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Abstract
In this paper, we develop an empirical likelihood-based test for the presence of stochas-
tic ordering under censoring in the k-sample case. The proposed test statistic is formed
by taking the supremumof localized empirical likelihood ratio test statistics. Its asymp-
totic null distribution has a simple representation in terms of a standard Brownian
motion process. Through simulations, we show that it outperforms in terms of power
existing methods for the same problem at all the distributions that we consider. A
real-life example is used to illustrate the applicability of this new test.

Keywords Censored data · Empirical likelihood · Order-restricted inference ·
Stochastic ordering

1 Introduction

Stochastic ordering between univariate distributions is a very important concept in
statistics and applied probability. It arises naturally in numerous situations, and it has
useful applications inmany areas including economics, engineering, finance andpublic
health. Many stochastic orders exist in the literature, and they include, in increasing
order of strength, stochastic ordering, uniform stochastic ordering and likelihood ratio
ordering. Shaked and Shanthikumar (2007) provide a thorough review of the literature
on these and other stochastic orders. It is well documented in Silvapulle and Sen (2005)
and Robertson et al. (1988) that incorporating ordering constraints when they hold
can increase the efficiency of estimation procedures. For this reason, it is important to
develop tests for their presence.
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Let X1 and X2 be two nonnegative random variables with cumulative distribution
functions (cdf) F1 and F2 and survival functions (SFs) F̄1 and F̄2, respectively. X1 is
said to be stochastically smaller than X2 or, equivalently, F1 is stochastically smaller
than F2, denoted by F1 �SO F2, if F̄1(t) ≤ F̄2(t) for all t .

Stochastic ordering has been widely studied since it was introduced in Lehmann
(1955). Many tests for its presence in the two-sample case without censoring exist in
the literature. Robertson and Wright (1981) developed a likelihood ratio test in the
multinomial case, and Lee and Wolf (1976) proposed a Mann–Whitney–Wilcoxon-
type test based on the nonparametric maximum likelihood estimators (NPMLEs) of
the cdfs. Other tests were discussed in Dykstra et al. (1983), Franck (1984) and Mau
(1988). Chang and McKeague (2016) and El Barmi (2017) developed nonparametric
likelihood ratio-based tests for the same problem under right censoring. For more than
two populations, Wang (1996) discussed the likelihood ratio test in the multinomial
case, and El Barmi and Johnson (2006) showed that the limiting distribution of his test
statistic is of Chi-bar-square type and gave the expression of the weighting values. El
Barmi andMukerjee (2005) provided an asymptotically distribution-free test based on
a sequential testing procedure originally introduced by Hogg (1962). Even though this
test is applicable in both the multinomial and the continuous cases, with or without
censoring, the value of their test statistic depends heavily on how the test is carried
out. Recently, Davidov and Herman (2010) developed a new nonparametric test and
El Barmi and McKeague (2013) developed an empirical likelihood-based test for this
situation when there is no censoring. Finally, we note that Liu et al. (1993) provide a
test based on the sum of two-sample weighted log-rank statistics. However, their test
can fail to detect stochastic ordering since the one-sided weighted log-rank statistics
are tests for the presence of uniform stochastic ordering which is more restrictive than
stochastic ordering.

The purpose of the present paper is to extend the results in El Barmi andMcKeague
(2013) to the censored case and the results in Chang and McKeague (2016) and El
Barmi (2017) to the k-sample case. Specifically, we develop an empirical likelihood-
based test forH0 : F1 = F2 = · · · = Fk againstH1 −H0 whereH1 is the stochastic
ordering alternative given by H1 : F1 �SO F2 �SO · · · �SO Fk and F1, F2, . . . , Fk
are k continuous cdfs. This test is of interest, for example, in dose–response experi-
ments when it is believed that increasing the dosage increases the response or leaves it
unchanged. In such situations, wemight be interested in testing the homogeneity of the
distributions corresponding to the different dosages (i.e., H0) against the alternative
that they are increasing with the dosage (i.e.,H1). A plot of the Kaplan–Meier estima-
tors of these distributions can be used to check whether this hypothesis is plausible.

The computation of the test statistic as well as the study of its asymptotic null
distribution does not follow easily from the two-sample case. As a result, it took
some effort and it required first developing a novel method for testing H0 against
H2 − H0 where H2 imposes no constraints on Fj , j = 1, 2, . . . , k, that may be of
independent interest. Once the theory has been developed for this situation, we use
it to develop the desired test. We note that there is an extensive literature for testing
H0 against H2 − H0. Typically, Kolmogorov–Smirnov, Cramer–von Mises or their
k-sample extensions (see Kiefer 1959) are used for this situation in the uncensored
case or their extensions to the presence of censoring.
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The rest of the paper is organized as follows: In Sect. 2 we give the main results,
and in Sect. 3 we give an algorithm to compute the test statistic and present the results
of a simulation study that show that the proposed test outperforms in terms of power
and other tests used for the same situation at all the distributions that we consider.
We also give an example to illustrate the theory developed here, and in Sect. 4, we
give some concluding remarks. Throughout the paper, ||x||w and Ew[x|A] are used to
indicate the L2-norm and the usual least squares projection of the vector x onto the

set A with weights w, respectively, and
d→ and

w⇒ are used to denote convergence in
distribution and weak convergence, respectively.

Because of the length of the proofs, Appendix containing them is given in Supple-
mentary Material.

2 Development of the test statistic for the presence of stochastic
ordering

Suppose that, for i = 1, 2, . . . , k, we are given a random sample of lifetimes
Xi1, Xi2, . . . , Xini from a continuous cdf Fi and a SF F̄i and that these Xi j s are,
respectively, censored by Ci1,Ci2, . . . ,Cini , a random sample from a cdf Gi and a
SF Ḡi . As a result, we only observe (Zi j , δi j ) = (min(Xi j ,Ci j ), I [Xi j ≤ Ci j ], i =
1, 2, . . . , k, j = 1, 2, . . . , ni .We assume that the resulting k samples are independent.
Let n = (n1, n2, . . . , nk)T and πi (t) = F̄i (t) Ḡi (t) denote the probability of remain-
ing under study at time t in the ith population. We assume that complete observations
occur on a subset of times T1 < T2 < · · · < Tm and let T0 = 0 and Tm+1 = ∞
for convenience. Let n = ∑k

i=1ni and assume that limn→∞ni/n → γi > 0 for all
i = 1, 2, . . . , k. Define, for j = 1, 2, . . . ,m,

di j = number of complete observations from the ith sample at Tj ,

�i j = number of observations censored from the ith sample at [Tj , Tj+1),

ni j =
∑ni

�= j
(di� + �i�) = number of items from the i th population at risk at Tj

and ni0 = ni , di0 = 0. In addition, define

θi j = F̄i (Tj )

F̄i (Tj−1)
, j = 1, 2, . . . ,m,

and note that F̄i (Tj ) = ∏ j
�=1θi�, i = 1, 2, . . . , k. Under no restrictions, the NPMLE

of F̄i is the usual Kaplan–Meier estimator (Kaplan and Meier 1958) and is given by
ˆ̄Fi (t) = ∏

{Tj≤t}θ̂i j where

θ̂i j = ni j − di j
ni j

, i = 1, 2, . . . ,m, (1)
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(
∏

∅ = 1) and is obtained by maximizing L(F̄i ) = ∏m
j=1θ

ni j−di j
i j (1 − θi j )

di j . Next,
we develop empirical likelihood-based tests for testing H0 against H2 − H0 and H0
againstH1−H0, whereH0,H1 andH2 are defined before. These tests will be carried
out on a fixed interval [τ1, τ2].

2.1 Test forH0 againstH2 −H0

The approach we follow is based on translating the problem into testing a fam-
ily of “local” null hypotheses of the form Ht

0 : (F̄1(t), F̄2(t), . . . , F̄k(t))T ∈
I0 against Ht

2 : (F̄1(t), F̄2(t), . . . , F̄k(t))T /∈ I0 for a given t where I0 = {x ∈
Rk, x1 = x2 = · · · = xk}. The local empirical likelihood ratio test rejects Ht

0 for
small values of

R02(t) =
sup

{∏k
i=1 L(F̄i ) : (F̄1(t), F̄2(t), . . . , F̄k(t))T ∈ I0

}

sup
{∏k

i=1 L(F̄i )
} , (2)

where L(F̄i ) is as given before, and we use the convention sup∅ = 0 and 0/0 = 1.
Clearly, under no constraints, L(F̄i ) achieves its maximum value at a vector whose

jth component is given in (1). To compute the numerator in (2), write

L(F̄i ) =
⎧
⎨

⎩

n(t)∏

j=1

θ
ni j−di j
i j (1 − θi j )

di j

⎫
⎬

⎭
×
⎧
⎨

⎩

m∏

j=n(t)+1

θ
ni j−di j
i j (1 − θi j )

di j

⎫
⎬

⎭
(3)

where for u > 0, n(u) ≡ ∑n
i=1 I [Ti ≤ u] is the number of distinct uncensored

observations in the time interval [0, u]. Since F̄i (t) = ∏n(t)
j=1θi j for each i, the terms

in braces in (3) can bemaximized separately underH0, and since the constraints on the
θi j s in the second term are exactly the same in the numerator and the denominator of
(2), this term has not effect and thus makes no contribution toR02(t). The remaining
term

k∏

i=1

n(t)∏

j=1

θ
ni j−di j
i j (1 − θi j )

di j (4)

is then maximized underHt
0. To do so, we can use the algorithm described in Sect. 3

but to derive the limiting distributions of R02(t) and the test that we propose for
H0 against H1 − H2, we find it useful to proceed as follows: First, we consider
F̄i (t), i = 1, 2, . . . , k, fixed and maximize (4) subject to

∏n(t)
j=1θi j = F̄i (t) or equiv-

alently
∑n(t)

j=1 log(θi j ) = μi where μi ≡ μi (t) = log(F̄i (t)), i = 1, 2, . . . , k. (We
have suppressed the argument t in μi for simplicity.)
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Write the Lagrangian corresponding to this optimization problem as

k∑

i=1

⎡

⎣
n(t)∑

j=1

[
(ni j − di j ) log(θi j ) + di j log(1 − θi j )

] + niβi

⎛

⎝
n(t)∑

j=1

log(θi j ) − μi

⎞

⎠

⎤

⎦ .

Its solution is

θ̃
(0)
i j ≡ θ̃

(0)
i j (μi ) = 1 − di j

ni j + niβi
= 1 − di j/ni

ni j/ni + βi
(5)

where βi ≡ βi (t)(μi ) satisfies

n(t)∑

j=1

log

(

1 − di j/ni
ni j/ni + βi

)

− μi = 0, i = 1, 2, . . . , k. (6)

The values in (5) are then plugged into (4) to obtain the profile likelihood

L(μ) =
k∏

i=1

n(t)∏

j=1

(

1 − di j/ni
ni j/ni + βi

)ni j−di j ( di j/ni
ni j/ni + βi

)di j
(7)

where μ = (μ1, μ2, . . . , μk)
T . The profile likelihood is then maximized subject to

μ1 = μ2 = · · · = μk by considering

M = 1

n
log(L(μ)) + λTh(μ)

where h = (h1, h2, . . . , hk−1)
T with h j (μ) = μ j+1 − μ j , j = 1, 2, . . . , k − 1, and

λ, a vector of Lagrange multipliers, is used instead of λ(t) for brevity. Differentiating
M with respect to μ and λ, we get

1

n
∇ log L(μ) + Hλ = 0 and h j (μ) = 0, j = 1, 2, . . . , k − 1,

where H = [∇h1(μ),∇h2(μ), . . . ,∇hk−1(μ)].Consequently, to compute the numer-
ator of R02(t), we seek the solution of

Qin(β,μ,λ) = 0, i = 1, 2, 3, (8)

123



456 H. El Barmi

where

Q1n(β,μ,λ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n(t)∑

j=1

log

(

1 − d1 j/n1
n1 j/n1 + β1

)

− μ1

n(t)∑

j=1

log

(

1 − d2 j/n2
n2 j/n2 + β2

)

− μ2

...
n(t)∑

j=1

log

(

1 − dkj/nk
nk j/nk + βk

)

− μk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Q2n(β,μ,λ) = 1

n
∇ log L(μ) + Hλ and

Q3n(β,μ,λ) = h(μ).

Wedenote this solution by (β̂
(0)

, μ̂
(0)

, λ̂
(0)

) and letμ(0) be the true value ofμ. Assume
thatH0 holds in which case we write μ(0) = (log(F̄(t)), log(F̄(t)), . . . , log(F̄(t)))T

where F is the common distribution under H0. Next we derive the asymptotic dis-

tribution of the estimators (β̂
(0)

, μ̂
(0)

, λ̂
(0)

). The method we use here is similar to a
method developed in Qin and Lawless (1995). First we give a lemma to show that from
Q1n(β,μ,λ) = 0, we can determine uniquely β(t) = β(t)(μ) in a neighborhood of
μ(0).

Lemma 1 Let an = n−1/3−δ where 0 < δ < 1/6, then the equation Q1n(μ,β,λ) = 0
has almost surely roots β = β(t)(μ) = O(an) in the sphere {μ : ||μ − μ(0)|| ≤ an}.
In addition, β is continuous and differentiable with respect to μ where μ is in this
sphere.

The following lemma shows that the equations in (8) have a solution.

Lemma 2 Let an = n−1/3−δ. The equations in (8) almost surely have solutions in
Uan = {(μ,β,λ) : ||μ − μ(0)|| + ||β|| + ||λ|| ≤ an} as n → ∞ and any solution of
(8) in Uan maximizes L(μ) subject to h(μ) = 0.

For i = 1, 2, . . . , k, let

ci (t) =
∫ t

0

dΛi (u)

πi (u)
, ĉi (t) = ni

∑

Tj≤t

di j
ni j (ni j − di j )

where Λi (t) is the cumulative hazard function corresponding to Fi . Let C ≡ C(t) =
diag(c1(t), c2(t), . . . , ck(t)), Ĉ ≡ Ĉ(t) = diag(ĉ1(t), ĉ2(t), . . . , ĉk(t)), wi ≡
wi (t) = ci (t)

γi
and w̃i ≡ w̃i (t) = 1/wi , i = 1, 2, . . . , k. The following key the-

orem gives the asymptotic distribution of μ̂
(0) and λ̂

(0)
and is key in proving that

locally the local EL statistic for testing H0 against H1 − H0 has a Chi-bar-square
distribution under H0.
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Theorem 1

√
nξ̂

(0) ≡
(√

n(μ̂
(0) − μ(0))√
nλ̂

(0)

)
d→ N

(

0,
(
P 0
0 R

))

where P ≡ P(t) = C̃(I − H(HT C̃H)−1HT C̃) and R ≡ R(t) = (HT C̃H)−1

and C̃ ≡ C̃(t) = diag(w1, w2, . . . , wk).

The following result shows that the local EL statistic is asymptotically equivalent to
a Lagrange multiplier statistic and has asymptotically a χ2 distribution with k − 1
degrees of freedom.

Lemma 3 Under H0

−2 log(R02(t)) = n[λ̂(0)
(t)]T HT ˆ̃CH λ̂

(0)
(t) + Op(n

−1/2)
d→ χ2

k−1.

The proof of this result follows using a Taylor expansion of −2 log(R02(t)) to the
fifth order and Theorem 1. It is omitted as it follows from the proof of a more general
result given in Theorem 2.

Remark 1 Equation (S.1) in Supplementary Material implies that n1β̂
(0)
1 = nλ̂

(0)
1 ,

ni β̂
(0)
i = n(λ̂

(0)
i − λ̂

(0)
i−1), i = 2, 3, . . . , k − 1, and nk β̂

(0)
k = −nλ̂

(0)
k−1. Consequently,

(4) is maximized under Ht
0 by

θ̂
(0)
i j = 1 − di j

ni j + ni β̂
(0)
i

= 1 − di j

ni j + n
(
λ̂

(0)
i − λ̂

(0)
i−1

) , 1 ≤ i ≤ k, 1 ≤ j ≤ n(t),

where λ̂
(0)
0 = λ̂

(0)
k = 0. Also a careful inspection of the proof of Theorem 1 shows

that when k = 2, H = (1,−1)T , β̂
(0)
1 = nλ̂(0)/n1 and β̂

(0)
2 = −nλ̂(0)/n2. Therefore

θ̂
(0)
1 j = 1 − di j

ni j + nλ̂(0)
and θ̂

(0)
2 j = 1 − di j

ni j − nλ̂(0)
, j = 1, 2, . . . , n(t).

In addition,

n1β̂
(0)
1√
n

= −n2β̂
(0)
2√
n

= √
nλ̂(0) = 1

c(t)

√
n(log( ˆ̄F1(t)) − log( ˆ̄F2(t))) + op(1)

d→ 1

c(t)
N (0, c(t)) = N (0, 1/c(t))

underH0, where c(t) = 1
γ1
c1(t) + 1

γ2
c2(t). This result was proved in Præstgaard and

Huang (1996).

Let log(F̂(t)) = (log( ˆ̄F1(t)), log( ˆ̄F2(t)), . . . , log( ˆ̄Fk(t)))T . The following two
lemmas are key in the derivation of the limiting distribution of the test statistics that
we propose for testingH0 against H2 − H0 and H0 against H1 − H0.
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Lemma 4 Under H0, if τ1 and τ2 are such that F̄(τ1) < 1 and min1≤i≤kπi (τ2) > 0,
then

β̂
(0)

(t) = Op(n
−1/2), (9)

λ̂
(0)

(t) = R(t)HT log( ˆ̄F(t)) + Op(n
−1) (10)

and

μ̂
(0)

(t) = P(t)C̃−1(t) log( ˆ̄F(t)) + Op(n
−1) (11)

uniformly in t over [τ1, τ2] where R(t) and P(t) are as defined in Theorem 1.

Let V = (V1, V2, . . . , Vk)T with Vi (t) = γ
−1/2
i Wi (ci (t)), i = 1, 2, . . . , k, and

W1,W2, . . . ,Wk are independent Brownian motions. If

U1n(t) = √
nλ̂

(0)
(t) and U2n(t) = √

n(μ̂
(0)

(t) − μ(0)(t)),

then the following result holds.

Lemma 5 Under H0, if τ1 and τ2 satisfy F̄(τ1) < 1 and min1≤i≤kπi (τ2) > 0, then

{(
U1n(t)
U2n(t)

)

, τ1 ≤ t ≤ τ2

}
w⇒
{(

U1(t)
U2(t)

)

, τ1 ≤ t ≤ τ2

}

(12)

where

U1(t) = R(t)HTV(t), and U2(t) = P(t)C̃−1(t)V(t)). (13)

In addition, U1 and U2 are independent Gaussian processes.

To testH0 against H2 − H0, we propose to use

T02 = sup
τ1≤t≤τ2

[−2 log(R02(t))].

Theorem 2 UnderH0, if τ1 and τ2 are such that F̄(τ1) < 1 andmin1≤i≤kπi (τ2) > 0,
then

T02
d→ sup

τ1≤t≤τ2

||V(t) − Ew̃(t)[V(t)|I0]||2w̃(t). (14)

If in addition all the samples have a common censoring distribution G, in which case
c1 = c2 = · · · = ck ≡ c, then

T02
d→ sup

u1≤u≤u2

k∑

i=1

γi

(
γ

−1/2
i Bi (u) − ∑k

j=1γ
1/2
j B j (u)

)2

u(1 − u)
(15)
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where B1, B2, . . . , Bk are independent Brownian bridges and ui = c(τi )/(1 +
c(τi )), i = 1, 2.

Remark 2 It is easy to check that when k = 2,

||V(t) − Ew̃(t)[V(t)|I0]||2w̃(t) = (γ
−1/2
1 W1(c1(t)) − γ

−1/2
2 W2(c2(t)))2

c(t)

where again c(t) = γ −1
1 c1(t)+γ −1

2 c2(t). Ifwe letW (t) = γ
−1/2
1 W1(t)−γ

−1/2
2 W2(t),

thenW (t) is a standard Brownian motion. Using the fact that B(t) = (1− t)W (t/(1−
t)) is standard Brownian Bridge, (14) can be expressed as

T02
d→ sup

τ1≤t≤τ2

W 2(c(t))

c(t)
d= sup

u1≤u≤u2

B2(u)

u(1 − u)

where ui = c−1(τi/(1 − τi )), i = 1, 2, and c−1(u) = inf{t, c(t) ≥ u}.
Clearly the limiting distributions in (14) and (15) are not distribution-free. To imple-

ment the test when the censoring distributions are not the same, we need to pre-specify
the interval [τ1, τ2]. The choice can be based on the smallest and largest observed val-
ues or some other biological consideration as suggested in Chang and McKeague
(2016). The critical values in this case cannot be tabulated, and to approximate the
p values and the powers of the tests we propose, we adapt a technique developed in
Parzen et al. (1997) for constructing confidence intervals for the difference of two sur-
vival functions. A similar technique was also used in El Barmi et al. (2008) to compare
the cumulative incidence functions of a competing risk over several populations and in
Chang et al. (2016) to test for stochastic ordering under biased sampling. Specifically,
let

V̂(t) = √
n
(
log( ˆ̄F1(t)/F̄1(t)), log( ˆ̄F2(t)/F̄2(t)), . . . , log( ˆ̄Fk(t)/F̄k(t))

)

and note that, under H0, HT V̂(t) = √
nHT log( ˆ̄F). Therefore, if λ̃(t) =

[HT ˆ̃C(t)H ]−1HT V̂(t)/
√
n. Then by (10), under H0, λ̃(t) = λ̂

(0)
(t) + Op(n−1)

uniformly on [τ1, τ2]. Using the functional delta method

V̂ w
⇒ V

on [τ1, τ2]. As a result, if we let T̂02 = n supτ1≤t≤τ2
[λ̃(t)]T [HT ˆ̃CH ]λ̃(t), then

T̂02
d→ sup

τ1≤t≤τ2

V(t)T H R(t)HTV(t) = sup
τ1≤t≤τ2

||V(t) − Ew̃(t)[V(t)|I0]||2w̃(t)

where the last equality follows from theproof ofTheorem2 inSupplementaryMaterial.
Moreover, underH0, T02 and T̂02 have exactly the same asymptotic distribution. Now
the results in Parzen et al. (1997) imply that the distribution of this limiting distribution
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460 H. El Barmi

Table 1 Selected estimated
asymptotic critical points of T02

k Significance level α
0.10 0.05 0.01

2 3.683 4.479 6.191

3 5.083 6.312 9.168

4 5.499 6.586 8.396

5 6.064 7.116 9.321

can be approximated by holding the data fixed and simulating the independent standard
normal covariates Zi j s in

Ṽi (t) = −√
n
∑

Tj≤t

di j I [Xi j ≤ t]Zi j

ni j
= −√

ni

ni∑

j=1

di j I [Xi j ≤ t]Zi j
∑ni

�=1 I [Xi� ≥ t] , 1 ≤ i ≤ k,

and computing T̃02 = nsupτ1≤t≤τ2
[Ṽ(t)]T H [HT ˆ̃CH ]H Ṽ(t) where Ṽ(t) = (Ṽ1(t),

Ṽ2(t), . . . , Ṽk(t))T . To approximate the p value, we may calculate the percentage of
the simulated values of T̃02 that are greater than the observed value of T02. In addition,
to approximate the power of T02 at a given alternative, for each simulated data, we
compute the value of T02 and simulate the values of T̃02 by repeatedly generating
the independent normal variates Zi j s while holding the observed data fixed. We then
compare appropriate quantiles of these values of T̃02 with the value of T02.

To implement our test under a common censoring distribution, one can fix u1 and u2
(for example, take u1 = 0.1 and u2 = 0.90 and use τi = ĉ−1(ui/(1 − ui )), i = 1, 2,
where ĉ−1(x) = inf{t, ĉ(t) ≥ x} and ĉ = ∑k

i=1
ni
n ĉi . is the pooled estimate of c. The

validity of this methods follows from the results in Chang and McKeague (2016). The
estimated cutoff points corresponding to u1 = 1 − u2 = 0.10 are given in Table 1.
For more discussion on the choice of [τ1, τ2], see Davidov and Herman (2010).

Remark 3 When there is no censoring, c(t)/(1+c(t)) = F(t)where F is the common
distribution underH0 and ui = F(ti ), i = 1, 2. In this case, we can use τi = F̂−1(ui )
where F̂ is the pooled estimate of the common cdf F .

2.2 Test forH0 againstH1 −H0

Next, we consider testing H0 against H1 − H0. Adapting the same approach as
before, we first test Ht

0 against Ht
1 − Ht

0 where Ht
0 is defined above and Ht

1 is
Ht

1 : (F̄1(t), F̄2(t), . . . , F̄k(t)) ∈ I1 with I1 = {x ∈ Rk, x1 ≤ x2 ≤ · · · ≤ xk}.
The localized empirical likelihood ratio test statistic in this case is

R01(t) =
sup

{∏k
i=1 L(F̄i ) : (F̄1(t), F̄2(t), . . . , F̄k(t))T ∈ I0

}

sup
{∏k

i=1 L(F̄i ) : (F̄1(t), F̄2(t), . . . , F̄k(t))T ∈ I1
} .
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To compute R01(t) we require also maximizing (4) under Ht
1 or equivalently maxi-

mizing (7) subject to h j (μ) ≤ 0, j = 1, 2, . . . , k − 1. We denote by (β̂
(1)

, μ̂
(1)

, λ̂
(1)

)

the optimal values of (β,μ,λ) in this case. The solution of this maximization is given
by

θ̂
(1)
i j = 1 − di j

ni j + ni β̂
(1)
i

= 1 − di j

ni j + n(λ̂
(1)
i − λ̂

(1)
i−1)

, 1 ≤ i ≤ k, 1 ≤ j ≤ n(t),

where again λ̂
(1)
1 = λ̂

(1)
k = 0. An algorithm to compute this solution is also described

in Sect. 3, but for the asymptotics, we proceed as in the previous section. The following
lemma holds.

Lemma 6 Under H0

− 2 log(R01(t))
d→ ||Ew̃(t)[V(t)|I1] − Ew̃(t)[V(t)|I0]||2w̃(t). (16)

The limiting distribution of −2 log(R01(t)) is known as a Chi-bar-square distribu-
tion. Specifically, under H0,

lim
n→∞ P(−2 log(R01(t)) ≥ a) =

k∑

�=1

pw̃(�, k)P
(
χ2

�−1 ≥ a
)

where χ2
� denotes the central Chi-square distribution with � degrees of freedom and

χ2
0 ≡ 0. The weight pw̃(�, k), also known as a level probability, is the probability that

the least squares projection of (V1(t), V2(t), . . . , Vk(t)) with weights w̃1, w̃2, . . . , w̃k

onto I1 has exactly � levels. These level probabilities are sums of products of normal
orthant probabilities, and in general, they do not exist in a closed form. However, when
w̃1 = w̃2 = · · · = w̃k, they do not depend on w̃, which is then omitted, and they
satisfy the following recurrence relation

p(�, k) = 1

k
p(� − 1, k − 1) + k − 1

k
p(�, k − 1)

where p(0, k − 1) = p(k, k − 1) = 0. For more on this, see Robertson et al. (1988)
and Silvapulle and Sen (2005). To test H0 against H1, we introduce the test statistic

T01 = sup
τ1≤t≤τ2

[R01(t)].

The following result gives the asymptotic null distribution of T01.

Theorem 3 UnderH0, if τ1 and τ2 are such that F̄(τ1) < 1 andmin1≤i≤kπi (τ2) > 0,
then

T01
d→ sup

τ1≤t≤τ2

||Ew̃(t)[V(t)|I1] − Ew̃(t)[V(t)|I0]||2w̃(t). (17)
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If in addition all the samples are censored by the same distribution G, in which case
c1 = c2 = · · · = ck ≡ c,

T01
d→ sup

u1≤u≤u2

k∑

i=1

γi

(
Eγ [B̃(u)|I1]i − ∑k

j=1γ
1/2
j B j (u)

)2

u(1 − u)
(18)

where γ = (γ1, γ2, . . . , γk)
T , B̃ = (γ

−1/2
1 B1, γ

−1/2
2 B2, . . . , γ

−1/2
k Bk)

T with
B1, B2, . . . , Bk independent Brownian bridges and ui = c(τi )/(1 + c(τi )), i = 1, 2.

Remark 4 When k = 2, it is easy to show that

Ew̃(t)[V(t)|I1]i = Vi (t)I [V1(t) ≤ V2(t)] + Ew̃(t)[V(t)|I0]i I [V1(t) > V2(t)], i = 1, 2,

and

Ew̃(t)[V(t)|I0]1 = Ew̃(t)[V(t)|I0]2 = V̄ (t) = w̃1(t)V1(t) + w̃2(t)V2(t)

w̃1(t) + w̃2(t)
.

Consequently,

||Ew̃(t)[V(t)|I1] − E w̃(t)[V(t)|I0]||2w̃(t) = [(V2(t) − V1(t))+]2
c(t)

where for any real number a, a+ = max(a, 0). Using this and the same steps as in
Remark 2, we get

T01
d→ sup

u1≤u≤u2

B2+(u)

u(1 − u)

where B(u), u1, u2 and c−1(u) are as defined in Remark 2. This is the result obtained
in Chang andMcKeague (2016) who showed via simulations that this test outperforms
a weighted Kaplan–Meier test proposed in Pepe and Fleming (1989) and the one-sided
log-rank test under alternatives with crossing hazard rates.

Again the limiting distributions in (17) and (18) are not tractable, but the same the
technique described above can be used to approximate the p values and the power
corresponding to T01. Specifically, let

T̂01 = sup
τ1≤t≤τ

|E ˆ̃w(t)[V̂(t)|I1] − E ˆ̃w(t)[V̂(t)|I0]||2ˆ̃w(t)

where V̂(t) is as defined before and ˆ̃w(t) =
(

n1
nĉ1(t)

,
n2

nĉ2(t)
, . . . ,

nk
nĉk(t)

)T

. Under

H0, T01 and T̂01 have exactly the same asymptotic distribution which is given in (17).
Moreover, the true asymptotic distribution of T̂01 can again be approximated using
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Table 2 Powers of the tests T01 and S01 when k = 3 under Lehman alternatives (F̄i (x) = [F̄0(x)]ai , i =
1, 2, 3), u1 = 0.1, u2 = 0.9, α = 0.05

a1 a2 a3 T01 S01 T01 S01 T01 S01 T01 S01

10% Censoring

1.00 1.00 1.00 0.039 0.025 0.049 0.034 0.051 0.036 0.044 0.037

1.50 1.25 1.00 0.253 0.123 0.450 0.163 0.312 0.118 0.345 0.160

1.75 1.50 1.00 0.446 0.152 0.706 0.264 0.600 0.159 0.541 0.231

2.00 1.75 1.00 0.630 0.221 0.881 0.379 0.768 0.243 0.720 0.311

2.25 2.00 1.00 0.870 0.371 0.950 0.496 0.890 0.301 0.854 0.387

25% Censoring

1.00 1.00 1.00 0.040 0.025 0.045 0.036 0.037 0.031 0.046 0.038

1.50 1.25 1.00 0.223 0.096 0.387 0.143 0.303 0.090 0.311 0.132

1.75 1.50 1.00 0.401 0.151 0.611 0.203 0.501 0.146 0.505 0.201

2.00 1.75 1.00 0.564 0.193 0.822 0.302 0.730 0.196 0.666 0.274

2.25 2.00 1.00 0.710 0.234 0.925 0.388 0.859 0.264 0.799 0.359

For columns 4 and 5, n1 = n2 = n3 = 30, for columns 6 and 7, n1 = n2 = n3 = 50, for columns 8 and
9, n1 = 50, n2 = 40, n3 = 30 and for columns 10 and 11, n1 = 30, n2 = 40, n3 = 50

Table 3 Powers of the tests T01
and S01 when k = 4 under
Lehman alternatives (F̄i (x) =
[F̄0(x)]ai , i = 1, 2, 3, 4), u1 =
0.1, u2 = 0.9, α = 0.05

a1 a2 a3 a4 T01 S01 T01 S01

10% Censoring

1.0 1.00 1.00 1.0 0.043 0.035 0.053 0.038

1.5 1.3 1.2 1.0 0.358 0.116 0.588 0.513

1.6 1.4 1.2 1.0 0.355 0.110 0.599 0.169

1.8 1.6 1.4 1.0 0.492 0.122 0.755 0.191

25% Censoring

1.0 1.0 1.0 1.0 0.043 0.035 0.053 0.038

1.5 1.3 1.2 1.0 0.310 0.089 0.511 0.143

1.6 1.4 1.2 1.0 0.311 0.091 0.521 0.134

1.8 1.6 1.4 1.0 0.422 0.130 0.672 0.168

For columns 5 and 6, n1 = n2 = n3 = n4 = 30, for columns 7 and
8, n1 = n2 = n3 = n4 = 50

the approach in Parzen et al. (1997) by holding the data fixed and simulating the
independent standard normal covariates Zi j s in Ṽ (t) = (Ṽ1(t), Ṽ2(t), . . . , Ṽk(t))T

and computing T̃01 = supτ1≤t≤τ ||E ˆ̃w(t)[Ṽ(t)|I1] − E ˆ̃w(t)[Ṽ(t)|I0]||2ˆ̃w(t)
. To approx-

imate the p value, we may calculate the percentage of the simulated values of T̃01 that
are greater than the observed value of T01. In addition, to approximate the power of
T01 at a given alternative, for each simulated data under this alternative, we compute
the value of T01, then simulate the values of T̃01 by repeatedly generating the inde-
pendent normal variates Zi j s while holding the observed data fixed. We then compare
appropriate quantiles of these values of T̃01 with the value of T01 for each one of the
simulated data sets.
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Table 4 Powers of the tests T01 and S01 when k = 3, u1 = 0.1, u2 = 0.9 and α = 0.05

F1 F2 F3 T01 S01 T01 S01

10% Censoring

Exp(1) Exp(1) Exp(1) 0.039 0.025 0.044 0.031

Exp(1) 0.05 + Exp(1) 0.10 + Exp(1) 0.125 0.077 0.189 0.113

Exp(1) 0.10 + Exp(1) 0.20 + Exp(1) 0.314 0.250 0.524 0.423

Uni(0, 2) Uni(0, 2) Uni(0, 2) 0.041 0.035 0.048 0.043

Uni(0, 2) Uni(0, 1.75) Uni(0, 1.5) 0.117 0.058 0.139 0.077

Uni(0, 2) Uni(0, 1.5) Uni(0, 1) 0.505 0.193 0.749 0.284

25% Censoring

Exp(1) Exp(1) Exp(1) 0.039 0.025 0.044 0.031

Exp(1) 0.05 + Exp(1) 0.10 + Exp(1) 0.101 0.079 0.171 0.155

Exp(1) 0.10 + Exp(1) 0.20 + Exp(1) 0.246 0.198 0.523 0.457

Uni(0, 2) Uni(0, 2) Uni(0, 2) 0.041 0.035 0.043 0.039

Uni(0, 2) Uni(0, 1.75) Uni(0, 1.5) 0.112 0.057 0.211 0.088

Uni(0, 2) Uni(0, 1.5) Uni(0, 1) 0.444 0.178 0.711 0.227

For columns 4 and 5, n1 = n2 = n3 = 30, for columns 6 and 7, n1 = n2 = n3 = 50

To implement the new test when the censoring distributions are the same, one
can again fix u1 and u2 and use τi = ĉ−1(ui/(1 − ui )), i = 1, 2, where ĉ−1(x) =
inf{t, ĉ(t) ≥ x} and ĉ(t) = ∑k

i=1
ni
n ĉi (t) is again the pooled estimate of c. The

estimated cutoff points corresponding to u1 = 0.1 and u2 = 0.9 can be found in
Davidov and Herman (2010). Finally, when there is no censoring, ci (t) = F(t)/F̄(t)
where F is the common distribution under H0, and it can be easily verified that

sup
τ1≤t≤τ2

[−2 log(R01(t))] d→ sup
F(τ1)≤u≤F(τ2)

k∑

i=1

γi

(
Eγ [B̃(u)|I1]i − ∑k

j=1γ
1/2
j B j (u)

)2

u(1 − u)

where B̃ is defined in Theorem 3. This is the limiting distribution given in Davidov
and Herman (2010) for their test. These authors showed that their test outperforms
existing tests at all the distributions that they considered.

3 Algorithm, simulations and a numerical example

3.1 Algorithm

To compute R02(t) and R01(t), we need to compute λ̂
(0)

(t) and λ̂
(1)

(t). A careful

inspection of the duality results in Dykstra and Feltz (1989) shows that λ̂
(0)

(t) is the
solution to
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min
k∑

i=1

n(t)∑

j=1

(ni j + n(λi − λi−1))Φ

(
di j

ni j + n(λi − λi−1)

)

subject to (λ0, λ1, . . . , λk)
T ∈ {0} × Rk−1 × {0} where Φ(x) = x log(x) + (1 −

x) log(1 − x). Its value can be computed using their algorithm as follows.

1. Initially set λ0i = 0 for all j; set ν = 1.
2. Find λν

i , the optimal value of λi with all the other λs held fixed. This value of λi
replaces the previous value of λi .

3. If i < k − 1, set i = i + 1; if i = k − 1, set i = 1 and ν = ν + 1.

This process is continued until sufficient accuracy is attained. This same algorithm

can be used to compute λ̂
(1)

with the additional constraint that when λ̂ν
i < 0 is step 2,

it is set equal to 0. A careful inspection of this algorithm shows that λ̂ν
i that we seek

in step 2 is the solution to

n(t)∏

j=1

(

1 − d j

ni j + n(λi − λν+1
i−1 )

)

=
n(t)∏

j=1

(

1 − di+1, j

ni+1, j + n(λν−1
i+1 − λi )

)

.

3.2 Simulations

We now present the results of two simulation studies. In the first simulation study, we
assume that the censoring distributions are the same and compare the performance
of T01 with the test statistic S01 of El Barmi and Mukerjee (2005) whose limiting
distribution is known only when the censoring distributions are the same. This statistic
is defined as the maximum of a sequence of (one-sided) two-sample Kolmogorov–
Smirnov test statistics. In each case, 3000 data sets were used to approximate the
power using u1 = 0.1 and u2 = 0.9 and assuming a common censoring distribution.
The parameters are chosen in such a way to produce 10% or 25% censoring when
sampling from the smallest distribution. Throughout we take τi = ĉ−1(ui ), i = 1, 2,
where ĉ is as defined before. The critical values for T01 are taken from Davidov and
Herman (2010) and those for S01 are obtained from its asymptotic distribution which
is available in a closed form and is given in El Barmi and Mukerjee (2005). First, we
note that the new procedure is invariant with respect to monotone transformations. To
see this, suppose Xi has distribution Fi and let X̃i = g(Xi ) where g is an increasing
function. Let Xi j ,Ci j , Zi j , δi j , θi j and Tj be as defined before and let (X̃i j , C̃i j ) =
(g(Xi j ), g(Ci j )), Z̃i j = min(X̃i j , C̃i j ) and δ̃i j = I [X̃i j ≤ C̃i j ]. Since g is increasing
δ̃i j = δi j and if we let T̃ j = g(Tj ), then

ψi j ≡ P(X̃i > T̃ j )

P(X̃i > T̃ j−1)
= P(Xi > Tj )

P(Xi > Tj−1)
≡ θi j and

n(g(t)) ≡
m∑

j=1

I [T̃ j ≤ g(t)] =
m∑

j=1

I [Tj ≤ t] = n(t).
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Table 5 Powers of the test T01 and the test L01 in Liu et al. (1993) using F̄i , i = 1, 2, 3 in Fig. 1 when
α = 0.05

Censoring distributions (rates of censoring) T01 L01 T01 L01

Exp (10%) Exp (10%) Exp (10%) 0.450 0.097 0.576 0.143

Exp (10%) Exp (10%) Exp (25%) 0.377 0.091 0.543 0.136

Exp (10%) Exp (25%) Exp (25%) 0.364 0.086 0.527 0.128

Exp (25%) Exp (25%) Exp (25%) 0.352 0.083 0.513 0.125

Unif (10%) Unif (10%) Unif (10%) 0.360 0.079 0.469 0.110

Expl (10%) Exp (10%) Unif (10%) 0.373 0.095 0.522 0.111

For columns 4 and 5, n1 = n2 = n3 = 30, for columns 6 and 7, n1 = n2 = n3 = 50

In addition, the size of the risk set and the number of complete observations from the
ith population at T̃ j are ni j and di j , respectively. Consequently

m∏

j=1

θ
ni j−di j
i j (1 − θi j )

di j =
m∏

j=1

ψ
ni j−di j
i j (1 − ψi j )

di j

and F̄i (Tj ) = ∏ j
�=1θi j = ∏ j

�=1ψi j = ¯̃Fi (T̃ j ) where
¯̃Fi is the SF corresponding to

X̃i . Therefore, the new test procedure is invariant under monotone transformations.
In the first part of this simulation study, we confine attention to Lehmann alter-

natives and assume that F̄i (t) = [F̄0(t)]ai and Ḡi (t) = [F̄0(t)]bi for some cdf
F0 where a1 ≥ a2 ≥ . . . ,≥ ak and b1, b2, . . . , bk are chosen to achieve the
desired censoring size. Taking g(t) = F0(t), the invariance property under mono-
tone transformations implies that it suffices in this case to sample from F̃i (t) =
[1 − (1 − t)ai ]I (0, 1)(t) + I [1,∞)(t). The corresponding censoring distribution is
given by G̃i (t) = [1 − (1 − t)bi ]I (0, 1)(t) + I [1,∞)(t). We use this procedure to
evaluate the finite sample performance of the new test. Tables 2 and 3 give the results
for k = 3 and k = 4. In all cases, T01 has greater power than S01 and has better
agreement with the nominal level of the test.

In the second part of this simulation, we look at a variety of distributions and sample
sizes. The censoring distributions are chosen from the same family in a way to produce
the desired censoring rates. The results are given in Table 4 and in all cases T01 has
again greater power than S01 and has better agreement with the nominal level of the
test.

A careful inspection of the limiting distribution of T01 shows that it is based on
the projection of the vector V(t) on the pointed isotonic cone defined by the linearly
ordered set generated by {log F̄i (t) : 1 ≤ i ≤ k, t ∈ R} in Rk−1 after modding out
the linear subspace corresponding to Ht

0. On the other hand, the statistic S01 is the
maximum of the statistics {S01i } for sequentially testing H0i : F̄1 = · · · = F̄i vs
H1i : F̄1 = · · · = F̄i−1 ≤ F̄i , for 2 ≤ i ≤ k, based on Hogg’s (1962) suggestion. It
can be shown that this corresponds to replacing the projection of V(t) on the isotonic
cone by the projection on a strictly larger cone that is an orthant inRk−1. Heuristically,

123



A test for the presence of stochastic ordering under censoring 467

for a given level of significance, this amounts to a smaller rejection region in most
directions resulting in a lower power.

In the second simulation study,we do not assume that the censoring distributions are
the same and compare the power of T01 to that of a test developed in Liu et al. (1993)
which we denote by L01. We note that this test is based on the sum of two-sample
weighted log-rank statistics. Since the one-sided weighted log-rank tests are designed
to detect uniform stochastic ordering or hazard rate ordering, which is more restrictive
that stochastic order, they can fail to detect stochastic ordering. This is clearly shown
in this simulation in which we take the hazard rates to be λ1(t) = 0.3I (0 < t <

1) + 0.1I (1 < t ≤ 2) + 0.2I (t > 2), λ2(t) = 0.2 and λ3(t) = 0.1I (0 < t <

1) + 0.3I (1 < t ≤ 2) + 0.2I (t > 2). Clearly, these hazard rates cross but their
corresponding SFs, F̄i , i = 1, 2, 3, are stochastically ordered (see Fig. 1). We take the
censoring distributions to be either exponential and /or uniform, and they are chosen to
produce the desired censoring rates. The conditions F̄(τ1) < 1 and π(τ2) > 0 suggest

a data-driven rule for choosing τ1 and τ2: τ1 = max1≤i≤k inf{t, ˆ̄Fi (t) < 1} and

τ2 = min1≤i≤k sup{t, π̂i (t) = ˆ̄Fi (t) ˆ̄Gi (t) > 0} where each distribution is estimated
by its Kaplan–Meier estimator. This is what we use in this simulation. In each case,
3000 data sets were simulated from these distributions, and for each one of these data
sets, the value of T01 is computed and 3000 values of T̃01 were obtained by the method
described above. The estimated power of T01 is estimated by the fraction of data sets
whose value of T01 is greater than the corresponding 95% percentile of values of T̃01
(i.e., we use α = 0.05). The results are given in Table 5, and they clearly show that
the new test outperforms the test of Liu et al. (1993).

There are three reasons for low power of the L01 test: (i) The statistic L01 tests for
uniform stochastic ordering only. This ordering is a meager subset of the stochastic
ordering cone. As a result, it is powerful against uniform stochastic alternatives, but
has very little power against stochastic ordering alternatives that are far removed from
uniform stochastic ordering as demonstrated by simulations in Table 5. (ii) Squaring
the two-sample log-rank test statistic amounts to using a two-sided Z -test for a one-
sided alternative and (iii) the last reason for loss of power is the replacement of the
isotonic cone by a larger cone that is an orthant as described above.

3.3 Example

Next, we illustrate the results in this paper using Data Set II from Kalbfleisch and
Prentice (1980). This data set consists of survival times for patients with carcinoma of
the oropharynx and several covariates. These patients were diagnosed with squamous
carcinoma of the oropharynx, and they were classified by the degree to which the
regional lymph nodes were affected by this disease into four populations. Lymph
node deterioration indicates the seriousness of the carcinoma. As a result, we would
expect the four populations to be stochastically ordered. In practice, one can take τ2 =
1065, the largest observation at which all the Kaplan–Meier estimators of the each
distribution and its corresponding censoring distribution are positive and τ1 = 105,
the smallest time at which all the Kaplan–Meier estimators are less that one. In this
case T01 = 16.32. The estimated p-value when we do not assume that the censoring
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Fig. 1 Survival functions F̄1, F̄2 and F̄3

distributions are the same is 0.011 providing evidence that the distributions of the four
populations are stochastically ordered.Whenwe assume that the samples are censored
by the same distribution, the p value is less that 0.01 based on Table 1 while the p
value using El Barmi and Mukerjee (2005) is 0.024.

4 Concluding remarks

In this paper, we developed an empirical likelihood-based approach for testing the
presence of stochastic ordering among k populations in the censored case. This new
test is invariant under monotone transformations, and two simulation studies show
that it is more powerful than a test developed for the same problem in El Barmi
and Mukerjee (2005) and a test developed in Liu et al. (1993) at all the distributions
that we considered. We also show that when all the samples are censored by the
same distribution, its asymptotic distribution is exactly that of a test developed in
the uncensored for the same problem in Davidov and Herman (2010). An advantage
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of this new test comes from the fact that it first considers the well-understood one-
dimensional linear ordering problem for each t and then uses a supremum for an
overall test. This method avoids the difficult problem of testing for the linear ordering
at every t simultaneously. Previous tests used simplifying assumptions to achieve this,
resulting in a loss of power.

We note that this new test extends naturally to testing whether (F1, F2, . . . , Fk)T

is isotonic with respect to a quasi-order on {1, 2, . . . , k}. A relation � on {1, 2, . . . , k}
is a quasi-order if it is reflexive and transitive and (F1, F2, . . . , Fk)T is isotonic with
respect to � if Fi �SO Fj whenever i � j . Examples of such ordered alternatives
include tree ordering (F1 �SO Fi , i = 2, . . . , k) and umbrella ordering F1 �SO

F2 · · · �SO Fi0 and Fk �SO Fk−1 �SO · · · �SO Fi0+1, where i0 is known. The
localized empirical likelihood ratio can be computed by adapting the algorithm in
Dykstra and Feltz (1989) to this situation. The limiting distribution of the resulting
test statistic is obtained by taking I in (14) as the isotonic cone corresponding to �.

A reviewer asked whether it is possible to compute Pitman efficiency for our test.
Since Pitman efficiency is defined for test statistics that are asymptotically normal
under a sequence of centering and scaling for a one-sided test, and the asymptotic
distribution of the likelihood ratio test is a mixture of χ2 distributions with different
degrees of freedom that are derived from the asymptotic half-normal distributions of
the projections of the observation on the isotonic cone. We have no idea how to even
define a Pitman-type efficiency.
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