

(

t2 + t3
log(1/hn)

)])

. (31)

Let {hn} be such that f ′
1(hn) = 0 for all n. If either t2 > 0 or t3 > 1, then from (30),

we get that hn −→ 0+ as n −→ ∞. Consequently, from (29), we have

nC1ht1
n exp[−m(hn)] = h−2β

n

[

bt1
2βa

+ b

2βa
m(hn)

(

t2 + t3
log(1/hn)

)]

−→ ∞

as n −→ ∞, which implies nφ(x, hn) −→ ∞ as n −→ ∞ from the lower bound of
φ(x, hn) in (9). Therefore, {hn} satisfies A(ii). Also, hn −→ 0+ as n −→ ∞ implies
that

log(1/hn)

m(hn)
−→ 0 as n −→ ∞, (32)

1

m(hn)
log

([

bt1
2βaC1

+ b

2βaC1
m(hn)

(

t2 + t3
log(1/hn)

)])

−→ 0 (33)

as n −→ ∞. Combining (31), (32) and (33), we have

log n

m(hn)
−→ 1 as n −→ ∞. (34)
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Consequently, when either t2 > 0 or t3 > 1, we have for all sufficiently large n,

ah2β
n < aC ′

2(m
−1(log n))2β, (35)

where C ′
2 is a positive constant depending on C2 and β. From (25) and (29), we get

that ah2β
n < f1(hn) < 2ah2β

n for all sufficiently large n, and consequently f1(hn) <

2aC ′
2(m

−1(log n))2β for all sufficiently large n. Hence, for the bandwidth sequence
{hn} minimizing f1(h) for every fixed n, we have

E‖Bn(x) + Vn(x)‖2 < 2aC ′
2

(

m−1 (log n)
)2β

(36)

for all sufficiently large n, which implies ‖Bn(x) + Vn(x)‖ = OP

( (

m−1 (log n)
)β )

as n −→ ∞. Also, when either t2 > 0 or t3 > 1, from (29) and the lower bound of
φ(x, h) in (9), we get

h2β
n /

[

[nφ(x, hn)]−1
]

−→ ∞ (37)

asn −→ ∞.Hence, from (35) and (37),weget that
(

m−1 (log n)
)−β ‖Rn(x)‖ = oP(1)

as n −→ ∞. Therefore,
∥

∥̂�n(x) − �(x)
∥

∥ = OP

( (

m−1(log n)
)β )

as n −→ ∞.

Next, if E[‖Rn(x)‖2] = o
(

δ2n
)

as n −→ ∞, where δn = max
{

hβ
n ,

[

nφ(x, hn)
]−1/2}, we get from (35) and (37) that

(

m−1 (log n)
)−2β

E‖Rn(x)‖2 −→ 0

as n −→ ∞. From (3), we have E
∥

∥̂�n(x) − �(x)
∥

∥

2 ≤ 2E
∥

∥Bn(x) + Vn(x)
∥

∥

2 +
2E‖Rn(x)‖2. Therefore, from (36),we getE

∥

∥̂�n(x)−�(x)
∥

∥

2 = O
( (

m−1(log n)
)2β )

as n −→ ∞. ��

Proof of Theorem 6 For a sequence of bandwidths {hn} satisfyingA(ii), it follows from
the upper bound of φ(x, h) in (9) and the definition of m(h) in (10) that

nC3ht4
n exp [−(C4/C2)m(hn)] ≥ nφ(x, hn) −→ ∞ as n −→ ∞

�⇒ log n − t4 log(1/hn) − (C4/C2)m(hn) −→ ∞
⇐⇒ m(hn)

[

log n

m(hn)
− t4

log(1/hn)

m(hn)
− C4

C2

]

−→ ∞ (38)

as n −→ ∞. Now, since either t2 > 0 or t3 > 1, and hn −→ 0 as n −→ ∞ under
assumption A(ii), we have

m(hn) −→ ∞ as n −→ ∞ and
log(1/hn)

m(hn)
−→ 0 as n −→ ∞. (39)
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Hence, for (38) to be satisfied, in view of (39), we must have, for all sufficiently large
n,

log n

m(hn)
− C4

C2
> 0 ⇐⇒ m−1

(

log n

(C4/C2)

)

< hn �⇒ hn

m−1 (log n)
> c1 > 0,

(40)

where c1 is a constant depending on C2, C4. Clearly, when C2 = C4, c1 = 1. ��
Proof of Theorem 7 Suppose, if possible,

lim inf
n−→∞ P

[

(

m−1(log n)
)−β ∥

∥̂�n(x) − �(x)
∥

∥ > c

]

= 0 (41)

for every c > 0. Then, given any c > 0, there is a subsequence {n′} such that

lim
n′−→∞

P

[

(

m−1(log n′)
)−β ∥

∥̂�′
n(x) − �(x)

∥

∥ > c

]

= 0. (42)

Consider the bandwidth sequence {hn′ }. If lim infn′−→∞ h2β
n′ nφ(x, hn′) = 0, then there

exists a further subsequence {n′′} such that h2β
n′′ nφ(x, hn′′) −→ 0 as n′′ −→ ∞. But in

this case, we get a contradiction of (42) from Lemma 2 in the supplement. On the other
hand, if lim supn′−→∞ h2β

n′ nφ(x, hn′) = ∞, then there exists a further subsequence

{n′′} such that h2β
n′′ nφ(x, hn′′) −→ ∞ as n′′ −→ ∞. But again, we get a contradiction

of (42) from Lemma 3 in the supplement. We consider the only remaining case,
which is 0 < lim infn′−→∞ h2β

n′ nφ(x, hn′) ≤ lim supn′−→∞ h2β
n′ nφ(x, hn′) < ∞.

Then, there exist ε1 > 0, ε2 > 0 and a further subsequence {n′′} such that 0 <

ε1 < h2β
n′′ nφ(x, hn′′) < ε2 for all sufficiently large n′′. But in this case also, we get a

contradiction of (42) from Lemma 4 in the supplement. Therefore, the assertion (41)
is not possible, and this completes the proof. ��
Proof of Theorem 8 From (29) in the proof of Theorem 5 and the lower bound of
φ(x, h) in (9), it follows that

h2β
n nφ(x, hn) −→ ∞ (43)

as n −→ ∞. Now, choose �(·) as in Theorem 7 such that h−β
n ‖B̃n(x)‖ ≥ b1 > 0

for a constant b1 and all sufficiently large n. So, P[h−β
n ‖Bn(x)‖ > b1/2] −→ 1 as

n −→ ∞. Hence, for this choice of �(·) and using Theorem 4 and (43), we have

‖Vn(x)‖
‖Bn(x)‖ = 1

[nφ(x, hn)]1/2hβ
n

[nφ(x, hn)]1/2‖Vn(x)‖
h−β

n ‖Bn(x)‖
= oP(1) as n −→ ∞.

��
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Proof of Theorem 9 Let U and V be two nonnegative random variables. Then, given
any ε > 0 and δ > 0, we have

P

[

U
V

< ε

]

≥ P [U < εδ, V > δ] ≥ P [U < εδ] + P [V > δ] − 1. (44)

We denote our optimum bandwidth minimizing (25) in the proof of Theorem 5 as
h(op)

n . Given any ε > 0, from Lemma 7 in the supplement, we get that there is δ > 0
such that

P

[

(h(b)
n )−β

∥

∥

∥

̂�(b)
n (x) − �(x)

∥

∥

∥ > δ
]

> 1 − ε (45)

for all sufficiently large n. Further, from Lemma 6 in the supplement, we get that for
this constant δ,

P

[

(h(op)
n )−β

∥

∥

∥

̂�
(op)
n (x) − �(x)

∥

∥

∥ < εδ
]

> 1 − ε (46)

for all sufficiently large n. Therefore, from (44), (45) and (46), we get that

(h(op)
n )−β

∥

∥

∥

̂�
(op)
n (x) − �(x)

∥

∥

∥

(h(b)
n )−β

∥

∥

∥

̂�
(b)
n (x) − �(x)

∥

∥

∥

= oP(1) as n −→ ∞. (47)

Hence, from (47) and Lemma 5 in the supplement, we have

∥

∥

∥

̂�
(op)
n (x) − �(x)

∥

∥

∥

∥

∥

∥

̂�
(b)
n (x) − �(x)

∥

∥

∥

= oP(1) as n −→ ∞.

On the other hand, from Lemmas 5, 6 and 7 in the supplement, we have

E

∥

∥

∥

̂�
(op)
n (x) − �(x)

∥

∥

∥

2

E

∥

∥

∥

̂�
(b)
n (x) − �(x)

∥

∥

∥

2 = o(1) as n −→ ∞.

��
Proof of Theorem 10 This proof is partly based on arguments used in Chagny and
Roche (2014, 2016). For every h ∈ Hn , we have

∥

∥̂�n
(

x, h∗
n
)− � (x)

∥

∥

2 ≤ 3
[

∥

∥̂�n
(

x, h∗
n
)− ̂�n

(

x,max{h∗
n, h})∥∥2

+ ∥∥̂�n (x, h) − ̂�n
(

x,max{h∗
n, h})∥∥2

]

+ 3
∥

∥̂�n(x, h) − �(x)
∥

∥

2

≤ 3
[(

Cn(x, h) + Dn
(

x, h∗
n
))+ (

Cn
(

x, h∗
n
)+ Dn(x, h)

)]
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+ 3
∥

∥̂�n(x, h) − �(x)
∥

∥

2

≤ 6 [Cn(x, h) + Dn(x, h)] + 3
∥

∥̂�n(x, h) − �(x)
∥

∥

2
. (48)

From Lemmas 8, 9 and 11 in the supplement, we get

Cn(x, h) ≤ C (1)
n (x, h) + C (2)

n (x, h). (49)

Here, for all sufficiently large n,

E

[

C (1)
n (x, h)

]

≤ c1h2β + 1

n log n
(50)

for all h ∈ Hn and some constant c1 > 0 independent of h. Also,

P

[

C (2)
n (x, h) > n−2

]

= O
(

n−2
)

as n −→ ∞. (51)

Further, C (2)
n (x, h) = 0 for all h if Rn(x, h) = 0 for all h. From Lemma 9 in the

supplement, we get that for all sufficiently large n,

E [Dn(x, h)] ≤ c2
log n

nφ(x, h)
(52)

for all h ∈ Hn , where c2 > 0 is a constant independent of h. On the other hand, from
decomposition (3), we get

∥

∥̂�n(x, h) − �(x)
∥

∥

2 ≤ 3
[(

‖Bn(x, h)‖2 + Mh2β
)

+ 2‖Vn(x, h)‖2
]

+ 3
(

‖Rn(x, h)‖2 −
(

Mh2β + ‖Vn(x, h)‖2
))

+ , (53)

where M is the constant described in condition D(ii). From inequality (6) and Theo-
rem 3, we have

E

[(

‖Bn(x, h)‖2 + Mh2β
)

+ 2‖Vn(x, h)‖2
]

≤ c3h2β + c4
nφ(x, h)

(54)

for all sufficiently large n and some constants c3 > 0 and c4 > 0 independent of h.
Also, from Lemma 11 in the supplement, we have

max
h∈Hn

(

‖Rn(x, h)‖2 −
(

Mh2β + ‖Vn(x, h)‖2
))

+ = oP
(

n−2
)

(55)
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as n −→ ∞. Therefore, from (48)–(55), we get that

∥

∥̂�n
(

x, h∗
n

)− �(x)
∥

∥

2

≤
[

6C (1)
n (x, h) + 6Dn(x, h) + 9

((

‖Bn(x, h)‖2 + Mh2β
)

+ 2‖Vn(x, h)‖2
)]

+
[

6C (2)
n (x, h) + 9

(

‖Rn(x, h)‖2 −
(

Mh2β + ‖Vn(x, h)‖2
))

+

]

,

where

E

[

6C (1)
n (x, h) + 6Dn(x, h) + 9

((

‖Bn(x, h)‖2 + Mh2β
)

+ 2‖Vn(x, h)‖2
)]

= O

(

h2β + log n

nφ(x, h)

)

(56)

and

max
h∈Hn

[

6C (2)
n (x, h) + 9

(

‖Rn(x, h)‖2 −
(

Mh2β + ‖Vn(x, h)‖2
))

+

]

= oP
(

n−2
)

as n −→ ∞. (57)

Further, if Rn(x, h) = 0 for all h, then

max
h∈Hn

[

6C (2)
n (x, h) + 9

(

‖Rn(x, h)‖2 −
(

Mh2β + ‖Vn(x, h)‖2
))

+

]

= 0 for all h.

From (56) and (57), we get

∥

∥̂�n
(

x, h∗
n

)− �(x)
∥

∥

2 = OP (λn) as n −→ ∞,

and if Rn(x, h) = 0 for all h, then

E
∥

∥̂�n
(

x, h∗
n

)− �(x)
∥

∥

2 = O (λn) as n −→ ∞.

��

Supplement

The supplement contains some results and mathematical details required to prove the
theorems in the paper. It has four sections. The first section contains a few results on
small ball probabilities of some non-Gaussian processes. The second, the third and
the fourth sections contain some technical details required to prove Theorems 7, 9 and
10, respectively.
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