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Abstract
We investigate the limiting behavior of sample central moments, examining the special
cases where the limiting (as the sample size tends to infinity) distribution is degenerate.
Parent (non-degenerate) distributions with this property are called singular, and we
show in this article that the singular distributions contain at most three supporting
points. Moreover, using the delta-method, we show that the (second-order) limiting
distribution of sample central moments from a singular distribution is either amultiple,
or a difference of two multiples of independent Chi-square random variables with one
degree of freedom. Finally, we present a new characterization of normality through
the asymptotic independence of the sample mean and all sample central moments.

Keywords Sample central moments · Singular distributions · Second-order
approximation · Characterization of normality · Delta-method

1 Introduction

Let X be a random variable with distribution function F and finite moment of order
k, for some positive integer k ≥ 2. Then, X has finite central moment of order k.

Based on a random sample of size n from F , a natural estimator of the kth central
moment of X is the kth sample central moment, and the strong law of large numbers
implies that the kth sample central moment is a strongly consistent estimator of the
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population kth central moment. If, in addition, X has finite moment of order 2k, its
asymptotic normality is also known (see, for example, Lehmann 1999, pp. 297–298).

In the particular case where k = 2 and the sample size n ≥ 2 is fixed, Kourouklis
(2012) proved that the usual unbiased estimator for the variance, S2, is inadmissible
in the class C = {cS2 : c > 0}, showing that the estimator n(n −1)[n(n −1)+2]−1S2

has smaller mean-squared error than S2 for all F with finite fourth moment; see also
Yatracos (2005).

On the other hand, various authors provide statistical inference based on the asymp-
totic (as n → ∞) distribution of a function of the sample centralmoments. Such results
have several applications, including the evaluation of the limiting distribution of pro-
cess capability indices, which have been widely used to measure the improvement of
quality and productivity (see, e.g., Wu and Liang 2010). In a different context, Pewsey
(2005) and Afendras (2013) provide hypothesis testing, including normality testing,
based on a function of the first four central moments of a distribution.

Haug et al. (2007) suggest moment estimators for the parameters of a continuous
time GARCH(1, 1). The asymptotic normality of these estimators plays an important
role in their analysis.

Investigating the M-estimation procedure, Stefanski and Boos (2002) present cases
in which central moment-based estimates may be presented as M-estimators. The
asymptotic analysis and approximate inference are an important issue for large-sample
inference.

The sequence of sample central moments, after suitable centering, has a k-variate
limiting normal distribution; this result arises easily from the multivariate central
limit theorem and the delta-method. However, there are cases where the asymptotic
distribution is degenerate. In such cases, the order of convergence is faster than

√
n;

specifically, the convergence is of order n. Therefore, a deeper study of the asymptotic
behavior of the sample central moments is required.

This paper is organized as follows. Section 2 provides the basic notation and ter-
minology that will be used through the paper. Section 3 presents a motivation of
the problems that are studied and lists our contributions. Section 4 provides general
asymptotics of the sample central moments. Specifically, we introduce the property
of asymptotic independence and investigate this property for the random vector of
the first k central moments; an asymptotic independence-based characterization for
the normal distribution is also given. In Sect. 5, we introduce the notion of a singu-
lar distribution and we study the class of such distributions, while Sect. 6 contains
results associated with the asymptotic distribution of sample central moments under
singularity. Some of the proofs are presented in “Appendix A.”

2 Notation and terminology

Let X ∼ F with E|X |k < ∞ for some (fixed) k ∈ {1, 2, . . .}; and let us consider a
random sample X1, . . . , Xn from F . To avoid trivialities, we further assume that X is
non-degenerate, that is, the set of points of increase of F ,

SF = {x ∈ R : F(x + ε) − F(x − ε) > 0 for all ε > 0},
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contains at least two elements. The first k central moments of X around its mean,
μ = E(X), are well defined and finite. In the sequel, we shall use the notation

μ j = E(X − μ) j , j = 0, . . . , k.

The centered sample moments are

m j,n = 1

n

n∑

i=1

(Xi − μ) j , j = 1, . . . , k.

The moment estimator of μk (for k ≥ 2) when μ is unknown (as is usually the
case) is its sample counterpart,

Mk,n = 1

n

n∑

i=1

(
Xi − X̄n

)k
, where X̄n = 1

n

n∑

i=1

Xi ;

for convenience, we set M1,n = X̄n − μ.
Now, we define the vectors

μμμk = (μ1, . . . , μk)
′ =

(
0, σ 2, μ3, . . . , μk

)′
and μμμ∗

k =
(
σ 2, μ3, . . . , μk

)′
,

as well as the random vectors

Mk,n = (X̄n − μ, M2,n, . . . , Mk,n)′, M∗
k,n = (M2,n, . . . , Mk,n)′,

mk,n = (m1,n, . . . , mk,n)′;

it is worth noting that it is convenient to find the asymptotic distribution of
√

n(Mk,n −
μμμk) instead of

√
n(M∗

k,n − μμμ∗
k).

Observe that, by Newton’s formula, M j,n = g j,k(mk,n), where for xk =
(x1, . . . , xk)

′

g j,k(xk) = (− 1) j−1( j − 1)x j
1 +

j−1∑

i=2

(− 1) j−i
(

j

i

)
xi x j−i

1 + x j , j = 1, . . . , k,

and an empty sum should be treated as zero. Therefore, Mk,n = gk(mk,n), where
gk = (g1,k, . . . , gk,k)

′.
Finally, let Xn be a sequence of randomvectors. The terminology Xn

√
n-converges

in distribution to a distribution, say F0, means that there existsμμμ such that
√

n(Xn −
μμμ)

d−−→ F0 as n → ∞; similarly, we define n-convergence. In the rest of the paper,
all limiting behaviors (limits, convergence in distribution or in probability as well as
o(·), O(·) and op(·) functions) will be with respect to n → ∞.
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3 Motivation and our contributions

Based on the asymptotic distribution of the vector of the sample skewness and kurtosis,
Pewsey (2005) gave an asymptotic result for testing normality. Afendras (2013) estab-
lishes moment-based estimators of the parameter vector of the characteristic quadratic
polynomial for both integrated Pearson and cumulative Ord families of distributions
and obtained the asymptotic distribution of those estimators. Using this asymptotic
distribution, he provides a number of hypothesis testing, including a normality test.
In both cases, i.e., sample skewness and kurtosis (Pewsey 2005) and parameter vector
of the characteristic quadratic polynomial (Afendras 2013), the estimator is a func-
tion of M4,n . Thus, it is of some interest to obtain the asymptotic distribution of√

n(Mk,n − μμμk) for any value of k.
Our contributions are as follows.

1. We give somemore light on the limiting behavior of the vector Mk,n . In particular,
we present results related to the rate of convergence of the first and secondmoments
of Mk,n . Furthermore, we investigate in some detail the singular cases, i.e., the
cases where v2k = 0 (see (3) below), characterizing the distributions with this
property.

2. We introduce the notion of asymptotic independence between the components of
a sequence of k-dimensional random vectors, and we investigate the asymptotic
properties of Mk,n in view of this notion. Specifically, we show that, among the
distributions having finite moments of any order, the asymptotic independence
of X̄n and the sequence {Mk,n, k ≥ 2} characterize the normal distribution. This
fact provides, in a sense, a limiting counterpart of the well-known result that
independence of X̄n and M2,n = (1−1/n)S2

n (for some fixed n ≥ 2) characterizes
normality (seeGeary 1936; Zinger 1958; Laha et al. 1960;Kagan et al. 1973).Here,
the assumption of independence is weakened to asymptotic independence but, of
course, the requirement of the existence of all moments and the fact that X̄n has to
be asymptotically independent of all Mk,n, k ≥ 2 (and not only k = 2) seems to
be quite restricted. However, this result is best possible. Indeed, as we shall show,
for any fixed k ≥ 2 there are (infinitely many) non-normal distributions for which
X̄n and M∗

k,n are asymptotically independent.

3. Let k = 2, 3, . . . be fixed such that E|X |2k < ∞. Under non-singularity of
order k, that is v2k 
= 0, the

√
n-convergence of Mk,n is a well-known result,

i.e.,
√

n(Mk,n − μk) converges in distribution to N (0, v2k ). Under singularity of
order k, we shall verify the n-convergence of Mk,n , i.e., n(Mk,n − μk) converges
in distribution to a non-normal distribution.

4 The limiting distribution and a characterization of normality

Assume that k ≥ 2 and E|X |2k < ∞. The multivariate central limit theorem immedi-
ately yields that √

n(mk,n − μμμk)
d−−→ Nk

(
0k,���| k

)
, (1)
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where 0k = (0, . . . , 0)′ ∈ Rk and ���| k = (σi j ) ∈ Rk×k with σi j = μi+ j − μiμ j .
Since Mk,n = gk(mk,n), the asymptotic distribution of

√
n(Mk,n −μμμk) easily arises

by a simple application of delta-method and is a k-dimensional normal distribution
(see, e.g., van der Vaart 1998, Theorem 3.1). This result is presented in the following
proposition.

Proposition 1 If E|X |2k < ∞, then

√
n(Mk,n − μμμk)

d−−→ Nk(0k,Vk), (2)

where the variance–covariance matrix Vk = (vi j ) ∈ Rk×k has elements

v11 = σ 2, (3a)

v1 j = v j1 = μ j+1 − jσ 2μ j−1, j = 2, . . . , k, (3b)

vi j = μi+ j − μiμ j −iμi−1μ j+1 − jμi+1μ j−1+i jσ 2μi−1μ j−1, i, j =2, . . . , k;
(3c)

the elements vi i are also denoted by v2i , i = 1, . . . , k.

The proof of Proposition 1 for the case k = 4 is contained in Afendras (2013, in
the proof of Theorem 3.1), while the proof for general k is similar to the case k = 4.
Particular cases of the preceding result are contained in the next corollary.

Corollary 1 If k ≥ 2 and E|X |2k < ∞, then

√
n(Mk,n − μk)

d−−→ N
(
0, v2k

)
; (4)

√
n

(
X̄n − μ

Mk,n − μk

)
d−−→ N2

((
0
0

)
,

(
σ 2

μk+1 − kσ 2μk−1

μk+1 − kσ 2μk−1
v2k

))
. (5)

Note that, as it is well known, the weak convergence in (2) does not imply con-
vergence of the corresponding moments; e.g., it is not necessarily true that either
E[√n(Mk,n −μk)] → 0 or Var[√n(Mk,n −μk)] → v2k . Therefore, it is an interesting
fact that (2) correctly suggests the limits for the corresponding expectations, variances
and covariances. The following proposition asserts that this moment convergence is
indeed satisfied when the minimal (natural) set of assumptions is imposed on the
moments of X ; detailed proofs are given in “Appendix A.”

Proposition 2 Let k, r ∈ {2, 3, . . .} be fixed.

(a) If E|X |k < ∞, then E(Mk,n) = μk + o(1/
√

n);
(b) If E|X |k+1 < ∞, then Cov(X̄n, Mk,n) = (μk+1 − kσ 2μk−1)/n + o(1/n);
(c) If E|X |k+r < ∞, then Cov(Mr ,n, Mk,n) = vrk/n + o(1/n), and in particular, if

E|X |2k < ∞, then Var[√n(Mk,n − μk)] → v2k .
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In the sequel, we shall make use of the following definition.

Definition 1 Let k ∈ {2, 3, . . .} be fixed.
(a) The sample mean, X̄n , is called asymptotically independent of the sample central

moment, Mk,n , if there exist independent random variables W1 and Wk such that

√
n

(
X̄n − μ

Mk,n − μk

)
d−−→
(

W1
Wk

)
;

(b) X̄n is called asymptotically independent of the random vector M∗
k,n if there exist

randomvariablesW1, . . . , Wk such thatW1,W∗
k = (W2, . . . .Wk)

′ are independent
and

√
n

(
X̄n − μ

M∗
k,n − μμμ∗

k

)
d−−→
(

W1
W∗

k

)
;

(c) X̄n and Mk,n are called asymptotically uncorrelated if

Cov
(√

n X̄n,
√

nMk,n
) → 0.

Remark 1 Assume that E|X |2k < ∞ for some k ∈ {2, 3, . . .}. According to (5) and
Proposition 2(b) (see, also, (34)), X̄n and Mk,n are asymptotically independent if
and only if they are asymptotically uncorrelated. Also, the asymptotic normality of
Proposition 1 shows that X̄n and M∗

k,n are asymptotically independent if and only

if X̄n and Mr ,n are asymptotically uncorrelated for all r ∈ {2, . . . , k}. If we merely
assume that E|X |k+1 < ∞, then, even for those cases where the limiting distribution
of

√
n(Mk,n − μk) does not exist, Proposition 2(b) enables one to decide if X̄n and

Mk,n are asymptotically uncorrelated, or not.

Assume now X ∼ N (μ, σ 2). Observing the dispersion matrix in (2), it becomes
clear that the first column—except of the first element, σ 2—vanish. This is so because
μk = 0 for all odd k and μ2r = σ 2r (2r)!/(2r r !); thus, for any k ∈ {2, 3, . . .}, μk+1 =
kσ 2μk−1. According to Definition 1, this means that X̄n is asymptotically independent
(uncorrelated) of all Mk,n . But, this is not a surprising fact for the normal distribution,
since it is well known that for any fixed n ≥ 2, X̄n is independent of the vector
Z = (X1− X̄n, . . . , Xn− X̄n)′ (it suffices to observe that (X̄n, X1− X̄n, . . . , Xn− X̄n)′
follows a multivariate normal distribution and Cov(X̄n, Xi − X̄n) = 0 for all i) and,
therefore, X̄n is stochastically independent (and uncorrelated) of any sequence of the
form {hr (Z), r = 2, 3, . . .}, where hr : Rn → R are arbitrary Borel functions. Since
Mr ,n = n−1∑n

i=1(Xi − X̄n)r = hr (Z), it follows that X̄n and M∗
k,n are independent

(and, thus, X̄n and Mk,n are uncorrelated) for all k and n and, certainly, the same is
true for their limiting distributions. The interesting fact is that the converse is also true,
i.e., the asymptotic independence of X̄n and Mk,n for all k characterizes normality.

Theorem 1 Assume that X is non-degenerate and has finite moments of any order. If
X̄n and Mk,n are asymptotically independent (or, merely, asymptotically uncorrelated)
for all k ∈ {2, 3, . . .}, then X follows a normal distribution.
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Proof From Proposition 2(b) (cf. (2), (5)) it follows that X̄n and Mk,n are asymptoti-
cally uncorrelated if and only if μk+1 = kσ 2μk−1. Since we have assumed that this
relation holds for all k ≥ 2 it follows thatμ1 = μ3 = μ5 = · · · = 0 and, similarly, for
all r ∈ {1, 2, . . .}, μ2r = σ 2r (2r)!/(2r r !). But, these are the moments of N (0, σ 2),
and since normal distributions are characterized by their moment sequence (see, e.g.,
Billingsley 1995, Example 30.1, p. 389), we conclude that X − μ ∼ N (0, σ 2). ��

Compared to the classical characterization of normality via the independence of X̄n

and S2
n = [n/(n − 1)]M2,n , the asymptotic independence is a much weaker condition

to enable a characterization result. For example, (5) and Proposition 2(b) with k = 2
(cf. (34)) shows that X̄n and S2

n are asymptotically independent if and only if μ3 = 0,
provided E|X |3 < ∞. Clearly, the relation E(X − μ)3 = 0 is satisfied by any
symmetric distribution with finite third moment and by many others. On the other
hand, the requirement that the asymptotic independence has to be fulfilled for all
k ≥ 2 may be regarded as too restricted. However, the following result shows that any
finite number of k’s will not work.

Theorem 2 For any fixed k ≥ 2, there exist (infinitely many) non-degenerate non-
normal random variables X with finite moments of any order such that X̄n and M∗

k,n
are asymptotically independent.

Proof Let φ(x) ∝ exp(− x2/2) be the standard normal density and consider the poly-
nomial Pm(x) = (d m/ d xm)[xm(1−x)m]; i.e., Pm is the shifted Legendre polynomial
of degreem. It iswell known that for allm ≥ k+2, Pm is orthogonal to {1, x, . . . , xk+1}
in the interval [0, 1], that is,

∫ 1

0
x j Pm(x) d x = 0, j = 0, . . . , k + 1.

Since Pm is continuous on [0, 1], it follows that 0 < maxx∈[0,1] |Pm(x)| = am <

∞. Also, minx∈[0,1] φ(x) = φ(1) = (2πe)−1/2 > 0. Clearly, we can choose an
εm > 0 small enough to guarantee that φ(x) + εm Pm(x) > 0 for all x ∈ [0, 1] (e.g.,
εm = [2am(2πe)1/2]−1 suffices). Now, define a sequence of probability densities
{ fm, m ≥ k + 2} by

fm(x) = φ(x) + εm Pm(x)1{0≤x≤1}, x ∈ R,

where 1 denotes the indicator function (see Fig. 1).
If Xm has density fm , it is clear that, for j = 0, . . . , k + 1,

E
(

X j
m

)
=
∫

R

x jφ(x) d x + εm

∫ 1

0
x j Pm(x) d x =

∫

R

x jφ(x) d x = E
(

Z j
)

,

where Z ∼ N (0, 1). Obviously, each Xm has finite moments of any order, is non-
normal, non-degenerate, and, by Proposition 1, X̄n and M∗

k,n are asymptotically
independent. ��
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Fig. 1 The densities fm (x) for m = 5, 7 and 10. a f5(x), b f7(x), c f10(x)

5 The singular distributions

First, center the rv X as U = X − μ with E(U j ) = μ j for all j . Assume that
E|X |2k < ∞ for some k = 2, 3, . . . and consider the random vector

Uk =
(

U , U 2, U 3 − 3σ 2U , U 4 − 4μ3U , . . . , U k − kμk−1U
)′

.

It is of some interest to observe that the variance–covariance matrix of the limiting
distribution in (2) coincides with the variance–covariance matrix of Uk . In particular,

v2k = Var
(

U k − kμk−1U
)

,

μk+1 − kσ 2μk−1 = Cov
(

U , U k − kμk−1U
)

,

vrk = Cov
(

Ur − rμr−1U , U k − kμk−1U
)

, (6)

r = 2, . . . , k −1. Relation (6) evidently shows that v2k ≥ 0. Of course, the nonnegativ-
ity of v2k is a consequence of the fact that, byProposition 2(c), v

2
k = limn Var(

√
nMk,n);

but, the point here is that we have not to refer to a limit. Moreover, the expression (6)
enables us to describe all distributions for which v2k = 0. Such distributions will be
called singular, according to the following definition.

Definition 2 For fixed k ≥ 2, a non-degenerate random variable X , or its distribution
function F , is called singular (of order k) if E|X |2k < ∞ and

√
n(Mk,n − μk)

p−−→ 0.

The set of all singular random variables of order k will be denoted by Fk ; the subset
of all standardized (with mean 0 and variance 1) singular random variables of order k
will be denoted by F 0

k .

Noting that Y ∈ F 0
k if and only if X = μ + σY ∈ Fk for some μ ∈ R and σ > 0,

it follows that Fk contains exactly the location-scale family of the random variables
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that belong to F 0
k . According to (4), (6), and Proposition 2(a), (c) (cf. (32)), X ∈ Fk

if and only if v2k = 0 or, equivalently,

(X − μ)k = μk + kμk−1(X − μ) with probability one. (7)

We also note thatFk is non-empty for all k ≥ 2. Indeed, it is easily seen that the random
variable Y with P(Y = ± 1) = 1/2 belongs to F 0

2k ⊆ F2k , k = 1, 2, . . ., because
μ = E(Y ) = 0, σ 2 = E(Y 2) = 1, μ2k = E(Y 2k) = 1, μ2k−1 = E(Y 2k−1) = 0
and Y 2k = μ2k + 2kμ2k−1Y with probability one. Similarly, for every k ∈ {1, 2, . . .},
the three-valued symmetric random variable Y2k+1 with P(Y2k+1 = ±√

2k + 1) =
1/[2(2k +1)] andP(Y2k+1 = 0) = 2k/(2k +1) belongs to F 0

2k+1. Moreover, we shall
show below (Lemma 2) that we can find a unique value of p = p2k+1 ∈ (1/2, 1), for
which the two-valued random variable W2k+1, with

P
(

W2k+1 = √
(1 − p)/p

)
= p = 1 − P

(
W2k+1 = −√p/(1 − p)

)
,

is such that W2k+1 ∈ F 0
2k+1.

In general, it is easily seen that the equation yk = α + β y (with α, β ∈ R) has at
most two real solutions for even k, and at most three solutions for odd k. Assuming that
X ∼ F and X ∈ Fk , it follows from (7) that X takes at most two values (and hence,
exactly two values, since X has been assumed to be non-degenerate) if k is even, and
two or three values if k is odd. This follows from the fact that the points of increase of F
cannot bemore than three, if k is odd, andmore than two, if k is even.To see this assume,
e.g., that k is odd, X ∼ Fk , E(X) = μ, E(X − μ)k = μk and E(X − μ)k−1 = μk−1.
Let x1 < x2 < x3 < x4 be four distinct points of increase of F . Then, there exists at
least one xi for which (xi − μ)k − μk − kμk−1(xi − μ) 
= 0, and thus, we can find
a small ε > 0 such that (x − μ)k 
= μk + kμk−1(x − μ) for all x ∈ (xi − ε, xi + ε].
Hence, P(xi − ε < X ≤ xi + ε) ≤ P[(X − μ)k 
= μk + kμk−1(X − μ)]. Since,
however, xi is a point of increase of F , we have 0 < F(xi + ε) − F(xi − ε) =
P(xi − ε < X ≤ xi + ε) ≤ P[(X − μ)k 
= μk + kμk−1(X − μ)], which contradicts
(7). The same arguments apply to the case where k is even.

Therefore, we have the following description.

Proposition 3 If k ≥ 2 is even, then Fk contains only two-valued random variables.
If k ≥ 3 is odd, then Fk contains only two-valued and three-valued random variables.

Our purpose is to describe all singular distributions and to obtain a second-order
non-degenerate distributional limit for Mk,n −μk . Firstly, we consider the two-valued
distributions because they are possible members of Fk .

Lemma 1 Let X ∼ b(p), i.e., P(X = 1) = p = 1 − P(X = 0) for some p ∈ (0, 1).
Then, X ∈ F2 if and only if p = 1/2. Moreover, if k ≥ 4 is even, then X ∈ Fk if and
only if p ∈ {1 − pk, 1/2, pk}, where pk is the unique root of the equation

(
p

1 − p

)k−1

= (k + 1)p − 1

k − (k + 1)p
,

k − 2

k − 1
< p <

k

k + 1
; (8)
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408 G. Afendras et al.

in particular, p4 = 1/2 + √
3/6 and p6 = 1/2 +√

15(4
√
10 − 5)/30.

Proof Since μ = p and

μk = p(1 − p)
[
(1 − p)k−1 + (− 1)k pk−1

]
, k = 1, 2, . . . , (9)

(7) shows that X ∈ Fk if and only if

(x − p)k = μk + kμk−1(x − p) for x = 0 and x = 1. (10)

Using (9) and the fact that k ≥ 2 is even, both the equations in (10) are reduced to

pk−1[k − (k + 1)p] = (1 − p)k−1[(k + 1)p − 1], 0 < p < 1. (11)

Since the value of p = k/(k + 1) is a root of the LHS of (11) which is not a root of
its RHS we conclude that the equalities in (8) and (11) are equivalent if 0 < p < 1.
Obviously, p = 1/2 is a root of (11). In order to find all roots of (11), we make the
substitution t = p/(1 − p), which monotonically maps p ∈ (0, 1) to t ∈ (0,∞).
Then, we get the equation

pk(t) = tk − ktk−1 + kt − 1 = 0, 0 < t < ∞, (12)

which has the obvious solution t = 1 (corresponding to p = 1/2). If k = 2, then (12)
is written as t2 − 1 = 0, and thus t = 1 (resp. p = 1/2) is the unique solution of (12)
(resp. (11)). Since for any t > 0 we have pk(1/t) = − pk(t)/tk , it follows that 1/t
is a root of (12) whenever t is; equivalently, 1 − p is a root of (11) if p is. For even
k ≥ 4 we see that pk(0) = − 1, pk(1) = 0 and pk(∞) = limt→∞ pk(t) = ∞. Also,
p′

k(t) = k[tk−1 − (k − 1)tk−2 + 1] = kqk(t), where qk(t) = tk−1 − (k − 1)tk−2 + 1
satisfies qk(0) = 1 > 0, qk(1) = − (k − 3) < 0 and qk(∞) = ∞. Moreover, we see
that q ′

k(t) = (k − 1)tk−3[t − (k − 2)] is negative for t ∈ (0, k − 2) and positive for
t ∈ (k−2,∞); thus,qk(t)decreases in (0, k−2) and increases in (k−2,∞). Therefore,
there exist ρ1 < ρ2, with 0 < ρ1 < 1 < k − 2 < ρ2 < ∞, such that qk(t) < 0 for t
in (0, ρ1) ∪ (ρ2,∞) and qk(t) > 0 for t in (ρ1, ρ2). Relation qk(t) = p′

k(t)/k shows
that pk(t) is increasing in (0, ρ1), decreasing in (ρ1, ρ2) and increasing in (ρ2,∞).
From 1 ∈ (ρ1, ρ2) and pk(1) = 0, we conclude that pk(ρ1) > 0 and pk(ρ2) < 0;
hence, there exist unique t1 ∈ (0, ρ1) and t2 ∈ (ρ2,∞) such that pk(t1) = 0 = pk(t2).
Clearly, t1 = 1/t2, and the set of roots of (12) is {1/t2, 1, t2}; thus, the set of roots of
(11) is {1 − pk, 1/2, pk}, with pk = t2/(1 + t2). Finally, relation t2 > ρ2 > k − 2
shows that pk = t2/(1 + t2) > (k − 2)/[1 + (k − 2)] = (k − 2)/(k − 1), while
pk < k/(k + 1) is obvious because for p ≥ k/(k + 1) the LHS of (11) is non-positive
while its RHS is strictly positive. ��

From (8), we see that 1/2 < p4 < p6 < · · · and p2k = 1 − 1/(2k) + o(1/k) as
k → ∞. Lemma 1 completely describes all Fk for even k.
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On the limiting distribution of sample central moments 409

Corollary 2 If k ≥ 2 is even, then X ∈ F 0
k if and only if either P(X = ± 1) = 1/2, or

P
(

X = −√pk/(1 − pk)
)

= 1 − pk, P
(

X = √
(1 − pk)/pk

)
= pk

and k ∈ {4, 6, . . .}, or

P
(

X = −√(1 − pk)/pk

)
= pk, P

(
X = √

pk/(1 − pk)
)

= 1 − pk

and k ∈ {4, 6, . . .}, where pk ∈ ((k − 2)/(k − 1), k/(k + 1)) is given by (8).

Corollary 2 says that F 0
2 is singleton and that for every k ∈ {4, 6, . . .}, F 0

k contains
exactly three two-valued distributions.When k is odd, the nature ofFk is quite different,
because it contains both two-valued and three-valued distributions. First, we examine
the two-valued case.

Lemma 2 Let X ∼ b(p) for some p ∈ (0, 1). If k ≥ 3 is odd and X ∈ Fk , then
p ∈ {1 − pk, pk} where pk is the unique root of the equation

(
p

1 − p

)k−1

= (k + 1)p − 1

(k + 1)p − k
,

k

k + 1
< p < 1; (13)

in particular, p3 = 1/2 + √
3/6 and p5 = 1/2 +√

5
√
5/10. Conversely, if k ≥ 3 is

odd and either X ∼ b(pk) or X ∼ b(1 − pk), with pk as above, then X ∈ Fk .

Proof Assume that k ≥ 3 is odd, X ∼ b(p) and X ∈ Fk . This means that (10) is
satisfied. Using (9) and the fact that k ≥ 3 is odd, both equations in (10) are reduced
to

pk−1[(k + 1)p − k] = (1 − p)k−1[(k + 1)p − 1], 0 < p < 1. (14)

Since the value of p = k/(k + 1) is a root of the LHS of (14) which is not a root of its
RHS, we conclude that (13) and (14) are equivalent. As in Lemma 1, in order to find
all roots of (14) we make the substitution t = p/(1 − p), which monotonically maps
p ∈ (0, 1) to t ∈ (0,∞). Then, we get the equation

pk(t) = tk − ktk−1 − kt + 1 = 0, 0 < t < ∞. (15)

Since for any t > 0 we have pk(1/t) = pk(t)/tk , it follows that 1/t is a root of (15)
whenever t is; equivalently, 1 − p is a root of (14) if p is. For odd k ≥ 3, we see that
pk(0) = 1 > 0, pk(1) = − 2(k −1) < 0 and pk(∞) = ∞. Thus, (15) has at least one
root in (0, 1) and at least one root in (1,∞). Also, p′

k(t) = k[tk−1−(k−1)tk−2−1] =
kqk(t), where qk(t) = tk−1− (k −1)tk−2−1 satisfies qk(0) = − 1 < 0 and qk(∞) =
∞. Moreover, we see that q ′

k(t) = (k−1)tk−3[t −(k−2)] is negative for t ∈ (0, k−2)
and positive for t ∈ (k−2,∞); thus, qk(t) decreases in (0, k−2) and increases in (k−
2,∞). Therefore, there exists a uniqueρ > k−2 ≥ 1 such that qk(t) < 0 for t in (0, ρ)

and qk(t) > 0 for t in (ρ,∞). Relation qk(t) = p′
k(t)/k shows that pk(t) decreases

in (0, ρ) and increases in (ρ,∞). From pk(0) > 0, pk(1) < 0 and pk(∞) > 0 we
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conclude that there exist unique t1 ∈ (0, 1) and t2 ∈ (ρ,∞) such that pk(t1) = 0 =
pk(t2). Clearly, t1 = 1/t2, and the set of roots of (15) is {1/t2, t2}; thus, the set of roots
of (14) is {1− pk, pk}, with pk = t2/(1 + t2). Finally, relation t2 > ρ > k − 2 shows
that pk = t2/(1 + t2) > (k − 2)/[1 + (k − 2)] = (k − 2)/(k − 1). However, the root
pk cannot lie in ((k − 2)/(k − 1), k/(k + 1)] because for all p in this interval the LHS
of (14) is non-positive, while its RHS is strictly positive (p > (k − 2)/(k − 1) implies
(k + 1)p − 1 > (k + 1)(k − 2)/(k − 1) − 1 = [(k − 3)(k + 1) + 2]/(k − 1) > 0,
since k ≥ 3). This verifies that pk > k/(k + 1). Finally, if either X ∼ b(pk) or
X ∼ b(1 − pk), then (9) and (14) show that (10) and (7) are satisfied and, thus,
X ∈ Fk . ��
Corollary 3 If k ≥ 3 is odd, then the unique two-valued random variables contained
in F 0

k are the following:

P
(

X = −√pk/(1 − pk)
)

= 1 − pk, P
(

X = √
(1 − pk)/pk

)
= pk

and

P
(

X = −√(1 − pk)/pk

)
= pk, P

(
X = √

pk/(1 − pk)
)

= 1 − pk,

where pk ∈ (k/(k + 1), 1) is given by (13).

Corollary 3 describes all two-valued random variables of F 0
k when k ≥ 3 is odd; how-

ever, we have already seen that F 0
k contains also some three-valued random variables.

Among them, exactly one is symmetric.

Lemma 3 If k ≥ 3 is odd, the unique symmetric random variable of F 0
k is given by

P(X = ±√
k) = 1/(2k), P(X = 0) = 1 − 1/k.

More generally, this is the unique random variable of F 0
k with μk = 0.

Proof Since X ∈ F 0
k , we have E(X) = 0 and E(X2) = 1. Therefore, in view of the

assumption μk = 0, (7) simplifies to

X
(

Xk−1 − kμk−1

)
= 0 with probability one.

It follows that the support of X is a subset of A={− (kμk−1)
1/(k−1), 0, (kμk−1)

1/(k−1)},
where μk−1 = E(Xk−1) > 0, because X is non-degenerate and k − 1 is even. Let
p = P(X = 0), p1 = P(X = − (kμk−1)

1/(k−1)) and p2 = P(X = (kμk−1)
1/(k−1));

p, p1, p2 are nonnegative and p + p1 + p2 = 1 because P(X ∈ A) = 1.
Assumption E(X) = 0 shows that p1 = p2. Thus, p1 = p2 = (1 − p)/2 and,
so, P(X = ± (kμk−1)

1/(k−1)) = (1 − p)/2. Calculating μk−1 = E(Xk−1) =
(1 − p)kμk−1, we see that p = 1 − 1/k and thus, P(X = ± a) = 1/(2k) where
a = (kμk−1)

1/(k−1) > 0. Finally, from 1 = E(X2) = a2/k, we conclude that
a = √

k. On the other hand, it is easily seen that for this value of a = √
k, μk = 0 and
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On the limiting distribution of sample central moments 411

μk−1 = k(k−3)/2 so that kμk−1 = k(k−1)/2 = (±√
k)k−1; hence, A = {−√

k, 0,
√

k}
and x(xk−1 − kμk−1) = x[xk−1 − (±√

k)k−1] ≡ 0 for all x ∈ A. ��

The following lemma presents a complete description of all three-valued distribu-
tions of F 0

3 and gives a picture of the nature of F 0
k when k ≥ 3 is odd.

Lemma 4 For each μ3 ∈ [−√
2,

√
2] there exists a unique random variable X ∈ F 0

3
such that E(X3) = μ3. Cases μ3 = ±√

2 correspond to the two-valued distributions
described in Corollary 3 for k = 3. Any other value of μ3 ∈ (−√

2,
√
2) uniquely

determines a three-valued distribution, and in particular, μ3 = 0 corresponds to the
symmetric distribution of Lemma 3 for k = 3. Moreover, there do not exist other
random variables in F 0

3 . Therefore, F 0
3 admits the parametrization

F 0
3 = {Xθ ,−√

2 ≤ θ ≤ √
2},

where Xθ is characterized by

E (Xθ ) = 0, E
(

X2
θ

)
= 1, E

(
X3

θ

)
= θ and P

[
Xθ

(
X2

θ − 3
)

= θ
]

= 1.

Proof Let X ∈ F 0
3 and assume that μ3 = E(X3) = θ . Then, μ = E(X) = 0,

σ 2 = μ2 = E(X2) = 1 and, according to (7), X(X2 − 3) = θ with probability
one. Therefore, since X is non-degenerate, the support of X must contain at least two
points which are included in the set of zeros of y(y2−3) = θ . This shows that |θ | ≤ 2
because, otherwise, the set {y ∈ R : y(y2 −3) = θ} is a singleton. Observe that θ = 0
leads, uniquely, to the symmetric random variable of Lemma 3with k = 3. Thus, from
now on assume that θ 
= 0. The values θ = ± 2 are impossible because the equations
y(y2 − 3) = ± 2 have exactly two real solutions, say α, β, with |α| = 1 and |β| = 2,
so that E(X) = 0 and E(X2) = 1 are impossible.

Consider now the case where − 2 < θ < 0. Then, {y : y(y2 − 3) = θ} =
{−α, β, γ } where 0 < β < 1 < γ <

√
3 < α and, by definition, the numbers

α, β, γ satisfy the relation

− α
(
α2 − 3

)
= β

(
β2 − 3

)
= γ

(
γ 2 − 3

)
= θ. (16)

From (16), we see that θ = θ(β) = β(β2 − 3) is a strictly decreasing and continuous
function of β which maps β ∈ (0, 1) to θ ∈ (− 2, 0); thus, its inverse function,
β(θ) : (− 2, 0) → (0, 1), is well defined, continuous and strictly decreasing in θ with
β(− 2+) = 1 and β(0−) = 0. Also, from (16) we get the equation 3(α + β) =
α3 + β3 = (α + β)(α2 − αβ + β2) which shows that α2 − αβ + β2 = 3 and, since
α > β/2, we have

α = α(β) = 1

2
(β + δ), where δ = δ(β) =

√
3
(
4 − β2

)
. (17)
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Similarly, (16) yields the equation 3(γ − β) = γ 3 − β3 = (γ − β)(γ 2 + γβ + β2)

which shows, in view of β < γ , that γ 2 + γβ + β2 = 3. Since γ > 0 it follows that

γ = γ (β) = 1

2
(−β + δ), where δ = δ(β) =

√
3
(
4 − β2

)
. (18)

From (17) and (18) we conclude that α = β + γ . Set now p1 = P(X = −α),
p2 = P(X = β) and p3 = P(X = γ ). SinceP(X ∈ {−α, β, γ }) = 1 andE(X) = 0,
E(X2) = 1, we get the system of equations (in p1, p2, p3)

p1 + p2 + p3 = 1, −α p1 + β p2 + γ p3 = 0, α2 p1 + β2 p2 + γ 2 p3 = 1,

which, in view of α = β + γ , has the unique solution

p1 = 1 + βγ

(β + 2γ )(2β + γ )
, p2 = γ (β + γ ) − 1

(γ − β)(2β + γ )
, p3 = 1 − β(β + γ )

(γ − β)(β + 2γ )
.

Now, since γ 2 + γβ + β2 = 3, we have γ (β + γ ) = 3− β2 and β(β + γ ) = 3− γ 2;
substituting these values in the numerators of p2 and p3, we get

p1 = 1 + βγ

(β + 2γ )(2β + γ )
, p2 = 2 − β2

(γ − β)(2β + γ )
, p3 = γ 2 − 2

(γ − β)(β + 2γ )
.

(19)
It is clear that p1 > 0 and p2 > 0 for all values of β and γ with (see (18))

0 < β < 1 < γ =
−β +

√
3
(
4 − β2

)

2
<

√
3.

However, this is not the case for p3, since p3 ≥ 0 requires γ 2 ≥ 2, i.e., γ ≥ √
2

(since γ > 0). Now, from μ3 = θ = γ (γ 2 − 3) and the fact that γ ∈ [√2,
√
3),

we conclude that all possible values of θ (with θ < 0) are included in the interval
[−√

2, 0). Using (18) and the fact that β > 0, it follows that γ ≥ √
2 if and only if

0 < β ≤ (
√
6 − √

2)/2 = √
2 − √

3. Now, observe that γ = √
2 corresponds to a

standardized two-valued random variable with μ3 = θ = γ (γ 2 − 3) = −√
2, taking

the values −α = −β − γ = − (
√
6 + √

2)/2 = −√2 + √
3 and β = √

2 − √
3 =

(
√
6 − √

2)/2 with respective probabilities 1 − p and p, where

p = 2 − β2

(γ − β)(2β + γ )
= 1

2
+

√
3

6
;

this is the first two-valued random variable of Corollary 3 when k = 3. On the other
hand, each value of γ ∈ (

√
2,

√
3) corresponds to a unique value ofμ3 = θ = γ (γ 2−

3) ∈ (−√
2, 0), which, in turn, uniquely determines β = β(θ) ∈ (0, (

√
6 − √

2)/2)
through β = [− γ + √

3(4 − γ 2)]/2 (cf. (18)), and α = α(θ) through α = β + γ .
Finally, these uniquely determined values of α, β and γ specify the (strictly positive)

123



On the limiting distribution of sample central moments 413

probabilities p1, p2 and p3, through (19), which shows that each Xθ ∈ F 0
3 is uniquely

determined by E(X3
θ ) = θ , −√

2 < θ < 0.
It remains to examine the cases where 0 < θ < 2. However, if X ∈ F 0

3 and
E(X3) = θ > 0, then it is easily verified that −X ∈ F 0

3 and E(− X)3 = − θ < 0.
By the previous arguments it follows that, necessarily, −√

2 ≤ − θ < 0, that − X
is determined by the value of − θ , and that − X is a two-valued random variable, if
− θ = −√

2, and a three-valued random variable otherwise; thus, the same is true for
X , and the proof is complete. ��

We was not able to completely describe F 0
k for odd k ≥ 5. However, the situation

seems to be similar to the case k = 3, i.e., each Xθ ∈ F 0
k is characterized by its

central moment, θ = E(Xk) = μk , and the possible values of θ form a symmetric
interval of the form [−αk, αk], where the boundary values θ = ±αk correspond to
the two-valued distributions of Corollary 3, while every θ ∈ (−αk, αk) determines
uniquely a three-valued random variable.

6 Limiting distribution under singularness

If the random sample comes from a singular distribution of order k ≥ 2, then the

asymptotic normality of (4) reduces to
√

n(Mk,n − μk)
p−−→ 0 (see Definition 2).

This shows that the order of convergence of Mk,n to μk is faster than o(1/
√

n), and a
second-order approximation applies, according to the following lemma.

Lemma 5 Assume that Xn is a sequence of k-variate random vectors such that

√
n(Xn − μμμ)

d−−→ W , (20)

where μμμ ∈ Rk and W is a k-variate random vector. Suppose that the Borel function
g : Rk → R is twice continuously differentiable at a neighborhood of μμμ and define

∇g(μμμ) =
(

∂g(x)

∂xi

)∣∣∣∣
x=μμμ

∈ Rk and Hk(μμμ) =
(

∂2g(x)

∂xi∂x j

)∣∣∣∣
x=μμμ

∈ Rk×k .

If

n[∇g(μμμ)]′(Xn − μμμ)
p−−→ 0, (21)

then

n[g(Xn) − g(μμμ)] d−−→ 1

2
W ′Hk(μμμ)W . (22)

Proof By (20), we see that Xn
p−−→ μμμ. Therefore, the Taylor expansion suggests the

approximation

n[g(Xn) − g(μμμ)] = n[∇g(μμμ)]′(Xn − μμμ)

+ 1

2
[√n(Xn − μμμ)]′Hk(μμμ)[√n(Xn − μμμ)] + op(1)
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and, by (21), the RHS of the above equals to

1

2
[√n(Xn − μμμ)]′Hk(μμμ)[√n(Xn − μμμ)] + op(1).

By Slutsky’s Theorem and in view of (20), we conclude that the above quantity tends
in distribution to 1

2W
′Hk(μμμ)W . ��

Lemma 5 immediately applies to Mk,n whenever the random sample arises from a
singular distribution. This result is stated in the following theorem; for the proof see
“Appendix A.”

Theorem 3 If Mk,n is the sample central moment of a singular distribution of order
k ≥ 2, then

n(Mk,n − μk)
d−−→ 1

2
k(k − 1)μk−2W 2

1 − kW1Wk−1, (23)

where (
W1

Wk−1

)
∼ N2

((
0
0

)
,

(
σ 2

μk

μk

μ2k−2 − μ2
k−1

))
. (24)

The limiting distribution in (23) can be expressed in terms of two independent and
identically distributed standard normal random variables, Z1, Z2. Indeed, observing
that σ 2(μ2k−2 − μ2

k−1) − μ2
k = Var[σ(X − μ)k−1 − μk(X − μ)/σ ] ≥ 0, it is easily

seen that
(

W1
Wk−1

)
d��
(

σ Z1
μk
σ

Z1 + γk
σ

Z2

)
, where γk =

√
σ 2(μ2k−2 − μ2

k−1) − μ2
k .

Therefore, (23) can be rewritten as

n(Mk,n − μk)
d−−→
(
1

2
k(k − 1)σ 2μk−2 − kμk

)
Z2
1 − kγk Z1Z2. (25)

In order to obtain a further simplification, we shall make use of the following propo-
sition.

Proposition 4 If Z1, Z2 are independent and identically distributed standard normal
random variables, then, for arbitrary constants α, β ∈ R,

αZ2
1 + βZ1Z2

d�� 1

2

(√
α2 + β2 + α

)
Z2
1 − 1

2

(√
α2 + β2 − α

)
Z2
2 . (26)

Proof The assertion is obvious if β = 0. Assume that β 
= 0 and set ρ = √
α2 + β2 >

0. It is easily seen that the moment-generating function of the RHS of (26) is given
by

M2(t) = 1√
1 − 2αt − β2t2
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and it is finite in the interval {t ∈ R : 1−2αt −β2t2 > 0} = (− (ρ−α)−1, (ρ+α)−1),
which contains the origin because ρ + α > 0 and ρ − α > 0. Also, the moment-
generating function of the LHS of (26) is

M1(t) = E
[
exp

(
αt Z2

1 + βt Z1Z2

)]
= 1

2π

∫∫

R2
e− 1

2 γ (x,y) d y d x,

where

γ (x, y) = x2 + y2 − 2αt x2 − 2βt xy =
(
1 − 2αt − β2t2

)
x2 + (y − βt x)2.

Therefore, for t ∈ (− (ρ − α)−1, (ρ + α)−1),

M1(t) = 1√
2π

∫ ∞

−∞
e− x2

2

(
1−2αt−β2t2

) ( 1√
2π

∫ ∞

−∞
e− 1

2 (y−βt x)2 d y

)
d x

= 1√
2π

∫ ∞

−∞
e− x2

2

(
1−2αt−β2t2

)
d x = M2(t),

and the proof is complete. ��
Corollary 4 If (X1, X2)

′ follows a bivariate normal distribution with E(X1) = μ1,
E(X2) = μ2, Var(X1) = σ 2

1 , Var(X2) = σ 2
2 and Cov(X1, X2) = ρσ1σ2, where

μ1, μ2 ∈ R and σ1 ≥ 0, σ2 ≥ 0 and − 1 ≤ ρ ≤ 1 are arbitrary constants, then

(X1 − μ1)(X2 − μ2)
d�� σ1σ2

[
1

2
(1 + ρ)Z2

1 − 1

2
(1 − ρ)Z2

2

]
.

Proof Since (X1 − μ1, X2 − μ2)
′ d�� (σ1Z1, σ2(ρZ1 +√

1 − ρ2Z2))
′, we have that

(X1 −μ1)(X2 −μ2)
d�� σ1σ2(ρZ2

1 +√1 − ρ2Z1Z2), and the assertion follows from

(26) with α = ρ and β = √
1 − ρ2. ��

Themain result is contained in the following theorem; its proof, being an immediate
consequence of (25) and Proposition 4, is omitted.

Theorem 4 If Mk,n is the sample central moment of a singular distribution of order
k ≥ 2, then

n(μk − Mk,n)
d−−→ k

2

(
σ
√

θk + αk
)

Z2
1 − k

2

(
σ
√

θk − αk
)

Z2
2,

where Z1, Z2 are independent and identically distributed standard normal random
variables and

αk = μk − 1

2
(k − 1)σ 2μk−2,

θk = μ2k−2 − μ2
k−1 − (k − 1)μk−2

[
μk − 1

4
(k − 1)σ 2μk−2

]
.

(27)
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Corollary 5 If Mk,n is the sample central moment of a singular distribution of order
k ≥ 2, then there exists a constant λk ∈ R such that

n(μk − Mk,n)
d−−→ λkχ

2
1

if and only if

μ2
k = σ 2

(
μ2k−2 − μ2

k−1

)
. (28)

If (28) holds, λk = k(μk − (1/2)(k − 1)σ 2μk−2) and, thus,

n(μk − Mk,n)
d−−→ k

[
μk − 1

2
(k − 1)σ 2μk−2

]
χ2
1 . (29)

If (28) does not hold,

n(μk − Mk,n)
d−−→ λkχ

2
1 − λ̃k χ̃

2
1 (30)

with λk = (k/2)(σ
√

θk +αk) > 0, λ̃k = (k/2)(σ
√

θk −αk) > 0, αk and θk as in (27),
and where χ2

1 and χ̃2
1 are independent and identically distributed random variables

from the Chi-square distribution with one degree of freedom.

After some algebra it follows that (28) is satisfied by all two-valued distributions
of Corollaries 2 and 3. In particular, from (29) we can show that

n(μk − Mk,n)
d−−→ k(k − 1)

2
pk−1

k

(k + 1)p2k − (k + 1)pk + 1

(k + 1)pk − 1
χ2
1 , k = 3, 4, . . . .

For example, the two-valued standardized distribution of Corollary 2 with p6 = 1/2+√
15(4

√
10 − 5)/30 has sixth central moment equal to μ6 = (50 − 13

√
10)/45 and

n

(
4
√
10 − 5

135
− M6,n

)
d−−→ 50 − 13

√
10

45
χ2
1 .

Finally, for the symmetric distributions of Lemma 3 one finds that (28) is not satisfied
and that λk = λ̃k = (

√
k − 1/2)k(k−1)/2. Hence, since μk = 0, we conclude from

(30) the limit

nMk,n
d−−→

√
k − 1

2
k(k−1)/2

(
χ2
1 − χ̃2

1

)
, k = 3, 5, 7, . . . .

Acknowledgements We would like to thank H. Papageorgiou for helpful discussions.

Appendix A Proofs

We shall make use of the following Lemmas. For the proof of Lemma 6 see, e.g., Gut
(1988, p. 18); for more general results, see Afendras and Markatou (2016).
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Lemma 6 If X , X1, . . . , Xn are independent and identically distributed with E(X) =
μ, Var(X) = σ 2 and E|X |δ < ∞ for some δ ≥ 2, then, for any α ∈ (0, δ],

E
∣∣√n

(
X̄n − μ

)∣∣α → σαE|Z |α,

where Z ∼ N (0, 1) and X̄n = (X1 + · · · + Xn)/n.

Lemma 7 If X , X1, . . . , Xn are independent and identically distributed with E(X) =
μ and E|X |ν < ∞ for some ν ∈ {2, 3, . . .}, then, for any j ∈ {2, . . . , ν},

E|m j,n|ν/ j ≤ E|X − μ|ν, (31)

where m j,n = n−1∑n
i=1(Xi − μ) j .

Proof If j = ν, then (31) follows by taking expectations to the obvious inequality
|m j,n| ≤ 1

n

∑n
i=1 |Xi − μ| j = 1

n

∑n
i=1 |Xi − μ|ν . If j < ν (and thus, ν ≥ 3), we

apply the inequality

∣∣∣∣∣

n∑

i=1

xi

∣∣∣∣∣

p

≤
(

n∑

i=1

|xi |
)p

≤ n p−1
n∑

i=1

|xi |p, p > 1,

(the last inequality is a by-product of Hölder’s inequality) for p = ν/ j and xi =
(Xi − μ) j . Then, we have

E|m j,n|ν/ j = 1

nν/ j
E

∣∣∣∣∣

n∑

i=1

(Xi − μ) j

∣∣∣∣∣

ν/ j

≤ 1

nν/ j
E

(
n∑

i=1

|Xi − μ| j

)ν/ j

≤ 1

nν/ j
E

(
nν/ j−1

n∑

i=1

|Xi − μ|ν
)

= 1

n
E

(
n∑

i=1

|Xi − μ|ν
)

= E|X − μ|ν.

��
Proof of Proposition 2 (a) Observe that the statement in Proposition 2(a) is equivalent
to

E[√n(Mk,n − μk)] → 0. (32)

Writing

Mk,n −μk = (mk,n −μk)+ (− 1)k−1(k − 1)mk
1,n +

k−1∑

j=2

(− 1)k− j
(

k

j

)
mk− j

1,n m j,n,

(33)
it suffices to verify that

(i)
√

nE(mk,n − μk) = 0,
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418 G. Afendras et al.

(ii)
√

nE(mk
1,n) → 0,

(iii)
√

nE(mk− j
1,n m j,n) → 0, j = 2, . . . , k − 2 (provided k ≥ 4), and

(iv)
√

nE(m1,nmk−1,n) → 0 (provided k ≥ 3).

Now, (i) is obvious (since E(mk,n) = μk), (iv) follows from E(m1,nmk−1,n) = μk/n
and (ii) can be seen by using Lemma 6 with α = δ = k, which shows that

∣∣∣nk/2E
(

mk
1,n

)∣∣∣ ≤ nk/2E|m1,n|k = E
∣∣√n

(
X̄n − μ

)∣∣k → σ kE|Z |k < ∞,

and thus, |√nE(mk
1,n)| ≤ n−(k−1)/2E|√n(X̄n − μ)|k → 0. To show (iii), we assume

that k ≥ 4 and 2 ≤ j ≤ k−2, and we use Hölder’s inequality with p = k/(k− j) > 1,
Lemma 7 with ν = k and Lemma 6 with α = δ = k to obtain

∣∣∣
√

nE
(

mk− j
1,n m j,n

)∣∣∣

≤ √
nE
(
|m1,n|k− j |m j,n|

)
≤ √

n
(
E|m1,n|k

)(k− j)/k (
E|m j,n|k/ j

) j/k

≤ √
n
[
n−k/2E

∣∣√n
(
X̄n − μ

)∣∣k
](k− j)/k (

E|X − μ|k
) j/k

= n−(k−1− j)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣k
](k− j)/k (

E|X − μ|k
) j/k

= n−(k−1− j)/2O(1) → 0,

because E|√n(X̄n − μ)|k → σ kE|Z |k < ∞.
(b) Observe that the statement in Proposition 2(b) is equivalent to

Cov
[√

n
(
X̄n − μ

)
,
√

n(Mk,n − μk)
] → μk+1 − kσ 2μk−1, (34)

and since E(X̄n − μ) = 0, it suffices to verify that

nE
[(

X̄n − μ
)
(Mk,n − μk)

] = nE[m1,n(Mk,n − μk)] → μk+1 − kσ 2μk−1. (35)

If k = 2, then nE[m1,n(M2,n − μ2)] = nE[(X̄n − μ)(m2,n − μ2)] − nE(X̄n −
μ)3 = μ3 − nE(X̄n − μ)3, and it easily seen, by Lemma 6 with α = δ = 3, that
|nE(X̄n − μ)3| ≤ n−1/2E|√n(X̄n − μ)|3 → 0; thus, nE[m1,n(M2,n − μ2)] → μ3.
Since μ1 = 0, (35) is satisfied for k = 2.

If k = 3, nE[m1,n(M3,n − μ3)] = nE[(X̄n − μ)(m3,n − μ3)] + 2nE(X̄n − μ)4 −
3nE[m2,n(X̄n −μ)2], and it is easy to see that nE[(X̄n −μ)(m3,n −μ3)] = μ4. Also,
by Lemma 6 with α = δ = 4, 2nE(X̄n −μ)4 → 0. Finally,− 3nE[m2,n(X̄n −μ)2] =
− 3[μ4 + (n − 1)μ2

2]/n → −3μ2
2 = − 3σ 4, which verifies (35) for k = 3.

In the general case when k ≥ 4, we write Mk,n −μk as in (33) and we observe that
for (35) to hold it suffices to verify that

(i) nE[m1,n(mk,n − μk)] = μk+1,
(ii) nE(mk+1

1,n ) → 0,

(iii) nE(mk+1− j
1,n m j,n) → 0, j = 2, . . . , k − 2, and
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(iv) nE(m2
1,nmk−1,n) → σ 2μk−1.

Calculating E[m1,n(mk,n − μk)] = E[(X̄n − μ)(mk,n − μk)] = E[(X̄n − μ)mk,n] =
n−2∑n

i1=1
∑n

i2=1E[(Xi1 − μ)(Xi2 − μ)k] = μk+1/n, we conclude (i), while (ii)
follows by using Lemma 6 with α = δ = k + 1. Also,

nE
(

m2
1,nmk−1,n

)
= 1

n2

n∑

i1=1

n∑

i2=1

n∑

i3=1

E
[(

Xi1 − μ
) (

Xi2 − μ
) (

Xi3 − μ
)k−1

]

= 1

n2

[
nμk+1 + n(n − 1)σ 2μk−1

]
→ σ 2μk−1,

which shows that (iv) is satisfied, and it remains to verify (iii). To this end, we use
Hölder’s inequality with p = (k + 1)/(k + 1− j) > 1 and Lemma 7 with ν = k + 1
to obtain

∣∣∣nE
(

mk+1− j
1,n m j,n

)∣∣∣

≤ nE|m1,n|k+1− j |m j,n| ≤ n
(
E|m1,n|k+1

)(k+1− j)/(k+1) (
E|m j,n|(k+1)/ j

) j/(k+1)

≤ n
[
n−(k+1)/2E

∣∣√n
(
X̄n − μ

)∣∣k+1
](k+1− j)/(k+1) (

E|X − μ|k+1
) j/(k+1)

= n−(k−1− j)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣k+1
](k+1− j)/(k+1) (

E|X − μ|k+1
) j/(k+1) → 0,

because n−(k−1− j)/2 → 0; and, by Lemma 6 with α = δ = k + 1, E|√n(X̄n −
μ)|k+1 → σ k+1E|Z |k+1 < ∞.
(c) Without loss of generality assume that 2 ≤ r ≤ k and observe that the first
statement of Proposition 2(c) is equivalent to

Cov[√n(Mr ,n − μr ),
√

n(Mk,n − μk)] → vrk . (36)

SinceE|X |r+k < ∞, (32) shows thatE[√n(Mk,n−μk)] → 0 andE[√n(X̄n−μ)] →
0, and it suffices to verify that

nE[(Mr ,n − μr )(Mk,n − μk)] → vrk = μr+k − μrμk − rμr−1μk+1

− kμr+1μk−1 + rkσ 2μr−1μk−1. (37)

The proof can be deduced by showing that (37) holds for each one of the cases r =
k = 2; r = 2, k = 3; r = k = 3; r = 2, k ≥ 4; r = 3, k ≥ 4; 4 ≤ r ≤ k. In the
following we shall present the details only for the case where 4 ≤ r ≤ k; the other
cases can be treated using similar (and simpler) arguments.
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Assume now that 4 ≤ r ≤ k. From (33), we have

Mr ,n − μr = (mr ,n − μr ) − rm1,nmr−1,n

+
r−2∑

j1=2

(− 1)r− j1

(
r

j1

)
mr− j1

1,n m j1,n + (− 1)r−1(r − 1)mr
1,n, (38)

Mk,n − μk = (mk,n − μk) − km1,nmk−1,n

+
k−2∑

j2=2

(− 1)k− j2

(
k

j2

)
mk− j2

1,n m j2,n + (− 1)k−1(k − 1)mk
1,n . (39)

We shall show that the asymptotic covariance in (36) can be determined by using only
the first two terms in (38) and (39). Indeed, it is easily seen that (37) holds true if it
can be shown that

(i) nE[(mr ,n − μr )(mk,n − μk)] = μr+k − μrμk ,
(ii) nE[m1,nmk−1,n(mr ,n − μr )] → μr+1μk−1,
(iii) nE[m1,nmr−1,n(mk,n − μk)] → μr−1μk+1,
(iv) nE(m2

1,nmr−1,nmk−1,n) → σ 2μr−1μk−1,

(v) nE[mk− j2
1,n m j2,n(mr ,n − μr )] → 0, j2 = 2, . . . , k − 2,

(vi) nE[mk
1,n(mr ,n − μr )] → 0,

(vii) nE(mk+1− j2
1,n m j2,nmr−1,n) → 0, j2 = 2, . . . , k − 2,

(viii) nE(mk+1
1,n mr−1,n) → 0,

(ix) nE[mr− j1
1,n m j1,n(mk,n − μk)] → 0, j1 = 2, . . . , r − 2,

(x) nE(mr+1− j1
1,n m j1,nmk−1,n) → 0, j1 = 2, . . . , r − 2,

(xi) nE(mr+k− j1− j2
1,n m j1,nm j2,n) → 0, j1 = 2, . . . , r − 2, j2 = 2, . . . , k − 2,

(xii) nE(mr+k− j1
1,n m j1,n) → 0, j1 = 2, . . . , r − 2,

(xiii) nE[mr
1,n(mk,n − μk)] → 0,

(xiv) nE(mr+1
1,n mk−1,n) → 0,

(xv) nE(mr+k− j2
1,n m j2,n) → 0, j2 = 2, . . . , k − 2, and

(xvi) nE(mr+k
1,n ) → 0.

We now proceed to verify (i)–(xvi). SinceE(mr ,n) = μr andE(mk,n) = μk , we have

nE[(mr ,n − μr )(mk,n − μk)]

= n[E(mr ,nmk,n) − μrμk] = n

⎧
⎨

⎩
1

n2

n∑

i1=1

n∑

i2=1

E
[(

Xi1 − μ
)r (

Xi2 − μ
)k]− μrμk

⎫
⎬

⎭

= n

{
1

n2 [nμr+k + n(n − 1)μrμk] − μrμk

}
= μr+k − μrμk,

which shows (i). Also, (ii), (iii) and (iv) follow by straightforward computations; e.g.,
for (ii) we have
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nE[m1,nmk−1,n(mr ,n − μr )]
= −μrμk + μr+k + (n − 1)(μr+1μk−1 + μrμk)

n
→ μr+1μk−1,

while (iii) is similar to (ii), and (iv) can be deduced from

nE
(

m2
1,nmr−1,nmk−1,n

)

= 1

n3

[
n(n − 1)(n − 2)σ 2μr−1μk−1 + o

(
n3
)]

→ σ 2μr−1μk−1.

The vanishing limits (vi)–(viii) and (x)–(xvi) are by-products of Lemmas 6 and 7
with α = δ = ν = r + k, since E|X |r+k < ∞. Indeed, we have |nE(mr+k

1,n )| ≤
nE|m1,n|r+k = n−(r+k−2)/2E|√n(X̄n − μ)|r+k → 0, which verifies (xvi). Also,
using Hölder’s inequality with p = (r + k)/(r + k − j2) > 1, we obtain (xv) as
follows:

∣∣∣nE
(

mr+k− j2
1,n m j2,n

)∣∣∣

≤ nE
(
|m1,n|r+k− j2 |m j2,n|

)
≤ n

(
E|m1,n|r+k

) r+k− j2
r+k

(
E|m j2,n| r+k

j2

) j2
r+k

≤ n
[
n−(r+k)/2E

∣∣√n
(
X̄n − μ

)∣∣r+k
] r+k− j2

r+k
(
E|X − μ|r+k

) j2
r+k

= n−(r+k− j2−2)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] r+k− j2

r+k
(
E|X − μ|r+k

) j2
r+k → 0,

because n−(r+k− j2−2)/2 → 0 and E|√n(X̄n − μ)|r+k → σ r+kE|Z |r+k < ∞; (xii)
is similar to (xv). For the limit (xiv) we have

∣∣∣nE
[
mr+1

1,n mk−1,n

]∣∣∣

≤ nE
(
|m1,n|r+1|mk−1,n|

)
≤ n

(
E|m1,n|r+k

) r+1
r+k
(
E|mk−1,n| r+k

k−1

) k−1
r+k

≤ n−(r−1)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] r+1

r+k
(
E|X − μ|r+k

) k−1
r+k → 0,

and similarly for (viii). In order to prove (xiii), it is sufficient to show that
nE[mr

1,nmk,n] → 0 and nE(mr
1,n) → 0. The second limit is obvious since, as

for (xvi), one can easily verify that |nE(mr
1,n)| ≤ n−(r−2)/2E|√n(X̄n − μ)|r =

n−(r−2)/2O(1) → 0. For the first limit, we have

∣∣nE
(
mr

1,nmk,n
)∣∣ ≤ nE

(|m1,n|r |mk,n|) ≤ n
(
E|m1,n|r+k

) r
r+k
(
E|mk,n| r+k

k

) k
r+k

≤ n−(r−2)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] r

r+k
(
E|X − μ|r+k

) k
r+k → 0.
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Limit (vi) is similar to (xiii), and its proof is omitted. Regarding (xi), we have

∣∣∣nE
(

mr+k− j1− j2
1,n m j1,nm j2,n

)∣∣∣

≤ nE
(
|m1,n|r+k− j1− j2 |m j1,nm j2,n|

)

≤ n
(
E|m1,n|r+k

) r+k− j1− j2
r+k

(
E|m j1,nm j2,n| r+k

j1+ j2

) j1+ j2
r+k

≤ n
(
E|m1,n|r+k

) r+k− j1− j2
r+k

⎡

⎣
(
E|m j1,n| r+k

j1

) j1
j1+ j2

(
E|m j2,n| r+k

j2

) j2
j1+ j2

⎤

⎦

j1+ j2
r+k

≤ n
(
E|m1,n|r+k

) r+k− j1− j2
r+k

(
E|X − μ|r+k

) j1+ j2
r+k

= n−(r+k− j1− j2−2)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] r+k− j1− j2

r+k
(
E|X − μ|r+k

) j1+ j2
r+k → 0.

Similarly, for (x) we have

∣∣∣nE
(

mr+1− j1
1,n m j1,nmk−1,n

)∣∣∣

≤ n
(
E|m1,n|r+1− j1 |m j1,nmk−1,n|

)

≤ n
(
E|m1,n|r+k

) r+1− j1
r+k

(
E|m j1,nmk−1,n| r+k

j1+k−1

) j1+k−1
r+k

≤ n
(
E|m1,n|r+k

) r+1− j1
r+k

⎡

⎣
(
E|m j1,n| r+k

j1

) j1
j1+k−1 (

E|mk−1,n| r+k
k−1

) k−1
j1+k−1

⎤

⎦

j1+k−1
r+k

≤ n
(
E|m1,n|r+k

) r+1− j1
r+k

(
E|X − μ|r+k

) j1+k−1
r+k

= n−(r− j1−1)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] r+1− j1

r+k
(
E|X − μ|r+k

) j1+k−1
r+k → 0,

while (vii) is similar to (x).
It remains to verify (v) and (ix); but, since they are similar, it suffices to prove (v).

If j2 ∈ {2, . . . , k − 3} (and hence, k ≥ 5 and j2 < k − 2), we have

∣∣∣nE
[
mk− j2

1,n m j2,n(mr ,n − μr )
]∣∣∣

≤ nE
(
|m1,n|k− j2 |m j2,nmr ,n|

)
+ n|μr |E

(
|m1,n|k− j2 |m j2,n|

)
,

and it suffices to prove that nE(|m1,n|k− j2 |m j2,nmr ,n|) → 0 and
nE(|m1,n|k− j2 |m j2,n|) → 0. For the first quantity, we have
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nE
(∣∣m1,n

∣∣k− j2 ∣∣m j2,nmr ,n
∣∣
)

≤ n
(
E|m1,n|r+k

) k− j2
r+k

(
E|m j2,nmr ,n| r+k

r+ j2

) r+ j2
r+k

≤ n
(
E|m1,n|r+k

) k− j2
r+k

⎡

⎣
(
E|m j2,n| r+k

j2

) j2
r+ j2

(
E|mr ,n| r+k

r

) r
r+ j2

⎤

⎦

r+ j2
r+k

≤ n−(k− j2−2)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] k− j2

r+k
(
E|X − μ|r+k

) r+ j2
r+k → 0,

because k − j2 − 2 > 0. Similarly, for the second quantity we have

nE
(∣∣m1,n

∣∣k− j2 ∣∣m j2,n
∣∣
)

≤ n
(
E|m1,n|r+k

) k− j2
r+k

(
E|m j2,n| r+k

r+ j2

) r+ j2
r+k

≤ n
(
E|m1,n|r+k

) k− j2
r+k

(
E|m j2,n| r+k

j2

) j2
r+k

≤ n−(k− j2−2)/2
[
E
∣∣√n

(
X̄n − μ

)∣∣r+k
] k− j2

r+k
(
E|X − μ|r+k

) j2
r+k → 0,

because k − j2 − 2 > 0. Finally, it remains to study the limit (v) when j2 = k − 2;
in this case the above limits do not necessarily vanish. However, since j2 = k − 2 we
have

nE
[
mk− j2

1,n m j2,n(mr ,n − μr )
]

= nE
(

m2
1,nmr ,nmk−2,n

)
− nμrE

(
m2

1,nmk−2,n

)
,

and direct computations show that

nE
(

m2
1,nmr ,nmk−2,n

)
= 1

n3

[
n(n − 1)(n − 2)σ 2μrμk−2 + o

(
n3
)]

→ σ 2μrμk−2

and

nE
(

m2
1,nmk−2,n

)
= 1

n2

[
n(n − 1)σ 2μk−2 + o

(
n2
)]

→ σ 2μk−2.

Hence, when j2 = k − 2 we have

nE
[
mk− j2

1,n m j2,n(mr ,n − μr )
]

= nE
(

m2
1,nmr ,nmk−2,n

)

− nμrE
(

m2
1,nmk−2,n

)
→ σ 2μrμk−2

−μrσ
2μk−2 = 0,
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and the proof is complete. ��

Proof of Theorem 3 Observe that Mk,n − μk = gk,k(mk,n) − gk,k(μμμk); see in Sect. 2.

Also,
√

n(mn − μμμk)
d−−→ W k , where W k = (W1, . . . , Wk)

′ ∼ N (0k,���| k),
see (1). Hence, Lemma 5 applies to Xn = mk,n , provided (21) is fulfilled for

mk,n , i.e., provided that n[∇gk,k(μμμk)]′(mk,n − μμμk)
p−−→ 0. Because ∇gk,k(μμμk) =

(− kμk−1, 0, . . . , 0, 1)′, we get [∇gk,k(μμμk)]′(mk,n −μμμk) = − kμk−1m1,n + (mk,n −
μk). SinceE(m j,n) = μ j for all n and j , we getE[− kμk−1m1,n + (mk,n −μk)] = 0.
Also,

Var[− kμk−1m1,n + (mk,n − μk)]
= k2μ2

k−1Var(m1,n) + Var(mk,n) − 2kμk−1Cov(m1,n, mk,n)

= k2μ2
k−1

σ 2

n
+ μ2k − μ2

k

n
− 2kμk−1

μk+1

n

= 1

n

(
k2μ2

k−1σ
2 + μ2k − μ2

k − 2kμk−1μk+1

)

= 1

n

[
μ2k − μ2

k + kμk−1

(
kσ 2μk−1 − 2μk+1

)]
= v2k

n
= 0,

because v2k = 0 by the assumed singularness. Therefore, [∇gk,k(μμμk)]′(mk,n −μμμk) = 0

with probability one and, thus, n[∇gk,k(μμμk)]′(mk,n − μμμk)
p−−→ 0 in a trivial sense.

Now, a simple calculation, since ∇gk,k(μμμk) = (− kμk−1, 0, . . . , 0, 1)′, shows that

Hk(μμμk) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

k(k − 1)μk−2 0 · · · 0 − k 0
0 0 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 0 0 0
−k 0 · · · 0 0 0
0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e.,

H2(μμμ2) =
(
2 0

0 0

)
, H3(μμμ3) =

⎛

⎜⎝
0 − 3 0

− 3 0 0

0 0 0

⎞

⎟⎠ , H4(μμμ4)=

⎛

⎜⎜⎜⎝

12σ 2 0 − 4 0

0 0 0 0

− 4 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎠ ,

etc. Applying (22), we see that n(Mk,n − μk) converges weakly to the distribution of
1
2W

′
kHk(μμμk)W k = 1

2k(k − 1)μk−2W 2
1 − kW1Wk−1, while, by (1), the distribution of

(W1, Wk−1)
′ is given by (24). ��
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