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Abstract
In this paper, a simple and general method based on the finiteMarkov chain imbedding
technique is proposed to determine the exact conditional distributions of runs and
patterns in a sequence of Bernoulli trials given the total number of successes. The
idea is that given the total number of successes, the Bernoulli trials are viewed as
random permutations. Then, we extend the result to multistate trials. The conditional
distributions studied here lead to runs and patterns-type distribution-free tests whose
applications are widespread. Two applications are considered. First, a distribution-
free test for randomness is applied to rainfall data at Oxford from 1858 to 1952. The
second application is to develop runs and patterns-type distribution-free control charts
which can be used as Phase I and/or Phase II control charts. Numerical results for two
commonly used runs-type statistics, the longest run and scan statistics, are also given.

Keywords Distribution-free tests · Conditional runs and patterns · Finite Markov
chain imbedding · Control charts · Random permutation · Waiting time

1 Introduction

Many distribution-free tests are based on runs and patterns as they are easy to under-
stand and easy to interpret. For example, Wald and Wolfowitz (1940) proposed a
conditional run test for randomness using the number of runs given the total number
of successes, and Lou (1996) considered the number of success runs and the length of
the longest success run. To test for symmetry, many authors have considered runs tests;
see, for example, Cohen and Menjoge (1988), McWilliams (1990), Gastwirth (1971)
and Randles et al. (1980). As a special case of runs-type statistics, scan statistics are
widely studied in many areas. For example, scan statistics can be seen in epidemiol-
ogy (e.g., Kulldorff 1997), system reliability (e.g., Chang and Huang 2010), sensor
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532 T.-L. Wu

network (e.g., Song et al. 2012) and DNA sequence analysis (e.g., Karwe and Naus
1997). Scan statistics are powerful in detecting local clusters, but their distributions
are difficult to compute. Hence, it remains an open question to develop an efficient
algorithm to compute the distributions of scan statistics.

Traditionally, distributions of runs and patterns are obtained using combinatorics.
However, Fu and Koutras (1994) proposed the revolutionary finite Markov chain
imbedding (FMCI) technique for distributions of runs and patterns. It is simple and
computationally efficient, and it provides a unified framework to determine the exact
unconditional distributions of runs and patterns. A forward and backward principle
is also introduced to systematically construct desired Markov chains and state spaces
(e.g., Fu and Lou 2003). It has been shown that the FMCI technique is a powerful
numerical tool having many successfully applications in quality control (e.g., Fu et al.
2002), hypothesis testing (e.g., Lou and Fu 2007) and boundary crossing probabili-
ties (e.g., Fu andWu 2016). Although there are many existing results for unconditional
distributions of runs and patterns, very little work has been done for conditional dis-
tributions of runs and patterns. Few exceptions include the conditional longest run
by Lou (1996) and conditional scan statistics by Fu et al. (2012). It is the potential
applications of conditional distributions of runs and patterns that motivate us to pursue
this line of research.

In this paper, we develop a general framework for conditional distributions of runs
and patterns. In Sect. 2, we study the conditional distributions of runs and patterns in a
sequence of independent Bernoulli trials, including the longest run and scan statistics.
The general result for conditional distributions of runs and patterns in a sequence of
independent multistate trials is given in Sect. 3. Numerical results are given in Sect. 4.
Two applications, distribution-free tests and distribution-free control charts, are given
in Sect. 5. Summary is given in Sect. 6.

2 Conditional distributions of runs and patterns in a sequence of
Bernoulli trials

In this section, we derive the exact distributions of runs and patterns given the total
number of successes for a sequence of independent Bernoulli trials.

Consider a sequence of Bernoulli trials with two possible outcomes, success (1)
and failure (0) and S2 = {0, 1}. Let X1, . . . , Xn be a sequence of Bernoulli random
variableswith p = P(Xi = 1) = 1−P(Xi = 0), i = 1, 2, . . . , n. Let N1 = ∑n

i=1 Xi

be the number of successes and N0 = n − N1 be the number of failures.
Let Λ = ∪L

i=1Λi be a compound pattern consisting of L simple patterns
Λ1,Λ2, . . . , ΛL , where each simple pattern Λi is composed of a specified sequence
of 2 symbols {0, 1}, and the length of Λi is fixed. Denote the waiting time of the first
occurrence of the compound pattern Λ in a sequence by W (Λ).

Given N1 = n1 and N0 = n − n1 ≡ n0, a sequence of Bernoulli trials can be
viewed as an [n1, n0]-specified random permutation, i.e., a random permutation of n1
1’s and n0 0’s. Let
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Conditional runs and patterns 533

P2 =
{

π = (π1, π2, . . . , πn) : πi = 0, 1 and
n∑

i=1

πi = n1

}

be the family of random permutations of n1 1’s and n0 0’s. Then, conditional dis-
tributions of runs and patterns given the total number n1 of successes in a sequence
of n Bernoulli trials are the same as distributions of runs and patterns in an [n1, n0]-
specified random permutation π = (π1, π2, . . . , πn). It is worthwhile to mention that
in an [n1, n0]-specified random permutation, the distributions of runs and patterns are
independent of p. Specifically, the waiting time W (Λ) in a sequence of Bernoulli
trials can be viewed as the waiting time W (Λ) in a random permutation of n1 1’s
and n0 0’s. Next, we show how to construct a Markov chain for P(W (Λ) > n) in an
[n1, n0]-specified random permutation.

To explain the Markov chain imbedding procedure in an [n1, n0]-specified random
permutation, we consider an urn consisting of n1 balls labeled 1 and n0 balls labeled 0.
The balls are drawn one by one without replacement until we see any of the L patterns
Λ1,Λ2, . . . , ΛL or the urn is emptied. To form a Markov chain, a serial of so-called
ending blocks is recorded toward the formation of a simple pattern (see, e.g., Fu and
Lou 2003). Now define EΛ as a set of ending blocks or the collection of subpatterns
of the L simple patterns. For example, given a compound patternΛ = 1011∪111, the
set of ending blocks is {0,1,10,11,101}, excluding the patterns 1011 and 111. Then,
we can define a nonhomogeneous Markov chain {Yt }n

t=0 on the state space

Ω = {(�, ω) : � = 0, 1, . . . , n1 and ω ∈ EΛ ∪ S2} ∪ {∅, α}, (1)

where EΛ is the collection of all ending blocks, ∅ represents the initial state and α

the absorbing state. At any time t (or t-th draw), a state Yt = (�t , ωt ) represents that
during the sequential sampling process from the urn consisting of n1 1’s and n0 0’s, the
total number of 1’s observed during the first t draws is �t , and the longest subpattern
observed up to time t is ωt . The transition probabilities from state u = (�t−1, ωt−1)

to state v = (�t , ωt ) are given by

puv(t) = P(Yt = (�t , ωt )|Yt−1 = (�t−1, ωt−1))

=

⎧
⎪⎪⎨

⎪⎪⎩

N1−�t−1
n−t+1 if πt = 1, �t = �t−1 + 1 and ωt =< ωt−1, 1 >Ω,

N0−t+�t−1+1
n−t+1 if πt = 0, �t = �t−1 and ωt =< ωt−1, 0 >Ω,

1 if ωt = ωt−1 = α,

0 otherwise,
(2)

where < ωt−1, πt >Ω denotes the longest subpattern after πt is observed. The tran-
sition matrices are of the form

Mt (n1) =
[
Nt (n1) Ct (n1)

0 1

]

,

t = 1, 2, . . . , n. We suppress n1 in the parenthesis for notational simplicity.
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534 T.-L. Wu

Theorem 1 Let X1, . . . , Xn be a sequence of independent Bernoulli trials and Λ be a
compound pattern. Then, given the total number of successes N1 = n1, the conditional
waiting time distribution is given by

P
(

W (Λ) > n
∣
∣
∣N1 = n1

)
= ξ0

n∏

t=1

Nt1�, (3)

where ξ0 is a vector of initial probabilities, Nt , t = 1, 2, . . . , n are the essential
matrices whose entries are given in (2) and 1 is a row vector of ones.

Proof Based on the above construction, the waiting time random variable W (Λ) is
finiteMarkov chain imbeddable and it follows fromTheorem 2.1 of Fu and Lou (2003)
that the exact distribution is of the form in (3). The proof is completed. ��
One can see that the conditional distribution in (3) is independent of p. Note that
there are a few papers that have studied the conditional distributions of certain runs in
the literature. Lou (1996) derived the exact conditional distributions of runs and the
longest run. Lou treated the conditional distribution as the ratio of a joint distribution
and a marginal distribution, and the two distributions are subsequently obtained by
the FMCI technique. We consider Lou’s method as an indirect method. Another paper
by Fu et al. (2012) studied the conditional distribution of the discrete scan statistic
for a sequence of Bernoulli trials given the total number of successes. There is a
dual relationship that makes the scan statistic problem a special case of waiting time
distribution of a compound pattern (e.g., Fu 2001). Considering the wide applications
of the longest run and scan statistics (e.g., Woodall 2006), it is worth giving some
details about these two special cases of Theorem 1 in the next two subsections.

2.1 The longest run

Let Ln denote the length of the longest run of 1’s in a sequence of Bernoulli trials.
Consider the pattern

Λd = {11 · · · 1︸ ︷︷ ︸
d

}.

The event {Ln < d} occurs if and only if the patternΛd does not occur in the sequence
of Bernoulli trials. Thus, we have

P(Ln < d|N1 = n1) = P(W (Λd) > n|N1 = n1).

Example 1 Suppose that n = 5, N1 = 3 and d = 3. The pattern correspond-
ing to {L5 < 3} is Λ3 = 111. The ending block is EΛ3 = {1, 11} and E111 ∪
S2 = {0, 1, 11}. The state space can be constructed according to (1) and is given
by Ω = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 11), (3, 0), (3, 1), (3, 11)} ∪ {∅, α}.
Some redundant states are removed from the state space. For example, (1, 11) would
never occur. According to Theorem 1, the probability that the length of the longest
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Conditional runs and patterns 535

1’s run is less than 3 is 0.7. The same probability can be obtained by enumera-
tion. Given 3 successes (1’s) in 5 Bernoulli trials, there are 10 possible outcomes
{11100, 11010, 10110, 01110, 11001, 10101, 01101, 10011, 01011, 00111}, among
which seven outcomes {11010, 10110, 11001, 10101, 01101, 10011, 01011} contain
the longest run of length less than three, and hence, the probability is 7/10.

2.2 Scan statistics

The scan statistic is defined as

Sn(r) = max
1≤t≤n−r+1

Sn(r , t),

where Sn(r , t) = ∑t+r−1
i=t Xi and r is the window size. The distribution of the scan

statistic can be cast as the waiting time distribution of a compound pattern. The event
{Sn(r) < s} occurs if and only if an associated compound pattern Λr ,s does not
appear in the sequence. For example, consider r = 5 and s = 2, the compound pattern
associated with the event {Sn(5) < 2} is Λ5,2 = {11, 101, 1001, 10001}. Thus, the
probability P(Sn(5) < 2) can be obtained through P(W (Λ5,2) > n).The relationship
still holds true in the conditional case, i.e.,

P (Sn(5) < 2|N1 = n1) = P
(
W (Λ5,2) > n|N1 = n1

)
.

In general, for any window size r and s, a compound pattern Λr ,s can be defined
accordingly, and the total number of simple patterns comprising the compound pattern
Λr ,s can also be obtained. See Fu (2001) for details.

3 Conditional distributions of runs and patterns in a sequence of
multistate trials

Let {Xi }n
i=1 be a sequence of multistate trials. Each trial has m (m ≥ 2) pos-

sible outcomes labeled 1, 2, . . . , m with P(X1 = j) = p j , j = 1, . . . , m and
Sm = {1, 2, . . . , m}. Note that when m = 2, we let S2 = {0, 1}. Let Mn be a finite
multiset generated from Sm . If the multiplicities of the symbols (in increasing order)
are N1, N2, . . . , Nm and

∑
Ni = n, then a random permutation of Mn is called an

[N1, N2, . . . , Nm]-specified random permutation. Let Pm be the collection of all such
random permutations of Mn .

Given a sequence of m-state trials such that Ni = ni , i = 1, . . . , m, the sequence is
then an [n1, n2, . . . , nm]-specified random permutation, and conditional distributions
of runs and patterns can again be viewed as distributions of runs and patterns in an
[n1, n2, . . . , nm]-specified random permutation.

Let Λ = ∪L
i=1Λi be a compound pattern consisting of L simple patterns Λi ,

where each simple pattern Λi is composed of a specified sequence of m symbols
and the length of Λi is fixed. To study the conditional waiting time distribution of
Λ, a nonhomogeneous Markov chain is constructed in an [n1, n2, . . . , nm]-specified
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random permutation. Again, an urn model can be used to help explain how we form
the nonhomogeneous Markov chain. We consider an urn consisting of n1 balls labeled
1, n2 balls labeled 2, . . . , and nm balls labeled m and

∑m
i=1 ni = n. The balls are

drawn one by one without replacement toward forming the sequence until we see any
of the L simple patterns or the urn is emptied. Let EΛ be the set of ending blocks
of the compound pattern Λ. Then, a nonhomogeneous Markov chain {Yt }n

t=0 can be
defined on the state space

Ω = {(�1, �2, . . . , �m, ω) : �i = 0, 1, . . . , ni and ω ∈ EΛ ∪ Sm} ∪ {∅, α}.

At time t (or t th draw), a state Yt = (�1,t , �2,t , . . . , �m,t , ωt ) represents that the
number of balls labeled i observed during the first t draws is �i,t , i = 1, . . . , m and
the longest subpattern observed up to time t is ωt . The transition probabilities from
state u = (�1,t−1, �2,t−1, . . . , �m,t−1, ωt−1) to state v = (�1,t , �2,t , . . . , �m,t , ωt ) are
given by

puv(t) = P(Yt = v|Yt−1 = u)

=

⎧
⎪⎪⎨

⎪⎪⎩

n j −� j,t−1
n−t+1 if πt = j, � j,t = � j,t−1 + 1 and ωt =< ωt−1, j >Ω,

j = 1, . . . , m,

1 if ωt = ωt−1 = α,

0 otherwise,
(4)

where < ωt−1, πt >Ω denotes the longest subpattern after πt is observed. Again, the
transition matrices are of the form

Mt =
[
Nt Ct

0 1

]

,

t = 1, 2, . . . , n.

Theorem 2 Let X1, . . . , Xn be a sequence of independent m-state trials and let Λ

be a compound pattern. Then, given the number of occurrences of each symbol, the
conditional waiting time distribution is given by

P
(

W (Λ) > n
∣
∣
∣N1 = n1, N2 = n2, . . . , Nm = nm

)
= ξ0

n∏

t=1

Nt1�,

where Nt , t = 1, . . . , n, are the essential matrices whose entries are given in (4).

Proof Based on the above construction, the waiting time random variable W (Λ) is
finiteMarkov chain imbeddable and this theorem is a straightforward result ofTheorem
2.1 of Fu and Lou (2003). ��
Note that the transition probabilities given in (4) do not depend on the probabilities
p j , j = 1, . . . , m.
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Fig. 1 P(L100 = k|N1 = n1). From left to right: k = 1, 2, . . . , 9

4 Numerical results

Plots of conditional probabilities of Ln and Sn(r) are given in this section. The plot of
conditional probabilities of the longest run is given in Fig. 1. The plots of conditional
probabilities of three scan statistics of window sizes 8, 5 and 15 are given in Figs. 2, 3
and 4, respectively.

5 Applications

Two applications are given in this section. The first application is to construct a
distribution-free test for randomness for annual rainfall data at Oxford from 1858
to 1952. The second application is to develop distribution-free control charts for mon-
itoring location shifts.

5.1 A distribution-free test for randomness

A distribution-free test for randomness based on runs-type statistics is proposed for
meteorological data (Foster and Stuart 1954). The plot of total annual rainfalls at
Oxford from 1858 to 1952 is given in Fig. 5.
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Fig. 2 P(S100(8) = s|N1 = n1). From left to right: s = 1, 2, 3, 4

To test whether there is an upward trend in mean, we choose to use the longest run
as the test statistic. The data are standardized so that the mean is zero and variance is
one. Next, we define Bernoulli trials {Xt }95t=1 as

Xt =
{
0 if Yt < c,
1 if Yt ≥ c,

(5)

where Yt is the standardized total annual rainfall of year t . The threshold c may be
determined according to the strength of the trend in mean. The choice of c is critical to
the performance of the test. A simple choice of c is zero, but there would be too much
noise (too many 1’s). To reduce the noise and limit the number of 1’s, we use c = 0.1
instead of 0. This gives 48years where the standardized total annual rainfalls are above
0.1, and the length of the longest run, located in years 1975–1983, is 9 with p-value
0.0678 (see Table 1). As in Foster and Stuart (1954), we obtain a similar conclusion
that the proposed test is not significant at α = 0.05. However, it would be significant if
we choose α = 0.1, and this indicates the evidence is fairly strong that we should not
ignore this signal. The histogram in Fig. 5 shows that the distribution of total annual
rainfall is not normal, and this makes our distribution-free test a desired method for
studying such non-normal data.
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Fig. 3 P(S100(5) < s|N1 = n1). From left to right: s = 2, 3, 4
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Fig. 4 P(S100(15) < s|N1 = n1). From left to right: s = 2, 3, . . . , 12
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Fig. 5 The total annual rainfalls at Oxford from 1858 to 1952

Table 1 P(L95 <

k| ∑95
t=1 Xt = 48)

k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0.1584 0.4550 0.7062 0.8556 0.9322 0.9690

5.2 Statistical process control

Control chart is the main tool in statistical process control (SPC). In general, SPC
consists of two steps: Phase I and Phase II. In Phase I, a set of historical data is
analyzed to determine if they can be considered from the in-control process and used
to estimate the values of parameters and control limits for the Phase II control chart.
Here, we consider the problem in Phase I to determine whether the data are from the
in-control process or not. For Phase II control charts, see Wu (2018) for distribution-
free control charts with data-dependent control limits. For review of recent advances
on nonparametric/distribution-free control charts with supplementary runs rules, see
Koutras et al. (2007) and Chakraborti et al. (2011).

We propose distribution-free control charts based on some runs and patterns-type
statistics. The frequently used runs rules are

Rule 1 One or more points fall outside the three-sigma control limits;
Rule 2 Two of three consecutive points fall outside the two-sigma warning limits;
Rule 3 Four of five consecutive points fall outside the one-sigma limits;
Rule 4 Eight points in a row fall on one side of the center line.
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Conditional runs and patterns 541

Table 2 Simple patterns with
respect to rule (i) and rule (ii)

Rule (i) Rule (ii)

33, 313, 323 2222, 21222, 22122, 22212

3222, 31222, 32122, 32212

2322, 21322, 23122, 23212

2232, 21232, 22132, 22312

2223, 21223, 22123, 22213

3223, 31232, 32132, 32213

31223, 32123, 23213

23123

The above rules are often referred to as Western Electric rules; see Western Electric
Company (1956). Rules 2 and 3 can be considered as scan rules and Rule 4 as a run
rule. A general runs and patterns rule, denoted by R(k, r , Z), is proposed by Shmueli
and Cohen (2003). The control chart signals an out-of-control alert if k of the last r
tested points fall in the region Z . To utilize these rules, the real line is partitioned into
three zones as follows:

Zone 1 = the interval (−∞, c1)
Zone 2 = the interval (c1, c2)
Zone 3 = the interval (c2,∞).

Without loss of generality, suppose the target value is 0. To detect an upward shift,
we consider two runs rules so that the process is said to be out-of-control if (i) two
of three consecutive points fall in Zone 3 and (ii) four of five consecutive points fall
in Zone 2 or Zone 3. We want to test H0 : the process is in-control against H1 :
the process is out-of-control. Note that here we consider the problem in Phase I to
determine in-control samples that will be used to estimate the values of parameters of
Phase II control charts. Therefore, it is a retrospective study on a given data set. The
above rules (i) and (ii) can be cast as waiting time problem of a compound pattern. The
out-of-control signal can be viewed as whether the compound pattern occurs or not.
According to the rules (i) and (ii), the compound pattern consists of 3 simple patterns
with respect to rule (i) and 28 simple patterns with respect to rule (ii). Those simple
patterns are given in Table 2.

Finally, we apply the proposed method to the piston ring data in Table 6.3 of
Montgomery (2009) to determine whether the process is in-control. Since we are
conducting a retrospective analysis, we do not monitor each data point sequentially.
We simply examine the entire 25 samples using our proposed rules. For illustrative
purpose, the thresholds c1 = 74.014 (x̄ + 1.3σ̂ ) and c2 = 74.026 (x̄ + 2.5σ̂ ) are
chosen so that the size of the distribution-free test is controlled at 0.0546. It can be
seen from Fig. 6 that there are 14 points in Zone 2 and 1 point in Zone 3, but none
of the patterns in Table 2 occurs. So we conclude that the process is in-control. The
conclusion is consistent with the x̄ and s control charts used in Montgomery (2009).

Remark 1 Thedistribution-free test for reference data consideredhere is a retrospective
analysis. We only test the data once after the data have been collected. However, we
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Fig. 6 The proposed patterns-type distribution-free control chart with c1 = 74.014 and c2 = 74.026

can also construct a Phase II control chart to monitor the process sequentially. The
details can be found in Wu (2018).

6 Summary

Given the configuration of a sequence of multistate trials, conditional distributions of
runs and patterns of the sequence can be viewed as distributions of runs and patterns
in a random permutation. Thus, the conditional distributions are independent of the
parameters.We derive exact conditional waiting time distributions of runs and patterns
using the FMCI technique. The fact that the conditional distribution is independent of
the parameters leads to applications like distribution-free tests and distribution-free
control charts. Distribution-free tests for randomness and symmetry can be constructed
with proper choice of runs and patterns. Some typical choices include number of runs,
the longest run, scan statistics, number of rises and successions and order-preserving
patterns. Distribution-free control charts have recently received considerable attention
in SPC. Limited work has been done with runs and patterns-type control charts due to
the lack of a unified approach to handle conditional distributions of runs and patterns.
Our work fills this gap and provides a tool to design new distribution-free control
charts.
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